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Abstract. Advances in web technology have given rise to new informa-
tion retrieval applications. In this paper, we present a model for geo-
graphical region search and call this class of query similar region query.
Given a spatial map and a query region, a similar region search aims to
find the top-k most similar regions to the query region on the spatial
map. We design a quadtree based algorithm to access the spatial map
at different resolution levels. The proposed search technique utilizes a
filter-and-refine manner to prune regions that are not likely to be part of
the top-k results, and refine the remaining regions. Experimental study
based on a real world dataset verifies the effectiveness of the proposed
region similarity measure and the efficiency of the algorithm.

1 Introduction

In the geo-spatial application, a similar region query happens when users want to
find some similar regions to a query region on the map. The application scenarios
include

— Similar region search. Due to the limitation of knowledge, people may only
be familiar with some places where they visit frequently. For example, people
go to the nearest entertainment region which include malls for shopping and
the restaurants for dinner. Sometimes, people wish to know the alternative
places as the options for both shopping and dinners. Base on their familiar
entertainment region, similar region query retrieves the regions that have
the similar functions to their familiar entertainment region.

— Disease surveillance. Similar region search query is also useful in identifying
the potential high-risk areas that are prone to outbreak of diseases. Many
infectious diseases thrive under the same geographical conditions. By query-
ing regions that are similar in geographical characteristics, we can quickly
highlight these high-risks areas.

The traditional IR model might be applied to answer similar region queries: A
direct application is to partition the map into a set of disjoined regions, represent
the region by a vector of Pol categories, and utilize the vector space model
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Fig. 1. The first three plots show the distribution of five restaurants (triangles), four
shops (circles) and one theater (star); The last plot gives a distribution of nine research
institutes (rectangle) and many nearby restaurants (triangles) and shops (circles)

(VSM) [11] to evaluate the similarity of the regions. However, the traditional
IR model is inadequate in supporting the “good” similar region queries due to
two reasons. First, in traditional IR model, users are required to provide a set of
keywords or terms to the search engine, and the search engine returns a list of
texts which are relevant to the keywords. However, in similar region query, users
only provide a query region instead of keywords. Second, similar region query
searches the regions of similar region functionality, which is actually determined
by the spatial objects (we call these spatial objects Point-of-Interests (Pols) in
the rest of paper) in the region and their spatial distribution in this region, i.e.,
local distribution or distribution in short. The traditional IR model does not take
local distribution into account while computing the similarity.

For example, Figure 1 shows four local distributions, where the first three
regions have the identical number and categories of Pols, and the last region has
different Pol categories from the first three regions. Given the query region shown
in Figure 1(a), traditional IR model ranks Figure 1(b) and Figure 1(c) higher
than Figure 1(d), because Figure 1(d) has different Pol categories. However,
the traditional IR model could not distinguish the first three plots of Figure 1,
which actually stand for three different region functionalities: Shopping malls
are usually located in the communities as the entertainment centers; Shopping
streets are located in the central business area for providing services to tourists;
Shopping areas are located around the residential areas and the shops usually
are groceries.

The above example highlights the importance of considering not only spatial
objects categories but also their local distributions when answering similar region
query. We present the problem for answering similar region query as follows.

Similar region query problem. Given a spatial map, a query region R,
two coefficients to control the area of region p; and ps, we aim to find the top-k

most similar regions to Ry on the spatial map, such that 1) p; < %Eg;)) < o,

R; is a return region, and 2) any two return regions do not have large overlap !.

! The degree of overlap is measured by the intersection ratio of two regions. In this
paper, we set this ratio to be 0.8



In this paper, we focus on two main issues in tackling the similar region
search problem. The first issue is to provide a proper definition for region sim-
ilarity. While there have been extensive researches into defining the document
similarity [1], to the best of our knowledge, there is no existing similarity mea-
sure for regions. In this paper, we propose a reference distance feature which is
consistent with the human routines to compare region similarity. Accordingly,
we extend the VSM model to the Spatial Vector Space Model (SVSM) by using
the reference distance feature to capture the local distributions of spatial object
categories.

Second, the search space in the region search problem is a continuous spa-
tial map. Exhaustive search on the continuous spatial map is too expensive to
provide quick response to users. To solve this problem, we provide a quadtree
based approximate region search approach. The basic idea follows the filter-and-
refine approach which is described as follows. We maintain a top-k region set
and the similarity threshold to be a top-k region. We extract the representative
categories from the query region and filter the quadtree cells that do not contain
the representative categories. We further prune those cells that are not likely to
be the top-k most similar regions. The remaining cells are remained as seeds to
expand gradually. We insert the expanded regions into top-k regions if their sim-
ilarity values are greater than the similarity threshold, and accordingly update
the similarity threshold.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 gives preliminaries. Section 4 presents the spatial vector
space model. Section 5 proposes the quadtree-based region search approach.
Section 6 reports our experiment results. Finally, Section 7 concludes this paper.

2 Related Work

Text retrieval is one of the most related problems. Conventional text retrieval
focuses on retrieving similar documents based on text contents, and a few of
similarity models, such as vector space model [11] and latent semantic analysis
model [5], are proposed to compare the similarity. Recently, location-aware text
retrieval, which combines both location proximity and text contents in text re-
trieval, receives much attention. To perform efficient retrieval, both document
locations and document contents are required to be indexed in the hybrid index
structures, such as a combination of inverted file and R*-tree [14], a combination
of signature files and R-tree [7], DIR tree [3]. Our work substantially differs from
location-aware text retrieval queries because we consider the relative locations
of spatial objects and the returned results are regions which are obtained by the
space partition index Quadtree.

Image retrieval [4], particularly content based image retrieval (CBIR) [10], is
another related problem. CBIR considers the color, texture, object shape, object
topology and the other contents, and represent an image by a single feature
vector or a bag of feature vectors for retrieval. CBIR is different from the similar
region query problem because CBIR focuses on either the content of whole image



or the relationship from one object to another object, while we search the similar
regions based on the local distribution of one category to another category. In
addition, the image retrieval system searches the similar images from an image
database, while our algorithm finds the similar regions on one city map which
need to be properly partitioned during retrieval.

There are two existing approaches to select features from spatial data. The
first approach is based on spatial-related patterns, such as collocation patterns [8]
and interaction patterns [13]. Both patterns are infeasible to be employed in the
similar region queries because they capture the global distribution among dif-
ferent Pol types, not the local distribution. The second approach is the spatial
statistical functions test, like cross K function test [2]. In spite of theoretic sound-
ness, this approach need long training time so that it is impractical to provide
efficient response to the query.

3 Preliminaries

Suppose P is a spatial map, and 7 is a set of Pol categories T = {C4,Cs,...,Ck }.
Each Pol may be labelled with multiple Pol categories. For example, a building
is labelled both as “Cinema” and “Restaurant” if it houses a cinema and has
at least one restaurant inside. The Pol database D contains a set of Pols. Each
Pol in D is presented by a tuple 0o = (p,; 7o), where p, = (2,,y,) denotes the
location of o, and 7, is a set of o’s Pol categories.

A region R is a spatial rectangle bounded by [Ry,...., Ra,unl X [Ryins Rypias)
which locates in map P. A Pol o = (p,; 7,) is said to occur in region R if p, € R.
We use D' = {0lo € D Ap, € R} to denote all Pols which occur in region R,
and DE = {olo € DAp, € RAC; € 1.} to denote a set of objects with category
C; which occur in region R.

By modifying the concepts of TF-IDF measure in VSM, we define the CF-
IRF as follows. The Category Frequency (CF) of the category C; in region R,
denoted as C'F; j, is the fraction of the number of Pols with category C; occurring
in region R; to the total number of Pols in region R;, that is,

Tmax

R;

D¢

The importance of a category C; depends on the distribution of Pols with
category C; on the entire map. Suppose we impose a g, X g, grid on the map.
The Inverse Region Frequency (IRF) of category C;, denoted as IRF;, is the
logarithm of the fraction of the total number of grids to the number of grids
that contain Pols with category C;.

Gz X Gy
IRF; = log ———— (2)
{Dc! [De! # 0}

With CF and IRF, the significance of a category C; in region R;, denoted as
CF-IRF; ;, is defined as follows:



CF—IRFLJ' = CFi,j X IRFl (3)

The information content of a region R; is denoted as a vector

Ry = (fij fogs- s frcs) (4)

where f; ; denotes the CF-IRF value of category C; in region R;. We use |R;|
—
denotes the Euclidean norm of vector R;.

Byl = [ 2, .+ [2, (5)

The information content similarity of two regions R; and R; is the cosine
similarity of the corresponding feature vectors of I; and R;.

. BT
| Ra| > [ Ry

4 Spatial Vector Space Model

A similarity measure is desirable to evaluate the similarity of two regions. To be
consistent with the human routines to compare region similarity, we propose the
intuitive two level evaluation criteria as follows.

1. Do the regions have a significant overlap in their representative categories?
This is the basic gist when users compare the similarity of regions. For ex-
ample, the regions shown in Figure 1(c¢) and Figure 1(b) share three common
categories, and the regions shown in Figure 1(c) and Figure 1(d) share two
common categories. Therefore, the region pair {Figure 1(c), Figure 1(b)} is
considered to be more similar than the region pair {Figure 1(c), Figure 1(d)}.

2. If two regions share some common representative categories, do the Pols of
the common representative categories exhibit similar spatial distribution?
We observe that Figure 1(a), Figure 1(b) and Figure 1(c) all share the same
representative categories, however they are not considered similar as the dis-
tributions of the Pols for each category are drastically different in the three
figures. In other words, two regions are more similar if they have not only the
common representative categories but also the similar spatial distribution of
Pols. Given a query region of shopping mall, Figure 1(a) is more similar to
this query region than Figure 1(b) and Figure 1(c).

CF-IRF feature satisfies the first level evaluation criterion but does not satisfy
the second level criterion because it ignores the local distribution of the Pols.
This motivates us to propose a distribution-aware spatial feature and Spatial
Vector Space Model (SVSM). In SVSM, a region R; is represented by a spatial

—5
feature vector of n entries, R; = (f1,, f2,j,--.,fn;) Where f;; is the i-th
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Fig. 2. An example of query region and its reference distance

spatial feature entry and n is total number of features or the dimension of
the feature vector.

A desirable spatial feature will be insensitive to rotation variation and scale
variation. In other words, if two regions are similar, rotating or magnifying one of
the two regions will not affect their similarity. Figure 2 illustrates a query region
and three candidate regions in a map. We consider candidate region 1 and 2
are similar to the query region because they are similar to query region after
rotating by a scale variation (clockwise 270°) or magnifying by a scale variation,
respectively. In contrast, candidate region 3 is not so similar as candidate region
1 and 2 to the query region. Motivated by the requirements to minimize the
effects of scaling and allow for rotation invariant, we introduce the concept of
reference distance to capture the spatial distributions.

Average nearest neighbor distance can be employed to measure the local
distribution in statistics domain [6], but it is expensive (O(n?) if no spatial
index is used, where n is the number of Pols). Therefore, we propose the concept
of reference point. The reference points are user-specified points in a region to
capture the local distributions of the Pols in this region. The intuition behind
reference points is based on the observation that most users tend to use some
reference points for determining region similarity. For example, while comparing
two regions which have one cinema each, users tend to roughly estimate the
average distances from the other categories to the cinema, and compare the
estimated distances of two regions. Here, the cinema is a reference point.

It raises an issue to select the proper number of reference points and their
locations. We consider two extreme cases as follows. On one hand, one or two
reference points are not enough to capture the distribution. For example, Fig-
ure 2 shows that one reference point cannot distinguish the distribution of query
region and candidate region 3. On the other hand, a larger number of reference
points will give a more accurate picture of the spatial distributions among the



Pols, but at the expense of greater computational cost. In this paper, we seek the
tradeoff between the two extreme cases. We propose that five reference points,
including the center and four corners of the region, are proper to capture the
local distribution. Figure 2 illustrates the five reference points, and the reference
distances of two Pols to the five reference points. The complexity to compute
reference distance is O(5 - n), which is more efficient than nearest neighbor dis-
tance O(n?). Here, we do not claim that the selection of five point reference
points is the best, but experiment results show that it is reasonable.

We now define the reference distance. Give a region R, a set of Pols P, and
five reference points O={o01, 02, ...,05}. The distance of P to the i-th reference
point o; € O is

r(P,0;) Z dist(p, 0;) (7)
‘P‘ pEP

Assume region R has K different categories of Pols. We use r; ; to denote
the distance of Pols with category C; to the reference point o;.The distance of
K categories to the reference set O is a vector of five entries.

[={I,....I;} ®)

N
where each entry is the distance of K categories to the reference point o;, I; =
(T1,isT2,i5 s TE i)

— —
The similarity of two feature vector sets Ir, = {l1,...,I5,} and Ir, =
— —
{117.77 PPN 715,]‘}, 1S
Sim,(Ig,,Ir;) = ZSzm I is Ii ) (9)
k 1

We incorporate the rotation variation into similarity as follows. Given region
R;, we obtain four rotated regions R;i, Rj2, Rj3 and Rj;4 by rotating R; 90
degree each time. The similarity of R; and R; is the similarity of R; and the
most similar rotated region of R;, that is,

Sim,(R;, R;) = aremax{Sim,(Ig,,Ir,,), k = 1,2,3,4} (10)

Lemma 1. The reference distance feature is insensitive to rotation and scale
variations.

Proof: Based on Equation 10, we can derive that the reference distance feature
is insensitive to rotation variation. Now we prove that the reference distance
feature is insensitive to scale variation as follows. Assume R; is obtained by

— — — —
scaling R; by a factor 0. We have Ir, = olg, and |Ig,| = o|Ig,|. Therefore,
Sim,(R;, Rj) = cos(IR ,JIR )= —mlm g

|Tr;|%0o|IR,]

5 Proposed Approach

Given a query region R, and two coefficients to control the area of region
returned, gy and po, the naive approach to answer similar region queries is to
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Fig. 3. Overview of system architecture

utilize a sliding window whose area is between min_area = pq x area(R4) and
max_area = 1o X area(Ry). The sliding window is moved across the entire map
and at each move, we compute the similarity between R, and the sliding window.
If we maintain a list of top-k regions having the k largest similarity values, then
the time complexity of this naive approach in the worst case, given a map, xmap,
spatial map, is O(k x min_area x map, x map,). This is because the total
number of candidate regions is min_area x map, x mapy. For each candidate
region we compute whether it overlaps with the existing top-k similar regions
in O(k) time complexity. Thus the overall time complexity of this algorithm is
O(k* x min_area X map, x map,), which is too expensive to provide a quick
response to users.

To overcome the high complexity of the naive method, we propose a quadtree-
based approximate approach. Figure 3 shows the system architecture overview
of our approach. The architecture comprises an offline process and an online
process. The offline process partitions the map into a hierarchical structure and
builds a quadtree structure for quick retrieval of Pols. The online process uses
these index structures to perform region search queries efficiently. Given a query
region, the system analyzes the shape and size of this region and determines
the appropriate quadtree layer to initiate the similar region search process. At
the same time, the system will compute the CF-IRF values to derive the rep-
resentative categories of the query region. Once we know the starting level of
the quadtree and the representative categories of the query region, we begin a
filter-and-refine procedure to quickly reduce the search space that is unlikely to
be in the top-k most similar regions.



5.1 Quadtree Structure

Given a Pol database and the map of this database, we partition the map and
build a hierarchical quadtree structure [12] to facilitate the construction of multi-
scale regions. In the quadtree, the root node indicates the whole map and each
non-leaf node corresponds to one of the four partitioned cells from its parent’s
cell. At the lowest level, each leaf node corresponds to the partitioned cell with
the smallest granularity. The depth of the quadtree depends on the smallest
granularity requirement in applications. In our system, the leaf node is 100 me-
ters by 100 meters, so the quadtree height is 10 for a city of 30 kilometers by 30
kilometers.

The quadtree structure enables an efficient handling of multi-granularity sim-
ilar region queries. This is because we can adaptively select the different level of
granularity by accessing the quadtree nodes at the appropriate level. For exam-
ple, if the query region is the size of 200 meters by 200 meters and the parameter
to control the minimal return region area p1=0.25, we perform the search on the
leaf node because the leaf node area is no less than p; times of the query region
area.

The quadtree allows the effective region pruning by storing the key statistical
information at each node in the quadtree. Each node maintains the lower bound
and upper bound of feature entries defined as follows.

Definition 1. The lower bound feature vector of a node B, denoted as §lb, 15
(frivs fops - -5 frap), where fip is the minimum i-th feature entry value of all
descendant nodes of B.

Definition 2. The upper bound feature vector of a node B, denoted as §ub,
is (f1,ubs fo,ubs - - s froub), where fiup is the mazimum i-th feature value of all
descendant nodes of B.

Each quadtree node maintains the minimum/maximum CF-IRF vector and
the minimum /maximum reference distance vector. These bounds are useful for
pruning the candidate regions as stated in Lemma 2.

Lemma 2. Let I?q) = (f1.q: f2.q,- -+ [n.q) to be the the feature vector of query
region, & to be the cosine similarity threshold of top-k regions. A node B can be

) — —
pruned if for any feature entry f; 4, we have fiup - fiq < % | B - |Rgql-

Proof: Let f;; to be the i-th feature entry of region R; where R; € B. Then
— — —
fiw < fi; < fiwn and |Bp| < |Rj| < |By|. Assume that f; up - fiq < %'
— —
| Bip| - |Rq|. For the i-th feature entry f; ;, we have f;; - fiq < fiub - fiq <
s 1= — s 15 —
o |Bwl-[R| < 5 - |R;| - [Ryl.
. . .. —_— e n e e
By summing up the inequalities, R; - Rg = > 1 fpj - fpq < 6 |Rj| - |Rgl.
—

So, we have cos(]?;, R,) <4, which means that any region R; under B will not
have a larger similarity than the top-k region similarity threshold. O



With Lemma 2, we can prune all nodes B that have no chance of satisfying
the similarity threshold §. For example, suppose the quadtree node B has four
child nodes By, By, B3, Bs. Each feature vector of child node has five entries.

B; = (0.1,0.3,0.1,0.8,0.0), B> = (0.1,0.7,0.2,0.7,0.0)
— —
Bs = (0.0,0.3,0.1,0.8,0.2), By = (0.2,0.4,0.2,0.6,0.1)

So we have By, = (0.0, 0.3, 0.1, 0.6, 0.0) and By, = (0.2, 0.7, 0.2, 0.8, 0.2).
—
Let the feature vector of query region is R, = (0.9, 0.1, 0.9, 0.1, 0.8) and 6 =
— —
0.95. We have 2 - | Byy| - |Ry|=0.2468. The node B can be pruned because each

n
feature entry product of I?q) and §ub is less than 0.2468.

In addition, we also construct an inverted tree index on the representative
categories to facilitate similar region search. The root node of the inverted tree
has K entries, where each entry corresponds to a category. Each category, say Cj;,
of a non-leaf node is associated with a child node that has four entries. The entry
value is 1 if the corresponding partitioned region has the C; as a representative
category; otherwise the entry value will be 0. This inverted list tree is recursively
built until it reaches a leaf node of the quadtree structure or all four entries have
value 0. Based on this inverted tree index, we can quickly identify the cells that
have similar categories to the query region.

5.2 Region Search Algorithm

In this section, we present the search strategy based on the quadtree structure.
The basic idea is to compute the proper search level in the quadtree in which the
buckets of search level will be greater than the minimal area of returned regions,
and on the search level we select a few bucket as seeds to gradually expand to
larger regions of proper size and large similarity value to the query region.

Algorithm 1 gives a sketch of the region search process. Line 1 computes the
search level based on the granularity of query region. Line 2 extracts the repre-
sentative categories from the search region R,. The function ExtractCategory
computes the CF-IRF values for each category on R, and only maintains the
top-m categories with the largest CF-IRF values. Line 3 adjusts the feature vec-
tor of R;. The entries which correspond to the top-m representative categories
remain and the other entries are set to be zero. Line 4 initializes the return
region set to be an empty set and the similarity threshold § to be 0. Line 5 calls
procedure Search@QTree to search the similar regions.

Procedure SearchQTree recursively searches and prunes the candidate re-
gions in quadtree. Line 8 is the validity checking for the top-k regions. A bucket
is valid only if 1) it contains the C'M representative categories, and 2) it cannot
be pruned by Lemma 2. The inverted tree structure and the feature bounds of
buckets facilitate the validity checking. If a bucket is valid and this bucket is
higher level than lseqren (Line 9), its child nodes need to be recursively detected
further (Lines 10-11). Otherwise, Line 13 expands the valid buckets on lseqrcn by
calling the function RegionExpansion. Line 14 inserts the expanded region R to



Algorithm 1: RegionSearch(Rq, T, k, m)
input : Query region R;; Quadtree T'; Number of return regions k; Number of

representative categories m.
output: Top-k similar regions

1 Compute the search level lseqren on T based on Rg;
2 CM = ExtractCategory(Ry, m);
3 Adjust(R,, CM);
4 R=0;6=0;
—
5 SearchQTree (R, T.root, §, R);
6 return R;

~

Procedure SearchQTree(R,, B, §, R, CM)

8 if B has CM categories A B cannot be pruned by Lemma 2 then
9 if B.level < lseqren then

10 foreach child node B’ € B do

11 L SearchQTree(R,, B, §, R);

12 else

13 R = RegionExpansion(R,, B');

14 R =R UR,

15 update ¢;

16 Function RegionExpansion(R,,R)

17 repeat

18 foreach dir € {LEFT, RIGHT, DOWN,UP} do
19 R" = expand(R, dir);

20 L dir = arcmax( Sim(R4,R"));

21 R’ = expand(R, dir);

22 until Sim(R,, R) < Sim(R,, R');

23 return R’

the top-k region set R, if R has no big overlap with the existing top-k regions or
R has overlap with one existing top-k regions but R has a larger similarity value.
Line 15 updates the similarity threshold ¢ based on the k-th largest similarity
value in R currently.

The RegionExpansion function (Lines 16-23) treats a region as a seed, per-
forms the tentative expansion in four candidate directions, and selects the op-
timal expanded region which gives the largest similarity value. The step width
of each expansion is the cell side of the quadtree leaf node in order to minimize
the scope of expansion, which eventually approach the local most similar region.
The expansion stops if there is no increase in the similarity value (Line 22).

Finally, Line 6 returns the top-k regions. If the number of regions in R is less
than k, we decrease the value of m by 1 in Line 2, and search the cells which
share exact m — 1 common representative categories. We repeatedly decrease the
m value by 1 till the number of return regions in R reaches k.



6 Experiment Studies

In this section, we present the results of our experiments to examine the perfor-
mance of similar region search. We first describe the experiment settings and the
evaluation approach. Then, we report the performance on the region queries.

6.1 Settings

In our experiments, we use the Beijing urban map, which ranges from latitude
39.77 to 40.036, and longitude 116.255 to 116.555. The spatial dataset consists
of the real world yellow page data of Beijing city in China. This dataset has
two parts. The first part contains the persistent stationery spatial objects, such
as the large shopping malls, factories, gas stations, land-marks, etc. The second
part is the set of short-term and spatial objects which are updated from time
to time, such as small restaurants and individual groceries. The total number
of Pols are 687,773, and they are classified into 48 major categories by their
properties and functions.

We construct a quadtree for the Beijing urban map. The quadtree height is
10, and the cell side of quadtree leaf node is about 100 meters and the number of
leaf nodes is 512 x 512. For each node of quadtree, we compute the lower bound
and upper bound for the two features, namely category frequency and reference
distance. We set 11 =0.25 and po=4, which means the return region areas range
from one quarter to four times of query region areas.

As we are not aware of any existing work that support top-k similar region
queries, we only evaluate two variants of the RegionSearch algorithm as follows.
1) VSM: It is a baseline algorithm based on the CF-IRF vector space model,
and 2) SVSM: It is a spatial vector space model based algorithm that measures
region similarity by the reference distance feature vector.

Given a query region, VSM and SVSM return the top-5 most similar regions
respectively. Five users who are familiar with Beijing city score the return regions
from 0 to 3 according to the relevance of the query region and the return regions.
The final score of a return region is the average scores of five users. Table 1 gives
the meanings of each score level.

Table 1. Users’ scores for the return region

Scores|Explanations

0 Totally irrelevant

A bit relevant, with at least one common functionality with the query region

1
2 Partially relevant, the functionality of return region cover that of query region
3 Identically relevant, the return and query regions have the same functionality

We employ DCG (discounted cumulative gain) to compare the ranking per-
formance of VSM and SVSM. The criteria DCG is used to compute the relative-
to-the-ideal performance of information retrieval techniques. For example, given
G =(2,0, 2, 3, 1), we have CG =(2, 2, 4, 7, 8) and DCG =(2, 2, 3.59, 5.09,
5.52). The higher the scores computed by DCG, the more similar the return



region. Please refer to [9] for the definitions of the cumulative gain (CG) and the
discounted cumulative gain (DCG).

All the algorithms are implemented in C++ and the experiments are carried
out on a server with dual Xeon 3GHZ processors and 4GB memory, running
Windows server 2003.

6.2 Effectiveness study

We select three typical types of query regions as the test queries.

— The shopping mall. The shopping mall is one of the commercial community
whose spatial points are clustered in small regions.

— The commercial street. The commercial street is another commercial com-
munity whose spatial points distributed along the streets.

— The university. The spatial points has a star-like distribution where the
institutes are located at the center and other facilities such as hotels and
restaurants are located around the university.

Each type of query region is given three query regions, which are listed in
Table 2. We evaluate the average DCG values for each type of query region.

Table 2. The type and size (meter x meter) of nine query regions

ID | Type|Query region||ID|Type |Query region||ID|Type Query region
q1 [mall [150x150 qa [street|150x600 q7 |university|1400x800
g2 |mall [100x300 g5 |street|200x 500 gs |university 14001100
g3 |mall [50x70 gs |street|300x100 qo |[university |[1200x1200

In order to find a proper number of representative categories, we run the two
algorithms on different queries by varying the number of representative categories
to be 3,5,10. We found that the average DCG curve of m=5 is better than the
curves of m=3 and m=10. The result is consistent with our expectation because
small m values are not enough to differentiate the region functionality, and large
m values are likely to include some noise categories, both of which could affect
the precision of return regions. We set m=>5 in the rest experiments.

Figure 4 shows the average DCG curves for the three types of query regions.
We observe that SVSM outperforms VSM for all of three query types, especially
on shopping mall queries and street queries. This is expected because SVSM
captures both the Pol categories and the local distribution in a region, which
is consistent with human routines to evaluate the region similarity. In addition,
SVSM did not have remarkable performance on the university queries. This is
possibly because university query regions are larger than shopping mall queries
and street queries, which results in the larger reference distances to decrease the
contrast of spatial feature vector.

6.3 Efficiency Study

In this set of experiments, we study the efficiency of VSM and SVSM. Figure 5
gives the runtime for the three query types as m varies from 3 to 10. We see that
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Fig. 5. Effect of m on runtime

both VSM and SVSM are scalable to m, but VSM is the faster than SVSM. This
is because SVSM requires extra time to process the additional spatial features.
We also observe that the runtime for SVSM decreases as m increases. This is
because a larger number of representative categories lead to the pruning of more
candidate regions. In addition, the runtime for the university queries is smaller
than the other two query types since the runtime is determined by the area
constraint of return regions. For large query regions, the search starts at the
higher levels of the quadtree which have small number of candidate regions.

Next, we check the performance of pruning strategy. Since only the candi-
date regions which pass the validity test are expanded, we evaluate the pruning
strategy by counting the number of region expansion operations. Figure 6 shows
the number of region expansion performed for the three query types. In this
experiment, the shopping mall queries and street queries have around 260,000
candidate regions, and the university queries have around 16,000 candidate re-
gions. We observe that ¢; have more regions to be expanded than g2 and g3 (see
Figure 6(a)). A closer look reveals that ¢; only contains three categories, hence
many regions are considered as candidates. Figure 6(b) and Figure 6(c) show
that less than 3,000 and 1,800 regions are expanded respectively, demonstrating
the power of the pruning strategies.

7 Conclusion

In this paper, we introduce a similar region query problem in which spatial dis-
tribution is considered to measure region similarity. We propose the reference
distance feature and spatial vector space model (SVSM) which extends the con-
cept of vector space model to include reference distance features. We design
a quadtree-based approximate search algorithm to filter and refine the search
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space by the lower and upper bounds of feature vectors. Experiments on the real
world Beijing city map show that our approach is effective in retrieving similar
regions, and the feature bounds are useful for pruning the search space. To the
best of our knowledge, this is the first work on similar region search. We plan
to investigate other types of spatial features for region similarity definition and
hope to incorporate our techniques into the Microsoft Bing search engine.
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