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Abstract

The core of a cooperative game contains all stable distributions of a coalition’s gains among its
members. However, some games have an empty core, with every distribution being unstable. We
allow an external party to offer a supplemental payment to the grand coalition, which may stabilize
the game, if the payment is sufficiently high. We consider the cost of stability (CoS)—the minimal
payment that stabilizes the game.

We examine the CoS in threshold network flow games (TNFGs), where each agent controls an
edge in a flow network, and a coalition wins if the maximal flow it can achieve exceeds a certain
threshold. We show that in such games, it is coNP-complete to determine whether a given distri-
bution (which includes an external payment) is stable. Nevertheless, we show how to bound and
approximate the CoS in general TNFGs, and provide efficient algorithms for computing the CoS in
several restricted cases.

1 Introduction

Many artificial intelligence settings involve multiple self-interested agents. Although self-interested, the
agents may still benefit from cooperation. A natural tool for analyzing such strategic situations is, of
course, cooperative game theory. In cooperative games, every subset (coalition) of agents can achieve a
certain utility by cooperating. A natural question which arises is how to divide the gains obtained by a
coalition among its members, since the fotal utility generated by the coalition is (by assumption) of little
interest to each individual agent. Each possible division of the coalition’s gains among its members is
called an imputation.

Cooperative game theory solution concepts seek to define appropriate ways of distributing a coali-
tion’s gains among its members, so as to meet some desirable criteria. A prominent solution concept is
the core [7], which is the set of all stable imputations—those where no subset of agents has a rational
incentive to split off from the grand coalition (the set of all agents). Some games have infinitely many
imputations in their core, while others have empty cores. In games where the core is empty, any im-
putation would be unstable. Thus, as opposed to normal-form games where the existence of a stable
solution in the form of a (mixed-strategy) Nash equilibrium is guaranteed, some cooperative domains
are inherently unstable.

We examine the possibility of stabilizing a cooperative game using external payments, based on a
model introduced by Bachrach et al [1]. In this model, an external party is interested in inducing all the
agents to cooperate. This is done by offering the grand coalition a supplemental payment, given to the
grand coalition as a whole, and provided only if this coalition is formed. The game’s cost of stability
(CoS) is the minimal external payment that allows a stable division of the grand coalition’s adjusted
gains.

In this work we consider games defined over network flow domains, where agents must cooperate
to allow flow through the network. Such games can model situations where some commodity (traffic,



liquid, information) flows through a network with various capacity constraints, and different entities
own the different links (roads, pipes, cables) along the way. Such games have been studied in several
works [8, 9, 2, 4]. We examine threshold network flow games (TNFGs), where each agent controls an
edge in the network, and a coalition “wins” if the maximal flow it allows from the source vertex to the
sink vertex exceeds a certain threshold. Computing the core of such a game enables finding a stable
distribution of the rewards obtained from operating the network among the various agents. However,
in many such games the core would be empty. In fact, we will see that unless there exists some veto
agent, without which no coalition can achieve the required flow, the game’s core would be empty and
no imputation would be stable. There might exist some external party (e.g., a government) that would
be willing to pay in order to ensure the cooperation of all agents in allowing flow through the network.
Naturally, this external party would want to minimize its costs.

We explore the CoS in TNFGs. We show that it is coNP-complete to determine whether a given
profit division, allowed by some external payment, makes a certain TNFG stable. Despite this hardness
result, we nevertheless show how to bound and approximate the CoS in general TNFGs, and provide
efficient algorithms for computing the CoS and finding optimal super-imputations in several restricted
forms of TNFGs. We give an upper bound on the CoS in TNFGs based on the max-flow value of the
network, which can also be used to approximate the CoS. We consider the CoS in connectivity games,
a restricted form of TNFGs, and show that in these games the CoS is equal to the max-flow value of the
network. We generalize this result, considering TNFGs with equal edge capacities. We also consider
the case of serial TNFGs, built by serially connecting several component TNFGs. We show that the
CoS of a serial TNFG is equal to the minimal CoS among the component TNFGs, and that this value
may be computed efficiently if the number of edges in each component is not too large. Finally, we
consider the relationship between the CoS in TNFGs and the CoS in another well-known cooperative
domain—weighted voting games.

2 Preliminaries

We now define certain game-theoretic concepts necessary for our analysis of the cost of stability. We
also define the domain on which we will be concentrating, the threshold network flow game.

2.1 Cooperative Games

A (transferable utility) cooperative game (also called a coalitional game) is defined by specifying the
collective utility that can be achieved by every coalition of agents. In this work, the term game always
refers to a cooperative game.

Definition 1. A cooperative game consists of a finite set of agents N and a function v : 2 — R. The
function v is called the characteristic function of the game.

The characteristic function maps every coalition of agents to the total utility that can be achieved
by those agents together. In many typical cooperative games, adding more agents to a coalition never
reduces the achievable utility. Such games are called increasing.

Definition 2. A cooperative game (N, v) is increasing if v(C") < v(C) for any C' C C C N.

The TNFG domain considered in this work is one where a coalition can either win or lose. Such
domains can be modeled as simple cooperative games.

Definition 3. A cooperative game (N, v) is simple if v only takes the values 0 or 1, i.e., v : 2 — {0, 1}.
We say a coalition C C N is a winning coalition if v(C) = 1, and it is a losing coalition if v(C') = 0.

In such games, it is usually assumed that v(f)) = 0 and v(N) = 1. An agent without which no
coalition can win is called a vefo agent.



Definition 4. In a simple cooperative game (N, v), an agent a € N is a veto agent if for any coalition
C C N it holds that v(C' \ {a}) = 0.

2.2 Flow Networks

Flow networks are useful for modeling systems where some fluid commodity travels through a network
with capacity constraints. A flow network consists of a directed graph (V, E), with capacities on the
edges ¢ : F — R, a distinguished source vertex s € V, and a distinguished sink vertex t € V
(s # t). A flow through the network is a function f : £ — R, which obeys the capacity constraints and
conserves the flow at each vertex (except for the source and sink), meaning that the total flow entering a
vertex must equal the total flow leaving that vertex. The value of a flow f (denoted | f|) is the net amount
flowing out of the source (and into the sink). A cut of a flow network is a partition of the vertexes into
two subsets S, T (where SUT = V and SNT = ()) such that s € S and ¢ € T. The capacity of a
cut (S, T is defined as the sum of the capacities of the edges crossing the cut (from S to 7'). We call
a minimal capacity cut a min-cut and a maximal value flow a max-flow. The max-flow min-cut theorem
states that in any flow network, the max-flow value is equal to the min-cut capacity.

Max-flow min-cut theorem. The value of a flow f in a flow network is maximal if and only if there
exists a cut of the network with capacity equal to | f|.

Many efficient algorithms for finding a maximal value flow for a given network are known. Note
that if all the edge capacities in a network are integers, the Ford-Fulkerson algorithm [6] produces an
integer max-flow. This implies the following lemma:

Lemma 1. In a flow network (V, E, ¢, s,t), if c(e) € N for all e € E then there exists a max-flow f
such that f(e) € N forall e € E.

A general graph theory problem which may be solved efficiently using flow networks is that of
finding the maximal number of edge-disjoint paths between two vertexes in a directed graph. This is
done by assigning each edge a capacity of 1, and computing the max-flow value in the resulting flow
network.

Lemma 2. Given a flow network (V, E, ¢, s,t), if c(e) = 1 for all e € E then the maximal number of
edge-disjoint paths from s to t in the directed graph (V, E) is equal to the max-flow value of the flow
network.

Proof. Since all capacities are 1, Lemma 1 implies that there exists a max-flow f such that f(e) = 0 or
f(e) = 1forall e € E. This means that f must define | f| edge-disjoint paths from s to ¢ (with a flow
of 1 through each). There cannot exist more than | f| edge-disjoint paths, since then we could construct
a flow whose value was greater than | f|, contradicting the assumption that f is a max-flow. O

2.3 Threshold Network Flow Games

A threshold network flow game (TNFG) is a cooperative game defined over a flow network, where each
agent controls an edge in the network. Coalitions of agents may cooperate in order to send a certain
flow from the source to the sink, and a coalition wins if the max-flow value allowed when using only
the edges in the coalition exceeds a certain threshold (this threshold variant of network flow games has
been studied by Kalai and Zemel [8] and Bachrach and Rosenschein [2]).

Definition 5. A threshold network flow domain consists of a flow network (V, E, c, s,t) and a threshold
keR,.



Definition 6. Given a threshold network flow domain (V, E, ¢, s,t, k), a threshold network flow game
(TNFG) is the cooperative game (N, v) where N = E and the characteristic function is defined as:

1 if there exists a flow f in the network such that |f| > k and
v(C) = Vee E\NC: f(e) =0

0 otherwise

By definition, TNFGs are simple games. They are also increasing games, since adding more edges
to a coalition can only increase the value of the max-flow. It is easy to check whether a given coalition
is a winning coalition by computing the max-flow value of the network which contains only the edges
in the coalition and checking whether that value exceeds the threshold.

2.4 Imputations and the Core

The characteristic function of a cooperative game defines only the fotal gains a coalition achieves, but
does not offer a way of distributing those gains among the agents in the coalition. Such a division is
called an imputation (or a payoff vector).

Definition 7. Given a cooperative game (N, v), an imputation is a vector p € ]Rﬂy suchthaty . Pa =
V(). We call p, the payoff of agent a, and denote the payoff of a coalition C C N as p(C) = Y ¢ Pa-

Cooperative game theory solution concepts offer ways of choosing an imputation, so as to satisfy
some criteria. A basic criterion is individual rationality, which requires that p, > v({a}) for any agent
a € N—otherwise, some agent has an incentive to leave the coalition and work alone. A stronger crite-
rion is that of coalitional rationality, based on the notions of blocking coalitions and stable imputations.

Definition 8. In a cooperative game (N, v), a coalition C' C N blocks an imputation p if p(C') < v(C).

Definition 9. In a cooperative game (N, v), an imputation p is stable if it is not blocked by any coalition,
i.e., for every coalition C C N, p(C) > v(C).

If the coalition C blocks the imputation p, the members of C' could leave the grand coalition, derive
the gains of v(C'), give each member a € C'its previous gains p,—and still some utility remains, so
each agent could get more utility. If an unstable imputation is chosen, we cannot expect all agents to
remain in the grand coalition. The core is the set of all stable imputations.

Definition 10. The core of a cooperative game is the set of all imputations that are stable.

Some games have infinitely many imputations in their core, while other games have empty cores. If
we divide the gains of the grand coalition using an imputation in the core, then no subset of agents has
an incentive to break off and work alone. However, if the core is empty, then any possible division of
the grand coalition’s gains is unstable: there will always be some coalition with an incentive to break
away. In simple games, there is a well-known characterization of the core based on the game’s veto
agents: the core consists of all imputations which divide the grand coalition’s gains only among the veto
agents. Consequently, the core of a simple game (such as a TNFG) is nonempty if and only if there
exists at least one veto agent. Note that we can compute the core of a TNFG in polynomial time, simply
by finding all the veto agents (a given edge is a veto agent if and only if the coalition of all other edges
is a losing coalition).

What should we do if we are faced with a game whose core is empty, but we still wish to ensure
that no coalition has an incentive to leave the grand coalition? In the next section we suggest a solution,
using external payments.



3 The Cost of Stability

We now consider the possibility of stabilizing a cooperative game using external payments, leading
to the definition of the cost of stability, as introduced by Bachrach ef al [1]. If a game is increasing,
the maximal utility is achieved by the grand coalition. However, if the game’s core is empty, it is
impossible to distribute the gains of the grand coalition in a stable manner among the agents. This
impedes the agents’ cooperation, rendering the grand coalition unstable. Consider an external party that
would like to induce all the agents to cooperate. One way to do this is by offering the grand coalition
a supplemental payment if all agents cooperate. This external payment is offered to the grand coalition
as a whole, and is provided only if this coalition is formed. The adjusted game is defined based on the
original game and the supplemental payment.

Definition 11. Given a cooperative game G = (N,v) and a supplemental payment A € R, the
adjusted game is the cooperative game G(A) = (N, v') where the characteristic function is defined as:

J(C) = {U(C) z:fC’fN
v(C)+A fC=N

We call v'(N) = v(N) + A the grand coalition’s adjusted gains. We call a division of the adjusted
gains in the adjusted game a super-imputation.

Definition 12. Given an adjusted game G(A) = (N,v'), a super-imputation is a vector p € RY such
that Y.y Pa = V' (N) = v(N) + A,

We will sometimes talk about super-imputations without explicitly defining the adjusted game—in
such a case the supplemental payment is implied by the sum of the super-imputation’s payments.

Even if the core of the original game G was empty, the core of the adjusted game G(A) may not
be empty—if the supplemental payment is high enough. Naturally, the external party would prefer
to minimize the supplemental payment. The cost of stability (CoS) is defined as the minimal sum of
payments such that a stable super-imputation exists in the adjusted game.

Definition 13. The cost of stability of a cooperative game G = (N, v) is defined as follows:
CoS(G) = A10[1]'11{1 {v(N) + A : the core of G(A) is nonempty}
eR4

Note that for any simple game G, CoS(G) > 1, and CoS(G) = 1 if and only if the core of G is
nonempty. For simple games, we can give additional lower and upper bounds on the CoS.

Theorem 1. If there exist m pairwise-disjoint winning coalitions in a simple game G = (N, v), then

CoS(G) > m.

Proof. Let C'y, ..., C), be pairwise-disjoint winning coalitions in G. Let p be a super-imputation such
that p(IN) < m. This means there must exist a winning coalition C; (1 < ¢ < m) such that p(C;) < 1
(otherwise we would get p(N) > >", p(Cj) > 377" 1 = m). This means that C; blocks p and p is
unstable. Therefore, any stable super-imputation p’ must satisfy p’(N) > m, so CoS(G) > m. O

Theorem 2. Let G = (N, v) be a simple game and let S C N be a subset of agents. If every winning
coalition C'in G satisfies C N S # 0, then CoS(G) < |S|.

Proof. We define a super-imputation p as follows:

1 ifae S

VYa € N : =
Pa {0 otherwise

Any winning coalition includes at least one agent from .S, and so is paid at least 1. This means that p is
stable, therefore: CoS(G) < p(N) = |S|. O



4 Hardness of Determining Stability of Super-Imputations in TNFGs

This work focuses on the CoS in TNFGs. We first consider the problem of testing whether a given
super-imputation, allowed by a certain supplemental payment, is actually stable in a TNFG. We show
that this problem is in fact coNP-complete.

Definition 14. TNFG-SUPER-IMPUTATION-STABILITY (TNFG-SIS): Given a TNFG G =
(V,E,c,s,t, k), a supplemental payment A, and a super-imputation p in the adjusted game G(A),
decide whether p is stable, i.e., whether there exists some blocking coalition for p in G(A).

Theorem 3. TNFG-SIS is coNP-complete.

Proof. TNFG-SIS is in coNP, since we can easily verify instability: given a potentially blocking coali-
tion, we can check whether it is a winning coalition and whether the sum of payments to the coalition
members is less than 1, in polynomial time. We show that TNFG-SIS is coNP-hard by polynomially
reducing SUBSET-SUM to the complement of TNFG-SIS. SUBSET-SUM is a well-known NP-complete
problem, where we are given a set of positive integers A = {a,...,a,} and a positive integer b, and
are asked to determine whether there exists a subset A’ C A such that the sum of the elements in A’ is
exactly b. Given a SUBSET-SUM instance, we construct the following TNFG:

V={s,t} U{v1,...,vn}
E={(s,v;):1<i<n}U{(vi,t):1<i<n}
V1<i<n: c(s,v;)=c(vi,t) =a;

E=b

In other words, for each element a; we add a path from s to ¢ with capacity a;, and we define the
threshold to be the target sum b (see Figure 1). We now define a super-imputation p as follows:
. a;
Vi<i<n: P(syw;)) = P(uit) = 2(()7_:_1)
We show that this super-imputation is unstable if and only if the given SUBSET-SUM instance is a “yes”
instance.

First, assume p is unstable. This means there is some winning coalition C' such that p(C) < 1.
We can assume that if (s,v;) € C for some 1 < ¢ < n then also (v;,t) € C (otherwise, we could
remove (s,v;) from C and C' would still block p). Likewise, we can assume that if (v;,t) € C for
some 1 < i < n then also (s,v;) € C. Let I C {1,...,n} be the subset of indexes such that
C={(s,v;) i €I} U{(v;,t):i€ I}. Weassumed p(C) < 1, so:

ai
1>p(C):2Zm:>b+1>Zai
i€l el
The max-flow value allowed by C'is ), ; a;, and we assumed C'is a winning coalition, so ), _; a; > b.
Altogether, we get:
b+1> Z a;>b

i€l
But since all a; are integers, we conclude that Zie ;a; = b, so the given SUBSET-SUM instance is a
“yes” instance.

On the other hand, assume the given SUBSET-SUM instance is a “yes” instance. This means there is

some subset of indexes I such that ), ; a; = b. Define the coalition C' = {(s,v;) : i € I} U {(v;,1) :
i € I}. The max-flow value allowed by C'is ), ; a; = b, so C'is a winning coalition. However:

a; . b
]O(C)_Zg;wwﬂ)_b+1<1

So the coalition C blocks p, and p is unstable. ]



Figure 1: Reduction of a SUBSET-SUM instance ({ai,as,...,an},b) to an instance of TNFG-SIS.
The game’s threshold is b. We consider the stability of a super-imputation giving an edge with capacity

a; a payoff of %.

Another interesting question is whether finding the CoS itself is computationally hard in TNFGs.
The answer to that question is yes, although this result does not follow from Theorem 3. The proof is
based on a reduction from the well-known PARTITION problem, and is omitted due to space constraints.

S The Cost of Stability in TNFGs

We now show how to bound and approximate the CoS in general TNFGs, and provide efficient algo-
rithms for computing the CoS and finding optimal super-imputations! in restricted classes of TNFGs.

5.1 Connectivity Games

We first show that the CoS can be computed efficiently in connectivity games, where a coalition wins if
it contains a path from the network’s source to its sink.

Definition 15. A connectivity game is a TNFG where the capacities of all edges are 1 and the threshold
is also 1.

Theorem 4. The CoS of a connectivity game is equal to the max-flow value of the underlying flow
network.

Proof. Let C be the set of edges crossing a min-cut in a connectivity game G. Notice that |C'| is equal to
the max-flow value of the network due to the max-flow min-cut theorem (since all capacities are 1). Any
winning coalition in G (containing a path from s to ¢) must include some edge in C', so from Theorem 2
we get CoS(G) < |C|. On the other hand, Lemma 2 guarantees the existence of |C| edge-disjoint
paths from s to ¢, each of which is a winning coalition, so from Theorem 1 we get CoS(G) > |C|. We
conclude that CoS(G) = |C/|. O

5.2 Bounding the CoS in TNFGs

We now give an upper bound on the CoS in general TNFGs, based on the max-flow value of the under-
lying flow network.?

Theorem 5. Let G be a TNFG with threshold k, and let F' be the max-flow value of the underlying flow
network. Then CoS(G) < L.

'A super-imputation is optimal if it is stable and the sum of payments is equal to the CoS.
Note that there is a trivial upper bound on the CoS in any simple game—the CoS is never greater than the number of
agents in the game (this is implied by Theorem 2).



Proof. Let E be the edge set of GG, and let S be the set of edges crossing a min-cut of G. We define the
super-imputation p as follows:

A9 jfeec S
Vec E:p.=< F ne i
0 otherwise

Notice that due to the max-flow min-cut theorem:

p(E)ZZC(:)Zl]:

eeS

Let C be a winning coalition in GG. This means that:

ecCNS
And so:
WO =Y = Y 4Dy
=
eeC ecCnS
So p is stable and CoS(G) < p(E) = L. O

A corollary of Theorem 5 is that the ratio between the max-flow value (F') and the threshold (k)
of a TNFG (which is easy to compute) can serve as an approximation for the game’s CoS (an %—
approximation). Of course, this approximation is tighter the smaller the ratio. Also, the proof of Theo-
rem 5 shows us how to efficiently find a stable super-imputation with adjusted gains equal to this ratio.

5.3 Equal Capacity TNFGs

We now generalize Theorem 4, showing an efficient way to compute the CoS of a TNFG with equal
edge capacities.

Theorem 6. If G is a TNFG where the capacities of all edges are equal to b and the threshold is rb (for
some b € Ry and r € N), then CoS(G) = 7«%’ where F' is the max-flow value of the underlying flow
network.

Proof. We know that CoS(G) < £ by Theorem 5, so it suffices to prove that CoS(G) > .3

Denote d = %. Note that d € N, since a min-cut in GG contains d edges (each with capacity b). We
claim that there must exist d edge-disjoint paths from s to ¢ in . This follows from Lemma 2, because
if we changed all the capacities in the network to 1, the max-flow value would be d (any min-cut in the
original network is still a min-cut after the change).

Let C1, ..., C4 denote edge-disjoint paths from s to ¢ in GG. Let p be a stable super-imputation in G.
Since the threshold is b, any coalition containing r of the paths C; (1 < ¢ < d) is a winning coalition.
In other words, for any subset of indexes I C {1,...,d} where |I| = r, it must hold that:

ZP(Ci) >1

iel

We can write (f) such inequalities, and each p(C;) appears in an equal number of them, so summing all

the inequalities yields:
d d
r(d d F
— E N > E o>
d <T> i=1 p(CZ) N <T> - =1 p(Cl) B Tb

Since this is true for any stable super-imputation p, we conclude that: CoS(G) > %. U

Note that Theorem 4 is actually a special case of Theorem 6, where r = b = 1.

3The proof of Theorem 5 also provides an efficient method for finding an optimal super-imputation in this case.



5.4 Serial TNFGs

We now examine the special case of serial TNFGs, built by serially connecting a sequence of component
TNFGs. Such games can model scenarios where the flow must pass through a series of bottlenecks.
We show that in such a case, the CoS of the entire sequence is equal to the minimal CoS among the
component TNFGs.

Definition 16. Given a set of TNFGs {G1,...,Gy,} all with the same threshold k, a serial TNFG is

the TNFG with threshold k over the flow network obtained by merging the sink of G; with the source of

Gy foreveryl <i < n.

Theorem 7. If G is a serial TNFG composed of the INFGs {G1, . .., Gy}, then CoS(G) = 12121 CoS(Gh).
<i<n

Proof. We will prove the theorem for the case where n = 2, and the general case follows by induction.

Assume w.l.o.g. that CoS(G1) < CoS(G2). Denote by E; and Es the edge sets of G; and G respec-

tively, and denote by E = E7 U E» the edge set of G. Let p’ be an optimal super-imputation in G (i.e.,

p’ is stable and p'(E7) = CoS(G1)). We define the super-imputation p in G as follows:

! if E
Vee Bip,=4be Meem
0 ifee by

Notice that p(E) = p/(E1) = CoS(G1). We will show that p is optimal in G, which implies that
CoS(G) = CoS(Gy).

First, let C' C E be a winning coalition in G. C must contain a subset C’ C C' N E; which is a
winning coalition in Gy. p’ is stable in G1, so p(C') = p/(C’) > 1, meaning that p is stable in G.

On the other hand, let p be a super-imputation in G such that p(F) < p(E) = CoS(G1). Write
p(E1) = ap(E) and p(Es) = (1 — a)p(E) for some 0 < o < 1. Assume w.l.o.g. a > 0. There
must exist a winning coalition C; C Ej in Gy such that p(C1) < «, otherwise the super-imputation
éﬁ would be stable in G; with adjusted gains smaller than CoS(G}), which would be a contradiction.
Likewise, there must exist a winning coalition Cy C Es in G5 such that 5(Cs) < (1—a).* The coalition
C1 U Cy is then a winning coalition in G, but p(C7 U C3) < a + (1 — a) = 1. We conclude that p is
unstable in G and so p(E) = CoS(G).

Altogether, this shows that p is optimal in GG, which implies that CoS(G) = p(E) = CoS(G1). So
the theorem is proved for the case where n = 2. The general case follows by induction. O

Using Theorem 7, we now show how the CoS of a serial TNFG can be computed efficiently, as long
as the number of edges in each component TNFG is not too large.

Definition 17. A B-bounded serial TNFG is a serial TNFG with components {G1, . .., Gy} where the
number of edges in each component TNFG G; (1 < i < n) is bounded by some constant number B.’

Theorem 8. The CoS of a B-bounded serial TNFG can be computed in polynomial time.

Proof. Let G be a B-bounded serial TNFG whose component TNFGs are {G1,...,G,}. We present
an algorithm for computing CoS(G) in time linear in n, although the runtime includes a constant factor
which is exponential in B. Therefore, this algorithm is only tractable if the bound B is small.

For each TNFG G, we can describe CoS(G;) as a linear program. Let F; denote the set of edges
in GG;. For every e € E; we define a variable p.. The linear program is:

Minimize: g De
EEE,L'

*Here the inequality is not strict, since if o« = 1 then { is 0 for any coalition in G'a.
>Note that the number of components 7 is not bounded.



Under the constraints:
Ve€e E;:p. >0
VC CE;: Zpe > ’U(C)
ecC

Recall that v(C') equals 1 if C'is a winning coalition and 0 otherwise. The number of constraints in
the linear program is exponential in | F;|, but | E;| is bounded by the constant B. Linear programs can be
solved efficiently, so we can calculate CoS(G;) in constant time with respect to n (although exponential
with respect to B).

Once we have computed CoS(G;) for all n component TNFGs, we can get CoS(G) by using Theo-
rem 7: CoS(G) = 112121 CoS(Gh). O

6 Weighted Voting Games and TNFGs

We now examine the relationship between the CoS in TNFGs and in weighted voting games (WVGs), a
well-known game theoretic model of cooperative decision making.®

Definition 18. Given a set of agents N, a weight function w : N — Ry and a threshold q € R,
a weighted voting game is the simple cooperative game where a coalition C C N is a winning
coalition if and only if the sum of the weights of the agents in C exceeds the threshold q, that is

w(C) = Y e wla) > g

We can define a WVG based on any subset of agents in a TNFG: given a TNFG (V, F, ¢, s, t, k) and
a subset of agents F' C E, we define the WVG Wr = (F,w, k) where w(e) = c¢(e) for every agent
e € F. We also denote the CoS of the new game Wy as CoS(F).

We now show that the CoS of a TNFG is bounded by the CoS of any WVG induced by the set of
edges crossing a cut of the flow network.

Theorem 9. Let G = (V, E, ¢, s,t, k) be a TNFG instance, let F C E be the set of edges crossing a cut
of G, and let pr be a super-imputation in the WWG Wr. If pr is stable in W, then the super-imputation
p is stable in G, where p(e) = pr(e) ife € F and p(e) = 0 otherwise.

As a direct corollary we get that CoS(G) < CoS(F).

Proof. Let C' C E be a winning coalition in G, i.e., the agents in C' allow a flow with value k& from s to
t. In particular, it must hold that w(F N C) = ¢(F N C) > k, so F N C is a winning coalition in Wpg.
Since pp is stable in W, we know that pp(F N C') > 1, and therefore:

p(C) Zp(FNC)=pr(FNC) =1
So pis stable in G. O

We can now supply alternative proofs to some of the theorems in this work using WVGs. Theorem 5
is a direct corollary of Theorem 9, if we consider the edges crossing a min-cut of a TNFG. The hardness
of TNFG-SIS (Theorem 3) follows from the hardness of the equivalent problem for WVGs, since we can
reduce a WVG to a TNFG: given a WVG W = (N, w, q), we define the TNFG Gy = (V, E, ¢, s,t, k)
by setting V' = {s,t}; ¢ = w; k = gand E = N, where all edges are from s to t.” By similar
arguments to those in the proof of Theorem 9, a super-imputation is stable in W if and only if it is stable
in Gy. Bachrach et al. [1] prove that testing for super-imputation stability in WVGs is coNP-hard, so
it follows that TNFG-SIS is coNP-hard as well.

8 Analysis of the CoS in WVGs is given by Bachrach ef al [1].
"This requires allowing a multigraph, but we could avoid that by splitting every edge into two equivalent edges.




7 Related Work

The concept of the core was introduced by Gillies [7]. Similar concepts are the least-core and the
nucleolus [11], which are guaranteed to be nonempty. A different solution concept is the Shapley value
[12], which aims for fairness rather than stability.

Elkind et al. [3] discuss various solution concepts in WVGs, showing that in this domain computing
the core can be done in polynomial time, while many questions relating to other solution concepts are
NP-hard. Elkind and Pasechnik [5] show a pseudo-polynomial algorithm for computing the nucleolus
of WVGs.

Bachrach and Rosenschein [2] examine calculating power indexes in TNFGs. Power indexes attempt
to measure how much “real power” each player has in a given game. It is shown that for TNFGs,
computing the Shapley-Shubik index is NP-hard and computing the Banzhaf index is #P-complete.
However, an efficient algorithm for the restricted case of connectivity games over bounded layer graphs
is provided. Elkind et al. [4] show how to compute power indexes in the special case of series-parallel
TNFGs.

While our work focuses on TNFGs, much research has considered the cardinal network flow game
(CNFG), where a coalition’s utility equals the max-flow value it can achieve. Computing the core in
CNFGs can be done in polynomial time; Kalai and Zemel [8, 9] show that numerous families of CNFGs
have nonempty cores.

Yokoo et al. [13] demonstrate that various cooperative solution concepts (such as the core, nucleolus
and Shapley value) are vulnerable to manipulations in open anonymous environments. They use a more
fine-grained model of cooperative games, where each agent has a set of skills, and values are defined for
different subsets of skills (rather than subsets of agents). They show that agents may sometimes profit
from manipulations such as submitting false names, collusion, and hiding skills.

Monderer and Tennenholtz [10] investigate the case of an interested party who wishes to influence
the behavior of agents in a game which is not under its control. The approach taken is close to the one
we take here in spirit, although that work deals with normal-form games, not cooperative games. In
that model, the interested party may commit to making non-negative payments to the agents if certain
strategy profiles are selected. Payments are given to agents individually, but they are dependent on
the strategies selected by all agents. As in our work, it is assumed that the interested party wishes to
minimize its expenses. Determining the optimal monetary offers to be made in order to implement a
desired outcome is shown to be NP-hard in general, but becomes tractable under certain modifications.

The CoS concept that we use here was first defined by Bachrach et al. [1], who examined the CoS in
WVGs. It was shown that it is coNP-complete to test whether a given super-imputation in such a game
is stable, but the CoS may be computed efficiently if either the player weights or payments are bounded.
An efficient approximation algorithm for the CoS in general WVGs was also given.

8 Conclusion

We examined stabilizing cooperative games using external payments, and considered the CoS—the
minimal total payment that allows a stable division of the grand coalition’s gains among the agents, in
the context of network flow games (TNFGs). We showed that it is coNP-complete to determine whether
a given super-imputation in a TNFG is stable. We provided an upper bound on the CoS based on the
network’s max-flow, which can be used to approximate the CoS. We showed that in connectivity games
and in equal capacity TNFGs , both the CoS and an optimal super-imputation may be found efficiently.
We also showed how to compute the CoS in serial TNFGs with a small number of edges per component.
Finally, we showed that the CoS of any TNFG can be bounded by the CoS of a WVG induced by some
cut of the flow network.

In future work, we could examine the CoS in various other cooperative games. Additionally, it
might be interesting to define the CoS for any coalition (not only for the grand coalition), and perhaps



for various coalitional structures. Finally, we could investigate the relationship between the CoS and
other cooperative solution concepts such as the least-core, nucleolus, and Shapley value.
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