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Abstract
Recently, convolutional neural networks (CNNs) have been
shown to outperform the standard fully connected deep neu-
ral networks within the hybrid deep neural network / hidden
Markov model (DNN/HMM) framework on the phone recogni-
tion task. In this paper, we extend the earlier basic form of the
CNN and explore it in multiple ways. We first investigate sev-
eral CNN architectures, including full and limited weight shar-
ing, convolution along frequency and time axes, and stacking of
several convolution layers. We then develop a novel weighted
softmax pooling layer so that the size in the pooling layer can be
automatically learned. Further, we evaluate the effect of CNN
pretraining, which is achieved by using a convolutional version
of the RBM. We show that all CNN architectures we have in-
vestigated outperform the earlier basic form of the DNN on
both the phone recognition and large vocabulary speech recog-
nition tasks. The architecture with limited weight sharing pro-
vides additional gains over the full weight sharing architecture.
The softmax pooling layer performs as well as the best CNN
with the manually tuned fixed-pooling size, and has a potential
for further improvement. Finally, we show that CNN pretrain-
ing produces significantly better results on a large vocabulary
speech recognition task.

Index Terms: Convolutional Neural Network, Hybrid Neural
Network / Hidden Markov Models, Pretraining, Convolutional
Restricted Boltzmann Machine

1. Introduction
Recently, deep neural network hidden Markov model
(DNN/HMM) hybrid systems achieved remarkable perfor-
mance in many large vocabulary speech recognition tasks [1, 2,
3, 4, 5, 6, 7]. This is attributed to the improved modeling power
of the DNN that enables it to map complex patterns into class
labels or posterior probabilities. This modeling power stems
from the deep-layered structure and the distributed representa-
tion. Moreover, unsupervised pretraining of the DNN helps in
achieving better performance for some tasks. This unsupervised
pretraining is typically done by stacking single layered genera-
tive models called Restricted Boltzmann Machine (RBM).

More recently, Abdel-Hamid et al. [8] showed that a spe-
cial neural network structure called the convolutional neural
network (CNN) can further improve the hybrid model perfor-
mance on the TIMIT phone recognition task. The CNN ex-
ploits domain knowledge about feature invariances within its
structure and has been successfully applied to various image
analysis and recognition tasks [9, 10]. For speech processing,
CNN was theoretically proposed (with no experimental verifica-
tion) in [11] but with convolution along the time axis to obtain
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Figure 1: A convolutional neural network with full weight shar-
ing applied along the frequency axis.

features robust to small temporal shifts. In [12], a generative
model named convolutional RBM (CRBM) was used to learn
speech features without supervision but with one dimensional
convolution along time. In [8], it has been shown that much
gain can be obtained by applying convolution and max-pooling
along frequency. Applying convolution along frequency results
in features invariant to small frequency shifts of speech features,
which often happen between different speakers and for the same
speaker in different moods. Moreover, in [13], a heterogeneous
pooling structure proved to be beneficial.

In this paper, we further explore CNNs in multiple dimen-
sions. We first investigate different architectures of the CNN,
including full and limited sharing of convolution filters, convo-
lution along frequency and time axes, and the stacking of multi-
ple convolution layers. We then propose a novel weighted soft-
max pooling layer to enable automatic learning of the pooling
size. Lastly we evaluate the effect of CNN pretraining, which is
achieved by stacking trained CRBMs and RBMs [14].

The rest of the paper is organized as follows. In section 2
we introduce the CNN and its various architectures. In section 3
we describe the weighted softmax pooling. The CNN pretrain-
ing is discussed in section 4. We report the experimental results
in section 5, and conclude the paper in section 6.

2. The convolutional neural nework
2.1. Basic structure

The CNN is a neural network with a special structure. Figure
1 illustrates an example CNN with full weight sharing. In this
CNN the first layer, which consists of a number of feature maps,
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is called a convolution layer. Each neuron in the convolution
layer receives input from a local receptive field representing fea-
tures of a limited frequency range. Neurons that belong to the
same feature map share the same weights (also called filters or
kernels) but receive different inputs shifted in frequency. As a
result, the convolution layer does a convolution of the kernels
with the lower layer activations.

Suppose the NN input is V ∈ RA×B , where A is the num-
ber of features representing an input frequency band and B is
the number of the input frequency bands. In the case of filter
bank features, B represents the size of the filter bank feature
vector. Let’s assume that v = [v1 v2 ... vB ], where vb is
the feature vector representing band b. The activations of the
convolution layer can be computed as:

hj,k = θ

(
s∑

b=1

wT
b,jvb+k−1 + aj

)
, (1)

where hj,k is the convolution layer’s output of the jth feature
map on the kth convolution layer band, s is the filter size, wb,j

is a weight vector representing the bth band of the jth filter, aj

is the bias of the jth feature map, and θ(x) is the activation
function, which is set to the sigmoid function in this work.

A pooling layer is added on top of the convolution layer
to compute a lower resolution representation of the convolution
layer activations through sub-sampling. The pooling function,
which computes some statistics of the activations, is typically
applied to the neurons along a window of frequency bands and
generated from the same feature map in the convolution layer.
In [8] a max pooling function, which simply computes the max-
imum value of the feature over the corresponding frequency
bands, was used. The max-pooling activations can be computed
as:

pj,m =
r

max
k=1

(hj,(m−1)×n+k), (2)

where pj,m is the pooling layer’s output of the jth feature map
and mth pooling layer band, n is the sub-sampling factor, and r
is the pooling size, which is the number of bands to be pooled
together.

Both weight sharing and max pooling play a vital role in
achieving invariance to small frequency shifts. This is a de-
sired property because, for example, the formants of the same
phoneme may appear on slightly different frequencies for dif-
ferent speakers or even for the same speaker in different states.
Moreover, weight sharing helps in reducing over-fitting due to
the reduced number of trainable parameters.

The convolution-pooling pairs can be stacked up to obtain
higher level features, on top of which the standard fully con-
nected layers can be added to combine the features of different
bands.

2.2. Full and limited weight sharing

We call the weight sharing scheme in Figure 1 the full weight
sharing. This is the standard scheme used for image process-
ing. It is suitable for image processing because the same image
pattern can appear at any position in an image. In speech, how-
ever, different patterns appear in different frequency bands. For
this reason, a limited weight sharing scheme as shown in Fig-
ure 2 is more suitable. The difference here is that a different
(not shared) kernel is used for the different frequency window
in the convolution layer. Each neuron in the pooling layer sum-
marizes convolution layer’s activations generated from one par-
ticular feature map defined by the kernels. It is as if the convo-
lution and pooling layers are divided into many sections, each
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Figure 2: A convolution neural network with limited weight
sharing applied along the frequency axis.

of which processes only a limited range of the input bands and
generates only one output band in the pooling layer. In mathe-
matical terms, the convolution and pooling layer activations can
be computed as:

h
(m)
j,k = θ

(
s∑

b=1

w
(m)
b,j vT

(m−1)×n+b+k−1 + a
(m)
j

)
, (3)

and

pj,m =
r

max
k=1

(h
(m)
j,k ), (4)

where h
(m)
j,k is the value of the kth band of the jth feature map

at the mth convolution layer section, and pj,m is the value of
the jth feature of the mth pooling layer band.

This scheme also helps reduce the number of neurons in
the pooling layer. Because each band uses kernels that con-
sider only the patterns appearing in the corresponding frequency
range, the number of kernels per band is reduced and the re-
sulted representation has better ability to distinguish patterns
in different frequency bands. On the other hand, this limited
weight sharing scheme has the disadvantage of preventing the
addition of more convolution layers on top. This is because the
features in different pooling layer bands in this scheme are un-
related and cannot be convolved. An alternative solution, which
may lead to better performance, is to apply the limited weight
sharing convolution layer on top of a full weight sharing one.

2.3. Convolution along the time axis

The CNN architecture can also be applied along the time axis
to reduce temporal variability. In the hybrid NN/HMM frame-
work, the HMM is supposed to handle the speech temporal vari-
ability. However, since the scores of each frame are computed
from a window of consecutive frames, invariance to small shifts
within this context window can be desirable. Note that the pool-
ing and sub-sampling doesn’t affect the time resolution seen by
the HMM. It only affects the time resolution received by higher
layers of the CNN.

Combining convolution along both frequency and time axes
generates a 2D CNN similar to the ones used for image analy-
sis, and allows for further performance improvement. Different
from that in the image analysis, though, the convolution and
pooling parameters along the frequency and time dimensions
are independent in the speech analysis case. This increases the
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number of model parameters to optimize and requires careful
handling of these parameters.

3. Weighted softmax pooling
At the same time when max-pooling introduces robustness to
small frequency shifts, it reduces discrimination ability to some
features in some bands, esp. when a fixed pooling size is used as
in the CNN presented in the previous section. To alleviate this
problem, we propose adding learnable weights to the pooling
layer. More specifically, instead of using a max-pooling func-
tion, we use a softmax pooling function which is differentiable.
The softmax pooling replaces Eq. 4 by:

pj,m =
r∑

k=1

exp(uj,m,k)exp(εh
(m)
j,k )∑r

i=1 exp(uj,m,i)exp(εh
(m)
j,i )

h
(m)
j,k , (5)

where uj,m,i represents the logarithm of the pooling weights,
and ε is a softmax function parameter that controls its smooth-
ness.

The pooling weights can be learned using the back-
propagation algorithm by computing the derivative of Eq. 5.
By modifying the pooling weights, a similar effect to modify-
ing pooling size can be obtained.

4. Pretraining
RBM-based pretraining improves DNN performance when the
training set is small. For convolutional structures, a convolu-
tional RBM (CRBM) has been proposed in [14]. Similar to the
RBM, the training of the CRBM maximizes the training data
likelihood using the approximate contrastive divergence algo-
rithm. In the CRBM, the convolutional layer activations are
stochastic. The CRBM model defines the probability of a cer-
tain configuration of input and hidden units and the conditional
probability of hidden unit activations given the visible units and
vice versa. The CRBM defines a multinomial distribution over
the pooled hidden nodes and at most one node in a pooled set
can be active. The conditional probability of activation of a

hidden node h
(m)
j,k given the CRBM input is defined by the fol-

lowing softmax function:

P (h
(m)
j,k = 1|V) =

exp(I(h
(m)
j,k )∑r

k=1 exp(I(h
(m)
j,k )

, (6)

where I(h
(m)
j,k ) is the summation of weighted signal reaching

node h
(m)
j,k from the input layer and it is defined as

I(h
(m)
j,k ) =

s∑
b=1

w
(m)
b,j vT

(m−1)×n+b+k−1 + a
(m)
j . (7)

The conditional probability distribution of vi,b, the visible
units of the bth band of the ith feature map, given the hidden unit
states can be computed by the following Gaussian distribution:

P (vi,b|H) = N (vi,b;
∑

j,(k,m)∈C(i,b)

h
(m)
j,k wm

i,f(b,k,m),j , σ
2)

(8)
where the mean of this Gaussian is the summation of the
weighted signal arriving from the hidden units that are con-
nected to the visible units. C(i, b) represents this connection
as the set of indices of convolution bands and sections that re-
ceive input from the visible unit vi,b. wm

i,f(b,k,m),j is the weight

on the link from the bth band of the ith input feature map to the
kth band and the jth feature map of the mth convolution sec-
tion. σ2 is the variance of the Gaussian distribution and it is a
fixed model parameter.

The weights of a trained CRBM are good initial values for
the convolution layer. After the first convolution layer weights
are learned, they are used to compute the convolution and pool-
ing layer outputs using equations 3 and 4. The outputs of the
pooling layer are used as inputs to pretrain the next layer as
done in deep belief network training [15].

5. Experimental results
5.1. Experimental setup

Experiments were done on two datasets: TIMIT and Microsoft-
internal voice search (VS). The feature extraction is similar.
Speech was analyzed using a 25-ms Hamming window with a
10-ms fixed frame rate. The speech feature vector was gener-
ated by a Fourier-transform-based filter-bank, which includes
40 coefficients distributed on a Mel scale, along with their first
and second temporal derivatives. Energy was added to TIMIT
feature vector only when limited weight sharing is used, while
VS has no energy component. All speech data were normalized
so that each coefficient has zero mean and unit variance. The
original mean and variance were computed once over the whole
training dataset and were used for normalizing test data as well.
In all experiments a NN with three hidden layers is used. Each
layer is either a fully connected layer with 1000 nodes or a con-
volution and pooling pair.

5.1.1. The TIMIT phone recognition task

In TIMIT, we used the 462-speaker training set and removed
all SA sentences (they are two sentences read by all speakers).
A separate development set of 50 speakers was used for tuning
the models parameters and controlling the NN training progress
(the learning rate and the number of iterations). Results are
reported using the 24-speaker core test set, which has no overlap
with the development set.

We used 183 target class labels (i.e., 3 states for each one
of the 61 phones). After decoding, the 61 phone classes were
mapped to a set of 39 classes as in [16] for scoring. In our exper-
iments, a bi-gram language model over phones, estimated from
the training set, was used in decoding. To prepare the NN tar-
gets, a mono-phone HMM was trained on the training dataset,
and it was used to generate state-level forced alignments. For
neural network training, a learning rate annealing and an early
stopping strategies were utilized as in [15].

5.1.2. The voice search task

VS is a large vocabulary voice search dataset containing 18
hours of speech data. Initially, a tri-phone HMM was built with
state tying. The state labels were used as the NN targets. NN
training was done using a fixed recipe. The first 15 epochs were
run with a learning rate of 0.08. Another 10 epochs were run
with a learning rate of 0.002.

5.2. Results on CNN structure

In this set of experiments we compare different convolution
structures on TIMIT. Table 1 shows the results. With a full
weight sharing CNN we got relative reduction in phone error
rate (PER) of more than 5% compared to the DNN without
convolution. With limited weight sharing the relative reduction
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Table 1: Comparisons of TIMIT phone recognition accuracy
among different CNN architectures. LWS: limited weight shar-
ing; FWS: full weight sharing; K: # of feature maps; PS: pool-
ing size; FS: filter size; B: # of bands.

Convolution architecture PER

No convolution 22.9 %

Freq FWS (K:200, PS:6, FS:8, B:20) 21.6%

Freq LWS (K:84, PS:6, FS:8, B:20) 20.5%

Time FWS (K:400, PS:2, FS:8, B:7) 22.5%

2D Multi-layers (K:40, PS:2,2, FS:3,3, B:20,7),
(K:200, PS:3,1, FS:5,7, B:18,1)

21.5%

exceeded 10%. Convolution through time improved the score
as well, though, the improvement was much smaller. This in-
dicates that convolution through frequency is more important.
There are a number of possibilities for the limited improvement
with convolution through time. Firstly, the pooling and sam-
pling may affect label localization through time because it de-
creases time resolution for higher CNN layers. Thus it would
be more difficult for higher layers to attribute the label to the
center frame. Secondly, the number of frames within the time
window is only 15. This may decrease the benefit of convolu-
tion along time as compared with the 40 frequency bands. The
last row shows the result of an attempt to use a 2D convolution
with two convolution layers. Full weight sharing was used so
that more than one convolution layers can be stacked. A small
improvement was obtained over one layer of full weight shar-
ing, but we think that with more optimization of the parameters
we can get a better performance.

5.3. Results on weighted softmax pooling

In this experiment, we tested the performance of weighted soft-
max pooling. An architecture similar to the limited weight shar-
ing CNN used in the previous sub-section was used here. The
pooling weights were initialized with one. Then, the weights
were updated using the back-propagation algorithm. In one ex-
periments weights were not tied and we got 20.8% PER. While
in another experiment, weights were tied within three groups
where each group has 28 feature maps sharing the same pool-
ing weights. In this case we got 20.4% PER, which is slightly
better than that achieved with max-pooling.

Figure 3 shows the learned weights. We notice that some
bands receive wider inputs than others. This indicates that dif-
ferent bands and feature maps are more suited to different pool-
ing sizes.

5.4. Results on Pretraining

To test the effects of pretraining a CNN, we conducted a set of
experiments on TIMIT and VS datasets. The pretraining imple-
mentation was based on the technique of [15] with detail de-
scribed in Section 4, where CRBMs are used with convolution
layers and RBMs are used with fully connected layers.

Table 2 shows the results on the tasks of TIMIT (in PER)
and VS (in word error rate (WER)). We observe that the pre-
training improves both the DNN and CNN except for the CNN
on TIMIT where pretraining didn’t help. In general, the relative
improvement of using pretraining for the CNN is less than that
on the DNN. This may be attributed to the better structure of the
CNN that reduces the benefit of pretraining.

Figure 3: Learned softmax pooling weights. Each column rep-
resents a set of pooling weights. Each pooling band has three
sets of weights. The vertical axis represents the input bands.

Table 2: Effects of CRBM pretraining (PT)

Score Function TIMIT PER VS WER

DNN, no PT 22.8% 37.1%

DNN, PT 21.9% 35.4%

CNN no PT 20.5 % 34.2%

CNN PT 20.7 % 33.4%

6. Summary and conclusion
In this work we explored multiple aspects of CNNs. Our ex-
perimental results confirmed the improved performance of the
CNN, previously obtained on the TIMIT phone recognition
task, over a DNN, and showed that similar performance im-
provement can be obtained on large vocabulary tasks as well.
The success of the CNN can be attributed to the learned fea-
tures that are invariant to small frequency shifts of speech pat-
terns (e.g. formants) which increases the robustness to speaker
variations. Results also demonstrated that both full and limited
weight sharing architectures perform better than the DNN with-
out convolution. However, the limited weight sharing scheme
provides more gains than the full weight sharing scheme. This
is because distinct feature patterns are expected to appear in
each frequency band. However, full weight sharing preserves
consistent features along all frequency bands, which can be fur-
ther convoluted and pooled in higher convolution layers.

Our results indicate that doing convolution along time,
while outperforming the DNN, performs significantly worse
than doing it along frequency. We conjecture that the perfor-
mance gap is caused by the implicit label shift and the smaller
range of the time dimension. The experimental results suggest
that combining convolution along both frequency and time axes
in a way that takes into account speech trajectory confusion may
bring more performance gain.

In this paper, we also proposed weighted softmax pooling
to enable automatic determination of the pooling size. Exper-
imental results showed that different feature-map groups orga-
nized in different bands can effectively learn different pooling
weight structures, some of which are wider than others. This
observation indicates that separate pooling sizes and structures
are desired for different features and bands. The recognition
performance reported in this work is only slightly better than
that achieved using the limited weight sharing CNN. However,
we believe this is an interesting direction and better learning
algorithms may further improve the performance.

Finally, we proposed to use CRBM to pretrain the convolu-
tion layers in the CNN. We evaluated the CNNs with and with-
out pretraining and found out that pretraining improved perfor-
mance on a large vocabulary speech recognition task.
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