
Bridging the Memory-Storage Gap

Anirudh Badam

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Vivek S. Pai

November 2012

c© Copyright by Anirudh Badam, 2012.

All rights reserved.

Abstract

The Internet has become indispensable in the developing world. It has become an

important tool for providing entertainment, for enabling and bettering human com-

munication, for delivering effective education, for conducting research, for spreading

news, and for organizing people to rally to various causes. However, today, only a

third of the world’s population has quality access to the Internet. The Internet has

two primary hindrances for expansion. First, the high cost of network connectivity

in developing regions and second, the high cost of establishing new data centers to

reduce the load on the existing data centers. Fortunately, caches in various forms

help address both these problems by storing reusable content near the clients. De-

spite their importance, today’s caches are limited in their scale because of the trends

in the evolution of current memory-storage technologies.

The widening gap between memory and storage is limiting the performance of

applications like caches. The ever-increasing amount of data and the need to access

more of it quickly have further magnified the gap. Limited DRAM capacity of servers

makes it difficult to obtain good in-memory hit-rates that are vital for avoiding high-

latency disk accesses. This dissertation presents two new complementary methods

(HashCache and SSDAlloc) to bridge this gap for caches that affect the performance

of many applications including HTTP Web Proxy caches, wide area network acceler-

ators, content distribution networks, and file backup services. First, we will develop

HashCache, a novel method to drastically improve the memory efficiency of caches.

By reducing the amount of memory needed for caching by up to 20 times, it reduces

the cache’s total cost of ownership. While HashCache makes more effective use of

limited RAM in a system, SSDAlloc introduces a tier of new memory technology like

NAND-Flash between RAM and disk to further bridge the gap.

SSDAlloc removes the impediments to the integration of new high-capacity mem-

ory technologies like NAND-Flash into the memory hierarchy. SSDAlloc is a novel

iii

memory manager that helps applications like HashCache tier data transparently and

efficiently between DRAM and NAND-Flash. With only a few modifications to an

existing application, restricted to the memory allocation portions of the code, one

can reap the benefits of new memory technologies. Additionally, with SSDAlloc, ap-

plications can obtain 90% of the raw performance of NAND-Flash, while existing

transparent tiering mechanisms deliver only 6-30% of that. Furthermore, by clev-

erly discerning application behavior, SSDAlloc writes up to 32 times less data to

NAND-Flash when compared to similar existing mechanisms. This greatly increases

the reliability of NAND-Flash that has a limited lifetime unlike DRAM.

iv

Acknowledgements

“And what, Socrates, is the food of the soul? Surely, I said, knowledge is the food of

the soul.” – Plato.

The last six years of my life have been a great source of knowledge and wisdom. I

wish to express my gratitude for everyone who made them special. I consider myself

extremely fortunate to have been in the company of many fantastic researchers while

enjoying the undying support of my family and friends. They have all collectively

helped me in staying focused.

I would like to begin by thanking my advisor Vivek Pai for his teachings, advice

and support through the years. His approach towards research, deep insight into

various topics and the ability to quickly get down to the problem at hand have been

a great source of knowledge and inspiration. In many places, this thesis will show

his philosophy towards systems problems – “what is the single dominant issue in

a problem setting and how to design an elegantly simple solution to tackle it?”. I

hope to continue using this philosophy in my research since it has always led me

to great results. I would also like to thank Vivek for being extremely flexible and

understanding towards some of my personal issues. Much of thesis would not have

been possible otherwise.

Graduate level courses taught by Michael Freedman, Jennifer Rexford and Larry

Peterson were extremely helpful in bootstrapping my doctoral journey. I vividly

remember some of the great papers that Michael picked carefully for his students to

read. His courses, Advanced Operating Systems, System support for Virtual Worlds,

and Datacenter Systems have always helped me in keeping abreast with the greatest

findings in many related areas of research. They have always inspired me to look at

my research from other perspectives that would increase my clarity of thought. I feel

fortunate for having the opportunity to interact with him.

v

Next, I would like to thank my mentors during internships. At HP Labs Princeton,

I had the opportunity to work with Jack Brassil who first helped me understand the

nuances of corporate research labs and how to go about solving problems in such a

setting. I will cherish some of this advice as I will be moving to one such corporate

research lab in the near future.

At Intel Labs Pittsburgh, I had the great opportunity of working with four terrific

researchers – Dave Andersen, Michael Kaminsky, Dina Papagiannaki and Srini Se-

shan. Their jovial nature and expertise in a broad set of topics helped me in gaining

sharp intuition into some new areas of research. I hope to interact with them again

in the future.

At Fusion-io, I had company of David Nellans and Robert Wipfel who taught me

how juggle between research and product development. I am certain that I would

require these skills in the future when a product development opportunity presents

itself that aligns closely with my research agenda.

My interest in science began early in my high school. I would like to thank

Mrs. Jayashree, Mrs. Prafulla, Mr. Sharma, Mr. Ramaiah, Mr. Madhusudan, Mr.

Koteshwar Rao, and Mr. Surendranath for their inspirational lectures on physics,

chemistry and mathematics. I would also like to thank my mentors at IIT Madras

during my undergraduate studies. The courses and advice offered by Sivaram Murthy,

Narayana Swamy and G. Srinivasan put me on the right track of research. I am

thankful to them for giving me the first taste of the benefits from research.

I sometimes jokingly call the department my second home. It is true at some

level and I would attribute that to the friends who acted as the pseudo-family in the

department. I would like to thank Rajsekar Manokaran, David Steurer, Aravindan

Vijayaraghavan, Aditya Bhaskara, Arun Raman, Srinivas Narayana, Mortiz Hardt

and Prakash Prabhu for making the department a fun place to be. I would also like

to thank everyone who was involved in setting up the system’s lab and everyone who

vi

was involved in the maintenance of the coffee machines over the years. These friends

and resources were indispensable in keeping my spirits up.

Life outside the department in Princeton was always fun in the company of Ra-

jsekar, Aravindan, Aditya, Srinivas, Arun, Vijay Krishnamurthy, Ashwin Subramani,

Narayanan Raghupathi and Ketra Kanodia. I would like to specially thank Vijay for

his selfless help during my initial days in this country. His car was a single source

of conveyance for many of us. I would also like to thank Mr. and Mrs. Ramesh

Penmetcha for inviting me to their home for holidays and sending me back with loads

of home cooked food.

I would like to thank my roommates over the years for being a family away

from family. It was a pleasure living with Rajsekar, Vijay, Aravindan, Aditya, and

Narayanan. I will miss all the help, the late night discussions, the cooking experi-

ments, and the xbox gaming that kept me going through the years. You guys truly

rock.

The admins at Princeton truly deserve my sincere gratitude. Over the years,

Melissa Lawson has been a great guide who periodically helped me in dealing with

administrative deadlines and procedures. I really appreciate what she does for the

students. I would also like to thank Mitra Kelly for processing all my reimbursements

on time. Csstaff has always lent a great helping hand in my research. I would like

to thank Scott Karlin, Paul Lawson, Joseph Crouthamel, Chris Miller and Chris

Tengi for their help and support through the six years. I also sincerely acknowledge

the following NSF grants which funded my research: CNS-0615237, CNS-0519829,

CNS-0520053, and CNS-0916204. I am also grateful to the university, Technology

for Developing Regions Center at Princeton, the Gordon Wu Foundation and the

Siebel Scholars Foundation for offering their support via fellowships during my stay

at Princeton.

vii

I would like to thank my friends who stuck with me through the years since my

childhood. I would like to thank Nikhil Rangaraju, Rajanikar Tota, Sahiti Paleti,

Deepak Anchala, Rahul Thota, Vishwakanth Malladi and the rest of the gang for

their fun company, for giving such encouragement and for being supportive through

the years.

In the spirit of saving the best for the last, I would like to thank my wonderful

family now. It is to them that I dedicate this thesis. I am extremely fortunate to have

been given such great parents. Their selfless love, unshakable faith in my abilities,

and their willingness to always put me first laid the foundation for my successful

career. I am grateful to them for being able to pamper me even while I was away

from home. I would also like to thank my sister for always being the motherly figure

in this country and providing me with wonderful vacations at her home through the

last six years. I would also like to thank my brother-in-law for providing valuable

advice on various personal and professional issues.

This thesis would not have been possible without the love and support of my

wonderful wife Priyanka. I am very fortunate to have a wife who can put up with the

tantrums and the ever changing temperament of a researcher whose mood is often

guided by the status of his research. Her strength and perseverance in the face of

difficulties have been a great source of inspiration and have helped me stay humble.

Her unrelenting support, undying love for me, a magical ability to cheer me up and a

heart big enough to look beyond my flaws were vital for the completion of this thesis.

viii

To my family.

ix

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xiii

List of Figures . xv

1 Introduction 1

1.1 Background and Motivation . 2

1.1.1 In-memory index based caches 3

1.1.2 Adopting new memory technologies 4

1.2 Our Approach and Contributions . 6

1.2.1 Rethinking cache indexing for memory efficiency 7

1.2.2 Adopting new memory technologies 8

1.3 Dissertation Overview . 9

2 Redesigning Caching Techniques for Memory Efficiency 11

2.1 Rationale For a New Cache Store . 13

2.2 Current State-of-the-Art . 15

2.3 Design . 19

2.3.1 Removing the In-Memory Index 20

2.3.2 Collision Control Mechanism 21

2.3.3 Avoiding Seeks for Cache Misses 23

x

2.3.4 Optimizing Cache Writes . 24

2.3.5 Prefetching Cache Reads . 26

2.3.6 Expected Throughput . 27

2.4 HashCache Implementation . 28

2.4.1 External Indexing Interface 28

2.4.2 HashCache Proxy . 29

2.4.3 Flexible Memory Management 29

2.4.4 Parameter Selection . 30

2.5 Performance Evaluation . 32

2.5.1 Workload . 32

2.5.2 Low-End System Experiments 33

2.5.3 High-End System Experiments 38

2.5.4 Large Disk Experiments . 40

2.6 Related Work . 44

2.7 Deployments . 46

2.8 Summary . 47

3 Easing the Adoption of New Memory Technologies 49

3.1 Motivation and Related Work . 52

3.2 SSDAlloc’s Design . 55

3.2.1 SSDAlloc’s Virtual Memory Structure 57

3.2.2 SSDAlloc’s Physical Memory Structure 59

3.2.3 SSDAlloc’s SSD Maintenance 63

3.2.4 SSDAlloc’s Heap Manager . 65

3.2.5 SSDAlloc’s Garbage Collector 68

3.2.6 SSDAlloc’s Durability Framework 68

3.2.7 SSDAlloc’s Overhead . 70

3.3 Implementation and the API . 72

xi

3.3.1 Migration to SSDAlloc . 74

3.4 Evaluation Results . 75

3.4.1 Microbenchmarks . 76

3.4.2 Memcached Benchmarks . 80

3.4.3 Packet Cache Benchmarks . 84

3.4.4 B+Tree Benchmarks . 86

3.4.5 HashCache Benchmarks . 88

3.5 Summary . 90

4 Conclusions and Future Work 92

4.1 Rethinking cache indexing for memory efficiency 93

4.2 Adopting new memory technologies 94

4.3 Future Work . 95

Bibliography 99

xii

List of Tables

1.1 Changes in Disk Properties Over 30 Years. 4

1.2 DRAM density scaling in a Fujitsu SPARC Enterprise M series server. 4

2.1 System Entities for Web Caches . 16

2.2 High Performance Cache - Memory Usage 17

2.3 Summary of HashCache policies, with Squid and commercial en-

tries included for comparison. Main memory consumption values

assume an average object size of 8KB. Squid memory data appears in

http://www.comfsm.fm/computing/squid/FAQ-8.html 19

2.4 Throughput for techniques, rr = peak request rate, chr = cache hit

rate, cbr = cacheability rate, rel = average number of related objects,

t = peak disk seek rate – all calculations include read prefetching, so

the results for Log and Grouped are the same. To exclude the effects

of read prefetching, simply set rel to one. 27

2.5 CDF of Web object sizes . 30

2.6 Disk performance statistics . 31

2.7 Expected throughput (reqs/sec) for policies for different disk speeds–

all calculations include read prefetching 34

2.8 Performance on a high end system . 40

2.9 Performance on 1TB disks . 42

2.10 Performance on 2TB disks . 42

xiii

3.1 SSDAlloc requires changing only the memory allocation code, typically

only tens of lines of code (LOC). Depending on the SSD used, through-

put gains can be as high as 17 times greater than using the SSD as

swap. Even if the swap is optimized for SSD usage, gains can be as

high as 3.5x. 51

3.2 While using SSDs via swap/mmap is simple, they achieve only a frac-

tion of the SSD’s performance. Rewriting applications can achieve

greater performance but at a high developer cost. SSDAlloc provides

simplicity, while providing high performance. 57

3.3 SSDAlloc’s overheads are quite low, and place an upper limit of over

1 million operations per second using low-end server hardware. This

request rate is much higher than even the higher-performance SSDs

available today, and is higher than even what most server applications

need from RAM. 70

3.4 SSDAlloc can take full advantage of object-sized accesses to the SSD,

which can often provide significant performance gains over page-sized

operations. 75

3.5 Response times show that OPP performs best, since it can make the

best use of the block-level performance of the SSD whereas MP provides

page-level performance. SSD-swap performs poorly due to worse write

behavior. 77

xiv

List of Figures

1.1 Relative costs when increasing DRAM capacity within a single server. 5

2.1 HashCache-Basic: objects with hash value i go to the ith bin for the

first block of a file. Later blocks are in the circular log. 21

2.2 HashCache-Set: Objects with hash value i search through the i
N

th
set

for the first block of a file. Later blocks are in the circular log. Some

arrows are shown crossed to illustrate that objects that map on to a

set can be placed anywhere in the set. 22

2.3 Peak Request Rates for Different policies for low end SATA disk. . . . 34

2.4 Peak Request Rates for Different SetMemLRU policies on low end

SATA disks. 35

2.5 Resource Usage for Different Systems 36

2.6 Low End Systems Hit Ratios . 37

2.7 High End System Performance Statistics 39

2.8 Sizes of disks that can be indexed by 2GB memory 41

2.9 Large Disk System Performance Statistics 43

3.1 NAND-Flash can be better exploited when it is used as slow-memory

as opposed to fast-disk . 52

xv

3.2 SSDAlloc uses most of RAM as an object-level cache, and material-

izes/dematerializes pages as needed to satisfy the application’s page

usage. This approach improves RAM utilization, even though many

objects will be spread across a greater range of virtual address space. 60

3.3 SSDAlloc’s thread-safe memory allocators allow applications to exploit

the full parallelism of many SSDs, which can yield significant perfor-

mance advantages. Shown here is the performance for 4KB reads. . . 73

3.4 OPP works best (1.8–3.5 times over MP and 2.2–14.5 times over swap),

MP and swap take a huge performance hit when write traffic increases 77

3.5 OPP, on all SSDs, trumps all other methods by reducing read and

write traffic . 78

3.6 OPP has the maximum write efficiency (31.5 times over MP and 1013

times over swap) by writing only dirty objects as opposed to writing

full pages containing them . 79

3.7 Memcache Results: OPP outperforms MP and SSD-swap by factors of

1.6 and 5.1 respectively (mix of 4byte to 4KB objects) 81

3.8 Memcache Results: SSDAlloc’s use of objects internally can yield dra-

matic benefits, especially for smaller memcached objects 82

3.9 Memcache Results: SSDAlloc beats SSD-Swap by a factor of 4.1 to 6.4

for memcache tests (mix of 4byte to 4KB objects) 83

3.10 Packet Cache Benchmarks: SSDAlloc’s runtime mechanism adds only

up to 20 microseconds of latency overhead, while there is no significant

difference in throughput . 85

3.11 B+Tree Benchmarks: SSDAlloc’s ability to internally use objects beats

page-sized operations of MP or SSD-swap 87

xvi

3.12 HashCache benchmarks: SSDAlloc OPP option can beat MP and SSD-

Swap on RAM requirements due to caching objects instead of pages.

The maximum size of a completely random working set of index entries

each allocation method can cache in DRAM is shown (in log scale). . 89

xvii

Chapter 1

Introduction

The Internet plays an important role in many people’s lives. In the developed world,

it has become indispensable for providing entertainment [74, 113], for enabling and

bettering human communication [39, 95], for delivering effective education [59, 69],

for conducting research [1, 6], for spreading news [49, 105] and for organizing people

behind various philanthropic and political causes [35, 48]. It is therefore necessary

to facilitate the further growth of the Internet so that its benefits can be provided to

the entire world.

Today, however, only about a third of the world’s population has uninterrupted

and high-quality access to the Internet and its vast resources [58]. There are two

primary hindrances for the further scalability and penetration of the Internet. First,

the current/projected cost of network connectivity in regions with limited or no-

access to the Internet is high not only in relative currency but also in absolute terms.

For example, Google sponsored, next-generation, satellite-based Internet in many

developing countries is expected to cost $500/Mbps/month by 2013 [76], a cost that

is two orders of magnitude higher than what the customers in the United States have

to pay [57]. The high cost translates to fewer links with higher traffic compared to

the developed world.

1

Second, the servers that power the Internet are predominantly located in the de-

veloped world [30]. This further increases the load on the constrained long-distance

satellite and fiber links to the developed world that deliver the content to many devel-

oping countries. The high cost of establishing new servers [5] also means that existing

servers will be overloaded when more users gain access to the Internet. Fortunately,

Internet caches in various forms can help alleviate both these problems. Caches form

an essential part of various Internet scale systems ranging from HTTP caches [96],

content distribution networks [3], network accelerators [87] to file backup services [31].

They reduce the pressure not only on the network links, but also on the servers by

caching reusable information closer to the client population.

Despite their importance, today’s caches are limited in their scale because of the

limitations of the traditional techniques used for caching and the trends in the evo-

lution of traditional memory (DRAM) and storage (disk) technologies. In order to

improve the Internet access across the world, we must overcome these limitations and

create scalable and inexpensive caches. We must first rethink the caching techniques

so that they make the best use of today’s memory (DRAM) and storage (disk) tech-

nologies. Furthermore, we must investigate ways to incorporate new and efficient

memory technologies like NAND-Flash memory (NAND-Flash) and Phase-change

memory (PCM) into the design of caches to make them scale further.

1.1 Background and Motivation

Caches use local memory and storage to reduce redundant data fetches over the

network. By caching information closer to the clients, they reduce network traffic

and also the perceived latency on the network link to the server. By reducing the

number of effective requests to the server they also reduce the load on the server.

2

Unfortunately, the current design of caches is tailored for deployment in developed

countries. For example, with current caching data structures, the DRAM consump-

tion is proportional to size of the disk used; also, the memory overhead per object

cached is high. This stems from the fact that the index for the disk based cache,

required to answer membership queries, is stored entirely in memory [28, 96] and is

not optimized for memory constrained environments [100].

1.1.1 In-memory index based caches

Traditional cache indexes have high memory requirements. For example, the Squid

open source HTTP proxy requires >80 bytes of DRAM per cached object [97] and

cutting edge HTTP proxies require >32 bytes of DRAM per cached object [28]. Using

these indexing techniques would require more than 10GB of DRAM for indexing only

a terabyte of disk, assuming an average object size of 8KB.

Network accelerators require caches that are capable of indexing objects that are

much smaller [54]. For example, using current techniques, a network accelerator con-

figured to use chunks of 256 bytes for eliminating redundancy would require 320GB

of DRAM for indexing a terabyte of disk. Moving forward, this would drive up the

DRAM requirements of caches considering the trends in the content-based cacheabil-

ity of content in the Internet [53]. It is, therefore, important to redesign the indexing

data structures so that they use significantly less memory and reduce the cost of

caches.

Large content distribution networks that split content into chunks to serve them

individually also require large caches [75, 82]. File storage services also require

large caches to speed up the process of deduplication that allows them to detect

redundantly-stored content in a file server [34, 37]. Reducing the memory-storage

coupling of caches can benefit the above applications by helping them scale.

3

1.1.2 Adopting new memory technologies

While significant benefits can be obtained from optimizing the indexing data struc-

tures, DRAM and disk have other problems which warrant the investigation of new

memory technologies in designing caches.

Disk Property 1982 2012 Change

Maximum Drive Capacity 30 MB 3 TB 100,000x Better

Average Seek Latency 20 ms 7 ms 2.5x Better

Table 1.1: Changes in Disk Properties Over 30 Years.

Disks are not scaling. Table 1.1 demonstrates the poor scaling of disks over

time. Even though the disks have been doubling their capacity fairly often to sustain

the 100,000x growth in capacity in the last 30 years, their speeds have barely managed

to increase by 3x. The high latency of disk accesses puts further pressure on the

limited DRAM in servers. In comparison, today’s high-performance NAND-Flash

devices are capable of providing a million requests per second at a latency of under

100 microseconds with as much capacity as 10.24TB within a single rack unit [45] .

The limited number of seeks per disk means that high-performance servers have

to rely heavily on DRAM for their performance. In fact, some high-performance

services serve their content entirely out of DRAM and use disk purely for archival

purposes [40, 51, 80]. However, DRAM has the following problems because of which

such models of computing could face severe scalability challenges.

DRAM (GB) 128 256 512 1024 2048 4096

Space (RU) 6 6 10 40 80 80

Power (kW) 1.1 1.4 2.7 6.5 7.3 14.4

Table 1.2: DRAM density scaling in a Fujitsu SPARC Enterprise M series server.

4

DRAM does not scale up. Currently, 4TB of DRAM is the upper limit of

DRAM that can fit in a single system image machine. Table 1.2 demonstrates how

the Fujitsu SPARC Enterprise M series scales in space and power consumption with

the total amount of DRAM contained in the system. 80 rack units of space is required

to reach the maximum 4TB of DRAM. For comparison, a 1 rack unit server can hold

10TB of NAND-Flash.

DRAM is power hungry. The SuperMicro SuperServer 5086B-TRF (5 rack

units) is one of the most DRAM dense servers on the market today and can pack 2TB

of DRAM (1333 MHz ECC) into its 5U form factor. To power and cool this much

DRAM, it draws 2.8kW of power. This same server can be alternatively outfitted with

45 TB of PCIe based NAND-flash within the same power budget and form factor. To

scale DRAM to a comparable 44TB would require a cluster of 22 such machines that

would consume an aggregate 110 rack units of space and 62kW of power. So, while

possible to scale DRAM out, versus up, it is still far more effective to scale capacity

using higher density technologies such as NAND-flash.

$0

$50,000

$100,000

$150,000

$200,000

$250,000

64 128 256 512 1024 2048

To
ta

l S
er

ve
r C

os
t (

U
SD

)

Total DRAM (GB)

Base Price DRAM Price

Figure 1.1: Relative costs when increasing DRAM capacity within a single server.

5

DRAM is expensive. Figure 1.1 shows the cost of a SuperMicro 5086B-TRF

as the total DRAM is increased from 64GB to 2TB. Note super-linear cost increase

in total server price as DRAM scales, due to the need for higher density DRAM

parts. Building out a cluster with 44TB of DRAM would require approximately 5

million USD, or 8x more than it costs to equip a single server with 45TB of high end

NAND-flash (assuming a cost of $12 USD/GB).

NAND-Flash, however, has problems of its own. Each NAND-Flash block can

be modified only after an expensive operation called an erase. Furthermore, each

NAND-Flash block is marked only for a limited number of erases after which the block

cannot store data reliably. These limitations often need to be masked using software

techniques [2, 52] that impose an obstacle to the quick adoption of NAND-Flash.

These problems, however, are not specific to NAND-Flash but are a natural property

of solid state storage technologies [63]. The above properties of DRAM, disk and

NAND-Flash warrant the redesign of caches to help them make better use of current

memory-storage technologies and also to help them incorporate new memory-storage

technologies in an appropriate manner.

1.2 Our Approach and Contributions

To summarize, this dissertation attempts to answer the following questions:

1. How can one design a cache that can index disks that are larger by an order

of magnitude when compared to existing designs without using any additional

memory?

2. What are the performance implications of such a cache design? More specifi-

cally, can such a design match the performance of existing cache designs?

3. How must new memory technologies like NAND-Flash be used to reduce the

reliance of such caches on traditional memory and disk for performance?

6

4. Can we adopt such new memory technologies transparently, while masking their

limitations? More specifically, can applications use them without any modifi-

cations?

We address the first two questions in Chapter 2: we develop HashCache [11], a

new way to design caches that drastically reduces the amount of memory needed

to index a given amount of disk without sacrificing performance. In Chapter 3,

we develop SSDAlloc [8, 10, 9] that helps applications like HashCache embrace new

memory technologies like NAND-Flash in a transparent manner, while masking its

limitations. Additionally, it increases performance by over an order of magnitude

over existing transparent ways of using NAND-Flash.

1.2.1 Rethinking cache indexing for memory efficiency

We rethink the design of caches to increase their scalability in Chapter 2 by developing

HashCache. HashCache makes the following contributions:

1. It is an efficient indexing mechanism which can index terabytes of disk with

only a few megabytes of memory. It enables netbook-class machines to host

caches with disks more than 2TB in size.

2. It helps caches use 20x less memory for the index when compared to Squid,

while matching its performance.

3. It helps caches use 6x less memory for the index when compared to state-of-

the-art high-performance caches, while matching their performance.

The approach behind HashCache was to start with a cache design that did not

require any memory for indexing and then gradually increase the memory for the

index to obtain higher performance. This approach helped us focus on a set of

techniques that required the bare minimum memory for providing a certain level of

7

performance. Using the efficient indexing technique, the cache can either reduce its

required memory and thereby, reduce the total cost of ownership or it can use the

additional memory to speedup the accesses to the disk.

Chapter 2 presents eight different HashCache techniques that are closely related

to each other. Each technique provides a different tradeoff between memory con-

sumption and performance. The range of techniques provide flexibility in terms of

the various practical settings where HashCache can be deployed. HashCache-SetMem

can be deployed on a netbook-class machine and can provide the benefits of a cache

to a small classroom in a developing country. HashCache-SetMem requires 20x less

memory compared to Squid, while matching its performance.

HashCache-LogPrefetch can be deployed as a cache for an entire school in a devel-

oping country. HashCache-LogPrefetch requires 6x less memory compared to state-of-

the-art high-performance caches, while matching their performance. For this reason,

HashCache is equally suitable for deployment as a cache in the developed world.

1.2.2 Adopting new memory technologies

We develop SSDAlloc in Chapter 3 to help applications transparently embrace new

memory technologies like NAND-Flash. It makes the following contributions:

1. SSDAlloc migrates new memory technologies like NAND-Flash transparently

into the memory hierarchy of servers. This enables applications like HashCache

to use NAND-Flash and not relying solely on DRAM. This helps applications

scale not only their workload size, but also their performance.

2. SSDAlloc helps applications perform 3–17x better when compared to existing

transparent techniques that help applications use NAND-Flash.

3. SSDAlloc helps applications obtain these performance benefits with only a few

modifications to code, often restricted to the memory allocation portions. In

8

the applications that we have tested, we needed only 0.05% of lines of code to

be modified to use SSDAlloc.

The approach behind SSDAlloc was to provide the benefits of customizing the ap-

plication to exploit new memory technologies without actually having to rewrite the

application. SSDAlloc abstracts out the core set of optimizations needed for adopting

new memory technologies into the memory management layer of an OS. Most appli-

cations are rewritten to adopt new memory technologies like NAND-Flash by using

them as a log-structured object based store [5, 4, 15, 26, 33, 107]. SSDAlloc cleverly

abstracts such a management of NAND-Flash from the application by working under

the virtual memory management sub-system of an OS.

Applications only need to modify their virtual memory management mechanism

to embrace SSDAlloc. While simply replacing malloc with SSDAlloc can provide up

to 17x times better performance over traditional memory management techniques,

higher performance benefits can be obtained by NAND-Flash aware application re-

design. However, with SSDAlloc one has the convenience of using NAND-Flash the

way they would use DRAM. Therefore, the effort for redesigning the application would

be reduced with SSDAlloc.

1.3 Dissertation Overview

This dissertation is organized in the following manner: in Chapter 1, we motivate the

scalability problems of current caches and discuss how developing new cache designs

and adopting new memory technologies will increase their scalability. We develop

HashCache in Chapter 2, a new way to design caches that dramatically increases their

capacity from a few tens of gigabytes to terabytes of disk without needing any extra

memory. In Chapter 3, we develop SSDAlloc which is a technique to transparently

9

integrate new memory technologies like NAND-Flash into the memory hierarchy of

an application. Finally, we conclude and discuss future work in Chapter 4.

10

Chapter 2

Redesigning Caching Techniques

for Memory Efficiency

Network caching has been used in a variety of contexts to reduce network latency and

bandwidth consumption, including FTP caching [90], Web caching [22, 23], redundant

traffic elimination [72, 86, 87], and content distribution [3, 43, 82, 109]. All of these

cases use local storage, typically disk, to reduce redundant data fetches over the net-

work. Large enterprises and ISPs particularly benefit from network caches, since they

can amortize their cost and management over larger user populations. Cache storage

system design has been shaped by this class of users, leading to design decisions that

favor first-world usage scenarios. For example, RAM consumption is proportional to

disk size due to in-memory indexing of on-disk data, which was developed when disk

storage was relatively more expensive than it is now. However, because disk size has

been growing faster than RAM sizes, it is now much cheaper to buy terabytes of disk

than a machine capable of indexing that much storage, since most low-end servers

have lower memory limits.

This disk/RAM linkage makes existing cache storage systems problematic for de-

veloping world use, where it may be very desirable to have terabytes of cheap storage

11

(available for less than US $100/TB) attached to cheap, low-power machines. How-

ever, if indexing a terabyte of storage requires 10 GB of RAM (typical for current

proxy caches), then these deployments will require server-class machines, with their

associated costs and infrastructure. Worse, this memory is dedicated for use by a

single service, making it difficult to deploy consolidated multi-purpose servers. When

low-cost laptops from the One Laptop Per Child project [77] or the Classmate from

Intel [56] cost only US $200 each, spending thousands of dollars per server may exceed

the cost of laptops for an entire school.

This situation is especially unfortunate, since bandwidth in developing regions is

often more expensive, both in relative and absolute currency, than it is in the US and

Europe. Africa, for example, has poor terrestrial connectivity, and often uses satellite

connectivity, backhauled through Europe. One of our partners in Nigeria, for example,

shares a 2 Mbps link, which costs $5000 per month. Even the recently-planned

“Google Satellite,” the O3b, is expected to drop the cost to only $500/Mbps per

month by 2013 [76]. With efficient cache storage, one can reduce network connectivity

expenses.

The goal of this chapter is to develop network cache stores designed for developing-

world usage. In this chapter, we present HashCache, a configurable storage system

that implements flexible indexing policies, all of which are dramatically more efficient

than traditional cache designs. The most radical policy uses no main memory for

indexing, and obtains performance comparable to traditional software solutions such

as the Squid Web proxy cache. The highest performance policy performs on par with

commercial cache appliances, while using main memory indexes that are only one

tenth their size. Between these policies are a range of distinct policies that trade

memory consumption for performance suitable for a range of workloads in developing

regions.

12

2.1 Rationale For a New Cache Store

HashCache is designed to serve the needs of developing-world environments, start-

ing with classrooms but working toward backbone networks. In addition to good

performance with low resource consumption, HashCache provides a number of ad-

ditional benefits suitable for developing-world usage: (a) many HashCache policies

can be tailored to use main memory in proportion to system activity, instead of

cache size. This reduces memory pressure inside systems that runs multiple applica-

tions like the serves in developing regions; (b) unlike commercial caching appliances,

HashCache does not need to be the sole application running on the machine; (c)

by simply choosing the appropriate indexing scheme, the same cache software can

be configured as a low-resource end-user cache appropriate for small classrooms, as

well as a high-performance backbone cache for higher levels of the network; (d) in

its lowest-memory configurations, HashCache can run on laptop-class hardware at-

tached to external multi-terabyte storage (via USB, for example), a scenario not even

possible with existing designs; and (e) HashCache provides a flexible caching layer,

allowing it to be used not only for Web proxies, but also for other cache-oriented

storage systems.

A previous analysis of Web traffic in developing regions shows great potential

for improving Web performance [36]. According to the study, kiosks in Ghana and

Cambodia, with 10 to 15 users per day, have downloaded over 100 GB of data within

a few months, involving 12 to 14 million URLs. The authors argue for the need

for applications that can perform HTTP caching, chunk caching for large downloads

and other forms of caching techniques to improve the Web performance. With the

introduction of personal laptops into these areas, it is reasonable to expect even higher

network traffic volumes.

Since HashCache can be shared by many applications and is not HTTP-specific,

it avoids the problem of diminishing returns seen with large HTTP-only caches.

13

HashCache can be used by both a Web proxy and a WAN accelerator, which stores

pieces of network traffic to provide protocol-independent network compression.

This combination allows the Web cache to store static Web content, and then

use the WAN accelerator to reduce redundancy in dynamically-generated content,

such as news sites, Wikipedia, or even locally-generated content, all of which may be

marked uncacheable, but which tend to only change slowly over time. While modern

Web pages may be large, they tend to be composed of many small objects, such

as dozens of small embedded images. These objects, along with tiny fragments of

cached network traffic from a WAN accelerator, put pressure on traditional caching

approaches using in-memory indexing.

A Web proxy running on a terabyte-sized HashCache can provide a large HTTP

store, allowing us to not only cache a wide range of traffic, but also speculatively pre-

load content during off-peak hours. Furthermore, this kind of system can be driven

from a typical OLPC-class laptop, with only 256MB of total RAM. One such laptop

can act as a cache server for the rest of the laptops in the deployment, eliminating the

need for separate server-class hardware. In comparison, using current Web proxies,

these laptops can only index 30GB of disk space.

The rest of this chapter is structured as follows. Section 2.2 explains the cur-

rent state of the art in network storage design. Section 2.3 explains the problem,

explores a range of HashCache policies, and analyzes them. Section 2.4 describes our

implementation of policies and the HashCache Web proxy. Section 2.5 presents the

performance evaluation of the HashCache Web Proxy and compares it with Squid

and a modern high-performance system with optimized indexing mechanisms. Sec-

tion 2.6 describes the related work, Section 2.7 describes our current deployments,

and Section 2.8 summarizes the chapter.

14

2.2 Current State-of-the-Art

While typical Web proxies implement a number of features, such as HTTP protocol

handling, connection management, DNS and in-memory object caching, their perfor-

mance is generally dominated by their filesystem organization. As such, we focus on

the filesystem component because it determines the overall performance of a proxy in

terms of the peak request rate and object cacheability. With regard to filesystems, the

two main optimizations employed by proxy servers are hashing and indexing objects

by their URLs, and using raw disk to bypass filesystem inefficiencies. We discuss both

of these aspects below.

The Harvest cache [23] introduced the design of storing objects by a hash of their

URLs, and keeping an in-memory index of objects stored on disk. Typically, two

levels of subdirectories were created, with the fan-out of each level configurable. The

high-order bits of the hash were used to select the appropriate directories, and the file

was ultimately named by the hash value. This approach not only provided a simple

file organization, but it also allowed most queries for the presence of objects to be

served from memory, instead of requiring disk access. The older CERN [22] proxy, by

contrast, stored objects by creating directories that matched the components of the

URL. By hashing the URL, Harvest was able to control both the depth and fan-out of

the directories used to store objects. The CERN proxy, Harvest, and its descendant,

Squid, all used the filesystems provided by the operating system, simplifying the

proxy and eliminating the need for controlling the on-disk layout.

The next step in the evolution of proxy design was using raw disk and custom

filesystems to eliminate multiple levels of directory traversals and disk head seeks

associated with them. The in-memory index now stored the location on disk where

15

the object was stored, eliminating the need for multiple seeks to find the start of the

object. 1

System Naming
Storage Memory

Management Management

CERN URL
Regular Filesystem

Filesystem Data Structures

Harvest Hash
Regular LRU, Filesystem

Filesystem Data Structures

Squid Hash
Regular LRU &

Filesystem others

Commercial Hash Log LRU

Table 2.1: System Entities for Web Caches

The first block of the on-disk file typically includes extra metadata that is too big

to be held in memory, such as the complete URL, full response headers, and location

of any subsequent parts of the object and is followed by the content fetched from the

origin server. In order to fully utilize the disk writing throughput, those blocks are

often maintained consecutively, using a technique similar to log-structured filesystem

(LFS) [88]. Unlike LFS, which is expected to retain files until deleted by the user,

cache filesystems can often perform disk cache replacement in FIFO order, even if

other approaches are used for main memory cache replacement. Table 2.1 summarizes

the object lookup and storage management of various proxy implementations that

have been used to build Web caches.

The upper bound on the number of cacheable objects per proxy is a function of

available disk cache and physical memory size. Attempting to use more memory than

the machine’s physical memory can be catastrophic for caches, since unpredictable

1This information was previously available on the iMimic Networking Web site and the Volera
Cache Web site, but both have disappeared. No citable references appear to exist.

16

page faults in the application can degrade performance to the point of unusability.

When these applications run as a service at network access points, which is typically

the case, all users then suffer extra latency when page faults occur.

Entity
Memory per

Object (bytes)

Hash 4 - 20

LFS Offset 4

Size in Blocks 2

Log Generation 1

Disk Number 1

Bin Pointers 4

Chaining Pointers 8

LRU List Pointers 8

Total 32 - 48

Table 2.2: High Performance Cache - Memory Usage

The components of the in-memory index vary from system to system, but a rep-

resentative configuration for a high-performance proxy is given in Table 2.2. Each

entry has some object-specific information, such as its hash value and object size. It

also has some disk-related information, such as the location on disk, which disk, and

which generation of log, to avoid problems with log wrapping. The entries typically

are stored in a chain per hash bin, and a doubly-linked LRU list across all index

entries. Finally, to shorten hash bin traversals (and the associated TLB pressure),

the number of hash bins is typically set to roughly the number of entries.

Using these fields and their sizes, the total consumption per index entry can be

as low as 32 bytes per object, but given that the average Web object is roughly

8KB (where a page may have tens of objects), even 32 bytes per object represents

17

an in-memory index storage that is 1/256 the size of the on-disk storage. With a

more realistic index structure, which can include a larger hash value, expiration time,

and other fields, the index entry can be well over 80 bytes (as in the case of Squid),

causing the in-memory index to exceed 1% of the on-disk storage size. With a single

1TB drive, the in-memory index alone would be over 10GB. Increasing performance

by using multiple disks would then require tens of gigabytes of RAM.

Reducing the RAM needed for indexing is desirable for several scenarios. Since the

growth in disk capacities has been exceeding the growth of RAM capacity for some

time, this trend will lead to systems where the disk cannot be fully indexed due to a

lack of RAM. Dedicated RAM also effectively limits the degree of multiprogramming

of the system, so as processors get faster relative to network speeds, one may wish

to consolidate multiple functions on a single server. WAN accelerators, for example,

cache network data [24, 87, 94], so having very large storage can reduce bandwidth

consumption more than HTTP proxies alone. Similarly, even in HTTP proxies, RAM

may be more useful as a hot object cache than as an index, as is the case in reverse

proxies (server accelerators) and content distribution networks. One goal in designing

HashCache is to determine how much index memory is really necessary.

18

2.3 Design

Policy
Bits/ RAM GB/ Read Write Miss

Comments
Object Disk TB Seeks Seeks Seeks

Squid 576-832 9-13 ∼ 6 ∼ 6 0 Harvest descendant

Commercial 256-544 4-8.5 < 1 ∼ 0 0 custom filesystem

HC-Basic 0 0 1 1 1 high collision rate

HC-Set 0 0 1 1 1
adds N-way sets to

reduce collisions

HC-SetMem 11 0.17 1 1 0
small in-mem hash

no seeks for misses

HC-
< 11 < 0.17 1 1 < 1

only some sets

SetMemLRU kept in memory

HC-Log 47 0.73 1 ∼ 0 0
writes to log, log

offset in memory

HC-LogLRU 15-47 0.23-0.67 1 + ε ∼ 0 0
log offset for only

some entries in set

HC-LogLRU
23-55 0.36-0.86 < 1 ∼ 0 0

reads related

+ Prefetch objects together

HC-Log
55 0.86 < 1 ∼ 0 0

reads related

+ Prefetch objects together

Table 2.3: Summary of HashCache policies, with Squid and commer-
cial entries included for comparison. Main memory consumption values
assume an average object size of 8KB. Squid memory data appears in
http://www.comfsm.fm/computing/squid/FAQ-8.html

In this section, we present the design of HashCache and show how performance can be

scaled with available memory. We begin by showing how to eliminate the in-memory

index, while still obtaining reasonable performance, and then we show how selective

19

use of minimal indexing can improve performance. A summary of policies is shown

in Table 2.3.

2.3.1 Removing the In-Memory Index

We start by removing the in-memory index entirely, and incrementally introducing

minimal metadata to systematically improve performance. To remove the in-memory

index, we have to address the two functions the in-memory index serves: indicating the

existence of an object and specifying its location on disk. Using filesystem directories

to store objects by hash has its own performance problems, so we seek an alternative

solution – treating the disk as a simple hashtable.

HashCache-Basic, the simplest design option in the HashCache family, treats part

of the disk as a fixed-size, non-chained hash table, with one object stored in each bin.

This portion is called the Disk Table. It hashes the object name (a URL in the case

of a Web cache) and then calculates the hash value modulo the number of bins to

determine the location of the corresponding file on disk. To avoid false positives from

hash collisions, each stored object contains metadata, including the original object

name, which is compared with the requested object name to confirm an actual match.

New objects for a bin are simply written over any previous object.

20

Hash 1

Hash 2

Hash 3

Hash 4

Hash 5

Hash 6

Hash 7

Hash 8
Disk
Table

Log-structured
Data Store

Figure 2.1: HashCache-Basic: objects with hash value i go to the ith bin for the first
block of a file. Later blocks are in the circular log.

Since objects may be larger than the fixed-size bins in the Disk Table, we intro-

duce a circular log that contains the remaining portion of large objects. The object

metadata stored in each Disk Table bin also includes the location in the log, the

object size, and the log generation number, as illustrated in Figure 2.1.

The performance impact of these decisions is as follows: in comparison to high-

performance caches, HashCache-Basic will have an increase in hash collisions (re-

ducing cache hit rates), and will require a disk access on every request, even cache

misses. Storing objects will require one seek per object (due to the hash randomizing

the location), and possibly an additional write to the circular log.

2.3.2 Collision Control Mechanism

While in-memory indexes can use hash chaining to eliminate the problem of hash

values mapped to the same bin, doing so for an on-disk index would require many

21

random disk seeks to walk a hash bin, so we devise a simpler and more efficient

approach, while retaining most of the benefits.

Hash 1

Hash 2

Hash 3

Hash 4

Hash 5

Hash 6

Hash 7

Hash 8
Disk
Table

Log-structured
Data Store

Figure 2.2: HashCache-Set: Objects with hash value i search through the i
N

th
set for

the first block of a file. Later blocks are in the circular log. Some arrows are shown
crossed to illustrate that objects that map on to a set can be placed anywhere in the
set.

In HashCache-Set, we expand the Disk Table to become an N-way set-associative

hash table, where each bin can store N elements. Each element still contains metadata

with the full object name, size, and location in the circular log of any remaining part

of the object. Since these locations are contiguous on disk, and since short reads

have much lower latency than seeks, reading all of the members of the set takes only

marginally more time than reading just one element. This approach is shown in

Figure 2.2, and reduces the impact of popular objects mapping to the same hash bin,

while only slightly increasing the time to access an object.

While HashCache-Set eliminates problems stemming from collisions in the hash

bins, it still has several problems: it requires disk access for cache misses, and lacks an

22

efficient mechanism for cache replacement within the set. Implementing something

like LRU within the set using the on-disk mechanism would require a potential disk

write on every cache hit, reducing performance.

2.3.3 Avoiding Seeks for Cache Misses

Requiring a disk seek to determine a cache miss is a major issue for workloads with low

cache hit rates, since an index-less cache would spend most of its disk time confirming

cache misses. This behavior would add extra latency for the end-user, and provide no

benefit. To address the problem of requiring seeks for cache misses, we introduce the

first HashCache policy with any in-memory index, but employ several optimizations

to keep the index much smaller than traditional approaches.

As a starting point, we consider storing in main memory an H-bit hash values

for each cached object. These hash values can be stored in a two-dimensional array

which corresponds to the Disk Table, with one row for each bin, and N columns

corresponding to the N-way associativity. An LRU cache replacement policy would

need forward and reverse pointers per object to maintain the LRU list, bringing the

per-object RAM cost to (H + 64) bits assuming 32-bit pointers. However, we can

reduce this storage as follows.

First, we note that all the entries in an N-entry set share the same modulo hash

value (%S) where S is the number of sets in the Disk Table. We can drop the lowest

log(S) bits from each hash value with no loss, reducing the hash storage to only H -

log(S) bits per object.

Secondly, we note that cache replacement policies only need to be implemented

within the N-entry set, so LRU can be implemented by simply ranking the entries

from 0 to N-1, thereby using only log(N) bits per entry.

We can further choose to keep in-memory indexes for only some sets, not all sets,

so we can restrict the number of in-memory entries based on request rate, rather than

23

cache size. This approach keeps sets in an LRU fashion, and fetches the in-memory

index for a set from disk on demand. By keeping only partial sets, we need to also

keep a bin number with each set, LRU pointers per set, and a hash table to find a

given set in memory.

Deciding when to use a complete two-dimensional array versus partial sets with

bin numbers and LRU pointers depends on the size of the hash value and the set

associativity. Assuming 8-way associativity and the 8 most significant hash bits per

object, the break-even point is around 50% – once more than half the sets will be

stored in memory, it is cheaper to remove the LRU pointers and bin number, and

just keep all of the sets. A discussion of how to select values for these parameters is

provided in Section 2.4.

If the full array is kept in memory, we call it HashCache-SetMem, and if only

a subset are kept in memory, we call it HashCache-SetMemLRU. With a low hash

collision rate, HashCache-SetMem can determine most cache misses without accessing

disk, whereas HashCache-SetMemLRU, with its tunable memory consumption, will

need disk accesses for some fraction of the misses. However, once a set is in memory,

performing intra-set cache replacement decisions requires no disk access for policy

maintenance. Writing objects to disk will still require disk access.

2.3.4 Optimizing Cache Writes

With the previous optimizations, cache hits require one seek for small files, and cache

misses require no seeks (excluding false positives from hash collisions) if the associated

set’s metadata is in memory. Cache writes still require seeks, since object locations are

dictated by their hash values, leaving HashCache at a performance disadvantage to

high-performance caches that can write all content to a circular log. This performance

problem is not an issue for caches with low request rates, but will become a problem

for higher request rate workloads.

24

To address this problem, we introduce a new policy, HashCache-Log, that elim-

inates the Disk Table and treats the disk as a log, similar to the high-performance

caches. For some or all objects, we store an additional offset (32 or 64 bits) speci-

fying the location on disk. We retain the N-way set associativity and per-set LRU

replacement because they eliminate disk seeks for cache misses, with compact imple-

mentation. While this approach significantly increases memory consumption, it can

also yield a large performance advantage, so this tradeoff is useful in many situa-

tions. However, even when adding the log location, the in-memory index is still much

smaller than traditional caches. For example, for 8-way set associativity, per-set LRU

requires 3 bits per entry, and 8 bits per entry can minimize hash collisions within the

set. Adding a 32-bit log position increases the per-entry size from 11 bits to 43 bits,

but virtually eliminates the impact of write traffic, since all writes can now be accu-

mulated and written in one disk seek. Additionally, we need a few bits (assume 4) to

record the log generation number, driving the total to 47 bits. Even at 47 bits per

entry, HashCache-Log still uses indexes that are a factor of 6-12 times smaller than

current high-performance proxies.

We can reduce this overhead even further if we exploit Web object popularity,

where half of the objects are rarely, if ever, re-referenced [36]. In this case, we can

drop half of the log positions from the in-memory index, and just store them on disk,

reducing the average per-entry size to only 31 bits, for a small loss in performance.

HashCache-LogLRU allows the number of log position entries per set to be configured,

typically using N
2

log positions per N-object set. The remaining log offsets in the set

are stored on the disk as a small contiguous file. Keeping this file and the in-memory

index in sync requires a few writes, reducing the performance by a small amount.

The in-memory index size, in this case, is 9-20 times smaller than traditional high-

performance systems.

25

2.3.5 Prefetching Cache Reads

With all of the previous optimizations, caching storage can require as little as 1 seek

per object read for small objects, with no penalty for cache misses, and virtually

no cost for cache writes that are batched together and written to the end of the

circular log. However, even this performance can be further improved, by noting that

prefetching multiple objects per read can amortize the read cost per object.

Correlated access can arise in situations like Web pages, where multiple small

objects may be embedded in the HTML of a page, resulting in many objects being

accessed together during a small time period. Grouping these objects together on

disk would reduce disk seeks for reading and writing. The remaining blocks for these

pages can all be coalesced together in the log and written together so that reading

them can be faster, ideally with one seek.

The only change necessary to support this policy is to keep a content length (in

blocks) for all of the related content written at the same time, so that it can be

read together in one seek. When multiple related objects are read together, the

system will perform reads at less than one seek per read on average. This approach

can be applied to many of the previously described HashCache policies, and only

requires that the application using HashCache provide some information about which

objects are related. Assuming prefetch lengths of no more than 256 blocks, this policy

only requires 8 bits per index entry being read. In the case of HashCache-LogLRU,

only the entries with in-memory log position information need the additional length

information. Otherwise, this length can also be stored on disk. As a result, adding

this prefetching to HashCache-LogLRU only increases the in-memory index size to

35 bits per object, assuming half the entries of each set contain a log position and

prefetch length.

26

For the rest of this dissertation, we assume that all the policies have this opti-

mization except HashCache-LogN which is the HashCache-Log policy without any

prefetching.

Policy Throughput

HC-Basic rr = t
1+ 1

rel+(1−chr)·cbr

HC-Set rr = t
1+ 1

rel+(1−chr)·cbr

HC-SetMem rr = t

chr·(1+ 1
rel)+(1−chr)·cbr

HC-LogN rr = t
2·chr+(1−chr)·cbr

HC-LogLRU rr = t·rel
2·chr+(1−chr)·cbr

HC-Log rr = t·rel
2·chr+(1−chr)·cbr

Commercial rr = t·rel
2·chr+(1−chr)·cbr

Table 2.4: Throughput for techniques, rr = peak request rate, chr = cache hit rate,
cbr = cacheability rate, rel = average number of related objects, t = peak disk seek
rate – all calculations include read prefetching, so the results for Log and Grouped
are the same. To exclude the effects of read prefetching, simply set rel to one.

2.3.6 Expected Throughput

To understand the throughput implications of the various HashCache schemes, we

analyze their expected performance under various conditions using the parameters

shown in Table 2.4.

The maximum request rate(rr) is a function of the disk seek rate, the hit rate,

the miss rate, and the write rate. The write rate is required because not all objects

that are fetched due to cache misses are cacheable. Table 2.4 presents throughput

for each system as a function of these parameters. The cache hit rate(chr) is simply

a number between 0 and 1, as is the cacheability rate (cbr). Since the miss rate is

(1 - chr), the write rate can be represented as (1 - chr) · cbr. The peak disk seek

27

rate(t) is a measured quantity that is hardware-dependent, and the average number of

related objects(rel) is always a positive number. These throughputs are conservative

estimates because we do not take into account the in-memory hot object cache, where

some portion of the main memory is used as a cache for frequently used objects, which

can further improve throughput.

2.4 HashCache Implementation

We implement a common HashCache filesystem I/O layer so that we can easily use

the same interface with different applications. We expose this interface via POSIX-

like calls, such as open(), read(), write(), close(), seek(), etc., to operate on files being

cached. Rather than operate directly on raw disk, HashCache uses a large file in the

standard Linux ext2/ext3 filesystem, which does not require root privilege. Creating

this zero-filled large file on a fresh ext2/ext3 filesystem typically creates a mostly

contiguous on-disk layout. It creates large files on each physical disk and multiplexes

them for performance. The HashCache filesystem is used by the HashCache Web

proxy cache as well as other applications we are developing.

2.4.1 External Indexing Interface

HashCache provides a simple indexing interface to support other applications. Given

a key as input, the interface returns a data structure containing the file descriptors

for the Disk Table file and the contiguous log file (if required), the location of the

requested content, and metadata such as the length of the contiguous blocks belong-

ing to the item, etc. We implement the interface for each indexing policy we have

described in the previous section. Using the data returned from the interface one can

utilize the POSIX calls to handle data transfers to and from the disk. Calls to the

interface can block if disk access is needed, but multiple calls can be in flight at the

28

same time. The interface consists of roughly 600 lines of code, compared to 21000

lines for the HashCache Web Proxy.

2.4.2 HashCache Proxy

The HashCache Web Proxy is implemented as an event-driven main process with

cooperating helper processes/threads handling all blocking operations, such as DNS

lookups and disk I/Os, similar to the design of Flash [81]. When the main event loop

receives a URL request from a client, it searches the in-memory hot-object cache to

see if the requested content is already in memory. In case of a cache miss, it looks

up the URL using one of the HashCache indexing policies. Disk I/O helper processes

use the HashCache filesystem I/O interface to read the object blocks into memory

or to write the fetched object to disk. To minimize inter-process communication

(IPC) between the main process and the helpers, only beacons are exchanged on IPC

channels and the actual data transfer is done via shared memory.

2.4.3 Flexible Memory Management

HTTP workloads will often have a small set of objects that are very popular, which can

be cached in main memory to serve multiple requests, thus saving disk I/O. Generally,

the larger the in-memory cache, the better the proxy’s performance. HashCache

proxies can be configured to use all the free memory on a system without unduly

harming other applications. To achieve this goal, we implement the hot object cache

via anonymous mmap() calls so that the operating system can evict pages as memory

pressure dictates. Before the HashCache proxy uses the hot object cache, it checks the

memory residency of the page via the mincore() system call, and simply treats any

missing page as a miss in the hot object cache. The hot object cache is managed as an

LRU list and unwanted objects or pages no longer in main memory can be unmapped.

This approach allows the HashCache proxy to use the entire main memory when no

29

other applications need it, and to seamlessly reduce its memory consumption when

there is memory pressure in the system.

In order to maximize the disk writing throughput, the HashCache proxy buffers

recently-downloaded objects so that many objects can be written in one batch (often

to a circular log). These dirty objects can be served from memory, while waiting

to be written to disk. This dirty object cache reduces redundant downloads during

flash crowds because many popular HTTP objects are usually requested by multiple

clients.

HashCache also provides for grouping related objects to disk so that they can be

read together later, providing the benefits of prefetching. The HashCache proxy uses

this feature to amortize disk seeks over multiple objects, thereby obtaining higher

read performance. One commercial system parses HTML to explicitly find embedded

objects [28], but we use a simpler approach – simply grouping downloads by the

same client that occur within a small time window and that have the same HTTP

Referrer field. We have found that this approach works well in practice, with much

less implementation complexity.

2.4.4 Parameter Selection

Size (KB) % of objects < size

8 74.8

16 87.2

32 93.8

64 97.1

128 98.8

256 99.5

Table 2.5: CDF of Web object sizes

30

For the implementation, we choose some design parameters such as the block size, the

set size, and the hash size. Choosing the block size is a tradeoff between space usage

and the number of seeks necessary to read small objects. In Table 2.5, we show an

analysis of object sizes from a live, widely-used Web cache called CoDeeN [109]. We

see that nearly 75% of objects are less than 8KB, while 87.2% are less than 16KB.

Choosing an 8KB block would yield better disk usage, but would require multiple

seeks for 25% of all objects. Choosing the larger block size wastes some space, but

may increase performance.

Read Size (KB) Seeks/sec Latency/seek (ms)

1 78 12.5

4 76 12.9

8 76 13.1

16 74 13.3

32 72 13.7

64 70 14.1

128 53 19.2

Table 2.6: Disk performance statistics

Since the choice of block size influences the set size, we make the decisions based

on the performance of current disks. Table 2.6 shows the average number of seeks per

second of three recent SATA disks (18, 60 and 150 GB each). We notice the sharp

degradation beyond 64KB, so we use that as the set size. Since 64KB can hold 4

blocks of 16KB each or 8 blocks of 8KB each, we opt for an 8KB block size to achieve

8-way set associativity. With 8 objects per set, we choose to keep 8 bits of hash value

per object for the in-memory indexes, to reduce the chance of collisions. This kind of

an analysis can be automatically performed during initial system configuration, and

are the only parameters needed once the specific HashCache policy is chosen.

31

2.5 Performance Evaluation

In this section, we present experimental results that compare the performance of

different indexing mechanisms presented in Section 2.3. Furthermore, we present a

comparison between the HashCache Web Proxy Cache, Squid, and a high-performance

commercial proxy called Tiger, using various configurations. Tiger implements the

best practices outlined in Section 2.2 and is currently used in commercial service [106].

We also present the impact of the optimizations that we included in the HashCache

Web Proxy Cache. For fair comparison, we use the same basic code base for all the

HashCache variants, with differences only in the indexing mechanisms.

2.5.1 Workload

To evaluate these systems, we use the Web Polygraph [103] benchmarking tool, the

de facto industry standard for testing the performance of HTTP intermediaries such

as content filters and caching proxies. We use the Polymix [101] environment models,

which models many key Web traffic characteristics, including: multiple content types,

diurnal load spikes, URLs with transient popularity, a global URL set, flash crowd

behavior, an unlimited number of objects, DNS names in URLs, object life-cycles

(expiration and last-modification times), persistent connections, network packet loss,

reply size variations, object popularity (recurrence), request rates and inter-arrival

times, embedded objects and browser behavior, and cache validation (If-Modified-

Since requests and reloads).

We use the latest standard workload, Polymix-4 [101], which was used at the

Fourth Cache-off event [100] to benchmark many proxies. The Polygraph test harness

uses several machines for emulating HTTP clients and others to act as Web servers.

This workload offers a cache hit ratio (CHR) of 60% and a byte hit ratio (BHR) of

40% meaning that at most 60% of the objects are cache hits, while 40% of bytes are

32

cache hits. The average download latency is 2.5 seconds (including RTT). A large

number of objects are smaller than 8.5 KB. HTML pages contain 10 to 20 embedded

(related) objects, with an average size of 5 to 10 KB. A small number (0.1 %) of large

downloads (300 KB or more) have higher cache hit rates. These numbers are very

similar to the characteristics of traffic in developing regions [36].

We test three environments, reflecting the kinds of caches we expect to deploy.

These are the low-end systems that reflect the proxy powered by a laptop or similar

system, large-disk systems where a larger school can purchase external storage to

pre-load content, and high-performance systems for ISPs and network backbones.

2.5.2 Low-End System Experiments

Our first test server for the proxy is designed to mimic a low-memory laptop, such as

the OLPC XO Laptop, or a shared low-powered machine like an OLPC XS server.

Its configuration includes a 1.4 GHz CPU with 512 KB of L2 cache, 256 MB RAM,

two 60GB 7200 RPM SATA drives, and the Fedora 8 Linux OS. This machine is far

from the standard commercial Web cache appliance, and is likely to be a candidate

machine for the developing world [78].

33

0

50

100

150

200

250

300

HC-Basic HC-Set Squid HC-SetMem HC-LN Tiger HC-Log

Pe
ak

 S
uc

ce
sf

ul
 R

eq
ue

st
 R

at
e

(r
eq

/s
ec

/d
is

k)

System

Figure 2.3: Peak Request Rates for Different policies for low end SATA disk.

Policy
SATA Disk SCSI Disk SCSI Disk

7200 RPM 10000 RPM 15000 RPM

HC-Basic 40 50 85

HC-Set 40 50 85

HC-SetMem 66 85 140

HC-LogN 132 170 280

HC-LogLRU 264 340 560

HC-Log 264 340 560

Commercial 264 340 560

Table 2.7: Expected throughput (reqs/sec) for policies for different disk speeds– all
calculations include read prefetching

Our tests for this machine configuration run at 40-275 requests per second, per

disk, using either one or two disks. Figure 2.3 shows the results for single disk per-

formance of the Web proxy using HashCache-Basic (HC-B), HashCache-Set (HC-S),

34

HashCache-SetMem (HC-SM), HashCache-Log without object prefetching (HC-LN),

HashCache-Log with object prefetching (HC-L), Tiger and Squid. The HashCache

tests use 60 GB caches. However, Tiger and Squid were unable to index this amount of

storage and still run acceptably, so were limited to using 18 GB caches. This smaller

cache is still sufficient to hold the working set of the test, so Tiger and Squid do not

suffer in performance as a result. Table 2.7 gives the analytical lower bounds for per-

formance of each of these policies for this workload and the disk performance. The

tests for HashCache-Basic and HashCache-Set achieve only 45 reqs/sec. The tests

for HashCache-SetMem achieve 75 reqs/sec. Squid scales better than HashCache-

Basic and HashCache-Set and achieves 60 reqs/sec. HashCache-Log (with prefetch),

in comparison, achieves 275 reqs/sec. The Tiger proxy, with its optimized indexing

mechanism, achieves 250 reqs/sec. This result is less than HashCache-Log because

Tiger’s larger index size reduces the amount of hot object cache available, reducing

its prefetching effectiveness.

0

0.5

1.0

1.5

2.0

2.5

3.0

90 100 110 120 130 140 150 160 170

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

Offered Request Rate

HC-SM
HC-SML30
HC-SML40

Figure 2.4: Peak Request Rates for Different SetMemLRU policies on low end SATA
disks.

35

Figure 2.4 shows the results from tests conducted on HashCache-SetMem and

two configurations of HashCache-SetMemLRU using 2 disks. The performance of the

HashCache-SetMem system scales to 160 reqs/sec, which is slightly more than double

its performance with a single disk. The reason for this difference is that the second

disk does not have the overhead of handling all access logging for the entire system.

The two other graphs in the figure, labeled HC-SML30 and HC-SML40, are the 2

versions of HashCache-SetMemLRU where only 30% and 40% of all the set headers

are cached in main memory. As mentioned earlier, the hash table and the LRU list

overhead of HashCache-SetMemLRU is such that when 50% of set headers are cached,

it takes about the same amount of memory when using HashCache-SetMem. These

experiments serve to show that HashCache-SetMemLRU can provide further savings

when working set sizes are small and one does not need all the set headers in main

memory at all times to perform reasonably well.

0

16.7

33.3

50.0

66.7

83.3

100.0

Memory User CPU System CPU Disk Bandwidth

%
 U

sa
ge

Resource

HC-Basic
HC-Set
HC-SetMem
HC-Log
Squid
Tiger

Figure 2.5: Resource Usage for Different Systems

36

These experiments also demonstrate HashCache’s small systems footprint. Those

measurements are shown in Figure 2.5 for the single-disk experiment. In all cases,

the disk is the ultimate performance bottleneck, with nearly 100% utilization. The

user and system CPU remain relatively low, with the higher system CPU levels tied

to configurations with higher request rates. The most surprising metric, however, is

Squid’s high memory usage. Given that its storage size was only one-third that used

by HashCache, it still exceeds HashCache’s memory usage in HashCache’s highest-

performance configuration. In comparison, the lowest-performance HashCache con-

figurations, which have performance comparable to Squid, barely register in terms of

memory usage.

0

10

20

30

40

50

60

70

HC-Basic HC-Set HC-SetMem Squid HC-LN Tiger HC-Log

H
it

R
at

e
(%

)

System

Cache Hit Rate
Byte Hit Rate

Figure 2.6: Low End Systems Hit Ratios

Figure 2.6 shows the cache hit ratio (by object) and the byte hit ratios (bandwidth

savings) for the HashCache policies at their peak request rate. Almost all configura-

tions achieve the maximum offered hit ratios, with the exception of HashCache-Basic,

which suffers from hash collision effects.

37

While the different policies offer different tradeoffs, one might observe that the per-

formance jump between HashCache-SetMem and HashCache-Log is substantial. To

bridge this gap, one can use multiple small disks instead of one large disk to increase

performance while still using the same amount of main memory. These experiments

further demonstrate that for low-end machines, HashCache can not only utilize more

disk storage than commercial cache designs, but can also achieve comparable perfor-

mance, while using less memory. The larger storage size should translate into greater

network savings, and the low resource footprint ensures that the proxy machine need

not be dedicated to just a single task. The HashCache-SetMem configuration can be

used when one wants to index larger disks on a low-end machine with a relatively low

traffic demand. The lowest-footprint configurations, which use no main-memory in-

dexing, HashCache-Basic and HashCache-Set, would even be appropriate for caching

in wireless routers or other embedded devices.

2.5.3 High-End System Experiments

For our high-end system experiments, we choose hardware that would be more ap-

propriate in a data center. The processor is a dual-core 2GHz Xeon, with 2MB of L2

cache. The server has 3.5GB of main memory, and five 10K RPM Ultra2 SCSI disks,

of 18GB each. These disks perform 90 to 95 random seeks/sec. Using our analytical

models, we expect a performance of at least 320 reqs/sec/disk with HashCache-Log.

On this machine we run HashCache-Log, Tiger and Squid. From the HashCache

configurations, we chose only HashCache-Log because the ample main memory of

this machine would dictate that it can be used for better performance rather than

maximum cache size.

38

0

16.7

33.3

50.0

66.7

83.3

100.0

Memory User CPU System CPU Disk Bandwidth

%
 U

sa
ge

Resource

HC-Log
Squid
Tiger

Figure 2.7: High End System Performance Statistics

Figure 2.7 shows the resource utilization of the three systems at their peak request

rates. HashCache-Log consumes just enough memory for hot object caching, write

buffers and also the index, still leaving about 65% of the memory unused. At the

maximum request rate, the workload becomes completely disk bound. Since the

working set size is substantially larger than the main memory size, expanding the

hot object cache size produces diminishing returns. Squid fails to reach 100% disk

throughput simultaneously on all disks. Dynamic load imbalance among its disks

causes one disk to be the system bottleneck, even though the other four disks are

underutilized. The load imbalance prevents it from achieving higher request rates or

higher average disk utilization.

39

TPS
BW Hit Time All Time Miss Time CHR BHR

Mb/s msec msec msec % %

HC-Log 2200 116.98 77 1147 2508 56.91 41.06

Tiger 2300 121.40 98 1150 2512 56.49 41.40

Squid 400 21.38 63 1109 2509 57.25 41.22

Table 2.8: Performance on a high end system

The performance results from this test are shown in Table 2.8, and they confirm the

expectations from the analytical models. HashCache-Log and Tiger perform compa-

rably well at 2200-2300 reqs/sec, while Squid reaches only 400 reqs/sec. Even at these

rates, HashCache-Log is purely disk-bound, while the CPU and memory consump-

tion has ample room for growth. The per-disk performance of HashCache-Log of 440

reqs/sec/disk is in line with the best commercial showings – the highest-performing

system at the Fourth Cacheoff achieved less than an average of 340 reqs/sec/disk on

10K RPM SCSI disks. The absolute best throughput that we find from the Fourth

Cacheoff results is 625 reqs/sec/disk on two 15K RPM SCSI disks, and on the same

speed disks HashCache-Log and Tiger both achieve 700 reqs/sec/disk, confirming the

comparable performance.

These tests demonstrate that the same HashCache code base can provide good

performance on low-memory machines, while matching or exceeding the performance

of high-end systems designed for cache appliances. Furthermore, this performance

comes with a significant savings in memory, allowing room for larger storage or higher

performance.

2.5.4 Large Disk Experiments

Our final set of experiments involves using HashCache configurations with large exter-

nal storage systems. For this test, we use two 1 TB external hard drives attached to

40

the server via USB. These drives perform 67-70 random seeks per second. Using our

analytical models, we would expect a performance of 250 reqs/sec with HashCache-

Log. In other respects, the server is configured comparably to our low-end machine

experiment, but the memory is increased from 256MB to 2GB to accommodate some

of the configurations that have larger index requirements, representative of low-end

servers being deployed [79].

We compare the performance of HashCache-SetMem, HashCache-Log and

HashCache-LogLRU with one or two external drives. Since the offered cache hit

rate for the workload is 60%, we cache 6 out of the 8 log offsets in main memory

for HashCache-LogLRU. For these experiments, the Disk Table is stored on a disk

separate from the ones keeping the circular log. Also, since filling the 1TB hard

drives at 300 reqs/second would take excessively long, we randomly place 50GB of

data across each drive to simulate seek-limited behavior.

0

2500

5000

7500

10000

12500

15000

Squid Tiger HC-Log HC-SetMem

To
ta

l D
is

k
In

de
xe

d
pe

r G
B

 D
R

A
M

 (G
B

)

System

Figure 2.8: Sizes of disks that can be indexed by 2GB memory

Unfortunately, even with 2GB of main memory, Tiger and Squid are unable to

index these drives, so we were unable to test them in any meaningful way. Figure 2.8

41

shows the size of the largest disk that each of the systems can index with 2 GB of mem-

ory. In the figure, HC-SM and HC-L are HashCache-SetMem and HashCache-Log,

respectively. The other HashCache configurations, Basic and Set have no practical

limit on the amount of externally-attached storage.

TPS
BW Hit Time All Time Miss Time CHR BHR

Mb/s msec msec msec % %

HC-SetMem 75 3.96 27 1142 2508 57.12 40.11

HC-Log 300 16.02 48 1139 2507 57.88 40.21

HC-LogLRU 300 16.07 68 1158 2510 57.15 40.08

Table 2.9: Performance on 1TB disks

TPS
BW Hit Time All Time Miss Time CHR BHR

Mb/s msec msec msec % %

HC-SetMem 150 7.98 32 1149 2511 57.89 40.89

HC-Log 600 32.46 56 1163 2504 57.01 40.07

HC-LogLRU 600 31.78 82 1171 2507 57.67 40.82

Table 2.10: Performance on 2TB disks

42

0

16.7

33.3

50.0

66.7

83.3

100.0

Memory User CPU System CPU Disk Bandwidth

%
 U

sa
ge

Resource

HC-SetMem 1TB
HC-Log 1TB
HC-LogLRU 1TB
HC-SetMem 2TB
HC-Log 2TB
HC-LogLRU 2TB

Figure 2.9: Large Disk System Performance Statistics

The Polygraph results for these configurations are shown in Tables 2.9, 2.10 , and

the resource usage details are in Figure 2.9. With 2TB of external storage, both

HashCache-Log and HashCache-LogLRU are able to perform 600 reqs/sec. In this

configuration, HashCache-Log uses slightly more than 60% of the system’s memory,

while HashCache-LogLRU uses slightly less. The hit time for HashCache-LogLRU is

a little higher than HashCache-Log because in some cases it requires 2 seeks (one for

the position, and one for the content) in order to perform a read. The slightly higher

cache hit rates exhibited on this test versus the high-end systems test are due the

Polygraph environment – without filling the cache, it has a smaller set of objects to

reference, yielding a higher offered hit ratio.

The 1TB test achieves half the performance of the 2TB test, but does so with

correspondingly less memory utilization. The HashCache-SetMem configuration ac-

tually uses less than 10% of the 2GB overall in this scenario, suggesting that it could

have run with our original server configuration of only 256MB.

43

While the performance results are reassuring, these experiments prove that

HashCache can index disks that are much larger than conventional policies could

handle. At the same time, HashCache performance meets or exceeds what other

caches would produce on much smaller disks. This scenario is particularly important

for the developing world, because one can use these inexpensive high-capacity drives

to host large amounts of content, such as a Wikipedia mirror, WAN accelerator

chunks, HTTP cache, and any other content that can be pre-loaded or shipped on

DVDs later.

2.6 Related Work

Web caching in its various forms has been studied extensively in the research and

commercial communities. As mentioned earlier, the Harvest cache [23] and CERN

caches [66] were the early approaches. The Harvest design persisted, especially with

its transformation into the widely-used Squid Web proxy [96]. Much research has been

performed on Squid, typically aimed at reorganizing the filesystem layout to improve

performance [66, 67], better caching algorithms [60], or better use of peer caches [47].

Given the goals of HashCache, efficiently operating with very little memory and large

storage, we have avoided more complexity in cache replacement policies, since they

typically use more memory to make the decisions. In the case of working sets that

dramatically exceed physical memory, cache policies are also likely to have little real

impact. Disk cache replacement policies also become less effective when storage sizes

grow very large. We have also avoided Bloom-filter approaches [16] that would re-

quire periodic rebuilds, since scanning terabyte-sized disks can sap disk performance

for long periods. Likewise, approaches that require examining multiple disjoint loca-

tions [70, 92] are also not appropriate for this environment, since any small gain in

44

reducing conflict misses would be offset by large losses in checking multiple locations

on each cache miss.

Some information has been published about commercial caches and workloads in

the past, including the design considerations for high-speed environments [19], proxy

cache performance in mixed environments [42], and workload studies of enterprise

user populations [50]. While these approaches have clearly been successful in the

developed world, many of the design techniques have not typically transitioned to

the more price-sensitive portions of the design space. We believe that HashCache

demonstrates that addressing problems specific to the developing world can also open

interesting research opportunities that may apply to systems that are not as price-

sensitive or resource-constrained.

In terms of performance optimizations, two previous systems have used some form

of prefetching, including one commercial system [28], and one research project [93].

Based on published metrics, HashCache performs comparably to the commercial sys-

tem, despite using a similar approach to grouping objects, and despite using a stan-

dard filesystem for storage instead of raw disk access. Little scalability information is

presented on the research system, since it was tested only using Apache mod proxy at

8 requests per second. Otherwise, very little information is publicly available regard-

ing how high-performance caches typically operate from the extremely competitive

commercial period for proxy caches, centered around the year 2000. In that year,

the Third Cache-Off [102] had a record number of vendors participate, representing

a variety of different caching approaches. In terms of performance, HashCache-Log

compares favorably to all of them, even when normalized for hardware.

Web caches also get used in two other contexts: server accelerators and content

distribution networks (CDNs) [3, 43, 82, 109]. Server accelerators, also known as re-

verse proxies, typically reside in front of a Web server and offload cacheable content,

allowing the Web server to focus on dynamically-generated content. CDNs geographi-

45

cally distribute the caches, reducing latency to the client and bandwidth consumption

at the server. In these cases, the proxy typically has a very high hit rate, and is of-

ten configured to serve as much content from memory as possible. We believe that

HashCache is also well-suited for this approach, because in the SetMemLRU config-

uration, only the index entries for popular content need to be kept in memory. By

freeing the main memory from storing the entire index, the extra memory can be

used to expand the size of the hot object cache.

Finally, in terms of context in developing world projects, HashCache is simply one

piece of the infrastructure that can help these environments. Advances in wireless

network technologies, such as WiMax [110] or rural WiFi [83, 98] will help make net-

working available to larger numbers of people, and as demand grows, we believe that

the opportunities for caching increase. Given the low resource usage of HashCache

and its suitability for operation on shared hardware, we believe it is well-suited to

take advantage of networking advancements in these communities.

2.7 Deployments

We deployed HashCache at two different locations in Africa, at the Obafemi Awolowo

University (OAU) in Nigeria and at the Kokrobitey Institute (KI) in Ghana. At OAU,

it ran on their university server which had a 100 GB hard drive, 2 GB memory and a

dual core Xeon processor. For their Internet connection they paid $5,000 per month

for a 2 Mbps satellite link to an ISP in Europe which had a high variance ICMP

ping time from Princeton ranging 500 to 1200 ms. We installed HashCache-Log on

the machine but were asked to limit resource usage for HashCache to 50 GB disk

space and no more than 300 MB of physical memory. The server was running other

services such as a E-mail service and a firewall for the department and it was also

used for general computation for the students. Due to privacy issues we were not

46

able to analyze the logs from this deployment but the administrator has described

the system as useful and also noticed the significant memory and CPU usage reduction

when compared to Squid.

At KI, HashCache ran on a wireless router for a small department on a 2 Mbps

LAN. The Internet connection was through a 256 Kbps sub-marine link to Europe

and the link had a ping latency ranging from 200 to 500 ms. The router had a 30

GB disk and 128 MB of main memory and we were asked to use 20 GB of disk space

and as little memory as possible. This prompted us to use the HashCache-Set policy

as there were only 25 to 40 people using the router every day. Logging was disabled

on this machine as well since we were asked not to consume network bandwidth for

transferring the logs.

In both these deployments we have used HashCache policies to improve the Web

performance while consuming a minimum amount of resources. Other solutions like

Squid would not have been able to meet these resource constraints while providing any

reasonable service. People at both places told us that the idea of a faster Internet

to popular Web sites seemed like a distant dream until we discussed the complete

capabilities of HashCache.

2.8 Summary

We develop HashCache, a configurable indexing mechanism for caches. Using

HashCache, caches can index terabytes of disk using only a few megabytes of mem-

ory. We develop eight different indexing policies that provide a different tradeoff

between memory usage and performance. HashCache cache storage engine is designed

to meet the needs of cache storage in the developing world. With the advent of cheap

commodity laptops geared for mass deployments, developing regions are poised to

become major users of the Internet, and given the high cost of bandwidth in these

47

parts of the world, they stand to gain significantly from network caching. However,

current Web proxies are incapable of providing large storage capacities while using

small resource footprints, a requirement for the integrated multi-purpose servers

needed to effectively support developing-world deployments. HashCache presents a

radical departure from the conventional wisdom in network cache design, and uses

6 to 20 times less memory than current techniques while still providing comparable

or better performance. As such, HashCache can be deployed in configurations not

attainable with current approaches, such as having multiple terabytes of external

storage cache attached to low-powered machines. HashCache has been successfully

deployed in two locations with positive results.

48

Chapter 3

Easing the Adoption of New

Memory Technologies

An increasing number of networked systems today rely on in-memory (DRAM) in-

dexes, hash tables, caches and key-value storage systems for scaling the performance

and reducing the pressure on their secondary storage devices. Unfortunately, the

cost of DRAM increases dramatically beyond 128GB per server, jumping from a few

thousand dollars to tens of thousands of dollars fairly quickly as shown in Figure 1.1.

Power requirements scale similarly, restricting applications with large workloads from

obtaining high in-memory hit-rates that are vital for high-performance.

NAND-Flash memory can be leveraged (by augmenting DRAM with flash

backed memory) to scale the performance of such applications. Flash memory has

a larger capacity, lower cost and lower power requirement compared to DRAM,

and great random read performance, which makes it well suited for building such

applications. Solid State Disks (SSD) in the form of NAND-Flash have become

increasingly popular due to pricing. 256GB SSDs are currently around $700, and

multiple SSDs can be placed in one server. As a result, high-end systems could easily

augment their 64–128GB RAM with 1–2TB of SSD.

49

Flash is currently being used as program memory via two methods – by using

flash as an operating system (OS) swap layer, or by building a custom object store

on top of flash. The Swap layer, which works at a page granularity, reduces the

performance and also undermines the lifetime of flash for applications with many

random accesses (typical of the applications mentioned). For every application object

that is read/written (however small) an entire page of flash is read/dirtied leading to

an unnecessary increase in the read bandwidth and the number of flash writes (which

reduce the lifetime of flash memory). Applications are often modified to obtain high

performance and good lifetime from flash memory by addressing these issues. Such

modifications not only need deep application knowledge, but also require an expertise

with flash memory, hindering a wide-scale adoption of flash. It is therefore necessary

to expose flash via a swap like interface (via virtual memory), while being able to

provide performance comparable to that of applications redesigned to be flash-aware.

In this chapter, we present SSDAlloc, a hybrid DRAM/flash memory man-

ager and a runtime library that allows applications to fully utilize the potential of

flash (large capacity, low cost, fast random reads and non-volatility) in a transparent

manner. SSDAlloc exposes flash memory via the familiar page-based virtual memory

manager interface, but internally, works at an object granularity for obtaining high

performance and for maximizing the lifetime of flash memory. SSDAlloc’s memory

manager is compatible with standard C programming paradigms and it works entirely

via the virtual memory system. Unlike object databases, applications do not have to

declare their intention to use data, nor do they have to perform indirections through

custom handles. All data maintains its virtual memory address for its lifetime and

can be accessed using standard pointers. Pointer swizzling or other fix-ups are not

required.

SSDAlloc’s memory allocator looks and feels much like the malloc memory man-

ager. When malloc is directly replaced with SSDAlloc’s memory manager, flash is

50

used as a fully log-structured page store. However, when SSDAlloc is provided with

the additional information of the size of the application object being allocated, flash

is managed as a log-structured object store. It utilizes the object size information to

provide applications with benefits that are otherwise unavailable via existing trans-

parent programming techniques.

Application
Original Modified Throughput Gain vs

LOC LOC Unmodified Swap Write-Logged Swap

Memcache 11,193 21 5.5 - 17.4x 1.4 - 3.5x

B+Tree Index 477 15 4.3 - 12.7x 1.4 - 3.2x

Packet Cache 1,540 9 4.8 - 10.1x 1.3 - 2.3x

HashCache 20,096 36 5.3 - 17.1x 1.3 - 3.3x

Table 3.1: SSDAlloc requires changing only the memory allocation code, typically
only tens of lines of code (LOC). Depending on the SSD used, throughput gains can
be as high as 17 times greater than using the SSD as swap. Even if the swap is
optimized for SSD usage, gains can be as high as 3.5x.

Using SSDAlloc, we have modified four systems built originally using malloc:

memcached [68] (a key-value store), a Boost [17] based B+Tree index, a packet

cache back-end (for accelerating network links using packet level caching), and the

HashCache [11] cache index. As shown in Table 3.1, all four systems show great

benefits when using SSDAlloc with object size information –

• 4.1–17.4 times faster than when using the SSD as a swap space.

• 1.2–3.5 times faster than when using the SSD as a log-structured swap space.

• Only 9–36 lines of code are modified (malloc replaced by SSDAlloc).

• Up to 31.2 times less data written to the SSD for the same workload (SSDAlloc

works at an object granularity).

The rest of this chapter is organized as follows: We describe related work and the

motivation in Section 3.1. The design is described in Section 3.2, and we discuss our

51

implementation in Section 3.3. Section 3.4 provides the evaluation results, and we

summarize the chapter in Section 3.5.

3.1 Motivation and Related Work

0

0.5

1.0

1.5

2.0

2.5

3.0

No-Flash Flash-Disk Flash-Mem

R
el

at
iv

e
Pe

rf
or

m
an

ce
 o

f T
PC

C
 B

en
ch

m
ar

k

System Configuration

Figure 3.1: NAND-Flash can be better exploited when it is used as slow-memory as
opposed to fast-disk

Figure 3.1 demonstrates why using SSDs as memory is better than using them as

storage. We perform the following three experiments using MySQL InnoDB [55]

transactional engine. In the first experiment (No-Flash), we configure a server (with

a 2GHz quadcore processor, 48GB of DRAM and 512GB of disk) to run a TPCC

benchmark [104] using a 450GB database. In the second experiment (Flash-Disk),

we add a 80GB NAND-Flash SSD to the server. We configure the SSD to be used as

block caching [38, 44] for the disk, and hence it is essentially being used as a storage

device. In the final experiment (Flash-Mem), we use the NAND-Flash SSD as DRAM

extension and the database transparently uses the SSD for its buffer pool.

52

Figure 3.1 shows the normalized performance of the three experimental setups.

Flash-Disk performs 56% better than the No-Flash case. This is expected because

the SSD performs much better when compared to disk. Flash-Mem performs 124%

better than No-Flash case. The reasons behind the better performance of Flash-Mem

are the following: First, traditional applications are written to take advantage of the

low latency and high parallelism of DRAM, while they are optimized to avoid disk

as much as possible. As a result, Flash-Mem based InnoDB is able to extract the

benefits of low latency and high parallelism of SSDs. Second, traditional operating

systems are designed to add multiple layers of buffering and reordering of requests

for the storage sub-system, while they are explicitly optimized to get out of the way

of memory accesses. As a result, Flash-Mem based InnoDB is able to circumvent

the overhead from the think software layer between the application and the storage

devices. Therefore, we propose the usage of SSDs as slow-memory and not as fast-

disks [99].

While alternative memory technologies have been championed for more than a

decade [12, 112], their attractiveness has increased recently as the gap between the

processor speed and the disk widened, and as their costs dropped. Our goal in

this chapter is to provide a transparent interface to using flash memory (unlike the

application redesign strategy), while acting in a flash-aware manner to obtain better

performance and lifetime from the flash device (unlike the operating system swap).

Existing transparent approaches to using flash memory [62, 71, 91] cannot fully

exploit flash’s performance for two reasons – 1) Accesses to flash happen at a page

granularity (4KB), leading to a full page read/write to flash for every access within

that page. The write/erase behavior of flash memory often has different expectations

on usage, leading to a poor performance. Full pages containing dirty objects have to

be written to flash. This behavior leads to write escalation which is bad not only for

performance but also for the durability of the flash device. 2) If the application objects

53

are small compared to the page size, only a small fraction of RAM contains useful

objects because of caching at a page granularity. Integrating flash as a filesystem

cache can increase performance, but the cost/benefit tradeoff of this approach has

been questioned before [73].

FlashVM [91] is a system that proposes using flash as a dedicated swap device,

that provides hints to the SSD for better garbage collection by batching writes, erases

and discards. We propose using 16–32 times more flash than DRAM and in those

settings, FlashVM style heuristic batching/aggregating of in-place writes might be of

little use purely because of the high write randomness that our targeted applications

have. A fully log-structured system would be needed for minimizing erases in such

cases. We have built a fully log-structured swap that we use as a comparison point,

along with native linux swap, against the SSDAlloc system that works at an object

granularity.

Others have proposed redesigning applications to use flash-aware data structures

to explicitly handle the asymmetric read/write behavior of flash. Redesigned appli-

cations range from databases (BTrees) [64, 111] and Web servers [61] to indexes [4, 8]

and key-value stores [5]. Working set objects are cached in RAM more efficiently

and the application aggregates objects when writing to flash. While the benefits of

this approach can be significant, the costs involved and the extra development effort

(requires expertise with the application and flash behavior) are high enough that it

may deter most application developers from going this route.

Our goal in this chapter is to provide the right set of interfaces (via memory allo-

cators), so that both existing applications and new applications can be easily adapted

to use flash. Our approach focuses on exposing flash only via a page based virtual

memory interface, while internally working at an object level. A similar approach was

used in distributed object systems [21], which switched between pages and objects

54

when convenient using custom object handlers. We want to avoid using any custom

pointer/handler mechanisms to eliminate intrusive application changes.

Additionally, our approach can improve the cost/benefit ratio of flash-based ap-

proaches. If only a few lines of memory allocation code need to be modified to migrate

an existing application to a flash-enabled one with performance comparable to that

of flash-aware application redesign, this one-time development cost is low compared

to the cost of high-density memory. For example, the cost of 1TB of high-density

RAM adds roughly $100K USD to the $14K base price of the system (e.g., the Dell

PowerEdge R910). In comparison, a high-end 320GB SSD sells for $3200 USD, so

roughly 4 servers with 5TB of flash memory cost the same as 1 server with 1 TB of

RAM.

3.2 SSDAlloc’s Design

In this section we describe the design of SSDAlloc. We first start with describing

the networked systems’ requirements from a hybrid DRAM/SSD setting for high

performance and ease of programming. Our high level goals for integrating SSDs into

these applications are:

• To present a simple interface such that the applications can be run mostly un-

modified – Applications should use the same programming style and interfaces

as before (via virtual memory managers), which means that objects, once allo-

cated, always appear to the application at the same locations in virtual memory.

• To utilize the DRAM in the system as efficiently as possible – Since most of the

applications that we consider allocate large number of objects and operate over

them with little locality of reference, the system should be no worse at using

DRAM than a custom DRAM-based object cache that efficiently packs as many

hot objects in DRAM as possible.

55

• To maximize the SSD’s utility – Since the SSD’s read performance and especially

the write performance suffer with the amount of data transferred, the system

should minimize data transfers and (most importantly) avoid random writes.

SSDAlloc employs many clever design decisions and policies to meet our high level

goals. In Sections 3.2.1 and 3.2.4, we describe our page-based virtual memory system

using a modified heap manager in combination with a user-space on-demand page

materialization runtime that appears to be a normal virtual memory system to the

application. In reality, the virtual memory pages are materialized in an on-demand

fashion from the SSD by intercepting page faults. To make this interception as precise

as possible, our allocator aligns the application level objects to always start at page

boundaries. Such a fine grained interception allows our system to act at an application

object granularity and thereby increases the efficiency of reads, writes and garbage

collection on the SSD. It also helps in the design of a system that can easily serialize

the application’s objects to the persistent storage for subsequent usage.

In Section 3.2.2, we describe how we use the DRAM efficiently. Since most of

the application’s objects are smaller than a page, it makes no sense to use all of

the DRAM as a page cache. Instead, most of DRAM is filled with an object cache,

which packs multiple useful objects per page, and which is not directly accessible to

the application. When the application needs a page, it is dynamically materialized,

either from the object cache or from the SSD.

In Sections 3.2.3 and 3.2.5 we describe how we manage the SSD as an efficient

log-structured object store. In order to reduce the amount of data read/written to

the SSD, the system uses the object size information, given to the memory allocator

by the application, to transfer only the objects, and not whole pages containing them.

Since the objects can be of arbitrary sizes, packing them together and writing them

in a log not only reduces the write volume, but also increase the SSD’s lifetime.

56

Write Access Efficient No DRAM Retains High Familiar

Logging < a page GC Pollution Data Perf. Interface

SSD Swap 4

SSD Swap
4 4

(Logged)

SSD mmap 4 4

App.
4 4 4 4 4 4

Rewrite

SSDAlloc 4 4 4 4 4 4 4

Table 3.2: While using SSDs via swap/mmap is simple, they achieve only a fraction
of the SSD’s performance. Rewriting applications can achieve greater performance
but at a high developer cost. SSDAlloc provides simplicity, while providing high
performance.

Table 3.2 presents an overview of various techniques by which SSDs are used as

program memory today and provides a comparison to SSDAlloc by enumerating the

high-level goals that each technique satisfies. We now describe our design in detail

starting with our virtual address allocation policies.

3.2.1 SSDAlloc’s Virtual Memory Structure

SSDAlloc ideally wants to non-intrusively observe what objects the application reads

and writes. The virtual memory (VM) system provides an easy way to detect what

pages have been read or written, but there is no easy way to detect accesses at a finer

granularity. Performing copy-on-write and comparing the copy with the original can

be used for detecting changes, but no easy mechanism determines what parts of a

page were read. Instead, SSDAlloc uses the observation that virtual address space

is relatively inexpensive compared to actual DRAM, and reorganizes the behavior

of memory allocation to use the VM system to observe object behavior. Servers

57

typically expose 48 bit address spaces (256TB), while supporting less than 1TB of

physical RAM, so virtual addresses are at least 256x more plentiful.

We propose the Object Per Page (OPP) model, in which, if an application re-

quests memory for an object, the object is placed on its own page of virtual memory,

yielding a single page for small objects, or more (contiguous) when the object ex-

ceeds the page size. The object is always placed at the start of the page and the

rest of the page is not utilized for memory allocation. In reality, however, we employ

various optimizations (described in Section 3.2.2) to eliminate the physical memory

wastage that can occur because of such a lavish virtual memory usage. An OPP

memory manager can be implemented just by maintaining a pool of pages (details

of the actual memory manager used are given in Section 3.2.4). OPP is suitable for

individual object allocations, typical of the applications we consider. OPP objects are

stored on the SSD in a log-structured manner (details are explained in Section 3.2.5).

Additionally, using virtual memory-based page-usage information, we can accurately

determine which objects are being read and written (since there is only one object

per page). However, it is not straightforward to use arrays of objects in this man-

ner. In an OPP array, each object is separated by the page’s size as opposed to the

object’s size. While it is possible to allocate OPP arrays in such a manner, it would

require some code modifications to be able to use arrays in which objects separated

by page boundaries as opposed being separated by object boundaries. We describe

later in Section 3.2.4 how an OPP-based coalescing allocator can be used to allocate

OPP-based arrays.

Contiguous Array Allocations

In the C programming language, array allocations via malloc/calloc expect array el-

ements to be contiguous. We present an option called Memory Pages (MP) which can

do this. In MP, when the application asks for a certain amount of memory, SSDAlloc

58

returns a pointer to a region of virtual address space with the size requested. We use a

ptmalloc [84] style coalescing memory manager (further explained in Section 3.2.4)

built on top of bulk allocated virtual memory pages (via brk) to obtain a system

which can allocate C style arrays. Internally, however, the pages in this space are

treated like page sized OPP objects. For the rest of the chapter, we treat MP pages

as page sized OPP objects.

While the design of OPP efficiently leverages the virtual memory system’s page

level usage information to determine application object behavior, it could lead to

DRAM space wastage because the rest of the page beyond the object would not be

used. To eliminate this wastage, we organize the physical memory such that only a

small portion of DRAM contains actual materializations of OPP pages (Page Buffer),

while the rest of the available DRAM is used as a compact hot object cache.

3.2.2 SSDAlloc’s Physical Memory Structure

The SSDAlloc runtime system eases application transparency by allowing objects to

maintain the same virtual address over their lifetimes, while their physical location

may be in a temporarily-materialized physical page mapped to its virtual memory

page in the Page Buffer, the RAM Object Cache, or the SSD. Not only does the

runtime materialize physical pages as needed, but it also reclaims them when their

usage drops. We first describe how objects are cached compactly in DRAM.

59

Page Buffer

A FIFO cache of
actual pages in core

occupying only a
small amount of

RAM

Heap Manager

An OPP based pool allocator for individual
allocations

An OPP based coalescing allocator for OPP
arrays

An MP based coalescing allocator similar to
malloc

SSD
A log- structured object store

Address Translation
Module

A datastructure that
translates virtual

memory addresses
to the locations on

the SSD

RAM Object Cache

An LRU cache of objects
materialized from the SSD

occupying all available
RAM

Application

Interacts with the
SSD only via

virtual memory

Virtual
Memory

Allocation

Virtual
Memory
Usage

SSD Manager
SSD Reader

SSD Writer: A read-modify-write garbage
collector

Pages
Flushed
in FIFO
Order

On-demand
Paging

Fetch
Needed
Objects

Flush
Dirty

Objects

Notify
Objects’

State

Add/Modify
Addresses

of New/Moved
Objects

Translate Address
for Object Read

Read/Write

Figure 3.2: SSDAlloc uses most of RAM as an object-level cache, and material-
izes/dematerializes pages as needed to satisfy the application’s page usage. This
approach improves RAM utilization, even though many objects will be spread across
a greater range of virtual address space.

RAM Object Cache – Objects are cached in the RAM object cache in a compact

manner. The RAM object cache occupies most of the available portion of DRAM,

while only a small part of DRAM is used for pages that are currently in use (shown

60

in Figure 3.2). This decision provides several benefits – 1) Objects cached in RAM

can be accessed much faster than the SSD, 2) By performing usage-based caching

of objects instead of pages, the relatively small RAM can cache more useful objects

when using OPP, and 3) Given the density trends of SSD and RAM, object caching

is likely to continue being a useful optimization going forward.

The RAM object cache is maintained in an LRU fashion. It indexes objects using

their virtual memory page address as the key. An OPP object in the RAM object

cache is indexed by its OPP page address, while an MP page (a 4KB OPP object) is

indexed with its MP page address. In our implementation, we used a hash table with

the page address as the key for this purpose. Clean objects being evicted from the

RAM object cache are deallocated, while dirty objects being evicted are enqueued to

the SSD writer mechanism (shown in Figure 3.2).

Page Buffer – Temporarily materialized pages (in physical memory) are collec-

tively known as the Page Buffer. These pages are materialized in an on-demand

fashion (described below). Page Buffer size is application configurable, but in most

of the applications we tested, we found that a Page Buffer of size less than 25MB was

sufficient to reduce the rate of page materializations per second to the throughput of

the application. However, regardless of the size of the Page Buffer, physical memory

wastage from using OPP has to be minimized. To minimize this wastage we make

the rest of the active OPP physical page (portion beyond the object) a part of the

RAM object cache. The RAM object cache is implemented such that the shards of

pages that materialize into physical memory are used for caching objects.

SSDAlloc’s Paging – For a simple user space implementation we implement the

Page Buffer via memory protection. All virtual memory allocated using SSDAlloc

is protected (via mprotect). Page usage is detected when the protection mechanism

triggers a fault. The required page is then unprotected (only read or write access

is given depending on the type of fault to be able to detect writes separately) and

61

its data is then populated in the seg-fault handler – an OPP page is populated by

fetching the object from the RAM object cache or the SSD and placing it at the front

of the page. An MP page is populated with a copy of the page (a page sized object)

from the RAM object cache or the SSD.

Pages dematerialized from the Page Buffer are converted to objects. Those ob-

jects are pushed into the RAM object cache, the page is then madvised to be not

needed and finally, the page is reprotected (via mprotect) – in case of OPP/MP the

object/page is marked as dirty if the page faults on a write.

The Page Buffer can be managed in many ways, with the simplest way being

FIFO. Page Buffer pages are unprotected, so our user space implementation-based

runtime would have no information about how a page would be used while it remains

in the Page Buffer, making LRU difficult to implement. For simplicity, we use FIFO

in our current implementation. The only penalty is that if a dematerialized page is

needed again then the page has to be rematerialized from RAM.

OPP can have more virtual memory usage than malloc for the same amount

of data allocated. While MP will round each virtual address allocation to the next

highest page size, the OPP model allocates one object per page. For 48-bit address

spaces, the total number of pages is 236 (≈ 64 Billion objects via OPP). For 32-bit

systems, the corresponding number is 220 (≈ 1 million objects). Programs that need

to allocate more objects on 32-bit systems can use MP instead of OPP. Furthermore,

SSDAlloc can coexist with standard malloc, so address space usage can be tuned by

moving only necessary allocations to OPP.

While the separation between virtual memory and physical memory presents many

avenues for DRAM optimization, it does not directly optimize SSD usage. We next

present our SSD organization.

62

3.2.3 SSDAlloc’s SSD Maintenance

To overcome the limitations on random write behavior with SSDs, SSDAlloc writes the

dirty objects when flushing the RAM object cache to the SSD in a log-structured [88]

manner. This means that the objects have no fixed storage location on the SSD –

similar to flash-based filesystems [15]. We first describe how we manage the mapping

between fixed virtual address spaces to ever-changing log-structured SSD locations.

Our SSD writer/garbage-collector is described later.

To locate objects on the SSD, SSDAlloc uses a data structure called the Object

Table. While the virtual memory addresses of the objects are their fixed locations,

Object Tables store their ever-changing SSD locations. Object Tables are similar to

page tables in traditional virtual memory systems. Each Object Table has a unique

identifier called the OTID and it contains an array of integers representing the SSD

locations of the objects it indexes. An object’s Object Table Offset (OTO) is the

offset in this array where its SSD location is stored. The 2-tuple <OTID, OTO> is

the object’s internal persistent pointer.

To efficiently fetch the objects from the SSD when they are not cached in RAM, we

keep a mapping between each virtual address range (as allocated by the OPP or the

MP memory manager) in use by the application and its corresponding Object Table,

called an Address Translation Module (ATM). When the object of a page that is

requested for materialization is not present in the RAM object cache, <OTID,OTO>

of that object is determined from the page’s address via an ATM lookup (shown in

Figure 3.2). Once the <OTID,OTO> is known, the object is fetched from the SSD,

inserted into the RAM object cache and the page is then materialized. The ATM

is only used when the RAM object cache does not have the required objects. A

successful lookup results in a materialized physical page that can be used without

runtime system intervention for as long as the page resides in the Page Buffer. If the

page that is requested does not belong to any allocated range, then the segmentation

63

fault is a program error. In that case the control is returned to the originally installed

seg-fault handler.

The ATM indexes and stores the 2-tuples <Virtual Memory Range, OTID> such

that when it is queried with a virtual memory page address, it responds with the

<OTID,OTO> of the object belonging to the page. In our implementation, we chose

a balanced binary search tree for various reasons – 1) virtual memory range can be

used as a key, while the OTID can be used as a value. The search tree can be queried

using an arbitrary page address and by using a binary search, one can determine the

virtual memory range it belongs to. Using the queried page’s offset into this range,

the relevant object’s OTO is determined, 2) it allows the virtual memory ranges to

be of any size and 3) it provides a simple mechanism by which we can improve the

lookup performance – by reducing the number of Object Tables, there by reducing

the number of entries in the binary search tree. Our heap manager which allocates

virtual memory (in OPP or MP style) always tries to keep the number of virtual

memory ranges in use to a minimum to reduce the number of Object Tables in use.

Before we describe our heap manager design, we present a few simple optimizations

to reduce the size of Object Tables.

We try to store the Object Tables fully in DRAM to minimize multiple SSD

accesses to read an object. We perform two important optimizations to reduce the size

overhead from the Object Tables. First, to be able to index large SSDs for arbitrarily

sized objects, one would need a 64 bit offset that would increase the DRAM overhead

for storing Object Tables. Instead, we store a 32 bit offset to an aligned 512 byte

SSD sector that contains the start of the object. While objects may cross the 512

byte sector boundaries, the first two bytes in each sector are used to store the offset

to the start of the first object starting in that sector. Each object’s on-SSD metadata

contains its size, using which, we can then find the rest of the object boundaries in

64

that sector. We can index 2TB of SSD this way. 40 bit offsets can be used for larger

SSDs.

Our second optimization addresses Object Table overhead from small objects. For

example, four byte objects can create 100% DRAM overhead from their Object Table

offsets. To reduce this overhead, we introduce object batching – small objects are

batched into larger contiguous objects. We batch enough objects together such that

the size of the larger object is at least 128 bytes (restricting the Object Table overhead

to a small fraction – 1
32

). Pages, however, are materialized in regular OPP style –

one small object per page. However, batched objects are internally maintained as a

single object.

3.2.4 SSDAlloc’s Heap Manager

Internally, SSDAlloc’s virtual memory allocation mechanism works like a memory

manager over large Object Table allocations (shown in Figure 3.2). This ensures

that a new Object Table is not created for every memory allocation. The Object

Tables and their corresponding virtual memory ranges are created in bulk and memory

managers allocate from these regions to increase ATM lookup efficiency. We provide

two kinds of memory managers – an object pool allocator which is used for individual

allocations, and a ptmalloc style coalescing memory manager. We keep the pool

allocator separate from the coalescing allocator for the following reasons: 1) Many

of our focus applications prefer pool allocators, so providing a pool allocator further

eases their development, 2) Pool allocators reduce the number of page reads/writes

by not requiring coalescing, and 3) Pool allocators can export simpler memory usage

information, increasing garbage collector efficiency.

Object Pool Allocator: SSDAlloc provides an object pool allocator for allocat-

ing objects individually via OPP. Unlike traditional pool allocators, we do not create

pools for each object type, but instead create pools of different size ranges. For ex-

65

ample, all objects of size less than 0.5KB are allocated from one pool, while objects

with sizes between 0.5KB and 1KB are allocated from another pool. Such pools exist

for every 0.5KB size range, since OPP performs virtual memory operations at page

granularity. Despite the pools using size ranges, we avoid wasting space by obtaining

the actual object size from the application at allocation time, and using this size both

when the object is stored in the RAM object cache, and when the object is written

to the SSD. When reading an object from the SSD, the read is rounded to the pool

size to avoid multiple small reads.

SSDAlloc maintains each pool as a free list – a pool starts with a single allocation

of 128 objects (one Object Table, with pages contiguous in virtual address space)

initially and doubles in size when it runs out of space (with a single Object Table

and a contiguous virtual memory range). No space in the RAM object cache or the

SSD is actually used when the size of a pool is increased, since only virtual address

space is allocated. The pool stops doubling in size when it reaches a size of 10,000

(configurable) and starts linearly increasing in steps of 10,000 from then on. The free-

list state of an object can be used to determine if an object on the SSD is garbage,

enabling object-granularity garbage collection. This type of a separation of the heap

manager state from where the data is actually stored is similar to the “frame-heap”

implementation of Xerox Parc’s Mesa and Cedar languages [65].

Like Object Tables, we try to maintain free-lists in DRAM, so the free list size is

tied to the number of free objects, instead of the total number of objects. To reduce

the size of the free list we do the following: the free list actively indexes the state of

only one Object Table of each pool at any point of time, while the allocation state

for the rest of the Object Tables in each pool is managed using a compact bitmap

notation along with a count of free objects in each Object Table. When the heap

manager cannot allocate from the current one, it simply changes the current Object

66

Table’s free list representation to a bitmap and moves on to the Object Table with

the largest number of free objects, or it increases the size of the pool.

Coalescing Allocator: SSDAlloc’s coalescing memory manager works by us-

ing memory managers like ptmalloc [84] over large address spaces that have been

reserved. In our implementation we use a simple best-first with coalescing memory

manager [84] over large pre-allocated address spaces, in steps of 10,000 (configurable)

pages; no DRAM or SSD space is used for these pre-allocations, since only virtual ad-

dress space is reserved. Each object/page allocated as part of the coalescing memory

manager is given extra metadata space in the header of a page to hold the memory

manager information (objects are then appropriately offset). OPP arrays of any size

can be allocated by performing coalescing at the page granularity, since OPP arrays

are simply arrays of pages. MP pages are treated like pages in the traditional vir-

tual memory system. The memory manager works exactly like traditional malloc,

coalescing freely at byte granularity. Thus, MP with our Coalescing Allocator can be

used as a drop-in replacement for log-structured swap.

A dirty object evicted by the RAM object cache needs to be written to the SSD’s

log and the new location has to be entered at its OTO. This means that the older

location of the object has to be garbage collected. An OPP object on the SSD

which is in a free-list also needs to be garbage-collected. Since SSDs do not have the

mechanical delays associated with a moving disk head, we can use a simpler garbage

collector than the seek-optimized ones developed for disk-based log-structured file

systems [88]. Our cleaner performs a “read-modify-write” operation over the SSD

sequentially – it reads any live objects at the head of the log, packs them together,

and writes them along with flushed dirty objects from RAM.

67

3.2.5 SSDAlloc’s Garbage Collector

The SSDAlloc Garbage Collector (GC) activates whenever the RAM object cache has

evicted enough dirty objects (as shown in Figure 3.2) to amortize the cost of writing

to the SSD. We use a simple read-modify-write garbage collector, which reads enough

partially-filled blocks (of configurable size, preferably large) at the head of the log to

make space for the new writes. Each object on the SSD has its 2-tuple <OTID,OTO>

and its size as the metadata, used to update the Object Table. This back pointer

is also used to figure out if the object is garbage, by matching the location in the

Object Table with the actual offset. To minimize the number of reads per iteration

of the GC on the SSD, we maintain in RAM the amount of free space per 128KB

block. These numbers can be updated whenever an object in an erase block is moved

elsewhere (live object migration for compaction), when a new object is written to it

(for writing out dirty objects), or when the object is moved to a free-list (object is

“free”).

While the design so far focused on obtaining high-performance from DRAM and

flash in a hybrid setting, memory allocated via SSDAlloc is not non-volatile. We now

present our durability framework to preserve application memory and state on the

SSD.

3.2.6 SSDAlloc’s Durability Framework

SSDAlloc helps applications make their data persistent across reboots. Since

SSDAlloc is designed to use much more SSD-backed memory than the RAM in the

system, the runtime is expected to maintain the data persistent across reboots to

avoid the loss of work.

SSDAlloc’s checkpointing is a way to cleanly shutdown an SSDAlloc-based ap-

plication, while making objects and metadata persistent to be used across reboots.

Objects can be made persistent by simply flushing all the dirty objects from the

68

RAM object cache to the SSD. The state of the heap manager, however, needs more

support to be made persistent. The bitmap style free list representation of the OPP

pool allocator makes the heap manager representation of individually allocated OPP

objects easy to be serialized to the SSD. However, the heap manager information as

stored by a coalescing memory manager used by the OPP-based array allocator and

the MP-based memory allocator would need a full scan of the data on the SSD to be

regenerated after a reboot. Our current implementation provides durability only for

the individually allocated OPP objects and we wish to provide durability for other

types of SSDAlloc data in the future.

We provide durability for the heap manager’s state of the individually allocated

OPP objects by reserving a known portion of the SSD for storing the corresponding

Object Tables and the free list state (a bitmap). Since the maximum Object Table

space to object size overhead ratio is 1
32

, we reserve slightly more than 1
32

of the total

SSD space (by using a file that occupies that much space) where the Object Tables

and the free list state can be serialized for later use.

It should be possible to garbage collect dead objects across reboots. This is han-

dled by making sure that our copy-and-compact garbage collector is always aware of

all the OTIDs that are currently active within the SSDAlloc system. Any object with

an unknown OTID is garbage collected. Additionally, any object with an OTID that

is active is garbage collected only according to the criteria discussed in Section 3.2.5.

Virtual memory address ranges of each Object Table must be maintained across

reboots, because checkpointed data might contain pointers to other checkpointed

data. We store the virtual memory address range of each Object Table in the first

object that this Object Table indexes. This object is written once at the time of

creation of the Object Table and is not made available to the heap manager for

allocation.

69

3.2.7 SSDAlloc’s Overhead

Overhead Source Avg. Latency (µsec)

TLB Miss (DRAM read) 0.014

ATM Lookups 0.046

Page Materialization 0.138

Page Dematerialization 0.172

Signal Handling 0.666

Combined Overhead 0.833

Table 3.3: SSDAlloc’s overheads are quite low, and place an upper limit of over 1
million operations per second using low-end server hardware. This request rate is
much higher than even the higher-performance SSDs available today, and is higher
than even what most server applications need from RAM.

We observe that the overhead introduced by SSDAlloc’s runtime mechanism is minor

compared to the performance limits of today’s high-end SSDs. On a test machine

with a 2.4 GHz quad-core processor, we benchmark SSDAlloc’s runtime mechanism to

arrive at that conclusion. To benchmark the latency overhead of the signal handling

mechanism, we protect 200 Million pages and then measure the maximum seg-fault

generation rate that can be attained. For measuring the the ATM lookup latency,

we build an ATM with a million entries and then measure the maximum lookup

throughput that can be obtained. To benchmark the latency of an on-demand page

materialization of an object from the RAM object cache to a page within the Page

Buffer, we populate a page with random data and measure the latency. To benchmark

the page dematerialization of a page from the Page Buffer to an object in the RAM

object cache, we copy the contents of the page elsewhere, madvise the page as not

needed and reprotect the page using mprotect and measure the total latency. To

benchmark the latency of TLB misses (through L3) we use a CPU benchmarking

tool, the Calibrator [29], by allocating 15GB of memory per core. Table 3.3 presents

the results. Latencies of all the overheads clearly indicate that they would not be a

70

bottleneck even for the high-end SSDs like the FusionIO IOXtreme drives, which can

provide up to 250,000 IOPS. In fact, one would need 5 such SSDs for the SSDAlloc

runtime to saturate the CPU.

The largest CPU overhead is from the signal handling mechanism, which is present

only because of a user space implementation. With an in kernel implementation, the

VM pager can be used to manage the Page Buffer, which would further reduce the

CPU usage. We designed OPP for applications with high read randomness without

much locality, because of which, using OPP will not greatly increase the number of

TLB (through L3) misses. Hence, applications that are not bottlenecked by DRAM

(but by CPU, network, storage capacity, power consumption or magnetic disk) can

replace DRAM with high-end SSDs via SSDAlloc and reduce hardware expenditure

and power costs. For example, Facebook’s memcache servers are bottlenecked by

network parameters [40]; their peak performance of 200,000 tps per server can be

easily obtained by using today’s high-end SSDs as RAM extension via SSDAlloc.

DRAM overhead created from the Object Tables is offset by the performance

gains. For example, a 300GB SSD would need 10GB and 300MB of space for Object

Tables when using OPP and MP respectively for creating 128 byte objects. However,

SSDAlloc’s random read/write performance when using OPP is 3.5 times better than

when using MP (shown in Section 2.5). Additionally, for the same random write

workload OPP generates 32 times less write traffic to the SSD when compared to

MP and thereby increases the lifetime of the SSD. Additionally, with an in kernel

implementation, either the page tables or the Object Tables will be used as they both

serve the same purpose, further reducing the overhead of having the Object Tables

in DRAM.

71

3.3 Implementation and the API

We have implemented our SSDAlloc prototype as a C++ library in roughly 10,000

lines of code. It currently supports SSD as the only form of flash memory, though

it could later be expanded, if necessary, to support other forms of flash memory. In

our current implementation, applications can coexist by creating multiple files on the

SSD. Alternatively, an application can use the entire SSD, as a raw disk device for

high performance. While the current implementation uses flash memory via an I/O

controller such an overhead may be avoided in the future [27]. We present an overview

of the implementation via a description of the API.

ssd oalloc: void* ssd oalloc(int numObjects, int objectSize): is used for OPP allo-

cations – both individual and array allocations. If numObjects is 1 then the object is

allocated from the in-built OPP pool allocator. If it is more than 1, it is allocated

from the OPP coalescing memory manager.

ssd malloc: void* ssd malloc(size t size): allocates size bytes of memory using

the heap manager (described in Section 3.2.4) on MP pages. Similar calls exist for

ssd calloc and ssd realloc.

ssd free: void ssd free(void* va address): deallocates the objects whose virtual

allocation address is va address. If the allocation was via the pool allocator then

the <OTID,OTO> of the object is added to the appropriate free list. In case of

array allocations, the in-built memory manager frees the data according to our heap

manager. SSDAlloc is designed to work with low level programming languages like

‘C’. Hence, the onus of avoiding memory leaks and of freeing the data appropriately

is on the application.

checkpoint: int checkpoint(char* filename): flushes all dirty objects to the SSD

and writes all the Object Tables and free-lists of the application to the file filename.

This call is used to make the objects of an application durable.

72

restore: int restore(char* filename) : It restores the SSDAlloc state for the calling

application. It reads the file (filename) containing the Object Tables and the free

list state needed by the application and mmaps the necessary address for each Object

Table (using the first object entry) and then inserts the mappings into the ATM as

described in Section 3.2.6.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

R
an

do
m

 R
ea

ds
 p

er
 S

ec
on

d

Number of Threads Reading the SSD in Parallel

Kingston
RiData
Intel X25-V
Intel X25-E
Intel X25-M (G2)

Figure 3.3: SSDAlloc’s thread-safe memory allocators allow applications to exploit
the full parallelism of many SSDs, which can yield significant performance advantages.
Shown here is the performance for 4KB reads.

SSDs scale performance with parallelism. Figure 3.3 shows how some high-end

SSDs have internal parallelism (for 0.5KB reads, other read sizes also have par-

allelism). Additionally, multiple SSDs could be used with in an application. All

SSDAlloc functions, including the heap manager, are implemented in a thread safe

manner to be able to exploit the parallelism.

73

3.3.1 Migration to SSDAlloc

We believe that SSDAlloc is suited to the memory-intensive portions of server appli-

cations with minimal to no locality of reference, and that migration should not be

difficult in most cases – our experience suggests that only a small number of data types

are responsible for most of the memory usage in these applications. The following

scenarios of migration are possible for such applications to embrace SSDAlloc:

• Replace all calls to malloc with ssd malloc: Application would then use the

SSD as a log-structured page store and use the DRAM as a page cache. Appli-

cation performance would be better than when using the SSD via unmodified

Linux swap because it would avoid random writes and circumvent other legacy

swap system overheads that are quantified by Saxena et al [91].

• Replace all malloc calls made to allocate memory intensive data structures

of the application with ssd malloc: Application can then avoid SSDAlloc’s

runtime intervention (copying data between Page Buffer and RAM object cache)

for non-memory intensive data structures and can thereby slightly reduce its

CPU utilization.

• Replace all malloc calls made to allocate memory intensive data structures of

the application with ssd oalloc: Application would then use the SSD as a

log-structured object store only for memory intensive objects. Application’s

performance would be better than when using the SSD as a log-structured

swap because now the DRAM and the SSD would be managed at an object

granularity.

In our evaluation of SSDAlloc, we tested all the above migration scenarios to

estimate the methodology that provides the maximum benefit for applications in a

hybrid DRAM/SSD setting.

74

3.4 Evaluation Results

In this section, we evaluate SSDAlloc using microbenchmarks and applications built

or modified to use SSDAlloc. We first present microbenchmarks to test the limits of

benefits from using SSDAlloc versus SSD-swap. We also examine the performance of

memcached (with SSDAlloc and SSD-swap), a popular key-value store used in data

centers, where SSDs have been shown to minimize energy consumption [5]. Later,

we benchmark a B+Tree index for SSDs, where we replace all calls to malloc with

ssd malloc to see the benefits and impact of an automated migration to SSDAlloc.

After that, we compare the performance of systems designed to use SSDAlloc

to the same system specifically customized to use the SSD directly, to evaluate the

overhead from SSDAlloc’s runtime. We examine a network packet cache back-end that

was built using transparent SSDAlloc techniques described in this chapter and also

the non-transparent mechanism described in our workshop paper [8]. We also evaluate

the performance of a web proxy/WAN accelerator cache index for SSDs introduced in

prior work [11, 8] and similar to the problems addressed more recently [4, 32]. Here,

we demonstrate how using OPP makes efficient use of DRAM, while providing high

performance.

SSD Make
reads / sec writes / sec

4KB 0.5KB 4KB 0.5KB

RiDATA (32GB) 3,200 3,700 500 675

Kingston (64GB) 3,300 4,200 1,800 2,000

Intel X25-E (32GB) 26,000 44,000 2,200 2,700

Intel X25-V (40GB) 27,000 46,000 2,400 2,600

Intel X25-M G2 (80GB) 29,000 49,000 2,300 2,500

Table 3.4: SSDAlloc can take full advantage of object-sized accesses to the SSD,
which can often provide significant performance gains over page-sized operations.

75

In all these experiments, we evaluate applications using three different allo-

cation methods: SSD-swap (via malloc), MP or log-structured SSD-swap (via

ssd malloc), and OPP (via ssd oalloc). Our evaluations use five kinds of SSDs

and two types of servers. The SSDs and some of their performance characteristics

are shown in Table 3.4. The two servers we use have a single core 2GHz CPU with

4GB of RAM and a quad-core 2.4GHz CPU with 16GB of RAM respectively.

3.4.1 Microbenchmarks

We examine the performance of random reads and writes in an SSD-augmented mem-

ory by accessing a large array of 128 byte objects – an array of total size of 32GB

using various SSDs. We further restrict the accessible RAM in the system to 1.5GB

to test out-of-DRAM performance. We access objects randomly (read or write) 2 mil-

lion times per test. The array is allocated using four different methods – SSD-swap

(via malloc), MP (via ssd malloc), OPP (via ssd oalloc). Object Tables for each

of OPP and MP occupy 1.1GB and 34MB respectively. Page Buffers are restricted

to a size of 25 MB (it is sufficient to pin a page down, while it is being accessed in an

iteration). The remaining memory is used by the RAM object cache. To exploit the

SSD’s parallelism, we run 8–10 threads that perform the random accesses in parallel.

76

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

OPP MP SSD-Swap

%
 U

sa
ge

SSD Usage Technique

100% Reads 0% Writes
75% Reads 25% Writes
50% Reads 50% Writes
25% Reads 75% Writes
0% Reads 100% Writes

Figure 3.4: OPP works best (1.8–3.5 times over MP and 2.2–14.5 times over swap),
MP and swap take a huge performance hit when write traffic increases

The results of these microbenchmarks are shown in Figures 3.4, 3.5, and 3.6.

Figure 3.4 shows how (for the Intel X25-E SSD) allocating objects via OPP achieves

much higher performance. OPP beats MP by a factor of 1.8–3.5 times depending

on the write percentage and it beats SSD-swap by a factor of 2.2–14.5 times. As

the write traffic increases, MP and SSD-swap fare poorly due to reading/writing at

a page granularity. OPP reads only 512 byte sector per object access as opposed to

reading a 4KB page; it dirties only 128 bytes as opposed to dirtying 4KB per random

write.

OPP MP SSD-swap

Average (µsec) 257 468 624

Std Dev (µsec) 66 98 287

Table 3.5: Response times show that OPP performs best, since it can make the
best use of the block-level performance of the SSD whereas MP provides page-level
performance. SSD-swap performs poorly due to worse write behavior.

77

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

OPP MP SSD-Swap

%
 U

sa
ge

SSD Usage Technique

100% Reads 0% Writes
75% Reads 25% Writes
50% Reads 50% Writes
25% Reads 75% Writes
0% Reads 100% Writes

Figure 3.5: OPP, on all SSDs, trumps all other methods by reducing read and write
traffic

Figure 3.5 demonstrates how OPP performs better than all the allocation methods

across all the SSDs when 50% of the operations are writes. OPP beats MP by a factor

of 1.4–3.5 times, and it beats SSD-swap by a factor of 5.5–17.4 times. Table 3.5

presents response time statistics when using the Intel X25-E SSD. OPP has the low-

est averages and standard deviations. SSD-swap has a high average response time

compared to OPP and MP. This is mainly because of storage sub-system inefficiencies

and random writes.

78

1

10

100

1000

OPP MP SSD-Swap

O

bj
ec

ts
 W

rit
te

n
pe

r R
an

do
m

 W
rit

e

SSD Usage Technique

Figure 3.6: OPP has the maximum write efficiency (31.5 times over MP and 1013
times over swap) by writing only dirty objects as opposed to writing full pages con-
taining them

Figure 3.6 quantifies the write optimization obtained by using OPP, in log scale.

OPP writes at an object granularity, which means that it can fit more dirty objects in

a given write buffer when compared to MP. When a 128KB write buffer is used, OPP

can fit nearly 1024 dirty objects in the write buffer, while MP can fit only around 32

pages containing dirty objects. Hence, OPP writes more dirty objects to the SSD per

random write when compared to both MP and SSD-swap (which makes a random

write for every dirty object). OPP writes 1013 times more efficiently compared

to SSD-swap and 31.5 times compared to MP (factors independent of SSD make).

Additionally, OPP not only increases write efficiency but also writes 31.5 times less

data compared to MP and SSD-swap for the same workload by working at an object

granularity and thereby increases the SSD lifetime by the same factor.

Overall, OPP trumps SSD-swap by huge gain factors. It also outperforms MP

by large factors providing a good insight into the benefits that OPP would provide

79

over log-structured swaps. Such benefits scale inversely with the size of the object.

For example with 1KB objects OPP beats MP by a factor of 1.6–2.8 and with 2KB

objects the factor is 1.4–2.3.

3.4.2 Memcached Benchmarks

To demonstrate the simplicity of SSDAlloc and its performance benefits for exist-

ing applications, we modify memcached. Memcached uses a custom slab allocator

to allocate values and regular mallocs for keys. We replaced memcache’s slabs with

OPP (ssd oalloc) and with MP(ssd malloc) to obtain two different versions. These

changes require modifying 21 lines of code out of over 11,000 lines in the program.

When using MP, we replaced malloc with ssd malloc inside memcache’s slab allo-

cator (used only for allocating values).

We compare these versions with an unmodified memcached using SSD-swap. For

SSDs with parallelism we create multiple swap partitions on the same SSD. We also

run multiple instances of memcached to exploit CPU and SSD parallelism. Fig-

ures 3.7, 3.8, and 3.9 show the results.

80

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
re

q/
se

c)

Number of memcached Instances

One Swap Partition
Two Swap Partitions
Three Swap Partitions
SSDAlloc OPP
SSDAlloc MP

Figure 3.7: Memcache Results: OPP outperforms MP and SSD-swap by factors of
1.6 and 5.1 respectively (mix of 4byte to 4KB objects)

Figure 3.7 shows the aggregate throughput obtained using a 32GB Intel X25-E

SSD (2.5GB RAM), while varying the number of memcached instances used. We com-

pare five different configurations – memcached with OPP and MP, and memcached

with one, two or three swap partitions on the same SSD. For this experiment we pop-

ulate memcached instances with object sizes distributed uniformly randomly from 4

bytes to 4KB such that the total size of objects inserted is 30GB. For benchmarking,

we generate 1 million memcached get and set requests (100% hit-rate), each using

four client machines that statically partition the keys and distribute their requests to

all running memcached instances.

Results indicate that SSDAlloc’s write aggregation is able to exploit the device’s

parallelism, while SSD-swap based memcached is restricted in performance, mainly

due to the swap’s random write behavior. OPP (at 8 instances of memcached) beats

MP (at 6 instances of memcached) and SSD-swap (at 6 instances of memcached on

two swap partitions) by factors of 1.6 and 5.1, respectively, by working at an object

81

granularity, for a mix of object sizes from 4bytes to 4KB. While using SSD-Swap

with two partitions lowers the standard deviation of the response time, SSD-Swap

has much higher variance in general. For SSD-Swap, the average response time is 667

microseconds and the standard deviation is 398 microseconds, as opposed to OPP’s

response times of 287 microseconds with a 112 microsecond standard deviation (high

variance due to synchronous GC).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

128 256 512 1024 2048 4096 8192

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
re

q/
se

c)

Maximum Object Size (Bytes)

SSDAlloc OPP
SSDAlloc MP
SSD-Swap

Figure 3.8: Memcache Results: SSDAlloc’s use of objects internally can yield dramatic
benefits, especially for smaller memcached objects

Figure 3.8 shows how object size determines memcached performance with and

without OPP (Intel X25-E SSD). Here, we generate requests over the entire workload

without much locality. We compare the aggregate throughput obtained, while varying

the maximum object size (actual sizes are distributed uniformly from 128 bytes to

limit). We perform this experiment for three settings – 1) Eight memcached instances

with OPP, 2) Six memcached instances with MP and 3) Six memcached instances with

two swap partitions. We picked the number of instances from the best performing

numbers obtained from the previous experiment. We notice that as the object size

82

decreases, memcached with OPP performs much better than memcached with SSD-

swap and MP. This is due to the fact that using OPP moves objects to/from the

SSD, instead of pages, resulting in smaller reads and writes. The slight drop in

performance in the case of MP and SSD-swap when moving from 4KB object size

limit to 8KB is because the runtime sometimes issues two reads for objects larger

than 4KB. When the Object Table indicates that they are contiguous on SSD, we

can fetch them together. In comparison, SSD-swap prefetches when possible.

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000

OPP MP SSD-Swap

%
 A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

re
q/

se
c)

SSD Usage Technique

RiData
Kingston
Intel X25-E
Intel X25-V
Intel X25-M (G2)

Figure 3.9: Memcache Results: SSDAlloc beats SSD-Swap by a factor of 4.1 to 6.4
for memcache tests (mix of 4byte to 4KB objects)

Figure 3.9 quantifies these gains for various SSDs (objects between 4byte and 4KB)

at a high insert rate of 50%. The benefits of OPP can be anywhere between 4.1–

6.4 times higher than SSD-swap and 1.2–1.5 times higher than MP (log-structured

swap). For smaller objects (each 0.5KB) the gains are 1.3–3.2 and 4.9–16.4 times

respectively over MP and SSD-swap (16.4 factor improvement is achieved on the Intel

X25-V SSD). Also, depending on the object size distribution, OPP writes anywhere

between 3.88–31.6 times more efficiently then MP and 24.71–1007 times compared

83

to SSD-swap (objects written per SSD write). The total write traffic of OPP is also

between 3.88–31.6 times less when compared to MP and SSD-swap, increasing the

lifetime and reliability of the SSD.

3.4.3 Packet Cache Benchmarks

Packet caches (and chunk caches) built using SSDs scale the performance of network

accelerators [4] and in-line data deduplicators [32] by exploiting the good random read

performance and the large capacity of flash. Similar capacity DRAM-only systems

will cost much more and also consume more power. We built a packet cache back-end

that indexes a packet with the SHA1 hash of its contents (using a hash table). We

built it via two methods – 1) packets are allocated via OPP (ssd oalloc), and 2)

packets are allocated via the non-transparent object get/put based SSDAlloc that

we describe in our workshop paper [8] – where the SSD is used directly without any

runtime intervention. The remaining data structures in both the systems are allocated

via malloc. We compare these two implementations to estimate the overhead from

SSDAlloc’s runtime mechanism for each packet accessed.

For the comparison, we test the response times of packet get/put operations into

the back-end. We consider many settings – we vary the size of the packet from 100

to 1500 bytes and in another setting we consider a mix of packet sizes (uniformly,

from 100 to 1500 bytes). We use a 20 byte SHA1 hash of the packet as the key

that is stored in the hashtable (in DRAM) against the packet as the value (on SSD)

– the cache is managed in LRU fashion. We generate random packet content from

“/dev/random”. We use the Intel X25-M SSD and the high-end CPU machine for

these experiments, with eight threads for exploiting device parallelism. We first fill

the SSD with 32GB worth of packets and then perform 2 million lookups and inserts

(after evicting older packets in LRU fashion). In this benchmark, we configure the

84

Page Buffer to hold only a handful of packets such that every page get/put request

leads to a signal raise, and an ATM lookup followed by an OPP page materialization.

0

50

100

150

200

250

300

350

400

450

100 300 600 900 1200 1500 Mixed

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
ic

ro
se

co
nd

s)

Packet Size (Bytes)

Cache Hit Rate
Byte Hit Rate

Figure 3.10: Packet Cache Benchmarks: SSDAlloc’s runtime mechanism adds only
up to 20 microseconds of latency overhead, while there is no significant difference in
throughput

Figure 3.10 compares the response times of the OPP method using the trans-

parent techniques described in this chapter and the non-transparent calls described

in the workshop paper [8]. The results indicate that the overhead from SSDAlloc’s

runtime mechanism is only on the order of ten microseconds, and there is no signifi-

cant difference in throughput. The highest overhead observed is for 100 byte packets,

where transparent SSDAlloc consumed 6.5% more CPU than the custom SSD usage

approach when running at 38K 100 byte packets per second (30.4 Mbps). We believe

this overhead is acceptable given the ease of development. We also built the packet

cache by allocating packets via MP (ssd malloc) and SSD-swap (malloc). We find

that OPP-based packet cache performs 1.3–2.3 times better than an MP-based one

and 4.8–10.1 times better than SSD-swap for mixed packets (from 100 to 1500 bytes)

85

across all SSDs. The write efficiency of OPP scales according to the packet size as

opposed to MP and SSD-swap which always write a full page (either for writing a new

packet or for editing the heap manager data by calling ssd free or free). Using an

OPP packet cache, three Intel SSDs can accelerate a 1Gbps link (1500 byte packets

at 100% hit rate), whereas MP and SSD-swap would need 5 and 12 SSDs respectively.

3.4.4 B+Tree Benchmarks

We built a B+Tree data structure via Boost framework [17] using the in-built Boost

object pool allocator (which uses malloc internally). We then ported it to SSDAlloc

OPP (in 15 lines of code) by replacing calls to object pool with ssd oalloc. We

also ported it to MP by replacing all calls to malloc (inside object pool) with

ssd malloc (in 6 lines of code). Hence, in the MP version, every access to memory

happens via the SSDAlloc’s runtime mechanism.

We use the Intel X25-V SSD (40GB) for the experiments and restrict the amount of

memory in the system to 256MB for both the systems to test out-of-DRAM behavior.

We allow up to 25 keys stored per inner node, 25 values stored in the leaf node, and

we vary the key size. We first populate the B+Tree such that it has 200 million keys,

to make sure that the height of the B+Tree is at least 5. We vary the size of the key,

so that the size of the inner object and leaf node object vary. We perform 2 million

updates (values are updated) and lookups.

86

0

2500

5000

7500

10000

12500

15000

4 8 16 32 64

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
ic

ro
se

co
nd

s)

B+Tree Key Size (Bytes)

SSDAlloc OPP SSDAlloc MP SSD-Swap

Figure 3.11: B+Tree Benchmarks: SSDAlloc’s ability to internally use objects beats
page-sized operations of MP or SSD-swap

Figure 3.11 shows that MP and OPP provide much higher performance than using

SSD-swap. As the key size increases from 4 to 64 bytes, the size of the nodes increases

from 216 bytes to 1812 bytes. The performance of SSD-swap and MP is constant in

all cases (with MP performing 3.8 times better than SSD-swap with log-structured

writes) because they access a full page for almost every node access, regardless of node

size, increasing the size of the total dirty data, thereby performing more erasures on

the SSD. OPP, in comparison, makes smaller reads when the node size is small and

its performance scales with the key size in the B+Tree. We also report that across

SSDs, B+Tree operations via OPP were 1.4–3.2 times faster when compared to MP

and 4.3–12.7 times faster than when compared to SSD-swap (for a 64 byte key). In

the next evaluation setting, we demonstrate how OPP makes the best use of DRAM

transparently.

87

3.4.5 HashCache Benchmarks

Our final application benchmark is the efficient Web cache/WAN accelerator index

based on HashCache [11]. HashCache is an efficient hash table representation that

is devoid of pointers; it is a set-associative cache index with an array of sets, each

containing the membership information of a certain (usually 8–16) number of elements

currently residing in the cache. We wish to use an SSD-backed index for performing

HTTP caching and WAN Acceleration for developing regions. SSD-backed indexes

for WAN accelerators and data deduplicators are interesting because only flash can

provide the necessary capacity and performance to store indexes for large workloads.

A netbook with multiple external USB hard drives (up to a terabyte) can act as a

caching server [8]. The inbuilt DRAM of 1–2 GB would not be enough to index a

terabyte hard drive in memory, hence, we propose using SSDAlloc in those settings –

the internal SSD can be used as a RAM supplement which can provide the necessary

index lookup bandwidth needed for WAN Accelerators [54] which make many index

lookups per HTTP object.

We create an SSD-based HashCache index for 3 billion entries using 32GB SSD

space. For creating the index, HashCache creates a large contiguous array of 128

byte sets. Each set can hold information for sixteen elements – hashes for testing

membership, LRU usage information for cache maintenance and a four byte location

of the cached object. We test three configurations of HashCache: with OPP (via

ssd oalloc), MP (via ssd malloc) and SSD-swap (via malloc) to create the sets.

In total, we had to modify 28 lines of code for these modifications. While using OPP

we made use of Checkpointing. This is because we want to be able to quickly reboot

the cache in case of power outages (netbooks have batteries and a graceful shutdown

is possible in case of power outages).

88

1E+05

1E+06

1E+07

1E+08

1.5 2.0 2.5 3.0 3.5 4.0

U

se
fu

l E
nt

rie
s D

R
A

M
 C

an
 C

ac
he

Total DRAM Size (GB)

SSDAlloc OPP SSDAlloc MP SSD-Swap

Figure 3.12: HashCache benchmarks: SSDAlloc OPP option can beat MP and SSD-
Swap on RAM requirements due to caching objects instead of pages. The maximum
size of a completely random working set of index entries each allocation method can
cache in DRAM is shown (in log scale).

Figure 3.12 shows, in log scale, the maximum number of useful index entries of a

web workload (highly random) that can reside in RAM for each allocation method.

With available DRAM varying from 2GB to 4.5GB, we show how OPP uses DRAM

more efficiently than MP and SSD-swap. Even though OPP’s Object Table uses

almost 1GB more DRAM than MP’s Object Table, OPP still is able to hold much

larger working set of index entries. This is because OPP caches at set granularity,

while MP caches at a page granularity, and HashCache has almost no locality. Being

able to hold the entire working set in memory is very important for the performance

of a cache, since it not only saves write traffic but also improves the index response

time.

We now present some reboot and recovery time measurements. Rebooting the

version of HashCache built with OPP Checkpointing for a 32GB index (1.1GB Object

89

Table) took 17.66 sec for the Kingston SSD (which has a sequential read speed of

70 MBPS).

We also report performance improvements from using OPP over MP and SSD-

swap across SSDs. For SSDs with parallelism, we partition the index horizontally

across multiple threads. The main observation is that using MP or SSD-swap would

not only reduce performance but also undermine reliability by writing more number

of times and more data to the SSD. OPP’s performance is 5.3–17.1 times higher

than when using SSD-Swap, and 1.3-3.3 times higher than when using MP across

SSDs (50% insert rate).

3.5 Summary

We introduce SSDAlloc, a hybrid main memory management system that allows

developers to treat solid-state disk (SSD) as an extension of the DRAM in a system.

SSDAlloc moves the SSD upward in the memory hierarchy, usable as a larger, slower

form of DRAM instead of just a replacement/cache for the hard drive. By eliminating

the usage of multiple layers of software part of the operating system and the filesystem,

SSDAlloc enables a low-latency direct access of the SSD at the application level. Using

SSDAlloc, applications can nearly transparently extend their memory footprints to

hundreds of gigabytes and beyond without restructuring, well beyond the DRAM

capacities of most servers. SSDAlloc presents an interface similar to that of malloc

making it straightforward for developers to adopt and build new applications or port

existing ones to use SSDs to augment DRAM in a system. Additionally, SSDAlloc

can extract 90% of the SSDs raw performance while increasing the lifetime of the

SSD by up to 32 times. Other approaches either require intrusive application changes

or deliver only 6-30% of the SSDs raw performance. SSDAlloc obtains these benefits

90

by transparently working at object granularity unlike traditional transparent systems

that work at a page/block granularity.

91

Chapter 4

Conclusions and Future Work

Caches in various forms provide the necessary speedup for various Internet services

including the Web, data delivery, and file synchronization. Caches help reduce the

load on the network links and the servers by storing reusable and redundant content

closer to the clients. Despite their importance, caches today are constrained by the

trends in the evolution of today’s memory (DRAM) and storage (disk) technologies.

The current caches require a huge amount of DRAM for indexing large disks, increas-

ing their cost. Furthermore, low disk speeds force the cache to use DRAM to serve

content for high performance and further drive up the cost. New memory technolo-

gies like NAND-Flash offers much higher capacity than DRAM and a much higher

performance than disks.

The trends in the evolution of DRAM, disk and new memory technologies like

NAND-Flash warrant the rethinking of the design of caches to make effective use of

each of these technologies. Towards these goals, this dissertation has attempted to

answer the following questions:

1. How can one design a cache that can index disks that are larger by an order of

magnitude than existing designs without using any additional memory?

92

2. What are the performance implications of such a cache design? More specifi-

cally, can such a design match the performance of existing cache designs?

3. How must new memory technologies like NAND-Flash be used to reduce the

reliance of such caches on traditional memory and disk for performance?

4. How can one adopt such new memory technologies transparently, while masking

their limitations? More specifically, can applications use them without any

modifications?

We have addressed the first two questions in Chapter 2, and the final two questions

in Chapter 3.

4.1 Rethinking cache indexing for memory effi-

ciency

In Chapter 2 we developed HashCache, a high-performance configurable cache stor-

age for developing regions. HashCache provides a range of configurations that scale

from using no memory for indexing to ones that require only one-tenth as much as

current high-performance approaches. It provides this flexibility without sacrificing

performance – its lowest-resource configuration has performance comparable to free

software systems, while its high-end performance is comparable to the best commer-

cial systems. These configurations allow memory consumption and performance to be

tailored to application needs, and break the link between storage size and in-memory

index size that has been commonly used in caching systems for the past decade. The

benefits of HashCache’s low resource consumption allow it to share hardware with

other applications, share the filesystem, and to scale to storage sizes well beyond what

present approaches provide.

93

On top of the HashCache storage layer, we have built a Web caching proxy, the

HashCache Proxy, which can run using any of the HashCache configurations. Us-

ing industry-standard benchmarks and a range of hardware configurations, we have

shown that HashCache performs competitively with existing systems across a range of

workloads. This approach provides an economy of scale in HashCache deployments,

allowing it to be powered from laptops, low-resource desktops, and even high-resource

servers. In all cases, HashCache either performs competitively or outperforms other

systems suited to that class of hardware.

With its operation flexibility and a range of available performance options,

HashCache is well suited to providing the infrastructure for caching applications

in developing regions. Not only does it provide competitive performance with the

stringent resource constraint, but also enables new opportunities that were not

possible with existing approaches. We believe that HashCache can become the basis

for a number of network caching services, and are actively working toward this goal.

4.2 Adopting new memory technologies

In Chapter 3, we developed SSDAlloc, which integrates new memory technologies

like NAND-Flash into the virtual memory hierarchy of applications. Specifically,

SSDAlloc provides a hybrid memory management system that allows new and existing

applications to easily use NAND-Flash SSDs to augment the DRAM in a system.

Such a system helps applications reduce their dependence on DRAM and disk for

performance. Application state (like an index for a cache) can reside partly on NAND-

Flash and reduce the DRAM requirements and thereby reduce the cost. Applications

can also cache data from disk in NAND-Flash, reduce the pressure on the disk and

thereby increase the performance.

94

SSDAlloc helps applications perform up to 17 times better than using the SSD

as a swap space. Additionally, it helps applications perform up to 3.5 times better

than using the SSD as a log-structured swap space. Furthermore, it can increase the

SSD’s lifetime by a factor of up to 30 times by transparently working at an object

granularity as opposed to a page/block granularity. When the application modifies

objects, only these changed objects need to be written to the SSD and not an entire

page or a block containing the object. This leads to a drastic reduction in the amount

of data written to the SSD for a given write workload.

SSDAlloc provides all the above benefits with minimal code changes. These

changes are limited to the memory allocation part of the application code. In the

applications that we used, we modified less than 0.05% of the original code to ob-

tain the benefits of SSDAlloc. Additionally, the modifications allow the usage of the

familiar memory allocation interface.

The performance of SSDAlloc-based applications is close to that of custom-

developed SSD applications. We demonstrate the benefits of SSDAlloc in a variety

of contexts – a data center application (Memcache), a B+Tree index, a packet cache

back-end and an efficient hash table representation (HashCache), which required

only minimal code changes, little application knowledge, and no expertise with the

inner workings of SSDs.

4.3 Future Work

Reduce the page table overhead of SSDAlloc. The design of Object Tables as

described in Chapter 3 attempts to minimize the overhead from the address trans-

lation structures inside SSDAlloc. However, each object created using OPP model

requires a separate page table entry – an 8 byte value for 64 bit architectures. Fur-

thermore, the Flash Translation Layer (FTL) inside the SSD performs its own address

95

translation from the logical block address at the OS level to the physical block ad-

dress at the device level. Modern FTLs use host DRAM for storing these address

translations [46].

In the future, it would be beneficial to reduce these multiple levels of address

translations and perform all the necessary address translation at one place to reduce

latency and save DRAM space. Since we propose that NAND-Flash be used via the

virtual memory, it is natural to propose that this address translation be performed

by overloading the page tables of the application’s process itself.

Such a method of address translation presents many benefits. Firstly, traditional

OS’s page tables are designed so that they can be paged in and out of persistent

storage in an on-demand fashion, thereby reducing the memory pressure inside the

OS. Secondly, virtual memory to physical memory address conversion is a fairly well

understood and optimized sub-system of an OS which would make adoption of NAND-

Flash that much easier. Finally, the hierarchical model of the page table address

conversions not only provides low-latency conversions but also takes into account

spatial and temporal localities in the workload.

Reduce the page fault overhead in SSDAlloc. The biggest overhead in

SSDAlloc is the latency due to the page fault generation. There are multiple entities

that contribute to this latency and each of these entities creates an opportunity to

optimize existing operating systems to make them more accepting of new memory

technologies. The biggest source of latency is the serialization of multiple threads

that modify the page tables at the same time. Recent work has suggested the usage

of message passing, “lock-free” data structures and fine grained locking for managing

the virtual memory mappings of a process to address this problem for soft faults [14,

18, 25]. However, SSDAlloc primarily deals with hard faults and has many more

data structures that are shared across threads, e.g., the garbage collector and would

require a more thorough study before one can address the problem.

96

Rethink paging over the network. Optical networks within the data cen-

ter [41, 89, 108] are fast narrowing the gap between a local device and a networked

device. This development can help servers within a cluster to fetch data not only

from the local SSD at a low latency but also from a remote SSD. The high latency of

NAND-Flash could also mask the network latency inside an optical network. Such a

low-latency network will warrant the reopening of shared-memory clusters. However,

the bottleneck this time would not be the network, but it would be the overhead from

coordination of memory within the several systems in the cluster.

Recent work has suggested the usage of specialized hardware-based clusters to

solve the problem of coordination [13]. Modern NAND-Flash devices use powerful

processors to perform FTL operations on the flash device itself. In the future, the

additional processing power on these devices can themselves be used for coordinating

memory accesses between these various processors within the cluster and further

reduce the complexity of coordination of devices within a low-latency network.

Adopting low latency solid state memory technologies. While NAND-

Flash’s latency is four orders of magnitude higher than that of DRAM [20], other

new memory technologies like PCM have much lower latency – only an order of

magnitude more than DRAM [63]. The current method of servicing page faults at

the user-space after a context switch would therefore be a poor model for a PCM-

based SSD. In the future, a safe yet low-overhead way of servicing hard page faults

would be desirable to incorporate such low-latency solid state memory technologies

into the virtual memory hierarchy.

While SSDs (NAND-Flash or PCM based) are not byte-addressable, other new

memory technologies like JEDEC-based PCM modules are [85]. Also, they have a

high enough write endurance to allow more frequent in-place writes. This creates an

interesting optimization problem with respect to what physical memory technology to

use for a given virtual memory page. Scalable monitoring techniques have to be put

97

in place to help virtual memory pages to use the right physical memory technology.

While such techniques have been explored for the storage sub-system [27], no work

that addresses this problem in the memory sub-system exists. An example scenario

where such a technique would be useful is the following: one must switch from PCM-

based physical pages to DRAM-based one when the virtual memory address involved

is being written often. However, the latency of PCM is low-enough to discourage such

changes at a regular interval. The page faults in such cases where a virtual memory

address migrates from a PCM page to a DRAM one would be a threshold-based one

rather than an on-demand one.

Bridging the gap between the application and the devices. A modern

enterprise storage system is likely to contain: DRAM used as a page cache, a NAND-

flash-based block cache, and finally, a SAN composed of its own DRAM/Flash caching

layers in front of an array of disk drives. Today, neither the OS nor the application

has any control over how data is managed within these tiers. We propose a general

purpose extension to the OS block layer that enables applications to express usage

intent to generic block devices enabling performance optimization [7]. In the future,

we wish to provide a convenient interface to these complex storage devices for the

application to provide advises, issue directives, query for quality-of-service guarantees

and perform custom tiering of data.

98

Bibliography

[1] ACM Digital Library of Articles Published by the ACM.
http://dl.acm.org/.

[2] Nitin Agarwal, Vijayan Prabhakaran, Tedd Wobber, John D. Davis, Mark Man-
asse, and Rina Panigrahy. Design Tradeoffs for SSD Performance. In Proc.
USENIX ATC, Boston, MA, June 2008.

[3] Akamai Technologies Inc.
http://www.akamai.com/.

[4] Ashok Anand, Chitra Muthukrishnan, Steven Kappes, Aditya Akella, and
Suman Nath. Cheap and Large CAMs for High Performance Data-Intensive
Networked Systems. In Proc. 7th USENIX NSDI, San Jose, CA, April 2010.

[5] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. FAWN: A Fast Array of Wimpy Nodes.
In Proc. 22nd ACM SOSP, Big Sky, MT, October 2009.

[6] arXiv: E-Print Service for Basic Sciences.
http://arxiv.org/help/general.

[7] Anirudh Badam and David W. Nellans. Enabling Application Directed Storage
Devices. In Proc. 3rd NVMW, San Diego, CA, March 2012.

[8] Anirudh Badam and Vivek S. Pai. Beating Netbooks into Servers: Making
Some Computers More Equal Than Others. In Proc. 3rd ACM NSDR, BigSky,
MO, October 2009.

[9] Anirudh Badam and Vivek S. Pai. SSDAlloc: Hybrid RAM/SSD Allocation
Made Easy. In Proc. 2nd NVMW, San Diego, CA, March 2011.

[10] Anirudh Badam and Vivek S. Pai. SSDAlloc: Hybrid SSD/RAM Memory
Management Made Easy. In Proc. 8th USENIX NSDI, Boston, MA, March
2011.

[11] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and Larry L. Peterson.
HashCache: Cache Storage for the Next Billion. In Proc. 6th USENIX NSDI,
Boston, MA, March 2009.

99

http://dl.acm.org/
http://www.akamai.com/
http://arxiv.org/help/general

[12] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo
Seltzer. Non-volatile memory for fast, reliable file systems. In Proc. 5th ACM
ASPLOS, Boston, MA, October 1992.

[13] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber,
Michael Wei, and John D. Davis. CORFU: A Shared Log Design for Flash
Clusters. In Proc. 9th USENIX NSDI, San Jose, CA, April 2012.

[14] Andrew Baumann, Simon Peter, Adrian Schupbach, Akhilesh Singhania, Tim-
othy Roscoe, Paul Barham, and Rebecca Isaacs. Your Computer is Already a
Distributed System. Why isn’t your OS? In Proc. 11th USENIX HotOS, Monte
Verita, Switzerland, May 2009.

[15] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A Design for
High-Performance Flash Disks. SIGOPS OSR, 41(2):88–93, April 2007.

[16] Burton H. Bloom. Space/Time Trade-offs in Hash Coding With Allowable
Errors. CACM, 13(7):422–426, July 1970.

[17] Boost Template Library.
http://www.boost.org/.

[18] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Tappan Morris, and Nickolai Zeldovich. An analysis
of linux scalability to many cores. In Proc. 9th USENIX OSDI, Vancouver,
Canada, October 2010.

[19] Eric Brewer, Paul Gauthier, and Dennis McEvoy. Long-term viability of large-
scale caches. In Proc. 3rd WWW Caching Workshop, Manchester, England,
June 1998.

[20] Jeffery A. Brown and Dean M. Tullsen. The Shared-Thread Multiprocessor. In
Proc. 22nd ACM ICS, Island of Kos, Greece, June 2008.

[21] Miguel Castro, Atul Adya, Barbara Liskov, and Andrew C. Myers. Hac: Hybrid
adaptive caching for distributed storage systems. In Proc. 16th ACM SOSP,
Saint-Malô, France, October 1997.

[22] CERN Cache.
http://www.w3.org/Daemon/.

[23] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F.
Schwartz, and Kurt J. Worrell. A hierarchical internet object cache. In Proc.
USENIX ATC, San Diego, CA, January 1996.

[24] Citrix Systems.
http://www.citrix.com/.

100

http://www.boost.org/
http://www.w3.org/Daemon/
http://www.citrix.com/

[25] Austin Clements, M. Franz Kaashoek, and Nickolai Zeldovich. Scalable Address
Spaces Using RCU Balanced Trees. In Proc. ACM ASPLOS, London, United
Kingdom, March 2012.

[26] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Ob-
jects Fast and Safe With Next-Generation, Non-Volatile Memories. In Proc.
ACM ASPLOS, Newport Beach, CA, March 2011.

[27] Jeremy Condit, Edmund B. Nightingale, Cristopher Frost, Engin Ipek, Doug
Burger, Benjamin Lee, and Derrick Coetzee. Better I/O Through Byte-
Addressable, Persistent Memory. In Proc. 22nd ACM SOSP, Big Sky, MT,
October 2009.

[28] Alan L. Cox, Y. Charlie Hu, Vijay S. Pai, Vivek S. Pai, and Willy Zwaenepoel.
Storage and retrieval system for WEB cache. U.S. Patent 7231494, 2000.

[29] CPU Timing Calibrator. http://homepages.cwi.nl/~manegold/Calibrator/.

[30] Datacenter Map.
http://www.datacentermap.com/.

[31] Datadomain.
http://www.datadomain.com/.

[32] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding Up
Inline Storage Deduplication Using Flash Memory. In Proc. USENIX ATC,
Boston, MA, June 2010.

[33] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High Through-
put Persistent Key-Value Store. In Proc. 36th VLDB, Singapore, Singapore,
September 2010.

[34] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyStash: RAM Space
Skimpy Key-Value Store on Flash. In Proc 30th ACM SIGMOD, Athens,
Greece, June 2011.

[35] Doctors Without Borders.
http://www.doctorswithoutborders.org/aboutus/?ref=main-menu.

[36] Bowei Du, Michael Demmer, and Eric Brewer. Analysis of WWW traffic in
Cambodia and Ghana. In Proc. 15th WWW, Edinburgh, Scotland, May 2006.

[37] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and Sudipta
Sengupta. Primary Data DeduplicationLarge Scale Study and System Design.
In Proc. USENIX ATC, Boston, MA, June 2012.

[38] EMC VFCache: Server Flash Cache.
http://www.emc.com/storage/vfcache/vfcache.htm.

101

http://homepages.cwi.nl/~manegold/Calibrator/
http://www.datacentermap.com/
http://www.datadomain.com/
http://www.doctorswithoutborders.org/aboutus/?ref=main-menu
http://www.emc.com/storage/vfcache/vfcache.htm

[39] Facebook: An Online Social Network.
https://www.facebook.com/facebook?sk=info.

[40] Facebook Memcache Requirements.
https://www.facebook.com/note.php?note_id=39391378919.

[41] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-
dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and
Amin Vahdat. Helios: A hybrid electrical/optical switch architecture for mod-
ular data centers. In Proc. ACM SIGCOMM, New Delhi, India, August 2010.

[42] Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon Glass, and Michael Ra-
binovich. Performance of web proxy caching in heterogeneous bandwidth envi-
ronments. In Proc. 18th IEEE INFOCOM, New York, NY, March 1999.

[43] Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing
content publication with coral. In Proc. 1st USENIX NSDI, San Francisco,
CA, March 2004.

[44] Fusion-io Directcache: Transparent Storage Accelerator.
http://www.fusionio.com/systems/directcache/.

[45] Fusion-io: ioDrive Octal.
http://www.fusionio.com/platforms/iodrive-octal/.

[46] Fusion-io’s FTL: Memory Overhead.
http://www.tomshardware.com/reviews/fusion-io-ioxtreme-ssd,

2488-3.html.

[47] Syam Gadde, Jeff Chase, and Michael Rabinovich. A Taste of Crispy Squid. In
Proc. 1st Workshop on Internet Server Performance, Madison, WI, June 1998.

[48] Gallup: An Online Polling Service.
http://www.gallup.com/corporate/115/About-Gallup.aspx.

[49] Google News: An Online News Aggregator.
http://news.google.com/intl/en_us/about_google_news.html.

[50] Steven Gribble and Eric Brewer. System design issues for internet middleware
services: Deductions from a large client trace. In Proc. 1st USITS, Monterey,
CA, December 1997.

[51] Martin Grund, Jens Krueger, Hasso Plattner, Alexander Zeier, and Philippe
Cudre-Mauroux Samual Madden. HYRISE–A Main Memory Hybrid Storage
Engine. In Proc. 36th VLDB, Singapore, Singapore, September 2010.

[52] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A Flash Trans-
lation Layer Employing Demand-based Selective Caching of Page-level Address
Mappings. In Proc. ACM ASPLOS, Washington, DC, March 2009.

102

https://www.facebook.com/facebook?sk=info
https://www.facebook.com/note.php?note_id=39391378919
http://www.fusionio.com/systems/directcache/
http://www.fusionio.com/platforms/iodrive-octal/
http://www.tomshardware.com/reviews/fusion-io-ioxtreme-ssd,2488-3.html
http://www.tomshardware.com/reviews/fusion-io-ioxtreme-ssd,2488-3.html
http://www.gallup.com/corporate/115/About-Gallup.aspx
http://news.google.com/intl/en_us/about_google_news.html

[53] Sunghwan Ihm and Vivek S. Pai. Towards Understanding Modern Web Traffic.
In Proc. ACM IMC, Berlin, Germany, November 2011.

[54] Sunghwan Ihm, KyoungSoo Park, and Vivek S. Pai. Wide-area Network Accel-
eration for the Developing Regions. In Proc. USENIX ATC, Boston, MA, June
2010.

[55] InnoDB: MySQL Transaction Engine.
http://www.innodb.com/.

[56] Intel Classmate PC.
http://www.intel.com/content/www/us/en/intel-learning-series/

technology-to-classroom.html.

[57] Internet World Statistics - Cost of the Internet in the USA.
http://www.internetworldstats.com/am/us.htm.

[58] Internet World Statistics - World Penetration.
http://www.internetworldstats.com/stats.htm.

[59] iTunes: An Online Educational Resource.
http://www.apple.com/education/itunes-u/.

[60] Shudong Jin and Azer Bestavros. Popularity-Aware GreedyDual-Size Web
Proxy Caching Algorithms. In Proc. 20th ICDCS, Taipei, Taiwan, April 2000.

[61] Taeho Kgil and Trevor N. Mudge. Flashcache: A NAND Flash Memory File
Cache for Low Power Web Servers. In Proc. CASES, Seoul, Korea, October
2006.

[62] Sohyang Ko, Seonsoo Jun, Yeonseung Ryu, Ohhoon Kwon, and Kern Koh. A
New Linux Swap System for Flash Memory Storage Devices. In Proc. ICCSA,
Perugia, Italy, June 2008.

[63] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting
Phase Change Memory as a Scalable DRAM Alternative. In Proc. 36th ACM
SIGARCH, New York, NY, June 2009.

[64] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo
Kim. A Case for Flash Memory SSD in Enterprise Database Applications. In
Proc. 27th ACM SIGMOD, Vancouver, Canada, June 2008.

[65] Peter Van Den Linden. Expert C Programming: Deep C Secrets. Prentice Hall,
1994.

[66] Carlos Maltzahn, Kathy Richardson, and Dirk Grunwald. Reducing the disk
I/O of Web proxy server caches. In Proc. USENIX ATC, Monterey, CA, June
1999.

103

http://www.innodb.com/
http://www.intel.com/content/www/us/en/intel-learning-series/technology-to-classroom.html
http://www.intel.com/content/www/us/en/intel-learning-series/technology-to-classroom.html
http://www.internetworldstats.com/am/us.htm
http://www.internetworldstats.com/stats.htm
http://www.apple.com/education/itunes-u/

[67] Evangelos P. Markatos, Dionisios N. Pnevmatikatos, Michail D. Flouris, and
Manolis G.H. Katevenis. Web-Conscious Storage Management for Web Proxies.
IEEE/ACM Trans. on Networking, 10(6):735–748, December 2002.

[68] Memcache.
http://www.danga.com/memcached.

[69] MIT Open Course Ware.
http://ocw.mit.edu/about/.

[70] Michael Mitzenmacher. The Power of Two Choices in Randomized Load Bal-
ancing. IEEE Trans. on Parallel and Distributed Systems, 12(10):1094–1104,
October 2001.

[71] Jeff C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating System Sup-
port for NVM+DRAM Hybrid Main Memory. In Proc. 11th USENIX HotOS,
Monte Verita, Switzerland, May 2009.

[72] Jeffrey C. Mogul, Yee Man Chan, and Terence Kelly. Design, implementation,
and evaluation of duplicate transfer detection in HTTP. In Proc. 1st USENIX
NSDI, San Francisco, CA, March 2004.

[73] Dushyanth Narayanan, Eno Thereska, Austin Donelly, Sameh Elnikety, and
Antony Rowstron. Migrating server storage to ssds, analysis of tradeoffs. In
Proc. EUROSYS, Nuremberg, Germany, March 2009.

[74] Netflix: An Online Video Streaming Service.
https://signup.netflix.com/MediaCenter/HowNetflixWorks.

[75] Netflix CDN Caching Server Configuration.
https://signup.netflix.com/openconnect/hardware.

[76] O3b Networks.
http://www.o3bnetworks.com/.

[77] OLPC.
http://www.laptop.org/.

[78] OLPC Laptop Configuration.
http://wiki.laptop.org/go/Hardware_specification.

[79] OLPC Server Configuration.
http://wiki.laptop.org/go/XS_Recommended_Hardware.

[80] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Ja-
cob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru
Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan
Stutsman. The Case for RAMClouds: Scalable High-Performance Storage En-
tirely in DRAM. SIGOPS OSR, 43(4):92–105, January 2010.

104

http://www.danga.com/memcached
http://ocw.mit.edu/about/
https://signup.netflix.com/MediaCenter/HowNetflixWorks
https://signup.netflix.com/openconnect/hardware
http://www.o3bnetworks.com/
http://www.laptop.org/
http://wiki.laptop.org/go/Hardware_specification
http://wiki.laptop.org/go/XS_Recommended_Hardware

[81] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient and
Portable Web Server. In Proc. USENIX ATC, Monterey, CA, June 1999.

[82] KyoungSoo Park and Vivek S. Pai. Scale and Performance in the CoBlitz Large-
file Distribution Service. In Proc. 3rd USENIX NSDI, San Jose, CA, May 2006.

[83] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshmi-
narayanan Subramanian, and Eric Brewer. WiLDNet: Design and implemen-
tation of high performance wifi based long distance networks. In Proc. 4th
USENIX NSDI, Cambridge, MA, April 2007.

[84] PT Malloc Memory Manager.
http://www.malloc.de/en/.

[85] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Viji Srinivasan,
Luis Lastras, and Bulent Abali. Enhancing Lifetime and Security of Phase
Change Memories via Start-Gap Wear Leveling. In Proc. 42nd IEEE MICRO,
New York, NY, December 2009.

[86] Sean Rhea, Kevin Liang, and Eric Brewer. Value-based web caching. In Proc.
12th WWW, Budapest, Hungary, May 2003.

[87] Riverbed Technology, Inc.
http://www.riverbed.com/.

[88] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM Trans. on Computer Systems, 10(1):26–
52, February 1992.

[89] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K. Ousterhout. Its Time for Low Latency. In Proc. 13th USENIX HotOS,
Napa, CA, May 2011.

[90] Mark Russell and Tim Hopkins. CFTP: A Caching FTP Server. Computer
Networks and ISDN Systems, 30(22–23):2211–2222, November 1998.

[91] Mohit Saxena and Michael Swift. FlashVM: Virtual Memory Management on
Flash. In Proc. USENIX ATC, Boston, MA, June 2010.

[92] André Seznec. A Case or Two-Way Skewed-Associative Caches. In Proc. 20th
ISCA, San Diego, CA, May 1993.

[93] Elizabeth A. M. Shriver, Eran Gabber, Lan Huang, and Christopher A. Stein.
Storage Management for Web Proxies. In Proc. USENIX ATC, Boston, MA,
June 2001.

[94] Silver Peak Systems, Inc.
http://www.silver-peak.com/.

105

http://www.malloc.de/en/
http://www.riverbed.com/
http://www.silver-peak.com/

[95] Skype: An Online Audio/Video Calling Service.
http://about.skype.com/.

[96] Squid.
http://www.squid-cache.org/.

[97] Squid Memory Usage.
http://www.comfsm.fm/computing/squid/FAQ-8.html.

[98] Lakshminarayan Subramanian, Sonesh Surana, Rabin Patra, Sergiu Nedevschi,
Melissa Ho, Eric Brewer, and Anmol Sheth. Rethinking Wireless in the Devel-
oping World. In Proc. 5th USENIX HotNets, Irvine, CA, November 2006.

[99] Kshitij Sudan, Anirudh Badam, and David W. Nellans. NAND-Flash: Fast
Disk or Slow Memory? In Proc. 3rd NVMW, San Diego, CA, March 2012.

[100] The Measurement Factory - Fourth Cacheoff Results.
http://www.measurement-factory.com/results/public/cacheoff/N04/

report.by-alph.html.

[101] The Measurement Factory - Polymix Cache Workload.
\http://www.web-polygraph.org/docs/workloads/polymix-4/.

[102] The Measurement Factory - Third Cacheoff Results.
http://www.measurement-factory.com/results/public/cacheoff/N03/

report.by-alph.html.

[103] The Measurement Factory - Web Polygraph.
\http://www.web-polygraph.org/.

[104] TPCC Benchmark.
http://www.tpc.org/tpcc/.

[105] Twitter: A Real Time Information Network.
https://twitter.com/about.

[106] Verivue Inc.
http://www.verivue.com/.

[107] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
Persistent Memory. In Proc. ACM ASPLOS, Newport Beach, CA, March 2011.

[108] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagian-
naki, T. S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-through: Part-
time optics in data centers. In Proc. ACM SIGCOMM, New Delhi, India,
August 2010.

[109] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek Pai, and Larry Peterson.
Reliability and Security in the CoDeeN Content Distribution Network. In Proc.
USENIX ATC, Boston, MA, June 2004.

106

http://about.skype.com/
http://www.squid-cache.org/
http://www.comfsm.fm/computing/squid/FAQ-8.html
http://www.measurement-factory.com/results/public/cacheoff/N04/report.by-alph.html
http://www.measurement-factory.com/results/public/cacheoff/N04/report.by-alph.html
\http://www.web-polygraph.org/docs/workloads/polymix-4/
http://www.measurement-factory.com/results/public/cacheoff/N03/report.by-alph.html
http://www.measurement-factory.com/results/public/cacheoff/N03/report.by-alph.html
\http://www.web-polygraph.org/
http://www.tpc.org/tpcc/
https://twitter.com/about
http://www.verivue.com/

[110] WiMax Forum.
http://www.wimaxforum.org/home/.

[111] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. An efficient b-tree layer for
flash-memory storage systems. In Proc. 10th RTCSA, Gothenburg, Sweden,
August 2004.

[112] Michael Wu and Willy Zwaenepoel. eNVy: A non-volatile, main memory stor-
age system. In Proc. 6th ACM ASPLOS, San Jose, CA, October 1994.

[113] Youtube: An Online Video Streaming Service.
http://www.youtube.com/t/about_youtube.

107

http://www.wimaxforum.org/home/
http://www.youtube.com/t/about_youtube

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.1.1 In-memory index based caches
	1.1.2 Adopting new memory technologies

	1.2 Our Approach and Contributions
	1.2.1 Rethinking cache indexing for memory efficiency
	1.2.2 Adopting new memory technologies

	1.3 Dissertation Overview

	2 Redesigning Caching Techniques for Memory Efficiency
	2.1 Rationale For a New Cache Store
	2.2 Current State-of-the-Art
	2.3 Design
	2.3.1 Removing the In-Memory Index
	2.3.2 Collision Control Mechanism
	2.3.3 Avoiding Seeks for Cache Misses
	2.3.4 Optimizing Cache Writes
	2.3.5 Prefetching Cache Reads
	2.3.6 Expected Throughput

	2.4 HashCache Implementation
	2.4.1 External Indexing Interface
	2.4.2 HashCache Proxy
	2.4.3 Flexible Memory Management
	2.4.4 Parameter Selection

	2.5 Performance Evaluation
	2.5.1 Workload
	2.5.2 Low-End System Experiments
	2.5.3 High-End System Experiments
	2.5.4 Large Disk Experiments

	2.6 Related Work
	2.7 Deployments
	2.8 Summary

	3 Easing the Adoption of New Memory Technologies
	3.1 Motivation and Related Work
	3.2 SSDAlloc's Design
	3.2.1 SSDAlloc's Virtual Memory Structure
	3.2.2 SSDAlloc's Physical Memory Structure
	3.2.3 SSDAlloc's SSD Maintenance
	3.2.4 SSDAlloc's Heap Manager
	3.2.5 SSDAlloc's Garbage Collector
	3.2.6 SSDAlloc's Durability Framework
	3.2.7 SSDAlloc's Overhead

	3.3 Implementation and the API
	3.3.1 Migration to SSDAlloc

	3.4 Evaluation Results
	3.4.1 Microbenchmarks
	3.4.2 Memcached Benchmarks
	3.4.3 Packet Cache Benchmarks
	3.4.4 B+Tree Benchmarks
	3.4.5 HashCache Benchmarks

	3.5 Summary

	4 Conclusions and Future Work
	4.1 Rethinking cache indexing for memory efficiency
	4.2 Adopting new memory technologies
	4.3 Future Work

	Bibliography

