APPLICATION LAYER ERROR CORRECTION CODING FOR RATE-DISTORTION
OPTIMIZED STREAMING TO WIRELESS CLIENTS

Jacob Chakareski*

Center for Multimedia Communication
Rice University, Houston, TX 77005 USA
cakarz@ece.rice.edu

ABSTRACT

This paper addresses the problem of streaming packetized media
over a lossy packet network to a wireless client, in a rate-distortion
optimized way. We introduce an incremental redundancy scheme
that combats the effects of both packet loss and bit errors in an
end-to-end fashion, without support from the underlying network
or from an intermediate base station. The scheme is combined
with an optimization framework that enables the sender to compute
which packets it should send, out of all the packets it could send
at a given transmission opportunity, in order to meet an average
rate constraint while minimizing the average end-to-end distortion.
Experimental results show that our system is robust and maintains
a quality of service over a wide range of channel conditions. Up
to 8 dB performance gains are registered over systems that are not
rate-distortion optimized, at bit error rates as large as 1072.

1. INTRODUCTION

This paper addresses the problem of streaming packetized media
over a lossy backbone packet network to a wireless client, using
a sender-driven transmission scheme. Packets may be lost in the
backbone network due to congestion, or they may be corrupted in
the wireless link due to fading. The problem under consideration
is illustrated in Figure 1.

Backbone Network

Fig. 1. Streaming on demand to a wireless client.

It is assumed that the server runs UDP Lite [1] or a similar
network protocol, where only a partial (header) checksum is ap-
plied to packets at the network layer. Thus, only packets whose
RTP/UDP/IP headers have not been corrupted are received by ap-
plication. This also means that the application can observe bit er-
rors in the packet payload. Furthermore, we assume that both the
sender and receiver do not have control over any network resources
available along the communication path between the two. For ex-
ample, the sender cannot change the delivery priorities placed on

*Jacob Chakareski was an intern with Microsoft Corporation.

0-7803-7402-9/02/$17.00 ©2002 IEEE

Philip A. Chou

Signal Processing Research Group .
Microsoft Corp, Redmond, WA 98052 USA
pachou@microsoft.com |

its packets by the backbone network, the rate of the channel code
applied by the base station to packets sent across the wireless link,
etc. i '

We introduce a streaming system that consists of two com-
ponents. One is an incremental redundancy transmission scheme
that combats the loss and corruption effects of the communication
channel. It operates end-to-end and hence does not need any co-
operation from the underlying network infrastracture or from an |
intermediate base station. By inserting redundancy at the appli-
cation layer, this scheme exploits to our advantage the ability of
the client to observe corrupted payloads. The scheme is incre-
mental in that it sends redundant information only if needed and
hence it is bandwidth efficient. Thus we denote it Incremental
Redundancy (IR) transmission. The second component is an op-
timization procedure, based on the Sensitivity Adjustment (SA)
algorithm introduced in [2], which has been modified here to suit
the settings of the problem under consideration. Using the opti-
mization procedure, rather than streaming the packetized media in
a fixed sequence according to presentation time, the sender can
choose a transmission policy for each data unit that minimizes the
expected end-to-end distortion of the entire presentation subject
to a transmission rate constraint. The solution to this resource al-
location problem is obtained by minimizing a Lagrangian, taking
into account the data units’ dependence relationships in addition
to their different delivery deadlines and basic importances.

2. PRELIMINARIES

In a streaming media system, the encoded data are packetized into
data units and are stored in a file on a media server. All of the
data units in the presentation have interdependencies, which can
be expressed by a directed acyclic graph as illustrated in Figure 2.
Each node of the graph corresponds to a data unit, and each edge
of the graph directed from data unit I’ to data unit [implies that
data unit / can be decoded only if data unit 7' is first decoded.
Associated with each data unit [is a size By, a decoding time
tprs,i, and an importance Ad;. The size B is the size of the data
unit in bytes. The decoding time tprs,; is the time at which the de-
coder is scheduled to extract the data unit from its input buffer and
decode it. (This is the decoder timestamp, in MPEG terminology.)
Thus tprs, is the delivery deadline by which data unit must ar-
rive at the client, or be too late to be used. Only packets whose
RTP/UDP/IP headers have not been corrupted are received by ap-
plication. Packets containing data units that arrive after the data
units’ delivery deadlines are also discarded. The importance Ad;
is the amount by which the distortion at the receiver will decrease

III - 2513

if the data unit arrives on time at the receiver and is decoded.

AR PLRC R R B ARC B A HL R

Fig. 2. Typical directed acyclic dependency graph for video and
audio data units.

The communication channel, which in effect is an aggregate
of the backbone packet network and the wireless link, is modeled
as an independent time-invariant packet erasure channel with ran-
dom delays at the packet level and as a binary symmetric channel
(BSC) at the bit level. This means that if the sender inserts a packet
into the network at time ¢, then the packet is lost with some prob-
ability, say er, independent of t. However, if the packet is not
lost, then it arrives at the receiver at time t', where the forward trip
time FT'T = t' — t is randomly drawn according to probability
density pr. Furthermore, the individual bits of the received packet
are independently and symmetrically corrupted with a probability
BERF. Therefore even though the packet may arrive at the client
device, it might still be dropped by the network layer at the client
side if its header has been corrupted. Thus we introduce a mod-
ified probability of packet loss, €z = er + (1 — er)(1 — (1 —
BERp)™»), that accounts for this. Nj is the size of the packet
header in bits. In our experiments we use as the density pr the
shifted Gamma distribution with parameters (nr, ar) and right
shift kp.

3. INCREMENTAL REDUNDANCY TRANSMISSION

A sender implementing the IR scheme enables a client to exploit
corrupted payloads, by sending to the client redundancy packets
(henceforth denoted parity packets) in addition to the regular data
(henceforth denoted systematic packets). A parity packet contains
in effect parity bits of a codeword, obtained when a systematic
error-correction code is applied to a systematic packet. Parity
packets are sent only if necessary.

A block diagram of the IR scheme is shown in Figure 3. We
explain its details next. To verify the integrity of the data at the
client, each data unit is pre-encoded by the server with a binary
Cyclic Redundancy Check (CRC) code with a generator polyno-
mial g(z).= 6 + £'% + 2 + 1 [3]. It is assumed that bit errors
cannot go unnoticed by the CRC code. The CRC encoded data
represents a systematic packet, denoted Packet 0 in Figure 3, and
is transmitted at the first transmission decision for the data unit.
If the server receives a positive acknowledgement (ACK) before
it decides to send this data unit again, nothing more is sent. An
ACK means that the client has recovered the data unit without bit
errors. However, if no feedback is received, then the server sends
Packet 0 again. This is repeated until the server sees a negative
acknowledgement (NAK) for one of the earlier transmissions. A
NAK at this point means that the client has received a copy of the
data unit, with bit errors.

After the first NAK arrives, the server generates a parity packet
using a binary rate 1/2 Recursive Systematic Convolutional (RSC)

data

1%t pari
2" pari
3 pari

Fig. 3. The Incremental Redundancy transmission scheme.

Send as many
as necessary

encoder with generator polynomial matrix

2+ z+1
2 + 1

G(z) = [l
[4]. It then sends this parity packet, denoted Packet 1, to the client.
From that point on, whenever the server needs to transmit a packet
for the data unit again, it generates another parity packet, denoted
Packet k, by first applying a pseudo-random interleaver Ii,_; to the
systematic packet, and then using the RSC encoder to generate the
parity packet, as illustrated in Figure 3. The role of the interleaver
is to improve error correction performance if the client receives
more than one parity packet. The server may transmit a packet for
data unit / at any one of its transmission opportunities tg,;, k =
1,2,..., N, according to its transmission policy, until it receives
an ACK. Receiving an ACK at this point means that the client has
recovered the data unit without bit errors, using the packets it has
received. The server’s transmission policy is determined by the
optimization procedure described in the next section. The policy
takes into account the server’s history of previous transmissions as
well as its history of acknowledgments.

We just explained how the server acts in the IR scenario. Now
we explain how the client acts. Upon receiving the first parity
packet, Packet k, k > 1, the client tries to decode the corrupted
data unit using the List Viterbi algorithm [5]. If k > 1, the system-
atic packet is first interleaved with I _;, decoded, and then inverse
interleaved with I;!. If k = 1, no interleaving and inverse inter-
leaving are needed. If decoding fails (i.e., the CRC check fails),
a NAK for Packet k is sent to the server. Upon reception of the
second parity packet, say Packet I, I > 1,1 # k, the client tries to
decode the data unit again but now uses the Turbo decoding pro-
cedure [6] with the 3 packets (1 systematic and 2 parity) received
so far. If decoding fails once more, a NAK for Packet [now is
sent to the server. Upon receiving a third parity packet, the Turbo
decoding procedure is initiated once more, now with 1 systematic
and 3 parity packets. This last step is iterated as long as the client
observes a decoding failure and sends a NAK back to the server
for the last received parity packet. If decoding succeeds the client
issues an ACK for the last received parity packet.

Next, we study the performance of the IR transmission scheme.
Figure 4 illustrates the dependence of the probability of decoding
success (PoDS) on the total number of parity packets received by
the client. It can be seen that for BERs < 1072, at most 2 parity

III - 2514

packets are needed for decoding. On the whole, including BER =
10, not more than 4 parity packets suffice to observe success in
decoding at every instance.

PoDS vs number of parity packets for BER = 107107
T T T

T T T T T T
b & Y
* ol

A A d

~e- BER=10 |
—— BER=107°| |
—6- BER =10 |
—— BER=107| |
| -~ BER=10 |- 4
-+~ BER=10""| |

=4
@

Prob. of Decoding Success
o o
o o

4] 1 2 3 4 5 6 7 8 9
Number of parity packets sent

Fig. 4. Probability of Decoding Success vs. number of parity pack-
ets received.

4. R-D OPTIMIZATION USING SENSITIVITY
ADJUSTMENT

Suppose there are L data units in the multimedia session. Let m
be the transmission policy for data unit ! € {1,...,L} and let
7 = (m,...,wL) be the vector of transmission policies for all
L data units. A policy 7 is a transmission schedule according to
which systematic or parity packets for data unit [are transmitted
until an ACK is received.

Any given policy vector 7 induces an expected distortion D(7r)
and an expected transmission rate R(7) for the multimedia ses-
sion. We seek the policy vector 7 that minimizes the Lagrangian
D(w) + AR(x) for some Lagrange multiplier A > 0, and thus
achieves a point on the lower convex hull of the set of all achiev-
able distortion-rate pairs. .

The expected transmission rate R(7r) is the sum of the ex-
pected transmission rates for each data unit/ € {1,...,L}:

R(m) =" Bip(m). 0
i

where By is the number of bytes in data unit [and p(m) is the
expected cost per byte, or the expected number of transmitted bytes
per source byte under policy m;. The expected distortion D(7r) is
somewhat more complicated to express, but it can be expressed
in terms of the expected error, or the probability e(m) for [€

{1,..., L} that data unit [does not arrive at the receiver on time
under policy m;:
D(m)=Do— Y AD [](1 - e(m)), ©)
1 =<l

where Dy is the expected reconstruction error for the presentation
if no data units are received and A Dj is the expected reduction in

reconstruction error if data unit [is decoded on time. The product
I1i < (1 — €(m)) is the probability that data unit [and all of its
ancestors in the acyclic directed graph (see Figure 2) arrive at the
receiver on time under their respective policies.

Finding a policy vector 7r that minimizes the expected La-
grangian J(7) = D(w) + AR(w), for X > 0, is difficult since
the terms involving the individual policies m in J(7r) are not in-
dependent. Therefore, we employ an iterative descent algorithm,
called the SA algorithm, in which we minimize the objective func-
tion J(my,...,7) one component at a time while keeping the
other variables constant, until convergence. For more details on
the optimization procedure, the reader is referred to [7].

5. EXPERIMENTAL RESULTS

Here we investigate the distortion-rate performance for streaming
one minute of packetized audio content using different methods.
The audio content, the first minute of Sarah McLachlan’s Building
a Mystery, is compressed using a scalable version of the Windows
Media Audio codec. The codec produces a group of twelve 500-
byte data units every 0.75 seconds for a maximum data rate of 64
Kbps. All twelve data units in the mth group receive the same
decoding timestamp, equal to 0.75m.

‘We compare two streaming systems. Both of them perform R-
D optimized scheduling of the packet transmissions at the sender,
with the lagrange multiplier A fixed for the entire presentation. The
server uses its history of previous transmissions as well as its his-
tory of acknowledgements to determine which packets to transmit
(or retransmit) at each transmission opportunity. System 1, ACK
only, is the system introduced in [2]. Here only positive acknowl-
edgements can be sent back to the server upon receipt of packets
by the client. System 2, N+ACK+P, is the system described in
this work. Two types of feedback packets are available: ACK and
NAK. Details of how the server chooses the optimal transmission
policy are given in [7].

All of the systems use the same playback delay (750 ms). The
channel is specified with the following parameters: e = ep =
10 %, T = 100 ms, kr = kg = 50 ms (0.5 T), 5r = g =
2 nodes, 1/ar = 1/ap = 25 ms (0.25 T'). Transmitted packets
are dropped at random, with the modified drop rate, ¢, to account
for the non-zero BER. Those packets that are not dropped receive
a random delay and their payload is corrupted with the given BER
of the channel, using a pseudo-random number generator. The
pseudo-random number generator is initialized to the same seed
for each of the systems compared. Two cases for the packet header
size are employed: regular (320 bits) and compressed (32 bits). A
compressed IP/UDP/RTP header size of 32 bits is typical using
header compression schemes such as [8].

‘We examine the signal-to-noise ratio (SNR) in dB of the end-
to-end perceptual distortion, averaged over the one minute long
audio clip, as a function of the available bitrate (Kbps). Figure 5
illustrates the SNR performance of the two systems for the case of
regular header size.

It can be seen from Figure 5 that for low BERs, both systems
perform similarly, with System 2 doing a bit better than System 1.
The difference in performance becomes more exaggerated when
the BER starts increasing. It is interesting to note that for BER =
10~ the performance of System 1 becomes poor, while System 2
is still able to maintain a good quality of service. Finally, for BER
> 1073 even System 2 performs poorly. This can be explained by
the fact that at such high BERs every single packet is received with

III - 2515

ACK only vs N+ACK+P schemes for 320 bits header
T B

© BER=10" :

* BER=10"° : : =
© BER=10"* : g 2

v BER=10‘3 , I CIRTR e 4
o BER=10" : i
+

10

SNR (dB)

Bitrate (Kbps)

Fig. 5. RD performance for header size 320 bits and BER =
1075:1071. (dashed = Syst. 1, solid = Syst. 2)

a corrupted header and thus is dropped by the IP layer at the client
side. Hence the client never gets a chance to see a transmitted
packet and exploit the benefits of the IR transmission scheme.

ACK only vs N+ACK+P schemes for 32 bits header

© BER=10"°
* BER=10"
¢ BER=10" : 5
v BER=10'3 R : PO
a BER=107 ;
+ BER=10"']

SNR (dB)
N
—9

Femssmessssssfssssss=ssas
0 66.7 133.3 200
Bitrate (Kbps)

Fig. 6. RD performance for header size 32 bits and BER =
10~6:10~!. (dashed = Syst. 1, solid = Syst. 2)

A similar situation is observed for the compressed header case,
as shown in Figure 6. The difference in performance is minimal
for low BERs, with the gap in performance becoming more sig-
nificant as the BER increases. The major difference between the
two header size cases is in the performance of System 2 for BER
=10"2. Due to the smaller header size now, the IR scheme can
still be exploited by the client even at this BER. Lastly, for the
same reasons as in the previous header size case, even System 2
performs poorly at extremely high BERs (> 1071).

6. CONCLUSIONS

A system for distortion-rate optimized streaming to wireless clients
over lossy packet networks has been presented. The system con-
sists of two components: a bandwidth efficient transmission scheme
that enables a receiver to exploit corrupted payloads to its bene-
fit. In combination with it, the sender is presented with a R-D
optimization framework for packet scheduling in a sender-driven
scenario. By exploiting the unequal sensitivity of a multimedia
presentation to loss of different constituent components and the
fact that the client can observe corrupted payloads, our system ob-
tains superior performance over existing solutions and thus uses
the available bandwidth in a most cost-effective way. However,
for extremely high bit error rates (above 10~2), header corruption
limits the effectiveness of our system. Further improvement re-
quires that the headers are protected below the application layer,
i.e., at the link, network, and transport layers.

7. REFERENCES

[1] L.A. Larzon, M. Degermark, and S. Pink, UDP Lite for Real
Time Multimedia Applications, Technical Report HPL-IRI-
1999-001, HP Labs, Bristol,United Kingdom, April 1999.

[2] P.A. Chou and Z. Miao, Rate-distortion optimized streaming
of packetized media, Technical Report MSR-TR-2001-35, Mi-
crosoft Research, Redmond, WA, February 2001.

[3] T. Ramabadran, and S.S. Gaitonde, 4 tutorial on CRC Com-
putations, IJEEE MICRO, pp. 62-75, August 1998.

[4] L.H. Charles Lee, Convolutional Coding: Fundamentals and
Applications, Artech House, Norwood, MA, 1997.

[5] N. Seshadri and C. Sundberg, List Viterbi decoding algorithms
with applications, IEEE Transactions on Communications, pp.
313-323, February 1994.

[6] C. Heegard, and S.B. Wicker, Turbo Coding, Kluwer Aca-
demic Publishers, January 1999,

[7]1 J. Chakareski and P.A. Chou, On Computation of Distortion-
Rate Curves for Wireless Streaming of Multimedia Presen-
tations, submitted to IEEE Data Compression Conference
(DCC) 2002, Snowbird, Utah, USA, April 2002.

[8] C. Bormann et al, Robust Header Com-
pression (ROHC), IETF ~ RFC 3095,
http://www.ietf.org/rfc/rfc3095.txt, Pro-
posed Standard, July 2001.

III - 2516

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

