
Dialog state tracking challenge handbook

Jason D. Williams, Antoine Raux, Deepak Ramachandran, Alan Black

The dialog state tracking challenge (DSTC) is a research community challenge task for accurately

estimating a user's goal in a spoken dialog system

http://research.microsoft.com/en-us/events/dstc/

Background, motivation, and challenge overview
In dialog systems, "state tracking" – sometimes also called "belief tracking" – refers to accurately

estimating the user’s goal as a dialog progresses. Accurate state tracking is desirable because it provides

robustness to errors in speech recognition, and helps reduce ambiguity inherent in language within a

temporal process like dialog. Dialog state tracking is an important problem for both traditional uni-

modal dialog systems, as well as speech-enabled multi-modal dialog systems on mobile devices, on

tablet computers, and in automobiles.

Recently, a host of models have been proposed for dialog state tracking [DSTC position paper].

However, comparisons among models are rare, and different research groups use different data from

disparate domains. Moreover, there is currently no common dataset which enables off-line dialog state

tracking experiments, so newcomers to the area must first collect dialog data (which is expensive and

time-consuming), or resort to simulated dialog data (which can be unreliable). All of these issues hinder

advancing the state-of-the-art.

In this challenge, participants will use a provided set of labeled human-computer dialogs to develop a

dialog state tracking algorithm. Algorithms will then be evaluated on a common set of held-out dialogs,

offline, to enable comparisons [2]. Participants will not need to implement or operate a speech

recognizer, parser, real-time system, or text-to-speech engine. The data for this challenge will be taken

from the Spoken Dialog Challenge [1], which consists of human/machine spoken dialogs with real users

(not usability subjects).

At the start of the challenge – the development phase – participants will be provided with a training set

of transcribed and labeled dialogs. Participants will also be given code that implements the evaluation

measurements. Participants will then have several months to optimize their algorithms.

At the end of the challenge, participants will be given an untranscribed and unlabeled test set, and a

short period to run their algorithm against the test set. Participants will submit their algorithms’ output

to the organizers, who will then perform the evaluation. After the challenge, the test set transcriptions

and labels will be made public.

http://research.microsoft.com/en-us/events/dstc/

The main objective of the challenge is to enable reliable comparisons between different approaches to

dialog state tracking. To date, different algorithms have been tested on different datasets, and few

direct comparisons have been done. The challenge seeks to advance the state-of-the-art by providing a

forum for direct comparisons, in which different algorithms are trained and tested on the same data.

We believe this is the best way to study the relative strengths of the algorithms.

The challenge is structured as an off-line task, in which algorithms are evaluated on a fixed corpus. This

structure provides a low barrier to entry, broadening the audience of potential participants. In practice

however, a dialog state tracker is used in an on-line system, to make (hopefully!) better decisions about

which actions to take. So in a real deployment, we know in advance that the distribution of the training

condition and runtime condition will be different. Thus partitioning a single corpus into a training set

and a test set with the same distributions would fail to capture this difference.

The most robust test of this new tracker would be to re-deploy it and measure quantities like task

completion, accuracy, user satisfaction, etc. However, in place of that, this challenge uses an off-line

evaluation which does account for a strong difference between training and testing by using test sets

which differ in the dialog system used. This design minimizes the chances of over-stating performance

that would result by using train and test data drawn from the same distribution.

In addition, data scarcity is a constant problem with dialog systems. To test this, the test sets will also

explore different amounts of same-system training data: large amounts (1000s of dialogs), small

amounts (100s of dialogs), and none.

Concretely, at the start of the challenge, participants will be provided with:

1. Training data: System log files in a common JSON format [1]

2. Training labels: Utterance transcriptions, and labels indicating user goal

3. The scoring tool that will be used in the evaluation stage

4. A baseline dialog state tracker

5. A bus schedule database covering much of the relevant time period

At the end of the system development period, participants will be provided with test data, consisting of

held-out system log files using the same format. Participants will run their dialog state trackers on this

data, and send the output to the organizers for scoring. After scoring, the test logs will be shared with

all participants.

Participation information
Participation is welcomed by any research team (academia, corporate, non-profit, government).

Members of the organizational committee and advisory committee may also participate.

In general, the identity of participants will not be published or made public. In written results, teams

will be identified as TEAM1, TEAM2, etc. There are 2 exceptions to this: (1) the organizers will verbally

indicate the identities of all teams at the conference/workshop chosen for communicating results

(planned for SigDial 2013); and (2) participants may identify their own team label (eg TEAM5), in

publications or presentations, if they desire, but may not identify the identities of other teams.

Each participating team may enter up to 5 algorithms – i.e., each team may submit up to 5 sets of

results.

The dialog data used in this challenge has been contributed by several researchers, and it is likely those

researchers will also be interested in this challenge. As such it is not realistic to ensure that no

participant has access to any of the test sets. Participants who may have access to a testing set agree

that they will in no way use the testing set in the development of their algorithms. Further, when

reporting results, the organizers will note which participants produced which test sets. Thus both

participants and corpora will be anonymized, with corpora being labeled as train1, test2, etc. and

participants labeled as TEAM1, TEAM2, etc.

Announcements and discussion about the challenge will be conducted on the group mailing list.

Participants should be on the mailing list. Instructions for joining the mailing list can be found on the

DSTC homepage: http://research.microsoft.com/en-us/events/dstc/

Overview of data, datasets, and labels
DSTC log data is taken from different spoken dialog systems which provide bus timetables for

Pittsburgh, Pennsylvania, USA. The dialog systems were fielded by three different groups, here called

teams A, B, and C. These names have been anonymized since some of these deployments were done as

part of the Spoken Dialog Challenge [3].

An example conversation is provided below, from a Group B dialog system. The corresponding dialog

acts are also provided. The full dialog act taxonomy is given in the appendix.

System: East Pittsburg Bus Schedules. Say a bus route, like 28X, or say I'm not sure.

hello(), request(route), example(route=28x), example(route=dont_know)

User: 61A

SLU: 0.77 inform(route=61a)

 0.12 inform(route=61)

 0.01 inform(route=61d)

System: Okay, 61A. To change, say go back. Where are you leaving from?

 impl-conf(route=61a), example(act=goback), request(from)

User: Downtown

SLU: 0.59 inform(from.desc=downtown)

 0.10 inform(from.desc=from downtown)

System: Okay, downtown. You can always say go back. And where are you going to?

 impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

SLU: 0.25 inform(to.desc=pittsburgh)

 0.20 inform(to.desc=east pittsburgh)

http://research.microsoft.com/en-us/events/dstc/

 0.01 inform(to.desc=to pittsburgh)

System: Pittsburgh. Is that right?

 expl-conf(to.desc=pittsburgh)

User: No

SLU: 0.71 negate()

 0.07 affirm()

System: Oh, sorry, where are you going to?

 sorry(), request(to)

User: East Pittsburgh

SLU: 0.97 inform(to.desc=east pittsburgh)

System: Okay, East Pittsburgh. Do you want times for the next few buses? Say yes or no.

 impl-confirm(to.desc=east pittsburgh) , expl-confirm(act=want-next-bus),

example(act=affirm), example(act=negate)

User: Yes

SLU: 0.97 affirm()

System: Ok, the next few buses. To change, say go back. At 7:45 PM today, there is a 61 A,

from Fifth Avenue And Market Street, Downtown, arriving Dynamo Alley And Beech

Avenue, In East Pittsburgh, at 8:42 PM. Say repeat, next, previous, or start over.

 impl-conf(act=want-next-bus), example(act=goback),

schedule(result.from.time.hour=7, result.from.time.minute=45,

result.from.time.ampm=pm, result.from.date.day=today, result.route=61a,

result.from.desc=fifth avenue and market street, downtown, result.to.desc=dynamo

alley and beech avenue, in east pittsburgh, result.to.time.hour=8,

result.to.time.minute=42, result.to.time.ampm=pm), example(act=repeat),

example(act=nextbus), example(act=prevbus), example(act=restart)

User: [hang up]

The user’s speech is converted into words by an automatic speech recognizer (ASR), and these words are

converted into meaning by a spoken language understanding (SLU) processes. These processes yield

multiple hypotheses, so for each user turn the dialog tracker receives zero or more SLU hypotheses,

each with a local confidence score.

Each SLU hypothesis and each system output can be described as one or more dialog acts, such as

request(to) or inform(to.desc=east pittsburgh). Each dialog act has a type (eg request) and zero or more

slot/value pairs (eg the slot to.desc and the value east pittsburgh).

Tracker output
The objective of a dialog state tracker is to correctly identify the user’s goal. In this challenge we will

exploit two properties of the domain to make the challenge efficient.

First, in this domain, the user’s goal is generally fixed. The user enters the call with a specific goal in

mind. Further, when goal changes do occur, they are usually explicitly marked: since the system first

collects information, and then provides bus information, if the user wishes to change their goal, they

need to start over from the beginning. These “start over” transitions are obvious in the logs.

Second, in this domain, the user’s goal is an assignment of values to various slots. There are generally a

large number of values for each slot, and the coverage of N-best lists is generally good, so the likelihood

of a tracker correctly guessing a value which has not been observed on an N-Best list is very small. This

means that we can limit consideration of goals to slots and values that have been observed in a dialog

act in an SLU result.

By exploiting these two aspects of this domain, the task of a dialog state tracker in this challenge can be

defined as assigning a score to each observed dialog act. In other words, the tracker will output a list of

observed slot/value pairs, with a score in the range [0,1] for each pointer. The sum of scores is limited

to 1.0, and 1.0 – (sum of scores) is defined as the score of a special value that means the user’s goal has

not yet been observed on any SLU result. The scores themselves need not be probability, but must obey

these conventions (and one of the evaluation metrics measures the quality of score as a probability).

The set of observed dialog acts is cleared each time the system “starts over” from the beginning.

Labels indicate whether each dialog act is correct. Labels are assigned by people who look at the words

spoken by the user, dialog context, and a recognized dialog act, and decide whether the dialog act

correctly captures all of the information relevant to that slot. A state tracker’s output can then be

evaluated by looking up the correctness of each of the dialog acts it refers to. Note there is no

distinction between utterances which are in-domain or out-of-domain – labeling merely assigns binary

labels to recognized dialog acts.

In this challenge there are 5 high-level slots: route, from, to, date, and time. The from and to slots are

sub-divided into from.desc, from.neighborhood, from.monument, and similarly for to, so in total there

are 9 slots which are evaluated. This challenge will consider both marginal and joint representations of

dialog states, since both are useful for making dialog decisions. In the joint list, each state hypothesis is

an assignment of values to all slots. Thus the tracker will output 9 marginal lists and 1 joint list, which

are all evaluated separately.

Evaluation metrics
There are a variety of aspects of tracker performance that will be measured.

1. Hypothesis accuracy: Percent of turns in which the tracker’s 1-best hypothesis is correct. This

measures raw 1-best accuracy

2. Mean reciprocal rank: Average of 1/R, where R is the rank of the first correct hypothesis. This

measures the quality of the ranking

3. ROC performance: This includes several metrics that assess the discrimination of the top

hypothesis’s score.

a. Equal error rate: The sum of false accepts (FAs) and false rejects (FRs) where FA=FR

b. Correct accept 5: The percent correct accepts (CAs) when there are at most 5% False

Accepts (FAs)

c. Correct accept 10: The percent CAs when there are at most 10% FAs

d. Correct accept 20: The percent CAs when there are at most 20% FAs

4. Brier score (L2 norm): The L2 norm between the vector of scores output by dialog state tracker

and a vector with 1 in the position of the correct item, and 0 elsewhere. If there are multiple

correct items, the correct item which has been assigned the highest score is chosen. This

measures the calibration of the scores – ie the extent to which they are good probabilities.

5. Average score: This measures the average score assigned to the correct item.

In this challenge task, each of these will be measured and reported separately for each concept, and also

jointly for all concepts.

When measuring these metrics, which turns will be included? There are (at least) three reasonable

“schedules” for determining which turns to include in each evaluation:

1. Schedule 1: Include all turns (regardless of dialog context).

2. Schedule 2: Include a turn for a given concept only if that concept either appears on the SLU N-

Best list in that turn, or if the system’s action references that concept in that turn (eg an explicit

or implicit confirmation)

3. Schedule 3: Include only the turn before the system starts over from the beginning, and the last

turn of the dialog.

Schedule 1 allows for a state tracker to change its hypothesis about a user goal which isn’t in focus, and

still receive credit. For example, new information about the location might change the hypothesis for

the route. However, schedule 1 makes comparisons across concepts invalid: concepts which appear at

the beginning of the dialog will be measured more times than concepts at the end of the dialog. Also,

dialogs with more turns will have a greater effect than dialogs with fewer turns.

Schedule 2 makes comparisons across concepts valid, since concepts are only measured when they are

in focus; however, it does not allow for a state tracker to receive credit for new guesses about concepts

which aren’t in focus. As with Schedule 1, dialogs with more turns will have a greater effect than dialogs

with fewer turns.

In schedule 3, each “mini-dialog” carries the same weight. However schedule 3 doesn’t attempt to

measure correctness within the mini-dialog at all.

All metrics will be reported on all three schedules. This is a large set of metrics to report! The reason for

reporting a large set is that different metrics are important to different downstream processes. For

example, schedule2 accuracy may be most important to a hand-crafted uni-modal dialog manager;

schedule3 mean reciprocal rank may be most important to a multi-modal interface that can display

results to the user; schedule2 ROC performance may be most important in high noise; and schedule1

Brier score may be most important to a statistical dialog controller.

It is also desirable to measure CPU runtime. Since each team’s tracker will run on their own machines,

direct comparisons of runtime will not be possible. Nonetheless, it would be useful to know whether

each algorithm can run in real time or not. Thus, for each turn in each test dialog, trackers will also

output the wall-clock time required for that turn.

Finally, it is also desirable to compare performance on a validation set (ie a set which is not used for

training directly, but which is used in the course of development). To do this, participants will be asked

for results on the “half2” set for each of the training sets. In the final evaluation, participants are of

course welcome to use the entire training set to train.

Datasets
The data is divided into 4 training sets and 4 test sets

Dataset Source Calls Time period Transcribed? Labeled? Notes

train1a Group A 1013 September 2009 Yes Yes

train1b Group A 14,545
16 Months

(2008-2009)
Yes No

train2 Group A 678 Summer 2010 Yes Yes

train3 Group B 779 Summer 2010 Yes Yes

test1 Group A 765 Winter 2011-12 Yes Yes

test2 Group A 983 Winter 2011-12 Yes Yes

test3 Group B 1037 Winter 2011-12 Yes Yes

test4 Group C 451 Summer 2010 Yes Yes

To have standardized development sets, the training sets are each split in half. Participants will be

asked to report results on the second half of each set (except train1c) at the time the test set is

provided.

The data from group A in train1*, train2, and test1 was collected using essentially the same dialog

system. Only a handful of updates were made to reflect changes to the bus schedule. The data in test2

was collected using a different version of group A’s dialog manager. The data from group B in train3 and

test3 were collected using essentially the same dialog system; the main difference is that test3 covers

more bus routes. References to published papers describing the systems will be made available to

challenge participants (and aren’t included here to help maintain anonymity).

Using these training and test sets enables the challenge to explore a variety of testing conditions:

Dataset Quantity of similar-system
training data

Similarity to training data

test1 Large Very similar to train1* and train2

test2 Large Somewhat similar to train1* and train2

test3 Small Very similar to train3

test4 None Distinct from all training data

- Test1 tests the condition when training and testing use very similar dialog systems, and when

there is a large quantity of same-system training data available.

- Test2 tests the condition when training and testing use somewhat similar dialog systems, and

when there is a large quantity of same-system training data available.

- Test3 tests the condition when training and testing use very similar dialog systems, and when

there is a small quantity of same-system training data available

- Test4 tests the condition when training and testing use totally different dialog systems, and

when there is no same-system training data available. (A handful of Test4 dialogs will be made

available in advance of the evaluation, to verify that algorithms run on this log format.)

Overall, these conditions test the effects on belief tracking of different speech recognizers/language

understanding components, different dialog strategies (eg amount and type of confirmation, ordering of

questions, initiative), different system prompt wordings and voices, among others.

Live and batch recognition for group A
One of the benefits of statistical dialog state tracking is that it can make use of all of the items on an SLU

N-Best list. In deployment, group B and C systems produced N-Best lists of SLU output, and their logs

include this information. However, group A systems produced only 1-best SLU output in deployment.

In an attempt to provide more useful information, recognition has been re-run in batch on the group A

data to produce N-Best lists. Unfortunately it was not possible to replicate the deployed group A

recognition and SLU process exactly. As a result, the 1-best batch result does not always match the 1-

best live result. The logs from group A systems used in this challenge include both the live and batch

recognition results.

Baseline tracker and scoring tool
A baseline dialog state tracker is provided. This dialog state tracker both provides a performance

baseline, as well as a code template to follow. It scans all dialog acts for each slot observed so far in the

dialog, and outputs the (one) hypothesis which has the highest score. For the joint output, it does the

same, using the highest average score. Refer to the project webpage for download and installation

instructions.

The tools assume that the data is all located in a directory (here called “../data”) with sub directories for

each corpus. For example:

../data/train3/<session-id>/dstc.log.json

When labels are present, they are located alongside the logs:

../data/train3/<session-id>/dstc.labels.json

The baseline tracker can be run like this:

> bin/baseline --dataset=train3.half2 --dataroot=../data --trackfile=track.json

This runs the baseline on the train3 validation set and stores the output in out.json. To score this:

> bin/score --dataset=train3.half2 --dataroot=../data \
 --trackfile=track.json --scorefile=score.csv

This evaluates the output of the baseline and stores the results in out.csv, which contains the following

columns:

 Column 1: slot (or “joint”)

 Column 2: schedule – one of “schedule1”, “schedule2”, “schedule3”

 Column 3: metric – one of accuracy, avgp, l2, mrr, roc.ca05, roc.ca10, roc.ca20, roc.eer

 Column 4: instances included in this line

 Column 5: metric. If the metric cannot be computed – for example, if there are no samples --

the value is “None”

Example excerpt from out.csv:

date,schedule1,accuracy,4459,0.91320923974
date,schedule1,avgp,4459,0.914002698811
date,schedule1,l2,4459,0.121618549668
date,schedule1,mrr,4459,0.955371159453
date,schedule1,roc.ca05,4459,0.868580399193
date,schedule1,roc.ca10,4459,0.91320923974
date,schedule1,roc.ca20,4459,0.91320923974
date,schedule1,roc.eer,4459,0.0461986992599
date,schedule2,accuracy,189,0.820105820106
date,schedule2,avgp,189,0.660067010582

To format into a pretty report and print to stdout:

> bin/report --scorefile=score.csv

This produces:

 schedule1

 route from.d from.m from.n to.des to.mon to.nei date time joint
 N 4459 4459 4459 4459 4459 4459 4459 4459 4459 4459
 accuracy 0.7596 0.8143 1.0000 1.0000 0.8545 1.0000 1.0000 0.9132 0.9729 0.4833
 avgp 0.6729 0.7439 1.0000 1.0000 0.8254 1.0000 1.0000 0.9140 0.9578 0.4101
 l2 0.4627 0.3622 0.0000 0.0000 0.2469 0.0000 0.0000 0.1216 0.0597 0.8343
 mrr 0.8006 0.8863 1.0000 1.0000 0.9102 1.0000 1.0000 0.9554 0.9775 0.5052
 roc.ca05 0.3292 0.5414 1.0000 1.0000 0.7919 1.0000 1.0000 0.8686 0.9729 0.1563
 roc.ca10 0.4900 0.6638 1.0000 1.0000 0.8354 1.0000 1.0000 0.9132 0.9729 0.2541
 roc.ca20 0.7448 0.8143 1.0000 1.0000 0.8545 1.0000 1.0000 0.9132 0.9729 0.3030
 roc.eer 0.2554 0.2584 0.0000 0.0000 0.1133 0.0000 0.0000 0.0462 0.0184 0.3265

 schedule2

 route from.d from.m from.n to.des to.mon to.nei date time joint
 N 1165 1159 0 0 956 0 0 189 172 2922
 accuracy 0.6403 0.6428 - - 0.6820 - - 0.8201 0.5988 0.4908
 avgp 0.5751 0.6138 - - 0.6456 - - 0.6601 0.5428 0.4214
 l2 0.6010 0.5462 - - 0.5012 - - 0.4807 0.6466 0.8183
 mrr 0.7047 0.7856 - - 0.7965 - - 0.8889 0.6715 0.5202
 roc.ca05 0.1957 0.2347 - - 0.4351 - - 0.4709 0.2965 0.1369
 roc.ca10 0.3193 0.3943 - - 0.5209 - - 0.5397 0.4302 0.2358
 roc.ca20 0.5373 0.5263 - - 0.6161 - - 0.8201 0.4593 0.3460
 roc.eer 0.3442 0.3046 - - 0.2448 - - 0.2328 0.2791 0.3552

 schedule3

 route from.d from.m from.n to.des to.mon to.nei date time joint
 N 379 331 0 0 305 0 0 54 50 379
 accuracy 0.7177 0.7583 - - 0.7738 - - 0.8889 0.7000 0.5066
 avgp 0.6468 0.7003 - - 0.7120 - - 0.7522 0.6244 0.4316
 l2 0.4995 0.4239 - - 0.4073 - - 0.3505 0.5312 0.8039
 mrr 0.7718 0.8520 - - 0.8607 - - 0.9352 0.7600 0.5343
 roc.ca05 0.3087 0.4169 - - 0.5574 - - 0.6852 0.5200 0.1319
 roc.ca10 0.4433 0.6133 - - 0.6590 - - 0.8519 0.5600 0.2454
 roc.ca20 0.6649 0.7372 - - 0.7639 - - 0.8889 0.6000 0.3562
 roc.eer 0.2902 0.2236 - - 0.2033 - - 0.1111 0.2400 0.3377

 basic stats

 dataset : train3.half2
 scorer_version : TRUNK
 sessions : 344
 total_wall_time : 3.18700003624
 turns : 4459
 wall_time_per_turn : 0.000714734253474

Slot names are truncated, so “from.d” means “from.desc”; “from.m” means “from.monument”, etc.

Train3 does not output monument or neighborhood values for locations, so these are blank.

References
 [1] JavaScript Object Notation, http://www.json.org/

 [2] Jason D. Williams, A belief tracking challenge task for spoken dialog systems, in NAACL HLT 2012

Workshop on Future directions and needs in the Spoken Dialog Community: Tools and Data,

Association for Computational Linguistics, June 2012.

[3] Black, A., Burger, S., Conkie, A., Hastie, H., Keizer, S., Lemon, O., Merigaud, N., Parent, G.,

Schubiner, G., Thomson, B., Williams, J., Yu, K., Young, S., and Eskenazi, M. Spoken Dialog

Challenge 2010: Comparison of Live and Control Test Results, SIGDial 2011 pp 22-27, Portland

Oregon.

Appendix A: JSON format for log data
The output of each system has been mapped to a common log format in JSON format. There is one log

file per call. This common log format includes:

 System output, at the word and dialog act level, using a common set of dialog acts and

slot/value pairs

 System input, at the word (ASR) and dialog act level (SLU) level, using a common set of dialog

acts and slot/value pairs. Each ASR hypothesis and each SLU hypothesis includes a confidence

score. Group A logs also include batch ASR and SLU results.

 Start time of each turn, relative to the start of the dialog

 An indicator for when the system “restarts” from the beginning

 System-specific information. For example, the Group B logs include additional information

about recognition results, the state of the belief tracker it used at runtime.

http://www.json.org/

Here is an example of the top level for each log file:

 session-id : a unique indicator for the call

 session-date: a string of the form MM-DD-YYYY

 session-time: a string of the form HH:MM:SS or HH:MM:SS.S+

 turns: an array of dictionaries, one dictionary per turn. Turn entries include:

o input: the input received by the dialog manager for the turn (described below)

o system-specific: system-specific information associated with this turn

o turn-index: 0-based index of this turn

o restart: a flag indicating if this turn re-started from the beginning

o output: the output generated by the dialog manager in this turn (described below)

 system-specific: system-specific information associated with the whole call

Here is detail for the system input:

The “input” dictionary has entries for:

 live: contains recognition results produced in deployment

 batch: contains recognition results generated in batch, off-line (present only for systems from

group A. The format within the “live” and “batch” entries is identical.

 audio-file: a pointer to the audio file corresponding to the system input

 start-time: number of seconds since the start of the call that this turn started (not present for

test4 dataset)

 end-time: number of seconds since the start of the call that this turn ended (only present for

Group A systems)

Recognition results consist of an array of ASR results in “asr-hyps” and an array of SLU results in “slu-

hyps”. The number of ASR and SLU hyps need not be equal.

Each ASR hyp has the following entries:

 asr-hyp: the words recognized

 score: The score of this ASR hypothesis as reported by the recognizer. The for “live” results, the

score is guaranteed to be in [0,1], but scores might not sum to 1. For “batch” results, the score

is a real number.

 type: currently always “recognition”; in future other types may be added, such as “dtmf”

Each SLU hyp has the following entries:

 slu-hyp: a structure containing the SLU hypothesis

 score: The score of this SLU hypothesis. The for “live” results, the score is guaranteed to be in

[0,1], but scores might not sum to 1. For “batch” results, the score is a real number.

An SLU hypothesis contains one or more dialog acts. Each act consists of an act type (“act”), and a list of

zero or more slot/value pairs (“slots”). See the dialog act taxonomy below for details.

Here is detail for the system output:

The “output” dictionary has entries for:

 start-time: number of seconds since the start of the call that the system output started (not

present for test4 dataset)

 end-time: number of seconds since the start of the call that this turn ended (only present for

Group A systems)

 transcript: the words spoken by the system. If the system detected user speech before all

system words were spoken (and the system stopped speaking), it is possible that not all of this

transcript was read to the user

 dialog-acts: An array of one or more dialog acts that describes the transcript. See the dialog act

taxonomy below for details.

Appendix B: JSON format for labels
Label files indicate what the caller actually said in each turn, and the correctness of each SLU hypothesis.

They are in JSON format and follow a structure similar to the log file JSON.

An excerpt of a label file is given below.

A label file consists of a dictionary with two entries:

 session-id: a unique identifier for the session and matches the session-id in the log file

 turns: an array of dictionaries, which mirrors the “turns” array in the log file

Each entry in the “turns” array is a dictionary with entries:

 transcription: what the caller actually said (may not be present – see next entry)

 transcription-status: indicates if the transcription was done. Possible values are:

o audio-not-available: There was no audio file captured from this turn. Transcription not

done.

o no-speech-for-system: The transcriber indicated that there was no speech directed at

the system in this turn. Transcription not done.

o not-understandable: Transcriber indicated that the user speech was not understandable

o silence: Transcriber indicated that there was no speech in the audio. Transcription not

done.

o transcribed: audio was transcribed.

 audio-file: a pointer to the audio file for this turn (if any). Matches log file

 turn-index: a zero-based index of the turn. Matches log file

 slu-labels: a dictionary containing the labels – see below.

 system-specific: an optional dictionary with additional information about the label. For

example, train3 contains labels for the correctness of each (live) dialog act hypothesis.

The “slu-labels” entry is an array of dictionaries. Each dictionary corresponds to one slot group and one

label (correct or incorrect), with the entries:

 slots: a dictionary of 1 or more slot/value pairs. The slot/value pairs are all drawn from the

same label group. Most label groups correspond to a single slot; the 2 exceptions are “date”

and “time”.

 label: indicates correctness of this dialog act

o true: the meaning of this dialog act is (entirely) correct

o false: the meaning of this dialog act is not (entirely) correct

o null: this dialog act was not labeled

 source: indicates how the label was produced

o auto: this label was automatically assigned

o human: this label was assigned by a human judge

 system-specific: (if present) provides system-specific information about how the label was

generated

Appendix C: JSON format for tracker output
Trackers output a JSON file that specifies their hypotheses. All sessions for a given corpus are included

in one JSON file (so this file may be rather large).

Example tracker output:

The top level is a dictionary, with entries:

 wall-time: the total wall time to run the tracker on this dataset

 dataset: the dataset used as input to the tracker

 sessions: an array of dictionaries, each being one session. The order of sessions much match the

order in the dataset file

Each session is a dictionary with entries:

 session-id: the session-id of this session.

 turns: an array of turns. The order must match the order used in the logs (and labels) file.

Each turn is a dictionary with 10 entries: one for each slot group, and one for joint. Slot groups contain

one or more slots:

Slot group Slots in this slot group

route route

from.desc from.desc

from.neighborhood from.neighborhood

from.monument from.monument

to.desc to.desc

to.neighborhood to.neighborhood

to.monument to.monument

date date.day
date.absmonth

date.absday
date.relweek

time time.hour
time.minute
time.ampm

time.arriveleave
time.rel

joint [contains all slot groups]

Each of these entries is a dictionary, with one entry, called “hyps”. “hyps” is an array; each entry in the

array is a dictionary with 2 entries:

 slots: a dictionary with slots/value pairs in this slot group. This must match a slot/value pair that

has been recognized earlier in the dialog, but not before a “restart”

 score: the tracker’s score, which must be in the range [0...1], and which must sum to 1.0 or less.

Appendix D: Dialog act taxonomy
System input and output for all systems has been mapped to a unified dialog act taxonomy. A user or

system turn consists of one or more dialog acts. Each act consists of an act type, and zero or more

slot/value pairs. The same slot may appear multiple times in an act.

Act types are as follows.

Act type Can act be produced
by user?

Can act be produced by system? Does act take any
slots?

hello X X

bye X X

goback X X

restart X X

null X X

repeat X

nextbus X

prevbus X

tellchoices X

affirm X

negate X

deny X X

inform X X

want-next-bus
Only in expl-conf and impl-conf, eg:

expl-conf(act=want-next-bus)

ack X

hold-on X

open-request X

bebrief X

sorry X

please-repeat X

please-rephrase X

are-you-there X

didnthear X

impl-confirm X X

expl-confirm X X

request X X

schedule X X

morebuses X X

canthelp.nonextbus X

canthelp.route_doesnt_run X X

canthelp.no_connection X X

canthelp.uncovered_route X X

canthelp.uncovered_stop X X

canthelp.cant_find_stop X X

canthelp.no_buses_at_time X X

canthelp.from_equals_to X X

Slot names and values are

Slot name Example values User acts System acts

route 61c inform
request

expl-confirm
impl-confirm

from, to -- -- request

from.stop
to.stop

forbes --
expl-confirm
impl-confirm

from.neighborhood
to.neighborhood

oakland inform
expl-confirm
impl-confirm

from.monument
to.monument

cmu inform
expl-confirm
impl-confirm

from.desc
to.desc

camp and duquesne inform
expl-confirm
impl-confirm

result.from.desc
result.to.desc

result.from.neighborhood
result.to.neighborhood

(same as above) -- schedule

date -- -- request

date.day
today

tomorrow
monday

inform
expl-confirm
impl-confirm

date.absmonth 1 … 12 inform
expl-confirm
impl-confirm

date.absday 1 … 31 inform
expl-confirm
impl-confirm

date.relweek next inform
expl-confirm
impl-confirm

result.date.day
result.date.absmonth

result.date.absday
(same as above) -- schedule

time -- -- request

time.hour 1 … 12 inform
expl-confirm
impl-confirm

time.minute 0 … 59 inform expl-confirm

impl-confirm

time.ampm am, pm inform
expl-confirm
impl-confirm

time.arriveleave arrive, leave inform
expl-confirm
impl-confirm

time.rel next inform
expl-confirm
impl-confirm

from.time.hour
from.time.minute
from.time.ampm

to.time.hour
to.time.minute
to.time.ampm

result.from.time.hour
result.from.time.minute
result.from.time.ampm

result.to.time.hour
result.to.time.minute
result.to.time.ampm

(same as above) -- schedule

Approximate number of distinct values

Slot name Approximate number
of distinct values

route 100

from.desc
to.desc

500-10000

from.neighborhood
to.neighborhood

20-100

from.monument
to.monument

50-500

date.day 9

date.absmonth 12

date.absday 31

date.relweek 1

time.hour 12

time.minute 60

time.ampm 2

time.arriveleave 2

time.rel 1

Examples of user acts:

Example transcription(s) Example act

hello hello()

goodbye bye()

go back goback()

start over
restart

restart()

[empty] null()

repeat repeat()

next bus nextbus()

previous bus prevbus()

tell me my choices tellchoices()

yes affirm()

no negate()

no i’m not leaving from mckeesport deny(from.desc=mckeesport)

sixty one a inform(route=61a)

leaving at eight a m inform(time.hour=8, time.minute=0, time.ampm=am, time.arriveleave=leave)

leaving at eight a m on the sixty one a
inform(time.hour=8, time.minute=0, time.ampm=am, time.arriveleave=leave),
inform(route=61a)

Where are you leaving from?
forbes ave

inform(from.desc="forbes ave")

Where are you leaving from?
mckeesport

inform(from.neighborhood=mckeesport) or
inform(from.desc=mckeesport) [depends on system, see below]

Where are you leaving from?
c m u

inform(from.monument=cmu) or
inform(from.desc=cmu) [depends on system, see below]

Where are you leaving from?
forbes and alger

inform(from.desc=”forbes,alger”) or
inform(from.desc=”forbes and alger”) [depends on system, see below]

the next 61c from forbes in oakland to
mckeesport transportation center in
mckeesport on the 61c

inform(time.rel=next), inform(route=61c), inform(from.desc=forbes,
from.neighborhood=oakland), inform(to.monument=”mckeesport transportation
center”, to.neighborhood=mckeesport) or
inform(time.rel=next), inform(route=61c), inform(from.desc=”forbes in oakland”),
inform(to.desc=”mckeesport transportation center in mckeesport”) [depends on
system, see below]

today inform(date.day=today)

tonight inform(date.day=today,time.ampm=pm)

tomorrow inform(date.day=tomorrow)

tuesday inform(date.day=tuesday)

july first inform(date.absmonth=7, date.absday=1)

next tuesday inform(date.day=tuesday, date.relweek=next)

sunday night inform(date.day=sunday, time.ampm=pm)

tomorrow morning inform(date.day=tomorrow, time.ampm=am)

now inform(time.rel=next)

ten inform(time.hour=10, time.minute=0)

ten p m inform(time.hour=10, time.minute=0, time.ampm=pm)

ten thirty p m inform(time.hour=10, time.minute=30, time.ampm=pm)

leaving at ten thirty p m inform(time.hour=10, time.minute=30, time.ampm=pm, time.arriveleave=leave)

arrive by ten thirty p m inform(time.hour=10, time.minute=30, time.ampm=pm, time.arriveleave=arrive)

noon inform(time.hour=12, time.minute=0, time.ampm=pm)

midnight inform(time.hour=12, time.minute=0, time.ampm=am)

this morning inform(date.day=today, time.ampm=am)

Examples of system acts from group A systems:

System transcript System dialog act(s)

Welcome to the CMU Let's Go bus information system.
To get help at any time, just say Help or press zero.
What can I do for you?

hello(), example(act=help), open-request()

What is your destination? request(to)

I am an automated spoken dialogue system that can
give you schedule information for bus routes in
Pittsburgh's East End. You can ask me about the
following buses: 28X, 54C, 56U, 61A, 61B, 61C, 61D and
64.

example(route=28x), example(route=54c), example(route=56u),
example(route=61a), example(route=61b), example(route=61c),
example(route=61d), example(route=64)

Alright I'm sorry, but the 61F no longer exists. I will try
to find another bus you can take. Where are you leaving
from?

ack(), example(route=28x), example(route=54c),
example(route=56u), example(route=61a), example(route=61b),
example(route=61c), example(route=61d), example(route=64),
canthelp.route_doesnt_run(route=61f), request(from)

I need you to give me a short answer. Where do you
wanna leave from?

bebrief(), request(from)

The 61C. Where are you leaving from? impl-conf(route=61c), request(from)

Okay I'm sorry but I do not know where CENTRE
AVENUE AT NORTH is located. Try using the closest
intersection instead. Where would you like to leave
from?

ack(), canthelp.cant_find_stop(from.desc=centre avenue at north),
request(from)

ADELAIDE STREET. Did I get that right? expl-conf(from.desc=adelaide street)

ANN IN EMSWORTH. Did I get that right? expl-conf(from.desc=ann in emsworth)

Alright AVALON. Is this correct? ack(), expl-conf(from.desc=avalon)

Alright I'm sorry but I do not have the schedule for
buses serving BELLEVUE. Currently, I only cover some
routes in the following neighborhoods: Downtown,
Oakland, Shadyside, Squirrel Hill, Homestead,
McKeesport, and the airport.

ack(), example(from.neighborhood=downtown),
example(from.neighborhood=oakland),
example(from.neighborhood=shadyside),
example(from.neighborhood=squirrel hill),
example(from.neighborhood=homestead),
example(from.neighborhood=mckeesport),
example(from.neighborhood=airport),
canthelp.uncovered_stop(from.desc=bellevue)

Alright I'm sorry but I do not know where HILTON
HOTEL is located. Try using the closest intersection
instead. Where do you wanna leave from?

ack(), canthelp.cant_find_stop(from.desc=hilton hotel),
request(from)

Leaving from CRAIG. Is this correct? expl-conf(from.desc=craig)

Okay Leaving from AIRPORT. Is this correct? ack(), expl-conf(from.desc=airport)

If you want to leave from AIRPORT say yes or press one,
otherwise say no or press three.

expl-conf(from.desc=airport)

The 61C. Leaving from DOWNTOWN. Did I get that
right?

impl-conf(route=61c), expl-conf(from.desc=downtown)

So far, I know that you want to take the 61A I think you
said you wanted to leave from EIGHTEENTH. I need you
to confirm that. If you want to leave from EIGHTEENTH
say yes or press one, otherwise say no or press three.

impl-conf(route=61a), expl-conf(from.desc=eighteenth), expl-
conf(from.desc=eighteenth)

I'm sorry, but the 61C does not go between SIXTH
AVENUE and HOMESTEAD. To ask about a different trip,
you can say, start a new query. If you are finished, you
can say goodbye.

canthelp.no_connection(route=61c, from.desc=sixth avenue,
to.desc=homestead), example(act=restart)

Alright Just a minute. I'll look that up. PITTSBURGH and
DOWNTOWN PITTSBURGH are both the same stop.
Please provide a different start or end point.

ack(), hold-on(), canthelp.from_equals_to(from.desc=pittsburgh,
to.desc=downtown pittsburgh)

Hold on. I'll look that up. I'm sorry, I don't know any
routes that go from MCKEESPORT to NEVILLE. To ask
about a different trip, you can say, start a new query. If
you are finished, you can say goodbye.

hold-on(), canthelp.no_connection(from.desc=mckeesport,
to.desc=neville), example(act=restart)

At what time do you wanna travel? request(time)

Going to AIRPORT. When would you like to travel? impl-conf(to.desc=airport), request(time)

When are you going to take that bus? request(time)

For example, you can say, 10:30 in the morning, I want
the next bus, or say start over to restart.

example(time.hour=10, time.minute=30, time.ampm=am),
example(time.rel=next), example(act=restart)

I think you want the next bus. Am I right? expl-conf(time.rel=next)

Alright Arriving by 9 a.m.. Did I get that right? ack(), expl-conf(time.arriveleave=arrive, time.hour=9,
time.minute=0, time.ampm=pm)

Alright I think you want the next bus. Am I right? ack(), expl-conf(time.rel=next)

Arriving by 1 a.m.. Did I get that right? expl-conf(time.arriveleave=arrive, time.hour=1, time.minute=0,
time.ampm=pm)

Okay Arriving by 4 a.m.. Is this correct? ack(), expl-conf(time.arriveleave=arrive, time.hour=4,
time.minute=0, time.ampm=pm)

I need you to give me a short answer. Leaving at 8 p.m..
Is this correct?

bebrief(), expl-conf(time.arriveleave=leave, time.hour=8,
time.minute=0, time.ampm=pm)

If you want to leave at 1 a.m. say yes or press one,
otherwise say no or press three.

expl-conf(time.arriveleave=leave, time.hour=1, time.minute=0,
time.ampm=pm)

Alright Hold on. I'll look that up. The next 61C leaves
FORBES AVENUE OPPOSITE MOREWOOD CARNEGIE
MELLON at 6 57 p.m. and arrives at MURRAY AVENUE
AT DARLINGTON at 7 12 p.m.. To get more information
about buses related to this trip, you can say, when is the
next bus, or, when is the previous bus. To ask about a
different trip, you can say, start a new query. If you are
finished, you can say goodbye.

ack(), hold-on(), schedule(result.route=61c, result.from.desc=forbes
avenue opposite morewood carnegie mellon,
result.from.time.hour=6, result.from.time.minute=57,
result.from.time.ampm=pm, result.to.desc=murray avenue at
darlington, result.to.time.hour=7, result.to.time.minute=12,
result.to.time.ampm=pm), example(act=nextbus),
example(act=prevbus), example(act=restart), example(act=bye)

Alright Hold on. I'll look that up. The next 61D leaves
FIFTH AVENUE AT BIGELOW PITT at 5 37 a.m. and
arrives at FIFTH AVENUE AT MARKET at 5 52 a.m.. To
get more information about buses related to this trip,
you can say, when is the next bus, or, when is the
previous bus. To ask about a different trip, you can say,
start a new query. If you are finished, you can say
goodbye.

ack(), hold-on(), schedule(result.route=61d, result.from.desc=fifth
avenue at bigelow pitt, result.from.time.hour=5,
result.from.time.minute=37, result.from.time.ampm=am,
result.to.desc=fifth avenue at market, result.to.time.hour=5,
result.to.time.minute=52, result.to.time.ampm=am),
example(act=nextbus), example(act=prevbus), example(act=restart),
example(act=bye)

I looked for a 61C leaving KENNYWOOD for
DOWNTOWN at around 7 a.m. I found a 61C leaving
KENNYWOOD BOULEVARD OPPOSITE MIFFLIN at 7 oh 2
a.m.. and reaching FIFTH AVENUE AT MARKET at 8 oh 3
a.m..

schedule(route=61c, from.desc=kennywood, to.desc=downtown,
result.route=61c, result.from.desc=kennywood boulevard opposite
mifflin, result.from.time.hour=7, result.from.time.minute=2,
result.from.time.ampm=am, result.to.desc=fifth avenue at market,
result.to.time.hour=8, result.to.time.minute=3,
result.to.time.ampm=am)

Just a second. There is a 28X leaving PITTSBURGH
INTERNATIONAL AIRPORT LOWER LEVEL DOOR 6 at 4 20
p.m.. It will arrive at FORBES AVENUE AT BIGELOW
SCHENLEY DRIVE A at 5 16 p.m.. To get more
information about buses related to this trip, you can
say, when is the next bus, or, when is the previous bus.
To ask about a different trip, you can say, start a new
query. If you are finished, you can say goodbye.

hold-on(), schedule(result.route=28x, result.from.desc=pittsburgh
international airport lower level door 6, result.from.time.hour=4,
result.from.time.minute=20, result.from.time.ampm=pm,
result.to.desc=forbes avenue at bigelow schenley drive a,
result.to.time.hour=5, result.to.time.minute=16,
result.to.time.ampm=pm), example(act=nextbus),
example(act=prevbus), example(act=restart), example(act=bye)

Okay. There is a 28X leaving FIFTH AVENUE OPPOSITE
ATWOOD CHILDRENS HOSPITAL B at 4 30 a.m.. It will
arrive at PITTSBURGH INTERNATIONAL AIRPORT LOWER
LEVEL DOOR 6 at 5 12 a.m.. To get more information
about buses related to this trip, you can say, when is the

hold-on(), schedule(result.route=28x, result.from.desc=fifth avenue
opposite atwood childrens hospital b, result.from.time.hour=4,
result.from.time.minute=30, result.from.time.ampm=am,
result.to.desc=pittsburgh international airport lower level door 6,
result.to.time.hour=5, result.to.time.minute=12,

next bus, or, when is the previous bus. To ask about a
different trip, you can say, start a new query. If you are
finished, you can say goodbye.

result.to.time.ampm=am), example(act=nextbus),
example(act=prevbus), example(act=restart), example(act=bye)

I looked for a 61A leaving HAZELWOOD for NORTH
BRADDOCK at around 7 30 p.m. However, I don't know
any routes that go from HAZELWOOD to NORTH
BRADDOCK.

canthelp.no_connection(route=61a, from.desc=hazelwood,
to.desc=north braddock, from.desc=hazelwood, to.desc=north
braddock)

Leaving at 11 a.m.. Hold on. Let me check that for you.
I'm sorry, but the 61C does not go between THE ZOO
and WOOD. To ask about a different trip, you can say,
start a new query. If you are finished, you can say
goodbye.

impl-conf(time.arriveleave=leave, time.hour=11, time.minute=0,
time.ampm=pm), hold-on(), canthelp.no_connection(route=61c,
from.desc=the zoo, to.desc=wood), example(act=restart)

Alright Hold on. I'll look that up. I'm sorry, but the 61A
does not go between KENNEDY and DOWNTOWN
PITTSBURGH. To ask about a different trip, you can say,
start a new query. If you are finished, you can say
goodbye.

ack(), hold-on(), canthelp.no_connection(route=61a,
from.desc=kennedy, to.desc=downtown pittsburgh),
example(act=restart)

Alright Hold on. I'll look that up. OAKLAND and PITT are
both the same stop. Please provide a different start or
end point. To ask about a different trip, you can say,
start a new query. If you are finished, you can say
goodbye.

ack(), hold-on(), canthelp.from_equals_to(from.desc=oakland,
to.desc=pitt), example(act=restart)

Alright Hold on. Let me check that for you. I'm sorry, I
don't know any routes that go from MCKEESPORT to
EIGHTEENTH. To ask about a different trip, you can say,
start a new query. If you are finished, you can say
goodbye.

ack(), hold-on(), canthelp.no_connection(from.desc=mckeesport,
to.desc=eighteenth), example(act=restart)

Alright Hold on. Let me check that for you. I'm sorry, but
the 61A does not run between BRADDOCK and
DOWNTOWN PITTSBURGH. To ask about a different
trip, you can say, start a new query. If you are finished,
you can say goodbye.

ack(), hold-on(), canthelp.no_connection(route=61a,
from.desc=braddock, to.desc=downtown pittsburgh),
example(act=restart)

Just a second. I'm sorry, but that was the first 28X of the
day between FIFTH AND ATWOOD and AIRPORT. To ask
about a different trip, you can say, start a new query. If
you are finished, you can say goodbye. To ask about a
different trip, you can say, start a new query. If you are
finished, you can say goodbye.

hold-on(), canthelp.no_buses_at_time(route=28x, from.desc=fifth
and atwood, to.desc=airport), example(act=restart),
example(act=restart)

Just a second. I'm sorry, but that was the last 54C of the
day between ATWOOD STREET and EIGHTEENTH. To ask
about a different trip, you can say, start a new query. If
you are finished, you can say goodbye.

hold-on(), canthelp.no_buses_at_time(route=54c,
from.desc=atwood street, to.desc=eighteenth),
example(act=restart)

 null()

Alright ack()

Alright Hold on. I'll look that up. ack(), hold-on()

Are you still there? are-you-there()

Are you sure you want to start over? expl-conf(act=restart)

Hold on. Let me check that for you. hold-on()

I need you to give me a short answer. bebrief()

Just a minute. I'll look that up. hold-on()

Okay ack()

Okay, let's start from the beginning. restart()

Okay, let's start from the beginning. What can I do for
you?

restart(), open-request()

Okay. I'm sorry, I seem to have had an internal error
while handling your request. Please try again later.

hold-on(), canthelp.system_error()

Examples of system acts from group B systems:

System transcript System dialog act(s)

East Pittsburg Bus Schedules. Say a bus route, like 28X, or say
I'm not sure.

hello(), request(route), example(route=28x),
example(route=dont_know)

Say a bus route like 56U, or say I'm not sure. request(route), example(route=56u),
example(route=dont_know)

Oh, sorry, which route do you want?. sorry(), request(route)

Going back. Say a bus route, like 28X, or say I'm not sure. goback(), request(route), example(route=28x),
example(route=dont_know)

I THOUGHT you said eighty four a, but I don't have schedules
for that route. I only have schedules for the 28 X, 54 C, 56 U,
61 A B C and D, and the 64. You can say one of these routes,
say I'm not sure which route, or just hang up.

impl-conf(route=84a), canthelp.uncovered_route(route=84a),
example(route=28x), example(route=54c),
example(route=56u), example(route=61a),
example(route=61b), example(route=61c),
example(route=61d), example(route=64), request(route),
example(route=dont_know), example(act=hangup)

Ok, going back to the beginning. Say a bus route, like 28X, or
say I'm not sure.

restart(), request(route), example(route=28x),
example(route=dont_know)

28X. Is that right? expl-conf(route=28x)

Sorry, do you want route 28X? Please say yes or no. sorry(), expl-conf(route=28x), example(act=negate),
example(act=affirm)

Say the East Pittsburgh neighborhood you're leaving from, like
Mount Oliver or Swissvale, or say: TELL ME MY CHOICES.

sorry(), request(from.neighborhood),
example(from.neighborhood=mount oliver),
example(from.neighborhood=swissvale),
example(act=tellchoices)

No problem. Where are you leaving from? ack(), request(from)

Okay, 28X. To change, say go back. Where are you leaving
from?

impl-conf(route=28X), example(act=goback), request(from)

Okay, 28X. Where are you leaving from? impl-conf(route=28X), request(from)

Okay, 28X. You can always say go back. Where are you leaving
from?

impl-conf(route=28X), example(act=goback), request(from)

Say the neighborhood or intersection or place you're leaving
from like bell avenue.

request(from), example(from.desc=bell avenue)

Where are you leaving from? request(from)

downtown. Is that right? expl-conf(from.desc=downtown)

mckeesport transportation center. Is that right? expl-conf(from.desc=mckeesport transportation center)

I heard carrick, but I don't have any stops in that
neighborhood. I only know about certain neighborhoods. Say
the neighborhood or place you're leaving from, or you can just
hang up.

impl-conf(from.neighborhood=carrick),
canthelp.uncovered_stop(from.neighborhood=carrick),
request(from), example(act=hangup)

If you're leaving from hazelwood and murray in greenfield,
Say yes, if not say no.

expl-conf(from.desc=hazelwood and murray in greenfield),
example(act=affirm), example(act=negate)

If you're leaving from schenley, Say yes, if not say no. expl-conf(from.desc=schenley), example(act=affirm),
example(act=negate)

Sorry, are you leaving from pittsburgh? Please say yes or no. sorry(), expl-conf(from.desc=pittsburgh), example(act=affirm),
example(act=negate)

Okay, c m u. And where are you going to? impl-conf(from.desc=c m u), request(to)

Say the East Pittsburgh neighborhood you're going to, like
Lawrenceville, or say: TELL ME MY CHOICES.

request(to.neighborhood),
example(to.neighborhood=lawrenceville),

example(act=tellchoices)

And where are you going to? request(to)

Going back. Where are you going to? goback(), request(to)

Oh, sorry, where are you going to? sorry(), request(to)

Say the neighborhood or intersection or place you're going to,
like waterfront.

request(to), example(to.desc=waterfront)

The routes I cover have stops in the following neighborhoods.
When you hear the one you're going to, just say it. the airport.
allentown. bloomfield. bon air. braddock. carnegie mellon.
crafton. downtown. duquesne. east allegheny. east liberty.
east pittsburgh. edgewood. greenfield. hazelwood.
homestead. knoxville. lawrenceville. mckeesport. moon
township. mount oliver. mount washington. north braddock.
north side. oakland. point breeze. polish hill. rankin. regent
square. shadyside. sheraden. south side. squirrel hill. the strip.
swissvale. uptown. west homestead. west mifflin. wilkinsburg.
That's it. Say the one you're going to, or to hear them again
say: TELL ME MY CHOICES.

example(to.neighborhood=the airport),
example(to.neighborhood=allentown),
example(to.neighborhood=bloomfield),
example(to.neighborhood=bon air),
example(to.neighborhood=braddock),
example(to.neighborhood=carnegie mellon),
example(to.neighborhood=crafton),
example(to.neighborhood=downtown),
example(to.neighborhood=duquesne),
example(to.neighborhood=east allegheny),
example(to.neighborhood=east liberty),
example(to.neighborhood=east pittsburgh),
example(to.neighborhood=edgewood),
example(to.neighborhood=greenfield),
example(to.neighborhood=hazelwood),
example(to.neighborhood=homestead),
example(to.neighborhood=knoxville),
example(to.neighborhood=lawrenceville),
example(to.neighborhood=mckeesport),
example(to.neighborhood=moon township),
example(to.neighborhood=mount oliver),
example(to.neighborhood=mount washington),
example(to.neighborhood=north braddock),
example(to.neighborhood=north side),
example(to.neighborhood=oakland),
example(to.neighborhood=point breeze),
example(to.neighborhood=polish hill),
example(to.neighborhood=rankin),
example(to.neighborhood=regent square),
example(to.neighborhood=shadyside),
example(to.neighborhood=sheraden),
example(to.neighborhood=south side),
example(to.neighborhood=squirrel hill),
example(to.neighborhood=the strip),
example(to.neighborhood=swissvale),
example(to.neighborhood=uptown),
example(to.neighborhood=west homestead),
example(to.neighborhood=west mifflin),
example(to.neighborhood=wilkinsburg),
request(to.neighborhood), example(act=tellchoices)

I heard allentown, but I don't have any routes that run from
ingram station to allentown. I only know about certain routes.
Say the neighborhood or place you're going to, or you can just
hang up.

impl-conf(to.desc=allentown),
canthelp.no_connection(from.desc=ingram station,
to.desc=allentown), request(to.neighborhood),
example(act=hangup)

Do you want times for the next few buses? Say yes or no. expl-conf(act=want-next-bus), example(act=affirm),
example(act=negate)

Ok, say just the DAY you want, like today, tomorrow, or June
15th.

ack(), request(date), example(date.day=today),
example(date.day=tomorrow), example(date.absmonth=6,
date.absday=15)

Okay, edgewood. Do you want times for the next few buses?
Say yes or no.

impl-conf(to.desc=edgewood), expl-conf(act=want-next-bus),
example(act=affirm), example(act=negate)

Oh sorry, say just the DAY you want like today, Tuesday, or
July 1st.

sorry(), request(date), example(date.day=today),
example(date.day=tuesday), example(date.absmonth=7,
date.absday=1)

Sorry, say the DAY you want to take the bus, like tonight,
Monday, or July 1st.

sorry(), request(date), example(date.day=today,
time.ampm=pm), example(date.day=monday),
example(date.absmonth=7, date.absday=1)

august twenty second. Is that right? expl-conf(date.absmonth=8, date.absday=22)

Say just the TIME you want, like DEPART AT 8 AM or ARRIVE
BY 5:30 PM.

request(time), example(time.arriveleave=leave, time.hour=8,
time.minute=0, time.ampm=am),
example(time.arriveleave=arrive, time.hour=5,
time.minute=30, time.ampm=pm)

arrive at five a.m.. Is that right? expl-conf(time.arriveleave=arrive, time.hour=5,
time.minute=0, time.ampm=am)

depart at eight p.m.. Is that right? expl-conf(time.arriveleave=leave, time.hour=8,
time.minute=0, time.ampm=pm)

leave at two p.m.. Is that right? expl-conf(time.arriveleave=leave, time.hour=2,
time.minute=0, time.ampm=pm)

leave now. Is that right? expl-conf(time.arriveleave=leave, time.rel=next)

Sorry, do you want to leave at nine a.m.? Please say yes or no. sorry(), expl-conf(time.arriveleave=leave, time.hour=9,
time.minute=0, time.ampm=am), example(act=affirm),
example(act=negate)

Ok, the next few buses. To change, say go back. At 10:03 PM
today, there is a 64, from Penn Avenue And Forty Forth
Street, Near Childrens Hospital, In Lawrenceville, arriving
Waterfront Drive And Loew's Theatre, In Homestead, at 10:38
PM. Say repeat, next, previous, or start over.

impl-conf(act=want-next-bus), example(act=goback),
schedule(result.from.time.hour=10,
result.from.time.minute=3, result.from.time.ampm=pm,
result.from.date.day=today, result.route=64,
result.from.desc=penn avenue and forty forth street, near
childrens hospital, in lawrenceville, result.to.desc=waterfront
drive and loew's theatre, in homestead,
result.to.time.hour=10, result.to.time.minute=38,
result.to.time.ampm=pm), example(act=repeat),
example(act=nextbus), example(act=prevbus),
example(act=restart)

Ok, the next few buses. To change, say go back. There are
more buses than just the 28X, that run from boquet street to
schenley. I'll tell you about all of them. At 7:38 AM today,
there is a 61 D, from Forbes Avenue And Boquet Street,
arriving Forbes Avenue And Bigelow Boulevard And Schenley
Drive, In Oakland, at 7:42 AM. Say repeat, next, previous, or
start over.

impl-conf(act=want-next-bus), example(act=goback),
morebuses(route=28x, from.desc=boquet street,
to.desc=schenley), schedule(result.from.time.hour=7,
result.from.time.minute=38, result.from.time.ampm=am,
result.from.date.day=today, result.route=61d,
result.from.desc=forbes avenue and boquet street,
result.to.desc=forbes avenue and bigelow boulevard and
schenley drive, in oakland, result.to.time.hour=7,
result.to.time.minute=42, result.to.time.ampm=am),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

There are more buses than just the 54C, that run from
oakland to south side. I'll tell you about all of them. At 11:25
AM tomorrow, there is a 54 C, from Centre Avenue And Craig
Street, In Oakland, arriving East Carson Street And Twentieth
Street, In South Side, at 11:56 AM. Say repeat, next, previous,
or start over.

morebuses(route=54c, from.desc=oakland, to.desc=south
side), schedule(result.from.time.hour=11,
result.from.time.minute=25, result.from.time.ampm=am,
result.from.date.day=tomorrow, result.route=54c,
result.from.desc=centre avenue and craig street, in oakland,
result.to.desc=east carson street and twentieth street, in
south side, result.to.time.hour=11, result.to.time.minute=56,
result.to.time.ampm=am), example(act=repeat),
example(act=nextbus), example(act=prevbus),
example(act=restart)

At 10:07 AM tomorrow, there is a 61 C, from Fifth Avenue And
Market Street, Downtown, arriving Kennywood Boulevard
And Hoffman Boulevard, In West Mifflin, at 10:58 AM. Say
repeat, next, previous, or start over.

schedule(result.from.time.hour=10,
result.from.time.minute=7, result.from.time.ampm=am,
result.from.date.day=tomorrow, result.route=61c,
result.from.desc=fifth avenue and market street, downtown,

result.to.desc=kennywood boulevard and hoffman boulevard,
in west mifflin, result.to.time.hour=10,
result.to.time.minute=58, result.to.time.ampm=am),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

At 10:15 PM today, there is a 61 A, from Kelly Avenue And
Hay Street, In Wilkinsburg, arriving Bell Avenue And Library,
Near Jones Avenue, In North Braddock, at 10:35 PM. Say
repeat, next, previous, or start over.

schedule(result.from.time.hour=10,
result.from.time.minute=15, result.from.time.ampm=pm,
result.from.date.day=today, result.route=61a,
result.from.desc=kelly avenue and hay street, in wilkinsburg,
result.to.desc=bell avenue and library, near jones avenue, in
north braddock, result.to.time.hour=10,
result.to.time.minute=35, result.to.time.ampm=pm),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

At 1:07 AM later tonight, there is a 61 C, from Fifth Avenue
And Market Street, Downtown, arriving Lysle Boulevard And
Mckeesport Transportation Center, at 1:58 AM. Say repeat,
next, previous, or start over.

schedule(result.from.time.hour=1, result.from.time.minute=7,
result.from.time.ampm=am, result.from.date.day=today,
result.route=61c, result.from.desc=fifth avenue and market
street, downtown, result.to.desc=lysle boulevard and
mckeesport transportation center, result.to.time.hour=1,
result.to.time.minute=58, result.to.time.ampm=am),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

At 5:15 PM earlier today, there was a 61 C, from Kennywood
Boulevard Opposite Hoffman Boulevard, In West Mifflin,
arriving Kennywood Park And Main Entrance, at 5:28 PM. Say
repeat, next, previous, or start over.

schedule(result.from.time.hour=5,
result.from.time.minute=15, result.from.time.ampm=pm,
result.from.date.day=today, result.route=61c,
result.from.desc=kennywood boulevard opposite hoffman
boulevard, in west mifflin, result.to.desc=kennywood park
and main entrance, result.to.time.hour=5,
result.to.time.minute=28, result.to.time.ampm=pm),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

At 7:55 AM on Sunday August twenty second,, there is a 28 X,
from Forbes Avenue And Morewood Avenue, Near Carnegie
Mellon, In Oakland, arriving Pittsburgh International Airport
Lower Level, Near Door 6, at 8:42 AM. Say repeat, next,
previous, or start over.

schedule(result.from.time.hour=7,
result.from.time.minute=55, result.from.time.ampm=am,
result.from.date.day=sunday, result.from.date.absmonth=8,
result.from.date.absday=22, result.route=28x,
result.from.desc=forbes avenue and morewood avenue, near
carnegie mellon, in oakland, result.to.desc=pittsburgh
international airport lower level, near door 6,
result.to.time.hour=8, result.to.time.minute=42,
result.to.time.ampm=am), example(act=repeat),
example(act=nextbus), example(act=prevbus),
example(act=restart)

Next. At 10:00 PM today, there is a 61 B, from Eleventh Street
And Woodlawn Street, In Braddock, arriving Fifth Avenue And
Market Street, Downtown, at 10:45 PM. Say repeat, next,
previous, or start over.

impl-conf(act=nextbus), schedule(result.from.time.hour=10,
result.from.time.minute=0, result.from.time.ampm=pm,
result.from.date.day=today, result.route=61b,
result.from.desc=eleventh street and woodlawn street, in
braddock, result.to.desc=fifth avenue and market street,
downtown, result.to.time.hour=10, result.to.time.minute=45,
result.to.time.ampm=pm), example(act=repeat),
example(act=nextbus), example(act=prevbus),
example(act=restart)

Here's that again. At 10:12 PM today, there is a 54 C, from
South Hills Junction And Bus Turnaround, In Mount
Washington, arriving Centre Avenue And Craig Street, at 10:45
PM. Say repeat, next, previous, or start over.

impl-conf(act=repeat), schedule(result.from.time.hour=10,
result.from.time.minute=12, result.from.time.ampm=pm,
result.from.date.day=today, result.route=54c,
result.from.desc=south hills junction and bus turnaround, in
mount washington, result.to.desc=centre avenue and craig
street, result.to.time.hour=10, result.to.time.minute=45,
result.to.time.ampm=pm), example(act=repeat),

example(act=nextbus), example(act=prevbus),
example(act=restart)

Here's that again. At 9:10 AM tomorrow, there is a 28 X, from
Seventh Avenue And Smithfield Street, Downtown, arriving
Pittsburgh International Airport Lower Level, Near Door 6, at
9:42 AM. Say repeat, next, previous, or start over.

impl-conf(act=repeat), schedule(result.from.time.hour=9,
result.from.time.minute=10, result.from.time.ampm=am,
result.from.date.day=tomorrow, result.route=28x,
result.from.desc=seventh avenue and smithfield street,
downtown, result.to.desc=pittsburgh international airport
lower level, near door 6, result.to.time.hour=9,
result.to.time.minute=42, result.to.time.ampm=am),
example(act=repeat), example(act=nextbus),
example(act=prevbus), example(act=restart)

I thought you said GOODBYE. If that's not right, say go back.
Otherwise, thanks for calling.

impl-conf(act=bye), example(act=goback)

I thought you said START OVER. Is that right? expl-conf(act=restart)

Group C uses the same dialog acts as group A and B; examples will be made available later in the

challenge.

For the from.* and to.* slots in user acts, and the from.*, to.*, result.from.* and result.to.* slots in

system acts:

 Group A dialog systems sometimes distinguished between neighborhoods, streets, and

monuments. Group A dialog systems use *.desc, *.neighborhood, and *.monument.

 Group B dialog systems never distinguished between neighborhoods, streets, and monuments;

thus group B dialog systems always use *.desc and never *.neighborhood, and *.monument.

 In user acts, Group C dialog systems always distinguished between neighborhoods, streets, and

monuments; thus group C dialog systems always use *.desc, *.neighborhood, and *.monument.

In system acts, Group C dialog systems sometimes distinguish between neighborhoods, streets,

and monuments; thus group C dialog systems use a mixture of *.stop, *.neighborhood, and

*.monument, and *.desc.

Appendix E: Labeling procedure
The goal of labeling is to specify whether each dialog act in each SLU hypothesis is correct or incorrect.

To do this efficiently, a four-pass approach was used.

The first two phases deal with transcription. In the first phase, crowd-workers listen to the user audio,

are shown the 1-best recognition result, and mark the recognition result as correct or incorrect. In the

second phase, items marked “incorrect” are transcribed.

The third and fourth phases deal with labeling. These phases do not use the utterance audio. In the

third phase, crowd-workers look at transcriptions (and recent dialog history) and indicate whether they

contain a route, a from location, a to location, a date, or a time (5 yes/no judgments). In this phase,

common transcriptions such as “yes”, “no”, “next bus”, and common routes and locations can be

handled automatically. In the fourth phase, crowd-workers look at transcriptions which were labeled as

having a given slot present (route, from.desc, from.neighborhood, from.monument, to.desc,

to.neighborhood, to.monument, date, time), the previous 2 turns and the next 2 turns. They are shown

all of the slot values recognized for that slot in that utterance and mark each as correct or incorrect

(binary judgment for each slot value). For transcriptions which are completely unambiguous, such as

utterances that include only a bus route such as “sixty one c”, this step can be done automatically.

When deciding if a slot value is correct or incorrect, labelers were instructed to mark items which

complete captured the meaning of the user. Here are examples:

Example CORRECT labels

Transcription All recognized concept value(s) Reason

hazelwood at emahlea location=hazelwood and emahlea Refers to same intersection

next next cmd=next Same meaning, just repeated

ingram bus station location=ingram station Same location

next sorry trying to catch these
busses

cmd=next Same intention

mckeesport pa location=mckeesport
Same place (and "pa" should be "p
a")

dynamo way location=dynamo alley These are actually the same place

going back cmd=go back Same meaning

back go back cmd=go back Same meaning

oh back cmd=go back Same meaning

what (asked like a question) cmd=repeat Same meaning

braddock pennyslvania location=braddock Same location

the waterfront location=the water front Same meaning

fifteen charles street route=fifteen Refers to the same bus line

shady side location=shadyside Same meaning

fifty nine mon valley route=fifty nine Same bus route

fifty nine mon valley route=the fifty nine Same bus route

pittsburgh downtown pittsburgh location=pittsburgh downtown Same location

pittsburgh downtown pittsburgh location=downtown Same location

oh go back you're wrong you damn
computer go back

cmd=go back
Complete and correct, after the fluff
is removed

july twenty third friday date=july twenty third
safe to assume that July 23rd IS
friday

six one c route=sixty one c 61C=61C -- same bus route

hawkins fourth and hawkins location=fourth and hawkins
matched the most specific intent
expressed by user

Example INCORRECT labels

Transcription Recognized concept value(s) Reason

braddock north braddock braddock location=braddock
Braddock is only one of the
locations the caller said

go back start over cmd=start over Correct but incomplete

no i'm not sure cmd=no "no" is correct but incomplete

li no liberty cmd=no "no" is correct but incomplete

um from rockin um from bell and
jones

from=bell and jones avenue
Correct but incomplete (“from
rockin” missing)

i'm not sure twenty eight x route=i'm not sure Correct but incomplete

uh beechwood boulevard and
murray avenue

location=beechwood boulevard Correct but incomplete

arlington and brownsville location=arlington ave (probably) correct, but incomplete

arlington and brownsville location=arlington avenue (probably) correct, but incomplete

for grant street downtown location=grant street Correct but incomplete

forbes downtown location=downtown Correct but incomplete

woodstock in washington location=woodstock ave Missed neighborhood

woodstock in washington location=woodstock avenue Missed neighborhood

forbes and murray location=forbes ave Incomplete

penn wood apartments in
wilkinsburg

location=i'm at wilkinsburg Meaning is correct but incomplete

penn wood apartments in
wilkinsburg

location=wilkinsburg correct but incomplete

seven a m time=seven correct but incomplete

sixty one a b c d route=sixty one a
user wants any of the 61A, 61B,
61C, 61D -- so 61A is correct but
incomplete

thirty sixth and liberty or thirty sixth
and penn

location=thirty sixth and liberty Correct but incomplete

hawkins village on south braddock
avenue

location=hawkins village in rankin user didn't say "rankin"

um from rockin um from bell and
jones

from=bell and jones in north
braddock

user didn't say "north braddock"

bell and jones from=bell avenue in north braddock user didn't say "north braddock"

twenty sixth and liberty location=twenty fifth and liberty close but no cigar

uh beechwood boulevard and
murray avenue

location=beechwood boulevard and
Ronald

ronald is wrong

goes from the busway from=east busway user didn't say "east" busway

arlington and brownsville location=arlington and freeland Different intersection

sixty one c route=sixty one b Different bus routes

penn wood apartments in
wilkinsburg

location=pennwood avenue Sounds similar, but different places

i'm going to east pittsburgh to=pittsburgh different neighborhoods

braddock pennyslvania location=braddock avenue
braddock is a neighborhood;
braddock ave is a street

braddock pennyslvania location=braddock and verona totally wrong

to mckeesport from=mckeesport Wrong direction

i'm going in to mckeesport from
jefferson hills nay a lodge road

to=mckeesport transportation
center

No reference to "transportation
center"

thirty sixth and liberty or thirty sixth
and penn

location=twenty sixth and liberty
Recognized intersection isn't one
asked for

ok depart um time=now caller didn't ask for "now"

leaving from downtown to=downtown Wrong direction

Appendix F: Bus timetable database
Participants may wish to use the bus timetable database. A copy of the data is available here:

 http://research.microsoft.com/en-us/events/dstc/

Note that this is the version of the bus timetable database that was active during Summer 2010 (and

used by datasets train2, train3, and test4). The bus timetable database changes over time. From 2008-

2012, there are approximately 10 different versions of the database. Also, note that each system had its

own interface layer to the database, so no effort is made to align the SLU label classes with database

tokens.

http://research.microsoft.com/en-us/events/dstc/

Appendix G: Notes for future challenges
Below are ideas and suggestions which could not be accommodated in this challenge task, but may be

good for future challenges

 It would be interesting to report results with varying amounts of training data. This was not

done for this challenge because of the extra overhead, and because there is limited data to

start.

 It would be desirable to label dialog states as “correct” if they would retrieve an itinerary from

the DB that is acceptable to the user. This was not done for this challenge to remove the

dependency of the evaluation on the database (and may still require subjective judgements).

 This challenge has assumed that the user’s goal is fixed throughout the dialog (at least until

“start over”). Even if changes are rare, it is possible that the user’s goal may change. It would

be preferable to manually search for changes in the user’s goal rather than assuming it is fixed.

However this process is very difficult because (1) these changes are often difficult to identify at

all, especially without local domain knowledge, (2) these changes often require highly subjective

judgments, and (3) performing goal labeling on the scale of this challenge is expensive, even

with crowd-sourcing.

