
Construction and Use of Linear Regression Models for Processor Performance
Analysis

P. J.Joseph Kapil Vaswani Matthew J. Thazhuthaveetil

Department of Computer Science & Automation
Indian Institute of Science, Bangalore, India.

E-mail:
�
peejay,kapil,mjt � @csa.iisc.ernet.in

Abstract

Processor architects have a challenging task of evalu-
ating a large design space consisting of several interact-
ing parameters and optimizations. In order to assist ar-
chitects in making crucial design decisions, we build lin-
ear regression models that relate processor performance to
micro-architectural parameters, using simulation based ex-
periments. We obtain good approximate models using an
iterative process in which Akaike’s information criteria is
used to extract a good linear model from a small set of
simulations, and limited further simulation is guided by the
model using D-optimal experimental designs. The iterative
process is repeated until desired error bounds are achieved.
We used this procedure to establish the relationship of the
CPI performance response to 26 key micro-architectural
parameters using a detailed cycle-by-cycle superscalar pro-
cessor simulator. The resulting models provide a signifi-
cance ordering on all micro-architectural parameters and
their interactions, and explain the performance variations
of micro-architectural techniques.

1. Introduction

Modern processors are evolving at a rapid pace and in
the quest for better performance architects introduce sophis-
ticated micro-architectural enhancements in each new gen-
eration of processors. However, the increasing complexity
of modern architectures has direct consequence on the pro-
cess of designing processors. To arrive at optimal design
points, architects are expected to evaluate a large design
space consisting of several micro-architectural parameters
such as cache sizes and associativities, queue sizes, branch
predictor configuration, pipeline depth etc., each with a
wide range of potential settings. Complex interactions be-
tween these parameters make it hard to gain an intuitive un-
derstanding of their impact on performance.

Designers in many disciplines of science and engineer-
ing deal with design complexity by building abstract mod-

els of the system that relate input parameters to the re-
sponse. The models help designers gain a better under-
standing of the system and answer several key questions;
for instance, which input parameters have the largest im-
pact on response? How does a particular parameter interact
with the others? What is the expected benefit of an enhance-
ment? Although there have been several attempts to build
models for processor performance over the past years [6, 9],
they rely on prior knowledge about the significant parame-
ters, fail to model the design space in sufficient detail, and
their validity across a larger design space is unknown.

The aim of our research is to develop empirical mod-
els for processors that characterize the relationship between
processor response and micro-architectural parameters. As
a first step in building such models we quantify the sig-
nificance of micro-architectural parameters and their in-
teractions. Quantifying the interactions between micro-
architectural parameters is important, and is best illustrated
through a simple experiment. We measured the improve-
ment in average instructions issued per cycle (IPC) due to
out-of-order issue over in-order issue for different L1 data
cache configurations. Improvements in IPC for the SPEC
twolf benchmark are plotted in Figure 1. The impact of out-
of-order issue varies with data cache size, and the varia-
tion depends on cache latency. Such significant interactions
need to be included in the model. In this paper, we show
that precise estimates of the significance of all parameters
and interactions can be obtained by building linear regres-
sion models using simulation-based experiments. We show
how the parameters of the regression model, which reflect
the significance of the corresponding terms, can be empiri-
cally computed without any prior knowledge or understand-
ing of processor dynamics. Since these significant factors
have a large impact on performance and are usually small
in number, they are ideal candidates for further analysis.

In this paper, we draw from past research in the field of
design of experiments and linear model construction and
propose an iterative process for constructing accurate re-
gression models of processor performance consisting of all
significant main effects and interaction terms using a rea-

 16KB 32KB 64KB
5

10

15

20

L1 Data Cache Size

P
er

ce
nt

ag
e

IP
C

 Im
pr

ov
em

en
t

1 cycle
2 cycle
3 cycle

Figure 1. IPC performance improvement of
out-of-order issue over in-order issue.

sonable number of simulations. We use this procedure to
build a linear model relating superscalar processor perfor-
mance to 26 key micro-architectural parameters. We also
show how parameters that were originally not a part of the
experiment can be added to the linear model using few ad-
ditional simulations.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the basic concepts of linear regression
models. We describe our iterative procedure for building
the linear model in Section 3, and the experimental frame-
work in Section 4. Section 5 presents the results of model
construction. We present an overview of existing processor
modeling techniques in Section 6 and conclude in Section 7
with a discussion of future work.

2. Linear Regression Models

A regression model is a compact mathematical represen-
tation of the relationship between the response variable and
the input parameters in a given design space [8]. Linear re-
gression models are widely used to obtain estimates of pa-
rameter significance as well as predictions of the response
variable at arbitrary points in the design space. One of the
simpler forms of such models is

�������
	��
 � ��� �
����� 	�� (1)

where � is the dependent or response variable, � � ��������� �!#" are the independent or regressor variables and � is the
residual - the error due to lack of fit. � � is interpreted as
the intercept of the response surface with the y-axis and� � � ���$�%�&� !'" are known as the partial regression co-
efficients. The co-efficient values represent the expected

change in the response � per unit change in

�(�
and indicate

the relative significance of the corresponding terms.
It is often the case that the regressor variables interact

i.e. the effect of a change in

� �
on � depends on the value

of

�*)
. In such cases, the simple model in Eq. 1 is not

sufficient. It is necessary to introduce terms that explicitly
model two-factor interactions as shown below.

�+�,� � 	 �
 � �-� �
� � � 	 �
 � �-� �
) � �/. � �

� 0)1� � �*) 	�� (2)

Eq. 3 represents a complete model that include three-
factor, four-factor and all higher order interactions. There
are 2 � terms in this model and an equal number of unknown
regression co-efficients.

���,�3�
	 �
 � �-� �
����� 	 �
 � �-� �
) � �/. � �

� 0) �����) 	
�
 � ��� �
) � �4. � �
5 �) . � �

� 0) 0 5 ���6�) � 5 	�78717
91989 	:� � 0 ;<0>=>=>= �

� � � ; 78717 � �
(3)

The linear regression models we develop in this paper can
be represented as a sum of ? terms from this complete linear
model, expressed in a generic form as�+�,� � 	:� � � �A@ 	B� ; � �/C 98919 	:� 5ED � � �GF H @ 	�� (4)

where each

� �/I
is a distinct term from the complete model,

and can be single factor, two factor, three factor or of any
higher order. The collection of terms chosen for a given
linear model will be referred to as the model terms.

In matrix terms, Eq. 4 can be written asJK�MLN�O	�� (5)

where � is the vector of regression coefficients and P is the
model matrix. The model matrix has columns correspond-
ing to the regressor variables

� �RQ � ; Q 71787 Q � � , columns for
interaction terms of any order, and a column of ones defin-
ing the intercept.

Our goal in this paper is to accurately estimate all signifi-
cant micro-architectural parameters and interactions affect-
ing processor performance. We achieve this by performing
simulation-based experiments in which the regressor vari-
ables are set to different values and the resulting perfor-
mance metric is fitted as per Eq. 4, minimizing the num-
ber of terms ? and the residual error � simultaneously. As
a by-product, we obtain precise estimates of the partial re-
gression co-efficients and hence estimates and an ordering
of the significant factors and interactions affecting proces-
sor performance.

There are a few guidelines that an architect must keep in
mind while planning and designing the simulation experi-
ments. The guidelines help in the selection of the response

variable, the set of factors to be included in the experiment,
their ranges and the levels at which each factor is varied
during the experiments.

Factor selection: A designer must initially identify a set
of factors that can potentially influence the system response.
For our experiments, we assume no prior knowledge of fac-
tor effects and select factors conservatively i.e. factors are
included in the experiments even though their impact on
performance may not be significant.

Factor ranges and levels: The choice of factor ranges
and levels is primarily governed by technological con-
straints and the objective of the experiment. If the primary
objective is to determine significant coefficients in a linear
model, as is the case with our study, wide factor ranges are
preferred. We choose a range consisting of values just lower
and higher than potential factor settings under current tech-
nology. During our experiments, each factor is varied at two
levels (encoded as -1 and 1) corresponding to the low and
high value of its range.

Response variable and output transformations: Our sim-
ulator reports simulated processor performance measured in
IPC. However, to build a linear model, it is often beneficial
to use a transformation of the response variable instead of
the response variable itself [8]. Such transformations might
result in response surfaces that are more linear and easier
to fit. We evaluate a family of such transformations in the
context of processor modeling in the following section.

2.1. A Case Study on Building a Linear Model

We illustrate our approach by building a linear regres-
sion model that relates the IPC of SPEC CPU2000 integer
benchmarks to six micro-architectural parameters – namely
the pipeline depth, reorder buffer size, issue queue size, L2
cache size, out-of-order capability, and the memory config-
uration. We limit the number of factors to six so that all
regression co-efficients in the complete linear model can be
exactly determined using a reasonable number of simula-
tions. The factor ranges were chosen based on experimental
design guidelines. During the experiment, simulations were
conducted for the 2TS possible combinations of factor levels
and the regression co-efficients were obtained by solving
Eq. 3 for the measured IPC. The experiment led to the fol-
lowing observations.

Output transformations: We measured the effect of
output transformations on the accuracy of linear mod-
els. We considered a family of transformations �VU QXW �Y 2 Q Y � Q Y[Z 7 \ Q Z 7>\ Q � Q 2 and]6^`_ba �*c as potential candidates.
For each transformation, we computed the regression coef-
ficients and sorted them in decreasing order of magnitude.
We then built linear models incorporating the first ? terms,
for different values of ? and used the models to predict
the IPC of 64 processor configurations mentioned above.
We then computed the residuals by subtracting the actual
IPC from the predicted IPC and used the maximum residual

Terms
intercept 1.230
pipe depth -0.566
ROB size -0.480
pipe depth*ROB size 0.378
IQ size -0.347
ROB size*IQ size 0.289
pipe depth*IQ size 0.274
pipe depth*ROB size*IQ size -0.219
mem config -0.037
L2 size -0.033
issue order -0.026
L2 size*mem config 0.023
ROB size*issue order -0.015
pipe depth*issue order -0.009
IQ size*issue order -0.007
pipe depth*ROB size*IQ size*L2 size 0.006

Table 1. The most significant terms from the
6-factor model for the weighted mean CPI of
benchmarks. * denotes interaction.

value as an indicator of the accuracy of the model.
Figure 2 plots the maximum residual value against the

number of terms incorporated in the model. We observe that
for all output transformations, the maximum residual re-
duces to acceptable levels even when many terms have been
excluded from the models. Further, the inverse transforma-
tion (� D �) results in the lowest maximum residuals. We ob-
serve similar behavior for all benchmarks. Hence, using the
inverse transformation allows the construction of accurate
linear models with the least number of terms. Note that the
inverse transformation of IPC results in the CPI metric. CPI
is an intuitive metric expressible as a dot product of event
frequencies and event penalties within a processor [2] and
it is most amenable for linear model construction. We use
CPI as the performance metric in the rest of this paper.

Sparsity of effects: Our experiment reveals that proces-
sors exhibit the principle of sparsity of effects — system
response is largely governed by a few main factors and low
order interactions and the influence of higher order inter-
actions on response is marginal. As a consequence, terms
corresponding to higher order interactions can be excluded
from the model. Table 1 lists the

�`d
terms, out of the

dRe
terms in our experiment, that we identified for inclusion in a
simplified model of the processor’s CPI performance. This
observed sparsity of significant effects has a large bearing
on the feasibility of our simulation-based model building
process. We discuss this further in section 2.2.

Significance of factors: Table 1 shows the most signifi-
cant factors and interactions in our regression model. Some
of the two-factor interaction terms are also critical, as is the
three-factor interaction between pipeline depth, ROB size
and issue queue size. These observations highlight the im-

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Terms Included in Linear Model

M
ax

im
um

 E
rr

or
 o

f P
re

di
ct

ed
 IP

C

y−2

y−1

y−0.5

log(y)
y0.5

y
y2

(a) gcc

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Terms Included in Linear Model

M
ax

im
um

 E
rr

or
 o

f P
re

di
ct

ed
 IP

C

y−2

y−1

y−0.5

log(y)
y0.5

y
y2

(b) vortex

Figure 2. Number of terms required in linear model under different data transformations.

portance of incorporating second and third order interac-
tions in models.

2.2. Linear Models Incorporating All Factors

Our aim is to build a linear model involving all processor
parameters. For this purpose it is infeasible to experiment
with all combinations of factor levels as was done in the
previous section. However, sparsity of effects makes it pos-
sible to have accurate and compact linear models of the type
specified in Eq. 4 incorporating only significant effects.
Coefficients of the ? most significant parameters can usu-
ally be estimated from processor’s response at n different
factor level combinations using least square fitting, wherefhg ? and fji�i 2 � . The least square estimates of the k-
dimensional coefficient vector �,� a ��� Q � � 7/7 Q � 5`D �) in Eq.
5 is k�'� a L&lGLOc D(m LOl4J (6)

where P is the model matrix for the experimented factor
settings. The variance of the error term in Eq. 5 can be
estimated as no ; �%pMq� ��� a � � Y n� � cX;f Y ? (7)

where

n�r� P n� is the fitted response. This least square
fitting method provides useful approximations with simula-
tions reduced close to the number of significant effects.

The coefficients computed as above are only estimates of
the actual linear model coefficients. However, we can com-
pute a bound on this error. Under the simplifying assump-
tion that errors due to non-incorporated terms are normally
distributed, a

� ZTZ a � Yts c percent confidence error bound for�) is � �) Y n�) �vu WXwyx ;10 q Db5*z {
)|) no ; (8)

where W}wyx ;10 q Db5 is the upper s�~ 2 percentage point of the t
distribution with f Y ? degrees of freedom, and {)|) is thea/� Q � c U�� entry of a�P l P c D � matrix [8]. It follows that the
accuracy of our estimates depend on:� Error Degree of Freedom:.

Increasing f Y ? , the degree of freedom for the error
term, reduces W}w�x ;<0 q D(5 in Eq. 8. However, this reduc-
tion decreases as f Y ? is increased beyond a point.� Experimental Design:

The specific set of factor level combinations used for
the experiment determine the {)|) term in Eq. 8. Hence
appropriate experimental designs are critical to achiev-
ing good accuracy. We chose D-optimal experimen-
tal designs[8], which maximize det(X’X) for a set of
model terms, for our model construction process[5].� Error Variance:

Minimization of the error variance,

no ; , in Eq. 8 re-
quires all significant terms to be in the model. How-
ever, since the significant terms are not known a priori
they need to be identified from experimental data. We
next describe the procedure we use to identify and in-
clude all significant effects.

3. Procedure for Model Construction

Our aim in model construction is to obtain accurate esti-
mates of all significant coefficients with minimum number
of simulations. Since the significant effects are not known a
priori, this information has to be extracted from experimen-
tal data. However, designing the best experimental strategy
requires knowledge of significant terms; D-optimal designs
are optimized for an identified set of model terms. Hence,

in order to obtain the best experimental designs having min-
imal simulations we use an iterative procedure where initial
small D-optimal designs are used to learn significant effects,
and this information is used to guide further simulation us-
ing augmented D-optimal designs, until an adequate model
is achieved. Each of the required steps and the complete
iterative procedure are described in the following subsec-
tions.

3.1. Obtaining the Best Model

Given an experimental design and simulation results we
have to determine the best model that fits the data well.
We use Akaike’s Information Criteria (AIC) [11] to select a
model that fits well and has a minimum number of parame-
ters, resulting in the most significant effects being included
in the model, and thus reducing the model over-fitting prob-
lem. In our procedure we use the corrected version of ��� {
(��� {��) developed for small experimental samples [4] since
it allows us to keep the simulation count low. ��� {[� for
linear regression models can be written as

��� {�� ��f]�^`_(a no ; c�	 2T? 	 23a6? 	
� c a�? 	 2 ca f Y ? c 	�� ^ f�� W�� f W (9)

where f is the number of simulations, k is the number of
terms in the linear model, and

no ; is the error variance.
This measure accounts for model accuracy using error vari-
ance, and model simplicity using the count of model terms.
Amongst several models possible for fixed experimental
data, the best model has the lowest ��� { � [11].

Arriving at the best model involves searching for the set
of model terms producing the lowest ��� {�� . Since an ex-
haustive search of all model combinations is computation-
ally expensive we used a procedure which stepwise refines
an initial model. This procedure is based on our observa-
tion that the more significant higher order terms are typi-
cally composed of the significant lower order terms and is
detailed in [5].

3.2. Determining Model Adequacy

We use the maximum error of estimated coefficients
as the main measure of model adequacy, since our
aim is to get accurate estimates of all significant ef-
fects. This error bound can be obtained from Eq. 8 asWXwyx ;10 q Db5v�

no ; ! � � {)|) , where ! � � {)|) is the maximum{)|) value of the model. We follow the iterative model con-
struction scheme until a prescribed maximum bound on er-
ror is achieved. We also check for violations of the basic
assumptions in estimating regression coefficients and their
bounds by examining the residuals.

3.3. The Iterative Procedure

Our model construction procedure takes as inputs ! (the
number of experimented factors), � (the prescribed maxi-
mum error), and s (the confidence level required on the er-
ror), and outputs Error Bounded Linear Models (EBLMs).
We describe it below.

1. Design an initial D-optimal experimental design �
with 2 ! runs for an initial linear model having all main
effects. Obtain the best linear model � .

2. Measure the error variance

no ; of model � , and the
maximum error in estimated coefficients. Stop and fi-
nalize the model if the error is less than � , and residual
plots are free from gross deviations.

3. Augment the experimental design � with additional
D-optimal experiments ensuring the following: (i) the
new design is D-optimal for a model containing union
of terms in � and the main effect terms, (ii) there are
sufficient number of additional experiments such that
the maximum {)|) value is reduced by half.

4. Obtain the best linear model � for the new augmented
design � . Go to step 2.

The above procedure can be used to obtain linear models
at any specified level of accuracy. We implemented this pro-
cedure as a MATLAB script which takes the required inputs
and completed simulation experimental data, and provides
either the accurate coefficient estimates or a prescription for
further experimentation.

4. Experimental Framework

4.1. Processor Simulator and Benchmarks

We developed and validated a detailed superscalar pro-
cessor simulator for use in our experimentation. Our simu-
lation framework - FAFSIM - models pipelined, multiple-
issue, dynamically scheduled, speculative execution pro-
cessors. It models all the performance critical micro-
architectural events and structures in superscalar proces-
sors and is detailed in [5]. The pipeline, caches, branch
direction and target predictors, various micro-architectural
queues, functional units, DRAM device timing, queuing
at the memory controller, and contention for the memory
bus are all modeled. We verified the functionality of each
component, and in addition validated the summary statis-
tics against another similarly configured verified simulator,
alphasim [1]. This validation was done for several design
points to verify the simulator’s accuracy across the design
space.

We used our simulator to run all SPEC CPU2000 integer
benchmarks using the lgred data set in MinneSPEC [7] re-
duced data sets. This was done using traces generated with

Pipeline Depth pipe depth
Reorder Buffer Size ROB size
Issue Queue Size IQ size
L2 Cache Size L2 size
L2 Cache Associativity L2 assoc
L2 Cache Block Size L2 bsize
L2 Cache Latency L2 lat
Instruction Cache Size il1 size
Instruction Cache Associativity il1 assoc
Instruction Cache Block Size il1 bsize
Instruction Cache Latency il1 lat
Data Cache Size dl1 size
Data Cache Associativity dl1 assoc
Data Cache Block Size dl1 bsize
Data Cache Latency dl1 lat
FTB entries ftb ent
FTB associativity ftb assoc
Operation Latency op lat
Issue Order issue order
Load-Store Queue Size LSQ size
Number of Functional Units num units
DRAM Memory Configuration mem config
Predictor Type pred type
Predictor Size pred size
Processor Width width
Return Address Stack Size RAS size

Table 2. Micro-architectural parameters.

IBM PowerPC executables, compiled with xlc compiler ap-
plying the -O3 option.

4.2. Micro-architectural Parameters and Ranges

We experimented with the 26 key micro-architectural pa-
rameters listed in Table 2. The range of parameters are cho-
sen to include the complete range of settings possible under
current technology, and is listed in Table 3. Some param-
eters like issue order have only two potential settings and
the low and high values correspond to these. Some of the
parameters - operation latency, number of functional units,
and the DRAM configuration - combine several parameters
for ease of experimentation and their settings are reported
in Tables 4, 5 and 6.

5. Results

5.1. Results of Model Construction

Table 7 presents the most significant terms in the con-
structed error bounded linear models. The significance or-
dering in the table is based on an EBLM of the weighted
mean CPI response computed from the EBLMs constructed
for all benchmarks. Apart from providing an ordering of the
performance significance of effects, the models also provide

Parameter Low Value High Value
pipe depth 24 7
ROB size 24 128
IQ size (1/4)* �3� �*�
L2 size 256KB 8MB
L2 assoc 1 8
L2 bsize 64 256
L2 lat 20 5
il1 size 8KB 128KB
il1 assoc 1 8
il1 bsize 16 64
il1 lat 2 1
dl1 size 8KB 128KB
dl1 assoc 1 8
dl1 bsize 16 64
dl1 lat 4 1
ftb ent 128 8192
ftb assoc 1 8
issue order In-order Out-of-order
LSQ size (1/4)* � � � �
pred type gshare perceptron
pred size 2KB 16KB
width 4 8
RAS size 4 64

Table 3. Parameter ranges.

Functional unit Settings
Low Width High Width
Low High Low High

Integer ALU 1 4 2 8
Integer mult/div 1 2 1 4
Float 1 4 2 8
Float mult/div 1 2 1 4
Branch 1 2 1 4
Load/store 1 2 1 4

Table 4. Number of functional units (num units).

Operation Latency Func. Unit
Low High

Int. arith./logic 2 1 Integer ALU
Int. mult. 15 2 Integer mult/div
Simple float 5 1 Float
Float. mult. 5 2 Float mult/div
Float. div. 35 10 Float mult/div
Branch 3 1 Branch
Load Cache latency Load/store
Store NIL Load/store

Table 5. Operation latencies (op lat).

Terms Weighted Mean crafty eon gap gcc gzip vortex
intercept 1.974 2.279 2.085 2.325 2.304 1.664 1.885
pipe depth -0.517 -0.563 -0.501 -0.542 -0.574 -0.494 -0.511
ROB size -0.444 -0.399 -0.477 -0.408 -0.385 -0.456 -0.458
pipe depth*ROB size 0.346 0.317 0.351 0.317 0.315 0.367 0.317
IQ size -0.280 -0.291 -0.247 -0.283 -0.270 -0.307 -0.302
ROB size*IQ size 0.264 0.268 0.233 0.274 0.270 0.283 0.260
L2 lat -0.233 -0.409 -0.312 -0.195 -0.314 -0.113 -0.249
pipe depth*IQ size 0.232 0.227 0.208 0.277 0.221 0.251 0.236
pipe depth*ROB size*IQ size -0.209 -0.216 -0.191 -0.156 -0.209 -0.227 -0.202
il1 size -0.177 -0.466 -0.287 -0.164 -0.294 0.014 -0.319
dl1 lat -0.153 -0.081 -0.150 -0.201 -0.170 -0.152 -0.126
il1 size*L2 lat 0.120 0.293 0.210 0.107 0.168 – 0.175
dl1 size -0.100 -0.102 -0.093 -0.039 -0.124 -0.102 -0.060
op lat -0.092 -0.095 -0.130 -0.113 -0.077 -0.072 -0.047
issue order -0.082 -0.060 -0.066 -0.111 -0.056 -0.113 -0.042
il1 bsize -0.079 -0.222 -0.170 -0.007 -0.099 0.011 -0.079
ftb ent -0.075 -0.239 -0.082 -0.068 -0.160 – -0.151
il1 size*il1 bsize 0.074 0.206 0.162 – 0.072 – 0.071
L2 size -0.071 -0.070 -0.013 -0.155 -0.134 -0.076 -0.078
dl1 size*L2 lat 0.064 0.049 0.066 0.017 0.057 0.077 0.028
L2 size*mem config 0.059 0.050 – 0.201 0.099 0.069 0.092
dl1 assoc -0.059 -0.041 -0.065 -0.158 -0.035 -0.059 -0.062
il1 bsize*L2 lat 0.059 0.156 0.137 – 0.053 – 0.031
mem config -0.058 -0.053 – -0.260 -0.100 -0.063 -0.069
il1 size*il1 bsize*L2 lat -0.053 -0.140 -0.109 – -0.063 – -0.040
ROB size*LSQ size 0.052 0.034 0.082 – 0.038 0.042 0.061
IQ size*LSQ size -0.051 -0.034 -0.085 – -0.021 -0.046 -0.051
LSQ size -0.049 -0.038 -0.070 -0.060 -0.023 -0.050 -0.023
pipe depth*LSQ size 0.045 0.033 0.076 – 0.017 0.041 0.044
L2 assoc -0.044 -0.030 -0.019 -0.068 -0.053 -0.054 -0.085
ROB size*IQ size*LSQ size 0.043 0.030 0.055 – 0.029 0.046 0.049
num units -0.042 -0.047 -0.061 -0.014 -0.034 -0.036 -0.016
ROB size*issue order -0.038 -0.043 -0.036 -0.056 -0.022 -0.049 -0.022
pipe depth*ROB size*LSQ size -0.037 -0.024 -0.060 – -0.030 -0.027 -0.039
L2 size*L2 assoc 0.036 0.035 – 0.046 0.058 0.049 0.058
L2 assoc*mem config 0.034 0.024 – 0.060 0.052 0.047 0.057
pipe depth*IQ size*LSQ size 0.034 – 0.071 – 0.002 0.029 0.027
pipe depth*ROB size*IQ size*LSQ size -0.031 – -0.044 – -0.017 -0.034 -0.033
icache assoc -0.028 -0.074 -0.025 -0.088 -0.052 – -0.089
L2 size*L2 assoc*mem config -0.028 -0.017 – – -0.046 -0.031 -0.048
issue order*dl1 lat 0.027 0.013 – – 0.050 0.038 0.033
issue order*dl1 size 0.024 0.012 0.048 – 0.002 0.022 –

Table 7. The most significant terms and their co-efficients in the EBLMs of the CPI performance
response of superscalar processors.

Diagnostics crafty eon gap gcc gzip vortex
Number of simulations 364 217 158 287 222 222
Number of terms 193 108 93 139 94 119
Error variance 0.001 0.002 0.001 0.002 0.001 0.002
Max. ���6� 0.007 0.011 0.019 0.008 0.009 0.012
Error bound 0.006 0.009 0.008 0.008 0.006 0.008
(95% confidence)

Table 8. Diagnostics of the EBLMs with error bound of 0.01 at 95% confidence level.

DRAM parameter Low High
CPU clock:DRAM clock ratio 24 6
Module read latency 5 3
Module burst length 4 8
Module page size 512 bytes
Bus width in bytes 8 16
CPU clock:Bus clock ratio 12 3
No. of DRAM channels 1 2
No. of banks 1 8

Table 6. mem config parameter settings.

information on the interdependence of parameter settings
on processor response. For example, the terms involving
issue order provide the complete set of parameters which
determine the performance variation of out-of-order issue.
From the wealth of information provided by these EBLMs
we summarize a few important observations below:� Pipeline depth, reorder buffer size, and issue queue

size are the three most important parameters influenc-
ing CPI performance of superscalar processors. The
two-factor interactions, and the three-factor interac-
tion involving these three parameters are highly sig-
nificant. The load store queue size and its interactions
with these three parameters are also significant, though
at a lower level. Hence, a processor architect should si-
multaneously tune these parameters for optimum sys-
tem performance.� L2 cache size and latency have high impact on perfor-
mance. L2 latency interacts with instruction cache size
and block size, and with data cache size and associa-
tivity. L2 cache size interacts with instruction cache
size and DRAM configuration. Since for a given im-
plementation technology, L2 latency is primarily deter-
mined by L2 cache size, the processor architect should
choose an optimal L2 cache size in conjunction with
these interacting parameters.� The performance with out-of-order issue is largely de-
pendent on reorder buffer size, data cache size, and
data cache latency.� Operation latency has high significance, but it has no
significant interactions. Hence, there is performance
to be gained by reducing operation latency irrespective
of the other processor settings.� Amongst the predictor related parameters, the number
of fetch target buffer (FTB) entries has the highest sig-
nificance and the branch predictor size and type are
less significant.� The processor width has negligible impact on perfor-
mance. However, the functional unit settings chosen

for a given width is important. Hence, providing an ad-
equate number of functional units is likely to be more
beneficial than increasing the issue width beyond 4 in-
structions.

Our error bounding procedure makes it feasible to pro-
duce a complete list of such effects to any desired level of
significance.

5.2. Diagnostics of Model Construction

Our model construction process constructs the EBLMs
with number of simulations close to the minimum required.
Table 8 reports the number of simulations and other diag-
nostics of the construction process of the EBLMs reported
in the previous section. Note that the simulation count is ap-
proximately twice the number of extracted significant terms
for each model. The table also reports the maximum {)|)
values for constructed experimental designs, the error vari-
ance of the EBLMs, and the actual error bounds achieved
by the models.

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Simulations

E
rr

or
 B

ou
nd

 o
f C

oe
ffi

ci
en

t E
st

im
at

es

gcc
vortex

Figure 3. Tightening of error bounds.

Achieving better error bounds is possible at the cost
of increased simulation. Figure 3 plots simulation counts
against achieved error bounds. The error bounds globally
decrease with increased simulation, though there are some
local increases in the estimated error bounds. While we
have used an error bound of Z 7 Z � to obtain our EBLMs, bet-
ter bounds are necessary to accurately estimate effects with
values near and less than Z 7 Z � . In order to understand ac-
tual CPI variations caused by effects at this range, we stud-
ied them with all other parameters kept at suitably chosen
center points. We observe that they contribute less than 2%
of {�� � variation. Hence, error bounds smaller than Z 7 Z �
are necessary only for studying performance variations at a
finer level. The error bounding procedure can be used to
construct models at any level of accuracy.

Benchmark gcc vortex
Model type �[���� ¡�� ¡���¢�£ ¤T�¦¥ �[���� ¡�� ¡���¢�£ ¤T��¥
Number of simulations 287 56 56 222 56 56
Number of model terms 139 26 22 119 26 24
Error bound 0.008 0.231 0.072 0.008 0.238 0.078
(95% confidence)

Table 9. Chief characteristics of the linear models constructed using different procedures.

eon gzip vortex
Additional simulations 70 40 64
Error Bound 0.010 0.006 0.009

Table 10. The number of additional simula-
tions to include a new factor in model.

Terms eon gzip vortex
il1 bsize*across taken -0.023 – -0.039
L2 assoc*across taken -0.017 – –
ROB size*across taken – – 0.025
ftb ent*across taken – – -0.021
ftb assoc*across taken – – 0.017
across taken 0.010 – 0.005

Table 11. The additional terms in new model
involving fetch across taken branch.

In other work [12, 13], foldover Plackett-Burman exper-
imental designs have been used to obtain a significance or-
dering of micro-architectural parameters. Hence, we next
compared the simulation costs and estimation error of using
such designs against that of our approach. We ran simu-
lations for the foldover Plackett-Burman designs and com-
puted the coefficients in a main effects model as done in
[12] (��§ model), and also extracted the best model from
the results using the ��� {�� based model extraction pro-
cedure (��§ ~ ��� { � model). Table 9 presents the simula-
tion count, number of model terms, and error bounds for��§ , ��§ ~ ��� { � , and ¨ § �
© for gcc and vortex. Though
the required simulation count is approximately four times
lower for ��§ and ��§ ~ ��� { � , the achieved error bounds
are much higher. ��§ ~ ��� { � achieves lower error bounds
with a small number of simulations. However, these bounds
still preclude the correct estimation of many significant ef-
fects. More simulations are clearly required to extract all
the significant effects.

5.3. Evaluating Enhancements

We used our error bounding procedure to rebuild the
model after incorporating a micro-architectural enhance-
ment. An additional parameter was introduced into the

model, with the absence of the enhancement as its low value
and its presence as the high value. We conduct augmented
experiments using our error bounding procedure, after en-
suring that the base model without the parameter is sta-
ble - i.e. increased simulations do not increase the error
bound. The augmented experiments typically have the en-
hancement, and our procedure uses the result data from the
additional simulations to extract the significant parameter
estimates under the enhancement. It produces a new set of
significant terms and estimates, and typically some terms
with the new factor.

The enhancement we examined is the capability to fetch
beyond taken branches up to the processor width, which was
the motivation behind the design of trace caches [10]. Table
10 gives the number of additional simulations that were re-
quired to produce the 27 factor model with coefficient error
bounds less than 0.01. The number of experiments is always
less than thrice the total number of experimented factors.
Table 11 gives the terms involving the new factor which ac-
count for the performance variations of the enhancement.
The instruction cache block size has the highest variational
effect for both eon and vortex. The main effect term has
low significance, showing that the benefit of this optimiza-
tion is heavily dependent on other parameter settings. gzip’s
performance is almost unaffected by the enhancement.

6. Related Work

Much of the early research in the area of modeling and
analysis of processors focused on deriving performance
limits imposed by programming model constraints such as
data and control dependencies while assuming infinite hard-
ware resources. Subsequent modeling techniques have used
these limits to estimate performance for realistic processor
configurations by accounting for slowdowns due to vari-
ous hardware limitations [6, 9]. For instance, Karkhanis
and Smith [6] propose an analytical model in which perfor-
mance is composed of two components, a constant ideal-
istic throughput in the absence of any miss events and the
loss in throughput due to branch mispredictions and cache
misses. The impact of individual miss events on perfor-
mance is modeled and estimates of the loss in throughput
are obtained using various branch misprediction and cache
miss statistics collected via trace driven simulations. In an-
other approach, Fields et al. [3] model program execution

using a dynamic dependence graph and measure the signif-
icance of micro-architectural events and their interactions
by the change in the length of the critical path through the
dependence graph brought by idealizing these events. Per-
haps the approach closest to our work is the experimental
methodology proposed by Yi et al. [12, 13]. Here, the
significance of the main micro-architectural parameters is
obtained using experiments based on the Plackett-Burman
design.

Our approach overcomes several drawbacks of these
techniques. 1) In existing modeling schemes, the designer
is assumed to have prior knowledge or must make simpli-
fying assumptions about the relative significance of micro-
architectural parameters and their interactions. For in-
stance, experimentation based on the PB design inherently
assumes that all parameter interactions are negligible, and
Karkhanis and Smith [6] assume a set of significant miss
events. Our procedure for building linear models does not
require any prior knowledge or assumptions; all parameters
and interactions are assumed to be significant until experi-
ments prove otherwise. 2) Instead of modeling the effect of
micro-architectural events, our approach directly captures
the impact of individual micro-architectural parameters on
performance. The model therefore enhances the designer’s
understanding of the influence of hardware changes on per-
formance. 3) Adding parameters to the model is a matter of
a few additional simulations.

7. Conclusion and Directions of Work

We have developed an algorithmic procedure to de-
termine accurate estimates of all significant micro-
architectural parameters and interactions using data from a
reasonable number of simulations. This procedure builds
linear models relating a processor’s performance response
to the micro-architectural parameters. Further, it allows the
impact of micro-architectural enhancements to be included
in the model with a small number of additional simulations.
Thus, our procedure provides a cost effective way to ex-
periment with all relevant parameters. The constructed er-
ror bounded linear models explain the variability in perfor-
mance of micro-architectural techniques.

Our use of the reduced MinneSPEC data inputs, moti-
vated by the need to reduce simulation time, does influence
the estimated coefficients and especially the data memory
hierarchy related coefficients [13]. We have used the re-
duced inputs since our primary aim was to show the effi-
cacy of the linear model construction procedure. The same
procedure can be used to build models for full or sampled
simulations using realistic data inputs.

The constructed linear models can be used to predict the
response at other parameter settings. We are continuing our
work to use these models to predict the response at combi-
nations of any chosen parameter levels in the experimented

range.

References

[1] R. Desikan, D. Burger, and S. W. Keckler. Measuring Ex-
perimental Error in Microprocessor Simulation. In Proceed-
ings of 28th Annual International Symposium on Computer
Architecture, July 2001.

[2] P. G. Emma. Understanding Some Simple Processor-
Performance Limits. IBM Journal of Research and Devel-
opment, 41(3), 1997.

[3] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Using
Interaction Costs for Microarchitectural Bottleneck Analy-
sis. In Proceedings of the 36th International Symposium on
Microarchitecture, December 2003.

[4] C. M Hurvich and C-L Tsai. Regression and Time Series
Model Selection in Small Samples. Biometrika, 76:297–
307, 1989.

[5] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Con-
struction and Use of Linear Regression Models for Proces-
sor Performance Analysis. Technical Report IISc-CSA-TR-
2005-16, Department of Computer Science & Automation,
Indian Institute of Science, November 2005.

[6] T. Karkhanis and J. E. Smith. A First-order Model of Super-
scalar Processors. In Proceedings of the 31st Annual Inter-
national Symposium on Computer Architecture, June 2004.

[7] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new
SPEC Benchmark Workload for Simulation-Based Com-
puter Architecture Research. Computer Architecture Letters,
June 2002.

[8] D. C. Montgomery. Design and Analysis of Experiments.
Wiley, 5th edition, 2001.

[9] D. B. Noonburg and J. P. Shen. Theoretical Modeling of Su-
perscalar Processor Performance. In Proceedings of the 27th
International Symposium on Microarchitecture, December
1994.

[10] E. Rotenberg, S. Bennett, and J. E. Smith. Trace Cache:
A Low Latency Approach to High Bandwidth Instruction
Fetching. In Proceedings of the 29th International Sympo-
sium on Microarchitecture, December 1996.

[11] Y. Sakamoto, M. Ishiguro, and G. Kitagawa. Akaike Infor-
mation Criterion Statistics. Kluwer Academic Publishers,
1987.

[12] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A Statistically
Rigorous Approach for Improving Simulation Methodology.
In Proceedings of the 9th International Symposium on High
Performance Computer Architecture, February 2003.

[13] J. J. Yi, D. J. Lilja, R. Sendag, S. V. Kodakara, and D. M.
Hawkins. Characterizing and Comparing Prevailing Simu-
lation Techniques. In Proceedings of the 11th International
Symposium on High Performance Computer Architecture,
January 2005.

