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Yan for their collaborations and useful feedback, and the Computer Science Depart-

ment and UCSB for providing me the opportunity to pursue my doctoral study and also

providing the necessary support infrastructure. I immensely enjoyed my interactions

with Professor Janet Kayfetz, and I thank her for her inputs on technical writing and

presentations. I am also indebted to the National Science Foundation for funding my

research through grants IIS 0744539, III 1018637 and CNS 1053594, NEC Labs Amer-

ica for providing a generous gift to support my research, and to Amazon web services

for providing credits to use their clusters for large scale experiments. Any opinions,

findings, and conclusions or recommendations expressed in this dissertation are those

of the author and do not necessarily reflect the views of the sponsors.

ix



I am also thankful to all my friends for the fun moments in my PhD student life.

Special thanks to Aaron, Ceren, Shashank, Shiyuan, and Shoji for the wonderful mo-

ments we shared in the lab. I am also thankful to Aaron, Shashank, Shoji, and Shyam

for the collaborations and contributions to some of the projects in this dissertation. I

also thank my other past and present DSL colleagues: Ahmed, Arsany, Hatem, Lin,

Ping, Stacy, Terri, and Zhengkui. I will also cherish the good times spent with my

friends during my stay in Santa Barbara. Special thanks to Hero (Sayan), Barda (Pra-

tim), Sau (Rajdeep), Dada (Anindya) and the rest of the UCSB gang for the wonderful

moments.

Most importantly, my deepest gratitude is for my family for their constant support,

inspiration, guidance, and sacrifices. My father and mother were constant source of

motivation and inspiration. I wish my father was here today to witness this moment

and share the happiness—may his soul rest in peace. My sisters, Didibhai and Chhordi,

were my first teachers at home. Their affection and guidance was instrumental in me

choosing Engineering and eventually continuing on to my PhD. Pamela, my better half,

has been an angel in my life. She has been my best friend, on whom I can rely on

getting support on any and every aspect of my life. I cannot imagine life without her

constant support, dedication, and advice. Words are not enough for thanking her.

x



Curriculum Vitæ
Sudipto Das

November, 2011

Education

December 2011 Doctor of Philosophy in Computer Science,

University of California, Santa Barbara, CA, USA.

June 2011 Master of Science in Computer Science,

University of California, Santa Barbara, CA, USA.

June 2006 Bachelor of Engineering in Computer Science & Engineering,

Jadavpur University, Kolkata, India.

Research Interests
Scalable data management systems, elastic and self-managing

systems, large scale distributed systems, transaction processing,

cloud computing.

Work Experience

◦ UC Santa Barbara, Santa Barbara, CA, USA

(October 2006 - December 2011)

Graduate Research and Teaching Assistant.

◦ Microsoft Research, Redmond, WA, USA

(June 2010 - September 2010)

Research Intern.

◦ IBM Almaden Research Center, San Jose, CA, USA

(June 2009 - September 2009)

Research Intern.

◦ Google, Mountain View, CA

(June 2007 - September 2007)

Software Engineering Intern.

◦ IBM India Pvt. Limited, Kolkata, India.

(June 2005 - July 2005)

Summer Intern.

xi



Selected Publications

◦ “Albatross: Lightweight Elasticity in Shared Storage Databases

for the Cloud using Live Data Migration,” Sudipto Das, Shoji

Nishimura, Divyakant Agrawal, Amr El Abbadi. In the 37th In-

ternational Conference on Very Large Databases (VLDB) 2011.

◦ “Zephyr: Live Migration in Shared Nothing Databases for Elas-

tic Cloud Platforms,” Aaron Elmore, Sudipto Das, Divyakant

Agrawal, Amr El Abbadi. In the ACM International Conference

on Management of Data (SIGMOD) 2011.

◦ “Hyder – A Transactional Record Manager for Shared Flash,”

Philip Bernstein, Colin Reid, Sudipto Das. In the 5th Biennial

Conference on Innovative Data Research (CIDR) 2011 [Recipi-

ent of Best Paper Award].

◦ “MD-HBase: A Scalable Multi-dimensional Data Infrastruc-

ture for Location Aware Services,” Shoji Nishimura, Sudipto

Das, Divyakant Agrawal, Amr El Abbadi. In 12th International

Conference on Mobile Data Management (MDM) 2011[Recipi-

ent of Best Paper Runner-up Award].

◦ “G-Store: A Scalable Data Store for Transactional Multi key

Access in the Cloud,” Sudipto Das, Divyakant Agrawal, Amr

El Abbadi. In the 1st ACM International Symposium on Cloud

Computing (SoCC) 2010.

◦ “Ricardo: Integrating R and Hadoop,” Sudipto Das, Yannis

Simanis, Kevin S. Beyer, Rainer Gemulla, Peter J. Haas, John

McPherson. In the ACM International Conference on Manage-

ment of Data (SIGMOD) 2010.

◦ “Big Data and Cloud Computing: Current State and Future

Opportunities,” Divyakant Agrawal, Sudipto Das, Amr El Ab-

badi. Tutorial presentation at the 14th International Conference

on Extending Database Technology (EDBT) 2011.

◦ “Big Data and Cloud Computing: New Wine or just New Bot-

tles?,” Divyakant Agrawal, Sudipto Das, Amr El Abbadi. Tu-

torial presentation at the 36th International Conference on Very

Large Databases (VLDB) 2010.

xii



◦ “ElasTraS: An Elastic, Scalable, and Self Managing Transac-

tional Database for the Cloud,” Sudipto Das, Shashank Agar-

wal, Divyakant Agrawal, Amr El Abbadi. UCSB Technical Re-

port CS 2010-04.

◦ “ElasTraS: An Elastic Transactional Data Store in the Cloud,”

Sudipto Das, Divyakant Agrawal, Amr El Abbadi. In the 1st

Usenix Workshop on Hot topics on Cloud Computing (HotCloud)

2009.

◦ “Towards an Elastic and Autonomic Multitenant Database,”

Aaron Elmore, Sudipto Das, Divyakant Agrawal, Amr El Ab-

badi. In the 6th International Workshop on Networking Meets

Databases (NetDB) 2011.

◦ “Database Scalability, Elasticity, and Autonomy in the Cloud,”

Divyakant Agrawal, Amr El Abbadi, Sudipto Das, Aaron El-

more. In the 16th International Conference on Database Systems

for Advanced Applications (DASFAA) 2011 (Invited Paper).

◦ “Data Management Challenges in Cloud Computing Infras-

tructures,” Divyakant Agrawal, Amr El Abbadi, Shyam Antony,

Sudipto Das. In the 6th International Workshop on Databases

in Networked Information Systems (DNIS) 2010 (Invited Paper).

◦ “Anónimos: An LP based Approach for Anonymizing Weighted

Social Network Graphs,” Sudipto Das, Ömer Eğecioğlu, Amr
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Abstract

Scalable and Elastic Transactional Data Stores for Cloud

Computing Platforms

by

Sudipto Das

Cloud computing has emerged as a multi-billion dollar industry and as a successful

paradigm for web application deployment. Economies-of-scale, elasticity, and pay-per-

use pricing are the biggest promises of cloud. Database management systems (DBMSs)

serving these web applications form a critical component of the cloud software stack. In

order to serve thousands of applications and their huge amounts of data, these DBMSs

must scale-out to clusters of commodity servers. Moreover, to minimize their operating

costs, such DBMSs must also be elastic, i.e., possess the ability to increase and decrease

the cluster size in a live system. This is in addition to serving a variety of applications

(i.e., supporting multitenancy) while being self-managing, fault-tolerant, and highly

available.

The overarching goal of this dissertation is to propose abstractions, protocols, and

paradigms to architect efficient, scalable, and practical DBMSs that address the unique

set of challenges posed by cloud platforms. This dissertation shows that with careful

choice of design and features, it is possible to architect scalable DBMSs that efficiently

support transactional semantics to ease application design and elastically adapt to

fluctuating operational demands to optimize the operating cost. This dissertation ad-

vances the state-of-the-art by improving two critical facets of transaction processing

systems. First, we propose architectures and abstractions to support efficient and scal-

able transaction processing in DBMSs scaling-out using clusters of commodity servers.

The key insight is to co-locate data items frequently accessed together within a database

partition and limit transactions to access only a single partition. We propose systems

where the partitions—the granules for efficient transactional access—can be statically

defined based on the applications’ access patterns or dynamically specified on-demand

by the application. Second, we propose techniques to migrate database partitions in

a live system to allow lightweight elastic load balancing, enable dynamic resource or-

chestration, and improve the overall resource utilization. The key insight is to leverage

the semantics of the DBMS internals to migrate a partition with minimal disruption and

performance overhead while ensuring the transactional guarantees and correctness even

in the presence of failures. We propose two different techniques to migrate partitions

in decoupled storage and shared nothing DBMS architectures.
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Chapter 1

Introduction

“A journey of a thousand miles must begin with a single step.”

– Lao Tzu.

1.1 Cloud Computing

Cloud computing has emerged as a successful and ubiquitous paradigm for service

oriented computing where computing infrastructure and solutions are delivered as a ser-

vice. The cloud has revolutionized the way computing infrastructure is abstracted and

used. Analysts project the global cloud computing services revenue is worth hundreds

of billion dollars and is growing [52]. The major features that make cloud comput-

ing an attractive service oriented architecture are: elasticity, i.e., the ability to scale the

resources and capacity on-demand; pay-per-use pricing resulting in low upfront invest-

ment and low time to market for trying out novel application ideas; and the transfer of

risks from the small application developers to the large infrastructure providers. Many

novel application ideas can therefore be tried out with minimal risks, a model that was

not economically feasible in the era of traditional enterprise infrastructures. This has

resulted in large numbers of applications—of various types, sizes, and requirements—

being deployed across the various cloud service providers.

Three cloud abstractions have gained popularity over the years. Infrastructure as

a service (IaaS) is the lowest level of abstraction where raw compute infrastructure

(such as CPU, memory, storage, network etc.) is provided as a service. Amazon

web services (http://aws.amazon.com/), Rackspace (http://www.rackspace.com/)

and GoGrid (http://www.gogrid.com/) are example IaaS providers. Platform as a

service (PaaS) is the next higher level of service abstraction where an application

deployment platform is provided as a service. Applications are custom built for a
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PaaS provider’s platform and the provider deploys, serves, and scales the applications.

Microsoft Azure (http://www.microsoft.com/windowsazure/), Google AppEngine

(http://code.google.com/appengine/), Force.com (http://www.force.com/), and

Facebook’s developer platform (https://developers.facebook.com/) are example

PaaS providers. Software as a Service (SaaS) is the highest level of abstraction where

a complete application is provided as a service. A SaaS provider typically offers a

generic application software targeting a specific domain (such as customer relation-

ship management, property management, payment processing and checkout, etc.) with

the ability to support minor customizations to meet customer requirements. Sales-

force.com (http://www.salesforce.com/), Google Apps for Business and Enterprises

(http://www.google.com/apps/intl/en/business/index.html), and Microsoft Dy-

namics CRM (http://crm.dynamics.com/en-us/home) are example SaaS providers.

The concept of service oriented computing abstractions can also be extended to Database

as a Service, Storage as a Service, and many more.

1.2 Motivation and Challenges

Irrespective of the cloud abstraction, data is central to applications deployed in the

cloud. Data drives knowledge which engenders innovation. Be it personalizing search

results, recommending movies or friends, determining which advertisements to dis-

play or which coupon to deliver, data is central in improving customer satisfaction and

providing a competitive edge. Data, therefore, generates wealth and many modern

enterprises are collecting data at the most detailed level possible, resulting in massive

and ever-growing data repositories. Database management systems (DBMSs) therefore

form a critical component of the cloud software stack.

The data needs of applications deployed in the cloud can be broadly divided into

two categories: (i) online transaction processing (OLTP) databases responsible for

storing and serving the data and optimized for short low latency and high throughput

transaction processing; and (ii) decision support systems (DSS) responsible for glean-

ing intelligence from the stored data and optimized for complex analysis over large

amounts of data with often long-running queries. In this dissertation, we focus on

OLTP DBMSs designed to be deployed on a pay-per-use cloud infrastructure.

A diverse class of applications rely on a back end OLTP database engine. These

applications include social gaming (such as FarmVille, CityVille, and similar massively

multi-player stateful online games), rich social media (such as FourSquare, Uber Sense,

etc.), managed applications for various domains (such as Mint, Intuit, AppFolio, etc.),

all the way up to the various cloud application platforms (such as Windows Azure,

AppEngine, Force.com, Rightscale, etc.).
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Figure 1.1: The classical software stack of a typical deployment of a web application.

The clients connect through the Internet to the front tier servers (routing and web tiers)

that interact with caching servers (optional, depending on performance requirements)

and the database server(s) to serve client requests.

Relational database management systems (RDBMSs) are classical examples of

OLTP systems; such systems include both commercial (such as Oracle RAC, IBM

DB2 PureScale, Microsoft SQL Server, etc.) and open source (such as MySQL, Post-

gres, etc.) systems. These systems have been extremely successful in classical en-

terprise settings. Some of the key features of RDBMSs are: rich functionality, i.e.,

handling diverse application workloads using an intuitive relational data model and a

declarative query language; data consistency, i.e., dealing with concurrent workloads

while guaranteeing that data integrity is not lost; high performance by leveraging more

than three decades of performance optimizations; and high reliability and durability,

i.e., ensuring safety and persistence of data in the presence of different types of fail-

ures. Transactional access to data—i.e. guaranteeing atomicity, consistency, isolation,

and durability (ACID) of data accesses—is one of the key features responsible for the

widespread adoption of RDBMSs. In spite of the success of RDBMSs in classical en-

terprise infrastructures, they are often considered to be less “cloud friendly” [76]. This

is because scaling the database layer on-demand while providing guarantees competi-

tive with RDBMSs and ensuring high data availability in the presence of failures is a

hard problem.

Consider a typical web application’s software stack as shown in Figure 1.1. The

clients access the application via the Internet through a tier of load balancers or proxy
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servers that eventually connect to the front-end tier comprising the web and application

servers, i.e., the web tier. Data storage and querying is handled by the database servers

in the database tier. Some frequent queries may be cached within the database tier

and the web tier or, depending on the application’s requirements, on a separate cluster

of servers, i.e., the caching tier. Applications are typically deployed on commodity

servers; servers in different tiers are interconnected via low latency and high throughput

networks.

Most applications start on a small set of servers. As the number of clients and the

request rates increase, every tier in the stack, except the database tier, can be scaled

easily by adding more servers to distribute the load across a larger number of servers.

Adding more database servers is, however, not as straightforward. This is primarily

because the database servers store a lot of tightly coupled state while guaranteeing

stringent properties and supporting concurrent access. Historically, there have been

two approaches to scalability: scaling-up and scaling-out.

Scale-up, i.e., using larger and more powerful servers, has been the preferred ap-

proach to scale databases in enterprise infrastructures. This allowed RDBMSs to sup-

port a rich set of features and stringent guarantees without the need for expensive dis-

tributed synchronization. However, scaling-up is not viable in the cloud primarily be-

cause the cost of hardware grows non-linearly, thus failing to leverage the economies

achieved from commodity servers.

Scale-out, i.e., increasing system’s capacity by adding more (commodity) servers,

is the preferred approach in the cloud. Scaling-out minimizes the total system cost by

leveraging commodity hardware and the pay-as-you-go pricing. Scaling out RDBMSs,

while supporting flexible functionality, is expensive due to distributed synchronization

and the cost of data movement for transactions whose execution cannot be contained

to a single node.1 Moreover, managing partitioned RDBMS installations is a major

engineering challenge with high administration costs [55].

In the absence of appropriate partitioning techniques or self-administered parti-

tioned RDBMSs, many enterprises striving for large scale operations rely on a class

of systems, called Key-value stores, that were designed to scale-out. Examples are

Google’s Bigtable [24], Yahoo!’s PNUTS [26], Amazon’s Dynamo [35], and many

other open source variants of the aforementioned systems. Data in all these systems is

viewed as an independent collection of key-value pairs that are distributed over a cluster

of servers. These Key-value stores were designed to scale to thousands of commodity

servers, and replicate data across geographically remote locations, while supporting

low latency and highly available accesses. These data stores, therefore, support simple

1We use the term node to represent a single server in a distributed system. These two terms, node

and server, are used interchangeably throughout this dissertation.
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Figure 1.2: Scaling out while providing transaction access. Key-value stores are de-

signed for large scale operations but support minimal transactional guarantees while

RDBMSs support stringent transaction guarantees. This dissertation bridges this

chasm.

functionality based on single-key operations. Most notable is the lack of transactional

guarantees for accesses spanning multiple keys.

Single key accesses were enough to support the class of applications that the Key-

value stores initially targeted [84]: web indexing for Bigtable [24], serving user pro-

files for PNUTS [26], and shopping cart maintenance for Dynamo [35]. However, as

the class of applications using the Key-value stores diversified, applications accessing

multiple data items within a single request was inevitable. The Key-value stores do

not provide any atomicity and isolation guarantees for such accesses to multiple data

items. In the absence of transactional guarantees, applications must either embrace

the data inconsistencies, which considerably complicates reasoning about data fresh-

ness and application correctness [48], or implement transactional functionality in the

application layer, a non-trivial and often inefficient implementation [72].

As a result, there exists a big chasm between RDBMSs that provide strong trans-

actional guarantees but are hard to scale-out and Key-value stores that scale-out but

support limited (or no) transactional semantics. Given this chasm, practitioners often

resort to sub-optimal solutions, ad-hoc techniques, or retro-fitted features [48, 55, 72].

It is therefore critical to design DBMSs, either relational or key-value based, that scale-

out while supporting efficient transactional access. Figure 1.2 depicts this balance

between scale-out and transactional guarantees. Our goal is to combine the features of

the Key-value stores and the RDBMSs to bridge the chasm.
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In addition to scalability, the database tier must also be elastic, i.e., possess the

ability to be scaled on-demand.2 Elasticity allows the DBMSs to leverage variations in

application’s load patterns to consolidate to fewer servers during the period of low load

and add more capacity when the load increases. This on-demand scaling minimizes the

system’s operating costs by leveraging the underlying pay-per-use cloud infrastructure.

Of necessity, classical enterprise infrastructures were statically provisioned for peak

expected load, so the focus was to efficiently utilize the available capacity and improve

performance. However, with the advent of cloud computing, the need to optimize the

system’s operating cost has emerged as a critical design goal [41] and elasticity is a

key contributor to cost minimization. Lightweight, i.e., low overhead, techniques for

elastic scalability in DBMSs are, therefore, paramount.

Diverse applications are deployed in cloud infrastructures resulting in very differ-

ent schemas, workload types, data access patterns, and resource requirements. Many

of these applications (or tenants) are small in footprint and resource requirements. Al-

locating exclusive resources to these tenants is, therefore, wasteful in terms of the cost

and the resource utilization. Sharing resources amongst multiple tenants, called mul-

titenancy, allows effective resource utilization and further minimizes operating costs.

When such a multitenant DBMS is deployed on a pay-per-use infrastructure, an added

goal is to optimize the system’s operating cost by aggressively consolidating the tenant

databases while ensuring that the service level agreements (SLA) are met. Mechanisms

to load balance tenant databases are therefore essential.

As the scale of a system grows, managing it is also challenging and expensive. For

instance, detecting and recovering from failures, provisioning and capacity planning,

and effective resource orchestration between the tenants are some common administra-

tion task in such systems. To further minimize the operating cost, it is also important to

minimize the need for human intervention in system management.

Therefore, scalability, while supporting the guarantees application developers can

reason about, and elasticity, with minimal overhead, are two fundamental requirements

for the success of DBMSs in cloud infrastructures. These are in addition to the features

common to any mission critical system, i.e., fault-tolerance, self-manageability, and

high availability.

2There is a subtle difference between scalability and elasticity. Scalability is a static property that

describes the system’s ability to reach a certain scale (such as a thousand servers or a million requests

per minute). Elasticity is a dynamic property that allows the system to scale on-demand (such as scaling

to ten to hundred servers) in an operational system.
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1.3 Dissertation Overview

The overarching goal of this dissertation is to propose abstractions, protocols, and

paradigms to architect efficient and practical database management systems that meet

the unique set of challenges encountered by DBMSs designed for cloud infrastructures.

The underlying thesis of this dissertation is that with careful choice of design and fea-

tures, it is possible to architect scalable DBMSs that efficiently support transactional

semantics to ease application design and elastically adapt to fluctuating operational

demands to optimize the operating cost. Using this principle as the cornerstone, this dis-

sertation advances the state-of-the-art by improving two critical facets of OLTP DBMSs

for the cloud. First, we propose architectures and abstractions to support efficient and

scalable transaction processing in database systems spanning clusters of commodity

servers. Second, we propose techniques to migrate databases for lightweight elastic

load balancing in an operational system allowing the dynamic orchestration of system’s

resources.

1.3.1 Scale-out transaction processing

Classical RDBMSs allow complete flexibility in the scope and semantics of the

transactions. For instance, an application can access the entire database within a single

transaction and the RDBMS guarantees ACID properties on such a transaction. The

RDBMSs abstracts the application’s data as a cohesive granule of transactional access.

As a result, when an RDBMS is scaled-out and distributed over a cluster of servers, the

flexible transactional semantics lead to expensive distributed transactions. This makes

efficiently scaling-out RDBMSs to large clusters a major challenge.

However, as the size of data grows, applications seldom access all the data within

a single transaction; applications’ accesses are typically localized to a small number of

related data items. We propose to leverage this locality in the access patterns for access

driven database partitioning where data items that are accessed together frequently are

co-located within a single database partition. Co-locating data items based on access

patterns allows us to support rich functionality while supporting transactional seman-

tics at the granule of a database partition. Distributing the partitions on a cluster of

servers and using the partitions as the granule of transactional access allows efficient

transaction processing while scaling-out. Using this rationale, we present the design

of two large partitioned DBMSs where the partitions can be statically or dynamically

defined.

Many enterprise applications have static data access patterns. For such applica-

tions, rich functionality can be supported even when limiting most transactions to a

single partition or node. Once the database is split into a set of partitions, the challenge

in designing such a system lies in making it scalable, fault-tolerant, highly available,
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and self managing. In other words, the major research questions are: how to concur-

rently execute transactions on thousands of partitions, automatically detect and recover

from node failures, dynamically maintain partition-to-node mappings in the presence

of partition re-assignments, and guarantee correctness? We propose ElasTraS [31,32],

an elastically scalable transaction processing system. The unique architectural aspect

of ElasTraS is that it uses logically separate clusters of nodes for transaction processing

and for data storage. In ElasTraS, the storage layer is abstracted as a scalable and fault-

tolerant network-addressable storage. The transaction processing layer, executing on a

cluster of nodes logically separate from the storage layer, focusses on efficient caching,

transaction execution, and recovery of the partitions. Every transaction manager node

has exclusive access to the data it is serving. ElasTraS, therefore, has a decoupled stor-

age architecture which is different from the classical shared storage architectures where

the storage layer is used for transaction synchronization. A self-managing system con-

troller monitors nodes, detects failures, and automatically recovers from these failures.

Stringent protocols guarantee strongly consistent and highly available management of

system metadata.

In some applications, such as online games or collaboration-based applications, data

items frequently accessed within a transaction change dynamically with time. For in-

stance, in an online game, transactions frequently access player profiles participating in

the same game instance which changes with time. In a statically partitioned database,

profiles of players in a game may belong to different partitions. Transactions will,

therefore, be distributed across multiple nodes resulting in inefficiencies and scalability

bottlenecks. We propose the Key Group abstraction [33] that allows applications to

dynamically specify the groups of data items (or keys) on which it will require transac-

tional access. To allow efficient execution of transactions on a group, we propose the

Key Grouping protocol, which co-locates read-write access of keys in a Key Group

at a single node. The Key Group abstraction leverages the application semantics and is

equivalent to a dynamically formed database partition. The group creation and deletion

cost is paid for by more efficient transaction execution during the lifetime of the group.

The challenges to implement transactions in such a system are: how to ensure the safe

formation and deletion of groups in the presence of failures, how to ensure efficient and

durable transaction execution, and how to guarantee safe maintenance of system meta-

data corresponding to the dynamically formed groups? We propose rigorous protocols

for group formation, transaction execution, and recovery.

1.3.2 Lightweight elasticity

Elasticity in the database tier entails dynamically adapting the size of the database

cluster depending on the workload’s demands. In other words, when the load on the

8



Dissertation Overview – Section 1.3

database increases, the system should be able to add new capacity and move some

database partitions to the newly added servers to distribute the load, thus ensuring good

performance. Similarly, when the load decreases, the system should also be able to

consolidate the database partitions to fewer servers, thus reducing the operating cost.

The ability to migrate database partitions in a live system executing transactions, with

low overhead and minimal impact on the transactions executing during the migration,

is critical to elastic load balancing and dynamic resource orchestration.

In this dissertation, we formulate the problem of live database migration for elas-

tic scaling and load balancing in the database tier. Live migration enables a database

partition to be migrated from a source node to a destination node while clients continue

to execute transactions on the partition. The major challenges for live database migra-

tion are how to minimize the migration overhead, how to ensure serializable isolation

of the transactions, and how to ensure correctness in the presence of failures that might

occur during migration? We propose two live database migration techniques for two

commonly used database architectures: decoupled storage and classical shared nothing.

In the decoupled storage architecture, the persistent data is stored in a network-

addressable storage abstraction accessible from all the database nodes. Therefore, the

partition’s persistent image need not be migrated. An added challenge for this archi-

tecture is the live migration of the database cache and the state of active transactions.

We propose a new protocol, Albatross [34], that migrates a partition with no aborted

transactions and minimal performance impact. In Albatross, the source takes a quick

snapshot of a partition’s cache and the destination warms up its cache starting with

this snapshot. While the destination initializes its cache, the source continues execut-

ing transactions; the destination therefore lags the source. Changes made to the source

node’s cache are iteratively copied to the destination. Once the destination has suffi-

ciently caught up, transactions are blocked at the source and migration is completed.

The state of active transactions is copied in this final handover phase.

In a shared nothing database architecture, the persistent data is stored on disks lo-

cally attached to the nodes. An added challenge for this architecture is the live migra-

tion of the persistent data (which can be in the order of gigabytes) with no unavailability.

We propose a new protocol, Zephyr [39], that divides migration into multiple phases.

In the first phase, Zephyr freezes all the indices, i.e., prevents structural changes, and

copies a wireframe of the database to the destination node. This wireframe consists of

the minimal information needed for the destination to start executing transactions but

does not include the actual application data stored in the partition. Once the destination

initializes the wireframe, migration enters the second phase where both the source and

the destination nodes concurrently execute transactions on the partition. The source

completes execution of the transactions that were active at the start of migration, while

the destination executes new transactions. Database pages are used as granules for
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Figure 1.3: Overview of the dissertation’s contributions classified into the two thrust

areas for this dissertation: scale-out transaction processing and lightweight elasticity.

migration; pages are pulled from the source by the destination as transactions at the

destination access them. Once transactions at the source complete, migration enters the

final phase where the remaining pages are pushed to the destination. Minimal synchro-

nization and handshaking between the source and the destination ensures correctness.

1.4 Contributions and Impact

This dissertation makes several fundamental contributions towards realizing our vi-

sion of building scalable and elastic OLTP DBMSs for cloud platforms. Our contri-

butions significantly advance the state-of-the-art by supporting scale-out transaction

processing and promoting elasticity as a first class concept in database systems. Our

technical contributions are in access driven and dynamically specified database par-

titioning, large self-managing DBMSs installations, virtualization in the database tier,

and live database migration for elastic load balancing. These technologies are critical to

ensure the success of the next generation of DBMSs in cloud computing infrastructures.

Figure 1.3 summarizes these contributions into the two major thrust areas of this

dissertation: scale-out transaction processing and lightweight elasticity. We now high-

light these contributions and their impact.

• We present a thorough analysis of the state-of-the-art systems and distill the im-

portant aspects in the design of different systems and analyze their applicability
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and scope [2, 3, 5]. We then articulate some basic design principles for design-

ing new database systems for the cloud. A thorough understanding and a precise

characterization of the design space are essential to carry forward the lessons

learned from the rich literature in scalable and distributed database management.

• We propose access driven database partitioning and self-administering DBMS in-

stallations designed for scaling out using commodity servers. Leveraging access

patterns to drive database partitioning and co-locate data items is fundamental

to support rich transactional semantics and efficient transaction execution. Min-

imizing the need for human intervention in common system management and

administration tasks is important to reduce the overall operating cost in addition

to facilitating adoption.

• We present the architecture and implementation of ElasTraS [31, 32], a design to

efficiently execute transactions on a set of partitions distributed across a cluster of

commodity servers. ElasTraS is one of the first systems to allow scale-out trans-

action processing on statically partitioned databases. We present mechanisms

for automated system management to detect and recover from failures and load

balance the partitions depending on changes in the load patterns.

• We present the Key Group abstraction [33], a mechanism for applications to dy-

namically specify a set of data items on which it requires transactional access.

We also present the Key Grouping protocol that is a lightweight mechanism to

dynamically reorganize the read/write access rights to the data items in a dis-

tributed data management system, thus allowing efficient transaction execution.

This is the first technique to provide the benefits of partitioning even when ac-

cesses do not statically partition. We demonstrate the practicality of the proposed

Key Grouping protocol by implementing a prototype, called G-Store, that guar-

antees transactional multi-key access over Key-value stores.

• We formulate the problem of live database migration as an important feature to

build elastic DBMSs for the cloud. We envision embedding virtualization into the

database tier in order to effectively support database multitenancy. Live database

migration is a critical enabler for dynamic resource orchestration between the

tenant databases in virtualized multitenant DBMSs.

• We present Albatross [34], the first published end-to-end solution for live mi-

gration in decoupled storage database architectures with no transaction aborts

during migration. Albatross migrates the database cache and the state of active

transactions to ensure minimal performance impact as a result of migration.

• We present Zephyr [39], the first published end-to-end solution for live migration

in shared nothing database architectures with no downtime as a result of migra-

tion. Zephyr guarantees no downtime by allowing the source and the destination

of migration to concurrently execute transactions during a phase in migration. We
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demonstrate how a lightweight synchronization mechanism can be used in such

a scenario to guarantee serializability of transactions executing during migration.

• We present a rigorous analysis of the guarantees and correctness in the presence

of various failure scenarios for each of the four proposed systems and techniques.

Such a rigorous analysis is important to reason about overall correctness while

providing confidence in the system’s behavior. In addition, all four techniques

have been prototyped in real distributed database systems to demonstrate fea-

sibility and the benefits of the proposed techniques. A detailed analysis of the

trade-offs of each design allows future systems to make informed decisions based

on insights from this dissertation.

1.5 Organization

In Chapter 2, we provide a systematic survey and analysis of the state-of-the-art in

scalable and distributed database systems. The rest of the dissertation is organized into

two parts focussing on the two thrust areas of this dissertation.

Part I focusses on systems designed to support efficient transaction processing while

scaling-out to large clusters of commodity servers. Chapter 3 presents the design prin-

ciples that form the foundation of the two systems described in the two subsequent

chapters. Chapter 4 presents the design of ElasTraS, a system that scales-out using

statically defined database partitions. Chapter 5 presents the Key Grouping protocol, a

technique to efficiently execute transactions on dynamically defined partitions.

Part II focusses on techniques to enable lightweight elasticity using live database

migration. Chapter 6 analyzes the problem space for elastic load balancing in the

database tier and formulates the problem of live database migration. Chapter 7 presents

Albatross, a technique for lightweight database migration in a decoupled storage database

architecture where the persistent data is stored in a network-addressable storage ab-

straction. Chapter 8 presents Zephyr, a technique for lightweight database migration

in shared nothing database architectures where the persistent data is stored on disks

locally attached to the nodes.

Chapter 9 concludes this dissertation and outlines some open challenges.
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Chapter 2

State of the Art

“Stand on the shoulders of giants.”

– Bernard of Chartres and Isaac Newton.

Scalable distributed data management has been the vision of the computer science

research community for more than three decades. This chapter surveys the related

works in this area in light of the cloud infrastructures and their requirements. Our goal

is to distill the key concepts and analyze their applicability and scope. A thorough

understanding and a precise characterization of the design space are essential to carry

forward the lessons learned from the rich literature in scalable and distributed database

management.

2.1 History of Distributed Database Systems

Early efforts targeting the design space of scalable database systems resulted in two

different types of systems: distributed DBMSs (DDBMS) such as R∗ [66] and SDD-

1 [77] and parallel DBMSs (PDBMS) such as Gamma [37] and Grace [42]. DeWitt and

Gray [36] and Ozsu and Valduriez [73] provide thorough surveys of the design space,

principles, and properties of these systems. The goal of both classes of systems was to

distribute data and processing over a set of database servers while providing the abstrac-

tions and semantics similar to centralized systems. While the DDBMSs were designed

for update intensive workloads, the PDBMSs allowed updates but were predominantly

used for analytical workloads. The goal of DDBMSs was to continue providing the se-

mantics of a centralized DBMS while the DBMS nodes can be distributed either within

an enterprise or potentially across multiple enterprises and inter-connected using wide

area networks.
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Even though PDBMSs have been widely commercialized, the success of DDBMSs

was limited primarily due to the overhead of distributed transactions. First, being dis-

tributed across high latency networks meant considerably higher response times for

transactions spanning multiple database servers. Second, guaranteeing stringent trans-

actional properties in the presence of failures limited the availability of these systems.

In addition, a number of other technical and non-technical reasons also limited the

practicality of these distributed DBMSs. As a result, enterprises resorted to scaling-

up the DBMSs while using workflows and business processes [15] to replace complex

distributed transactions.

In spite of the limited success, many important technologies were invented while

building the DDBMSs and PDBMSs that remain relevant in the current context. An

example is the two phase commit protocol (2PC) for atomic transaction commitment

across multiple sites [44] which is commonly used in many systems currently used

in production. Many important advances were also made in the distributed systems

community. For instance, the Paxos consensus protocols [63], notions of causality

and vector clocks [62], and fault-tolerant broadcast protocols [16, 47] are fundamental

technologies that have influenced the design of contemporary systems.

Different from the distributed and parallel DBMSs, another approach to scaling

DBMSs while preserving the semantics of a single node RDBMS is through data shar-

ing. In such a model, a common database storage is shared by multiple processors that

concurrently execute transactions on the shared data. Examples of such systems are

Oracle Real Application Clusters [23], Oracle Rdb (formerly DEC Rdb) [68], and IBM

DB2 data sharing [57]. A common aspect of all these designs is a shared lock manager

responsible for concurrency control. Even though many commercial systems based on

this architecture are still used in production, the scalability of such systems is limited

by the shared lock manager and the complex recovery mechanisms resulting in longer

unavailability periods as a result of a failure.

2.2 Cloud Data Management: Early Trends

With the growing popularity of the Internet, many applications were delivered over

the Internet and the scale of these applications also increased rapidly. As a result,

many Internet companies, such as Google, Yahoo!, and Amazon, faced the challenge

of serving hundreds of thousands to millions of concurrent users. Classical RDBMS

technologies could not scale to these workloads while using commodity hardware to

be cost-effective. The need for low cost scalable DBMSs resulted in the advent of

Key-value stores such as Google’s Bigtable [24], Yahoo!’s PNUTS [26], and Amazon’s
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Dynamo [35].1 These systems were designed to scale out to thousands of commod-

ity servers, replicate data across geographically remote data centers, and ensure high

availability of user data in the presence of failures which is the norm in such large in-

frastructures of commodity hardware. These requirements were a higher priority for

the designers of the Key-value stores than rich functionality. Key-value stores support

a simple key-value based data model and single key access guarantees, which were

enough for their initial target applications [84]. In this section, we discuss the design

of these three systems and analyze the implications of the various design choices made

by these systems.

2.2.1 Key-value Stores

Bigtable [24] was designed to support Google’s crawl and indexing infrastructure.

A Bigtable cluster consists of a set of servers that serve the data; each such server

(called a tablet server) is responsible for parts of the tables (known as a tablet). A

tablet is logically represented as a key range and physically represented as a set of

SSTables. A tablet is the unit of distribution and load balancing. At most one tablet

server has read and write access to each tablet. Data from the tables is persistently

stored in the Google File System (GFS) [43] which provides the abstraction of scalable,

consistent, fault-tolerant storage. There is no replication of user data inside Bigtable;

all replication is handled by the underlying GFS layer. Coordination and synchroniza-

tion between the tablet servers and metadata management is handled by a master and a

Chubby cluster [20]. Chubby provides the abstraction of a synchronization service via

exclusive timed leases. Chubby guarantees fault-tolerance through log-based replica-

tion and consistency amongst the replicas is guaranteed through a Paxos protocol [22].

The Paxos protocol [63] guarantees safety in the presence of different types of failures

and ensures that the replicas are all consistent even when some replicas fail. But the

high consistency comes at a cost: the limited scalability of Chubby due to the high cost

of the Paxos protocol. Bigtable, therefore, limits interactions with Chubby to only the

metadata operations.

PNUTS [26] was designed by Yahoo! with the goal of providing efficient read ac-

cess to geographically distributed clients. Data organization in PNUTS is also in terms

of range-partitions tables. PNUTS performs explicit replication across different data

centers. This replication is handled by a guaranteed ordered delivery publish/subscribe

system called the Yahoo! Message Broker (YMB). PNUTS uses per record mastering

and the master is responsible for processing the updates; the master is the publisher to

1At the time of writing, various other Key-value stores (such as HBase, Cassandra, Voldemort, Mon-

goDB etc.) exist in the open-source domain. However, most of these systems are variants of the three

in-house systems.
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YMB and the replicas are the subscribers. An update is first published to the YMB

associated to the record’s master. YMB ensures that updates to a record are delivered

to the replicas in the order they were executed at the master, thus guaranteeing single

object time line consistency. PNUTS allows clients to specify the freshness require-

ments for reads. A read that does not have freshness constraints can be satisfied from

any replica copy. Any read request that requires data that is more up-to-date than that

of a local replica must be forwarded to the master.

Dynamo [35] was designed by Amazon to support the shopping carts for Ama-

zon’s e-commerce business. In addition to scalability, high write availability, even in

the presence of network partitions, is a key requirement for Amazon’s shopping cart

application. Dynamo therefore explicitly replicates data and a write request can be

processed by any of the replicas. It uses a quorum of servers for serving the read and

writes. A write request is acknowledged to the client when a quorum of replicas has

acknowledged the write. To support high availability, the write quorum size can be

set to one. Since updates are propagated asynchronously without any ordering guaran-

tees, Dynamo only supports eventual replica consistency [85] with the possibility that

the replicas might diverge. Dynamo relies on application level reconciliation based on

vector clocks [62].

2.2.2 Design Choices and their Implications

Even though all three Key-value stores share some common goals, they also differ

in some fundamental aspects of their designs. We now discuss these differences, the

rationale for these decisions, and their implications. We focus on the design aspects;

Cooper et al. [27] discusses the performance implications.

Data model

The distinguishing feature of the Key-value stores is their simple data model. The

primary abstraction is a table of items where each item is a key-value pair or a row. The

value can either have structure (as in Bigtable and PNUTS), or can be an uninterpreted

string or blob (as in Dynamo). Bigtable’s data model is a sparse multi-dimensional

sorted map where a single data item is identified by a row identifier, a column family,

a column, and a timestamp. The column families are the unit of data co-location at

the storage layer. PNUTS provides a more traditional flat row-like structure similar

to the relational model. Atomicity and isolation are supported at the granularity of a

single key-value pair, i.e., an atomic read-modify-write operation is supported only for

individual key-value pairs. Accesses spanning multiple key-value pairs are best-effort

without guaranteed atomicity and isolation from concurrent accesses. These systems

allow large rows, thus allowing a logical entity to be represented as a single row.
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Restricting data accesses to a single-key provides designers the flexibility of oper-

ating at a much finer granularity. Since a single key-value pair is never split across

compute nodes, application level data manipulation is restricted to a single compute

node boundary and thus obviates the need for multi-node coordination and synchro-

nization [51]. As a result, these systems can scale to billions of key-value pairs using

horizontal partitioning. The rationale is that even though there can be potentially mil-

lions of requests, the requests are generally distributed throughout the data set. More-

over, the single key operation semantics limits the impact of failure to only the data that

was being served by the failed node; the rest of the nodes in the system can continue

to serve requests. Furthermore, single-key operation semantics allows fine-grained par-

titioning and load-balancing. This is different from RDBMSs that consider data as a

cohesive whole and a failure in one component results in overall system unavailability.

Data distribution and request routing

All the systems partition data to distribute it over a cluster of servers. Bigtable

supports range partitioning, Dynamo supports hash partitioning, and PNUTS supports

both hash and range partitioning. The systems also require a routing mechanism to

determine which node is serving a particular key-value pair. Bigtable and PNUTS use

centralized solutions to maintain the mapping of key intervals to the servers. Bigtable

uses a three level B+-tree (called the ROOT and META tables) that stores the interval

mapping. PNUTS stores the mappings on specialized servers, called tablet controllers,

dedicated for this purpose. Dynamo, on the other hand, uses a distributed peer-to-peer

(P2P) approach using consistent hashing [59]. Due to the centralized nature of the

system metadata in Bigtable and PNUTS, specialized mechanisms are needed to route

the client requests: Bigtable uses a client library that encapsulates the routing logic

while PNUTS uses a separate set of routing servers that cache the interval mappings.

In Dynamo, the clients use consistent hashing to route the client requests, thus obviating

the need for explicit routing mechanisms.

Cluster management

As the scale of the system increases, managing such systems without human in-

tervention becomes a challenge. Specifically, detecting and recovering from failures

and basic load balancing functionalities are critical to the system’s proper operation.

In Bigtable, the master server, in close cooperation with the Chubby service, performs

cluster management. The master and every tablet server in the system obtains a timed

lease with Chubby that must be periodically renewed. A server in a Bigtable cluster

can carry out its responsibilities only if it has an active lease from Chubby. Every

tablet server periodically reports to the master using heartbeat messages that also con-
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tain the load statistics. These heartbeat messages and the leases with Chubby form the

basis for failure detection and recovery. PNUTS also relies on a similar mechanism

where the tablet controller detects failures as well as load balances the tablets. Dy-

namo, on the other hand, relies on P2P techniques. It uses gossip-based protocols to

detect failures and sloppy quorum and hinted handoff mechanisms to deal with tempo-

rary failures. The somewhat centralized nature of the control mechanisms in Bigtable

and PNUTS make them vulnerable to unavailability in the presence of failures of these

critical components. For instance, if the Chubby service in Bigtable or the tablet con-

troller in PNUTS are unavailable, the system becomes unavailable. The decentralized

P2P approaches in Dynamo allow the system to be less susceptible to such failures and

unavailability.

Fault-tolerance and data replication

Failures are common at the scale of operation the Key-value stores target. They

were, therefore, designed to handle failures gracefully to ensure high data availability.

In Bigtable, data replication is handled in the underlying storage layer, i.e., by GFS.

Bigtable uses GFS as a strongly consistent replicated storage abstraction. The persistent

data and the write ahead logs are stored in GFS, thus allowing Bigtable to recover from

tablet server failures. After a tablet server failure is detected by the master, the state

of the failed server can be recovered at another live tablet server. The GFS design,

however, is optimized for replication within a data center. As a result, a large scale data

center level outage results in data unavailability in Bigtable.

PNUTS uses the YMB for replication and fault-tolerance. An update is acknowl-

edged to the client only after it has been replicated within YMB. PNUTS uses YMB

as a fault-tolerant replicated log and leverages YMB’s guaranteed ordered delivery for

replication; PNUTS guarantees single record timeline consistency for the replicas. If

a record’s master fails, another replica can be elected as the master once all updates

from the original master’s YMB have been applied to the replica, a mechanism called

re-mastering. However, in the event of a data center outage resulting in YMB unavail-

ability, similar to any asynchronous log-based replication protocol, the tail of the log

that has not propagated to other data centers will be lost if the records are re-mastered.

Therefore, PNUTS presents a trade-off between data loss and data unavailability in the

event of a catastrophic failure.

Dynamo uses asynchronous quorum based replication where any replica can pro-

cess an update. Freshness guarantees can be provided if the read and write quorums

overlap; though at the cost of increased latency. However, to guarantee high availabil-

ity, Dynamo uses sloppy quorums, i.e., the read and write quorums do not overlap.

Dynamo does not provide any update propagation guarantees, thus only guaranteeing

eventual replica consistency. Since any replica can handle updates, failure handling is
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straightforward. As noted earlier, failures can lead to divergent replicas whose recon-

ciliation must be handled at the application layer.

For these Key-value stores, scalability and high availability are the foremost re-

quirements. It is well known that a distributed system can only choose two of con-

sistency, availability, and partition tolerance (CAP) [19]. For these systems spanning

large infrastructures or geographically separated data centers, network partitions are

inevitable. In the event of a network partition, these systems choose availability over

replica consistency.

2.3 Transaction Support in the Cloud

A large class of web-applications exhibit single key access patterns which drove the

design of the Key-value stores [35,84]. However, as the class of applications broadened,

applications often access multiple data items within a single request. These applications

range from online social applications such as multi-player games and collaboration

based applications to enterprise class applications deployed in the cloud. Providing

transactional support in the cloud has therefore been an active area of research.

Classical multi-step transactions guarantee the ACID semantics: either all opera-

tions in a transaction execute or none of them execute (atomicity), a transaction takes

the database from one consistent state to another consistent state (consistency), con-

currently executing transactions do not interfere (isolation), and updates made from a

committed transaction are persistent (durability) (ACID). Serializability, the strongest

form of isolation, ensures that transactions execute in an order equivalent to serial or-

der, thus making concurrency transparent to the application developers. The ACID se-

mantics, therefore, considerably simplifies application logic and helps reasoning about

correctness and data consistency using sequential execution semantics.

In addition to the two approaches that this dissertation presents, various other ap-

proaches were also developed concurrently in both academia and industry. In this sec-

tion we provide a survey of this evolving landscape of scalable transaction processing

in the cloud. We classify these approaches into two broad categories: approaches that

rely of database partitioning to limit most transactions to a single server and approaches

that do not partition the database.

2.3.1 Partitioning based approaches

We first discuss the class of systems that provide ACID guarantees by limiting the

scope of the transactions supported. These systems are driven by a common observation

that application access patterns can be partitioned so that data items frequently accessed

together within a transaction can be co-located within a database partition. The systems
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however differ in how the database is partitioned and how the partitioned database is

served.

Cloud SQL Server [14] from Microsoft uses a partitioned database on a shared-

nothing architecture leveraging an RDBMS engine, Microsoft SQL Server, at its core.

Cloud SQL server is the underlying storage abstraction for Microsoft SQL Azure and

Exchange Hosted Archive. Transactions are constrained to execute on one partition and

the database is replicated for high availability using a custom primary-copy replication

scheme. In Cloud SQL Server, a logical database is called a table group which may

be keyless or keyed. If it is keyed, then all of the tables in the table group must have

a common column called the partitioning key. A row group is the set of all rows in a

table group that have the same partition key value. For keyless tables, ACID guarantees

are provided on a table group while for keyed tables, acid guarantees are provided

on a row group. The transaction commitment protocol requires that only a quorum

of replicas acknowledge a transaction commit. A Paxos-like consensus algorithm is

used to maintain a set of replicas to deal with replica failures and recoveries. Dynamic

quorums are used to improve availability in the face of multiple failures.

Megastore [11], the database supporting Google AppEngine, provides transactional

multi-key accesses on top of Bigtable. Megastore provides both strong consistency

guarantees and high availability of data supporting fully serializable ACID semantics

within fine-grained partitions of data. It uses a statically defined abstraction, called

entity-groups, that represents the application specified granule of transactional access

as well as partitioning. An entity group is essentially a hierarchical key structure. An

important aspect of the design of Megastore is the use of a Paxos-like protocol for

synchronous replication of each write to an entity group across a wide area network

with reasonable latency. This synchronous cross data center replication allows seamless

fail-over between data centers but comes at the cost of increased transaction latencies.

Relational Cloud [28] also proposes a design with similar goals as the above systems

and hence various aspects of the design reflect choices similar to that of the other sys-

tems. The key aspects of Relational Cloud include a workload-aware approach to multi-

tenancy that identifies the workloads that can be co-located on a database server [29]

and the use of a graph-based data partitioning algorithm [30].

The three systems described above, and ElasTraS presented in this dissertation, have

similar goals and hence share various common design decisions such as: limiting in-

teractions to a single node, limited and prudent use of distributed synchronization only

when needed and so on. In spite of the similarity, there are some key differences that

distinguish these systems from one another. First, ElasTraS, Cloud SQL Server, and

Megastore use variants of a hierarchical schema pattern while Relational Cloud uses a

custom graph-based database partitioning mechanism. Second, Cloud SQL Server and

Relational Cloud use the classical shared nothing architecture where the persistent data
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is stored in locally attached disks. As a result, to ensure high availability, Cloud SQL

Server has a custom replication protocol. On the other hand, ElasTraS and Megastore

use a decoupled storage architecture where the transaction execution logic is decoupled

from the storage logic and the persistent data is stored in a fault-tolerant shared network

addressable storage abstraction. On top of the fault-tolerant storage, Megastore uses its

own custom wide-area replication mechanism to support seamless data center fail-over

for disaster recovery.

As noted earlier, the design of the systems described above is based on the as-

sumption that application accesses partition statically. For applications who access

patterns change dynamically, using such a statically partitioned system would result in

distributed transactions. No technique is known that leverages the benefits of partition-

ing when accesses do not statically partition. We present the first such technique. Our

technique allows applications to dynamically specify the set of data items on which

transactional access is sought while allowing the system to co-locate accesses to these

data items to provide performance similar to the statically partitioned systems.

2.3.2 Approaches without explicit partitioning

A different class of systems do not require the database to be partitioned. As a result,

transactions span multiple servers, thus making them expensive. These systems either

provide weaker transactional guarantees or leverage application semantics or custom

optimizations to minimize the cost.

Brantner et al. [18] propose techniques to build higher level database functionality

on top of storage utility services in the cloud, such as Amazon S3, which exposes an

interface similar to Key-value stores. The proposed system’s goal is to preserve the

scalability and availability of a distributed system such as S3. In order to allow for

high availability, the authors focus on maximizing the level of consistency that can be

achieved without providing stringent consistency and isolation guarantees as supported

by transactions in classical RDBMSs. Rather, the focus is on supporting atomicity and

durability of a single object stored in S3. Since stronger guarantees make operations

expensive, Kraska et al. [60] propose a mechanism allowing applications to declare

data items with variable consistency. The rationale of this approach, called consistency

rationing, is to pay the cost of strong guarantees only for the data items that need strong

consistency.

Percolator [74] from Google targets an application domain where data co-location

is not possible. As a result, Percolator must use distributed transactions. The focus

is on the ACID properties of transactions and not on the low latency requirements of

these transactions. The primary target application of Percolator is the indexing infras-

tructure of Google that allows incremental index maintenance. When a new web-page
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is crawled, it results in an update to multiple parts of the index that must be transaction-

ally updated. Such transactions, however, do not have stringent latency requirements.

As a result, percolator uses proven protocols for distributed transaction execution over

a key-value store such as Bigtable. Some transactions might block in the presence of

failures. Such blocking is acceptable in Percolator’s target application domain that does

not require low latency transactions.

Aguilera et al. [7] presents Sinfonia which is an efficient platform for building dis-

tributed systems. Sinfonia can be used to efficiently design and implement systems

such as distributed file systems. The metadata of such systems (e.g. the inodes) need

to be maintained as well as manipulated in a distributed setting; Sinfonia provides ef-

ficient means for guaranteeing the consistency of these critical operations. It provides

the minitransaction abstraction that guarantees transactional semantics on only a small

set of operations such as atomic and distributed compare-and-swap. The idea is to use

the two phases of message exchange in 2PC to execute some simple operations. The

operations are piggy-backed on the messages sent out during the first phase of 2PC.

Operations should be such that each participating site can perform the operation and

reply with a commit or abort vote. The lightweight nature of a minitransaction allows

the system to scale to hundreds of nodes.

Vo et al. [83] propose ecStore, an elastic cloud storage system that supports auto-

mated data partitioning and replication while supporting transactional access. In ec-

Store, data objects are distributed and replicated in a cluster of commodity nodes in the

cloud. Transactional access to multiple data items is provided through the execution of

distributed transactions; the focus is primarily on atomicity and durability with weaker

isolation levels supported through optimistic multi-version concurrency control.

The Deuteronomy system [65] supports efficient and scalable ACID transactions

in the cloud by decomposing the functions of a database storage engine kernel into

a transactional component (TC) and a data component (DC). The TC manages trans-

actions and their logical concurrency control and recovery, but knows nothing about

physical data location. The DC maintains a data cache and uses access methods to

support a record-oriented interface with atomic operations, but knows nothing about

transactions. The key idea of Deuteronomy is that the TC can be applied to data any-

where (in the cloud, local, etc.) with a variety of deployments for both the TC and

DC. Since the TC and DC are completely decoupled, the focus of the system is on the

design of the interface protocol, efficient locking, and efficient recovery.

Hyder [13] aims at providing scale-out without the need to partition the applica-

tion or the database while allowing high throughput and low latency transaction execu-

tion. Hyder proposes a data sharing architecture, radically different from classical data

sharing architectures [23,68], that leverages novel advances in the overall hardware in-

frastructure in data centers: low latency and high throughput networks, abundant I/O
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operations in new storage-class memories (such as flash memory), and powerful mul-

ticore processors. Hyder supports reads and writes on indexed records within classical

multi-step transactions. It is designed to run on a cluster of servers that have shared

access to a large pool of network-addressable raw flash memory chips. The key aspects

in Hyder’s design are the shared log that is also the database, the use of multi-version

optimistic concurrency control for transaction execution, and an efficient algorithm for

deterministic conflict detection for the optimistic execution of transactions.

2.4 Multitenant Database Systems

In addition to supporting transactional semantics, with the growing number of ap-

plications being deployed in the cloud, another important requirement is the support

of multitenancy in the database tier. As the number of applications deployed in the

cloud grows, so does the number of databases. Many of these databases are small

and it is imperative that multiple small databases share the system resources, a model

commonly referred to as multitenancy. Classical examples of multitenancy are in the

SaaS paradigm where multiple different customizations of the same application share

an underlying multitenant database. However, as a wider class of applications is now

deployed on shared cloud platforms, various other multitenancy models are also being

explored to meet varying application requirements. In this section, we review some

commonly used multitenancy models and analyze the trade-off in light of virtualization

in the database tier.

2.4.1 Multitenancy Models

Sharing resources at different levels of abstraction and distinct isolation levels re-

sults in different multitenancy models in the database tier.2 The three models explored

in the past [56] consist of: shared hardware, shared process, and shared table. SaaS

providers, such as Salesforce.com [88], typically use the shared table model. The

shared process model is used in a number of database systems for the cloud, such as

RelationalCloud [28], Cloud SQL Server [14], and ElasTraS [31]. Soror et al. [78] and

Xiong et al. [89] propose systems using the shared machine model. Figure 2.1 depicts

the three multitenancy models and the level of sharing.

2The term isolation in the context of multitenancy refers to performance isolation or access control

isolation between tenants sharing the same multitenant DBMS. This is different from the use of isolation

in the context of concurrent transactions.
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Figure 2.1: The different multitenancy models and their associated trade-offs.

Shared Hardware

In this model, tenants share resources at the same server using multiple VMs. Each

tenant is assigned its own VM and an exclusive database process that serves the tenant’s

database. A virtual machine monitor or a hypervisor orchestrates resource sharing be-

tween the co-located VMs. While this model offers strong isolation between tenants, it

comes at the cost of increased overhead due to redundant components and a lack of co-

ordination using limited machine resources in a non-optimal way. Consider the instance

of disk sharing between the tenants. A VM provides an abstraction of a virtualized disk

which might be shared by multiple VMs co-located at the same node. The co-located

database processes make un-coordinated accesses to the disk. This results in high con-

tention for the disk that can considerably impact performance in a consolidated setting.

A recent experimental study by Curino et al. [29] shows that this performance overhead

can be up to an order of magnitude. This model might therefore be useful when only a

small number of tenants are executing at any server. In this case, multitenancy can be

supported without any changes in the database layer.

Shared Process

In this model, tenants share resources within a single database process running at

each server. This sharing can happen at various isolation levels—from sharing only

some database resources such as the logging infrastructure, to sharing all resources

such as the buffer pool, transaction manager etc. This model allows for effective re-
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source sharing between the tenants while allowing the database to intelligently manag-

ing some critical resources such as the disk bandwidth. This will allow more tenants to

be consolidated at a single server while ensuring good performance. Tenant isolation is

typically provided using authentication credentials.

Shared Table

In the shared table model, the tenants’ data is stored in a shared table called the

heap table. To support flexibility in schema and data types across the different tenants,

the heap table does not contain the tenant’s schema or column information. Additional

metadata structures, such as pivot tables [9,88], provide the rich database functionality

such as the relational schema, indexing, key constraints etc. The reliance on consoli-

dated and specialized pivot and heap tables implies re-architecting the query processing

and execution functionality, in addition to performance implications due to low tenant

isolation. Additionally, the shared table model requires that all tenants reside on the

same database engine and release (or version). This limits specialized database func-

tionality, such as spatial or object based, and requires that all tenants use a limited subset

of functionality. This multitenancy model is ideal when multiple tenants have similar

schema and access patterns with minimal customizations, thus providing effective shar-

ing of resources. Such similarity is observed in SaaS where a generic application tenant

is customized to meet specific customer requirements.

2.4.2 Analyzing the models

The different multitenancy models provide different trade-offs; Figure 2.1 depicts

some of these trade-offs as we move from the shared hardware model to the shared

table model. At one extreme, the shared hardware model uses virtualization to multi-

plex multiple VMs on the same machine. Each VM has only a single database process

serving the database of a single tenant. As mentioned earlier, this strong tenant isola-

tion comes at the cost of reduced performance [29]. At the other extreme is the shared

table model which stores multiple tenants’ data on shared tables and provides the least

amount of isolation, which in-turn requires changes to the database engine while limit-

ing schema flexibility across the tenants. The shared process model allows independent

schemas for tenants while sharing the database process amongst multiple tenants, thus

providing better isolation compared to the shared table model while allowing effective

sharing and consolidation of multiple tenants in the same database process. The shared

process model therefore strikes the middle ground.

The overall vision of multitenancy in cloud computing platforms is to develop an

architecture of a multitenant DBMS that is consistent, scalable, fault-tolerant, elas-

tic and self-managing. We envision multitenancy as analogous to virtualization in the
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database tier for sharing the DBMS resources. Similar to virtual machine (VM) mi-

gration [25], efficient techniques for live database migration is an integral component

to provide elastic load balancing. Live database migration should therefore be a first

class feature in the system having the same stature as scalability, consistency, and fault-

tolerance. However, no prior work exists in the area of live database migration for

elastic load balancing. This dissertation presents the first two published solutions to

this problem [34, 39].
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Scale-out Transaction Processing
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Chapter 3

Scaling-out with Database Partitioning

“We have not wings we cannot soar; but, we have feet to scale and climb, by slow

degrees, by more and more, the cloudy summits of our time.”

– Henry Wadsworth Longfellow.

Scaling out while processing transactions efficiently is an important requirement for

databases supporting applications in the cloud. We analyzed multiple scalable DBMSs

to distill some design principles for building systems that scale out to clusters of com-

modity servers while efficiently executing transactions. In this chapter, we first high-

light these design principles and then show how these design principles can be used

in building practical systems that effectively realize the goal of scale-out transaction

processing.

3.1 Design Principles

RDBMSs and Key-value stores are the two most popular alternatives for managing

large amounts of data. Even though very different in their origins and architectures, a

careful analysis of their design allows us to distill some design principles that can be

carried over in designing database systems for cloud platforms. The following is an

articulation of the distilled design principles.

• Separate system state from application state: Abstractly, a distributed database

system can be modeled as a composition of two different states: the system state

and the application state. The system state is the meta data critical for the sys-

tem’s proper operation. It also represents the current state of different compo-

nents that collectively form the distributed system. Examples of system state
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are: node membership information in a distributed system, mapping of parti-

tions to the nodes serving the partition, and the location of master and replicas in

a replicated system. This state requires stringent consistency guarantees, fault-

tolerance, and high availability to ensure the proper functioning of the system in

the presence of different types of failures. However, scalability is not a primary

requirement for the system state since it is typically small and not frequently up-

dated. On the other hand, the application state is the application’s data which the

system stores. Consistency, scalability, and availability of the application state is

dependent on the application’s requirements. Different systems provide varying

trade-offs among the different guarantees provided for application state.

A clean separation between the two states allows the use of different protocols,

with different guarantees and associated costs, to maintain the two types of states.

For instance, the system state can be made highly available and fault-tolerant by

synchronously replicating this state using distributed consensus protocols such as

Paxos [63] while the application state might be maintained using less stringent

protocols.

• Decouple data storage from ownership: Ownership refers to the read/write

access rights to data items. Separating (or decoupling) the data ownership and

transaction processing logic from that of data storage has multiple benefits: (i) it

results in a simplified design allowing the storage layer to focus on fault-tolerance

while the ownership layer can guarantee higher level guarantees such as transac-

tional access without worrying about the need for replication; (ii) depending on

the application’s requirements it allows independent scaling of the ownership

layer and the data storage layer; and (iii) it allows for lightweight control migra-

tion for elastic scaling and load balancing, it is enough to safely migrate only the

ownership without the need to migrate data.

• Limit common operations to a single node: Limiting the frequently executed

operations to a single node allows efficient execution of the operations without

the need for distributed synchronization. Additionally, it allows the system to

horizontally partition and scale-out. It also limits the effect of a failure to only

the data served by the failed component and does not affect the operation of

the remaining components, thus allowing graceful performance degradation in

the event of failures. As a rule of thumb, operations manipulating the applica-

tion state must be limited to a single node in the database tier. Once transac-

tion execution is limited to a single node, techniques from RDBMS literature for

efficient transaction execution and performance optimization can be potentially

applied [15, 87].

• Limited distributed synchronization can be practical. Distributed synchro-

nization, if used in a prudent manner, can also be used in a scalable data manage-
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ment system. The systems should limit distributed synchronization to the mini-

mum and use it only when needed. Eliminating them altogether is not necessary

for a scalable design.

3.2 Problem Formulation

Partitioning (or sharding) the database is one of the most common techniques to

scale-out a database to a cluster of nodes. Typically a database is partitioned by split-

ting the individual tables within the database. Common partitioning techniques used

are range partitioning or hash partitioning. Range partitioning involves splitting the ta-

bles into non-overlapping ranges of their keys and then mapping the ranges to a set of

nodes. In hash partitioning, the keys are hashed to the nodes serving them. These par-

titioning techniques are simple and are supported by most common DBMSs. However,

the main drawback of such techniques is that they result in the need for large numbers

of distributed transactions to access data partitioned across multiple servers. As a re-

sult, the scalability of such systems is limited due to the cost of distributed transactions.

Therefore, the first challenge is to partition the database such that most accesses are

limited to a single partition.

Furthermore, managing large RDBMS installations with large numbers of partitions

poses huge administrative overhead. First, partitioning itself is a tedious task, where

the database administrator has to decide on the number of partitions, bring the database

offline, partition the data on multiple nodes, and then bring it back up online [55]. Sec-

ond, the partitioning and mapping of partitions to nodes are often static, and when the

load characteristics change or nodes fail, the database needs re-partitioning or migra-

tion to a new partitioned layout, resulting in administrative complexity and downtime.

Third, partitioning is often not transparent to the application, and applications often

need modification whenever data is re-partitioned.

In this dissertation, we propose designs with fundamental advances beyond state-of-

the-art RDBMSs to overcome the above-mentioned challenges of database partitioning.

• Instead of partitioning the tables independent of each other, we propose to parti-

tion the database based on access patterns with the goal to co-locate data items

that are frequently accessed together within a transaction. This minimizes the

number of cross-partition transactions, thus minimizing distributed transactions.

The partitions are the granules of co-location and can be statically or dynamically

defined.

• Instead of viewing the application state as a tightly-coupled cohesive granule, our

proposed designs view the application state as a set of loosely coupled database

partitions. These partitions form the granule of transactional access. Such a
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design has two implications. For large application databases, this approach to

database partitioning limits transactions to a single node, thus ensuring scala-

bility without considerably limiting the set of operations on which transactional

guarantees are provided. In the case of small databases, typically observed in

multitenant platforms [9, 88, 90], the systems can provide full transactional sup-

port for the small tenant databases that are self-contained partitions.

• Our designs dynamically map the partitions to the nodes serving the partitions

while abstracting this mapping from the applications. This allows application

transparent partition re-assignments due to failures or load balancing.

For applications whose database can be statically partitioned based on the access

patterns, we propose ElasTraS, a system to provide transactional support to large num-

bers of these partitions distributed across a cluster of servers; Chapter 4 presents the

design of ElasTraS in detail. For applications whose access patterns change dynami-

cally, thus negating the benefits of static partitioning, we propose the Key Group ab-

straction for applications to dynamically define the data items that will form a partition.

We propose the Key Grouping protocol to dynamically co-locate ownership of the data

items within a partition, thus allowing efficient transaction execution on the dynami-

cally formed partitions. Chapter 5 presents the details of the Key Grouping protocol

and G-Store, a prototype implementation of the Key Grouping protocol to guarantee

transactional multi-key access on top of a Key-value store.
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Statically Defined Partitions

“Geography has made us neighbors. History has made us friends. Economics has

made us partners, and necessity has made us allies. Those whom God has so joined

together, let no man put asunder.”

– John F. Kennedy.

In this chapter, we present the detailed design and implementation of ElasTraS [31,

32], an elastically scalable transaction processing system. ElasTraS views the database

as a set of database partitions. The partitions form the granule of distribution, trans-

actional access, and load balancing. For small application (or tenant) databases, as

observed in multitenant platforms serving large numbers of small applications [88,90],

a tenant’s database can be contained entirely within a partition. For applications whose

data requirements grow beyond a single partition, ElasTraS supports partitioning at

the schema level by co-locating data items frequently accessed together. ElasTraS is

designed to serve thousands of small tenants as well as tenants that grow big.1

ElasTraS is a culmination of two major design philosophies and embodies a unique

combination of their design principles: traditional RDBMSs for efficient transaction

execution on small databases and the Key-value stores for scale, elasticity, and high

availability. ElasTraS allows effective resource sharing among tenants while support-

ing low latency transaction processing and low overhead live database migration for

elastic load balancing. This lends ElasTraS the unique set of features critical for a mul-

titenant DBMS serving a cloud platform. ElasTraS assumes an underlying pay-per-use

infrastructure and is designed to serve on-line transaction processing (OLTP) style ap-

plication workloads that use a relational data model. ElasTraS’s target deployment is a

1An earlier abridged version of the work reported in this chapter was published as the paper entitled

“ElasTraS: An Elastic Transactional Data Store in the Cloud” in the proceedings of the 2009 USENIX

workshop on Hot topics in cloud computing (HotCloud).
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cluster of few tens of nodes co-located within a data center and processing billions of

transactions per day.

At the microscopic scale, ElasTraS consolidates multiple tenants within the same

database process (shared process multitenancy) allowing effective resource sharing

among small tenants. It achieves high transaction throughput by limiting tenant databas-

es to a single process, thus obviating distributed transactions. For tenants with sporadic

changes in loads, ElasTraS leverages low-cost live database migration for elastic scal-

ing and load balancing. This allows it to aggressively consolidate tenants to a small set

of nodes while still being able to scale-out on-demand to meet tenant SLAs in the event

of unpredictable load bursts.

At the macroscopic scale, ElasTraS uses loose synchronization between the nodes

for coordinating operations, rigorous fault-detection and recovery algorithms to ensure

safety during failures, and system models that automate load balancing and elasticity.

ElasTraS significantly advances the state-of-the-art by presenting a unique combination

of multitenancy and elasticity in a single database system, while being self-managing,

scalable, fault-tolerant, and highly available.

4.1 The Design of ElasTraS

4.1.1 ElasTraS Architecture

We explain the ElasTraS architecture in terms of the four layers shown in Figure 4.1

from bottom-up: the distributed fault-tolerant storage layer, the transaction manage-

ment layer, the control layer, and the routing layer.

The Distributed Fault-tolerant Storage Layer

The storage layer, or the Distributed Fault-tolerant Storage (DFS), is a network-

addressable storage abstraction that stores the persistent data. This layer is a replicated

storage manager that guarantees durable writes and strong replica consistency while

ensuring high data availability in the presence of failures. Such storage abstractions are

common in current data centers in the form of commercial products (such as storage

area networks), scalable distributed file systems (such as the Hadoop distributed file

system [50]), or custom solutions (such as Amazon elastic block storage or the stor-

age layer of Hyder [13]). High-throughput and low-latency data center networks pro-

vide low cost reads from the storage layer; however, strong replica consistency make

writes expensive. ElasTraS minimizes the number of DFS accesses to reduce network

communication and improve the overall system performance. We use a multi-version
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Figure 4.1: ElasTraS architecture. Each box represents a server, a cloud represents a

service abstraction, dashed arrows represent control flow, block arrows represent data

flow, and dotted blocks represent conceptual layers in the system.

append-only storage layout that supports more concurrency for reads and considerably

simplifies live migration for elastic scaling.

Transaction Management Layer

This layer consists of a cluster of servers called Owning Transaction Managers

(OTM). An OTM is analogous to the transaction manager in a classical RDBMS. Each

OTM serves tens to hundreds of partitions for which it has unique ownership, i.e., ex-

clusive read/write access to these partitions. The number of partitions an OTM serves

depends on the overall load. The exclusive ownership of a partition allows an OTM

to cache the contents of a partition without violating data consistency while limiting

transaction execution within a single OTM and allowing optimizations such as fast com-

mit [87]. Each partition has its own transaction manager (TM) and shared data manager

(DM). All partitions share the OTM’s log manager which maintains the transactions’

commit log. This sharing of the log minimizes the number of competing accesses to

the shared storage while allowing further optimizations such as group commit [15,87].

To allow fast recovery from OTM failures and to guarantee high availability, an OTM’s

commit log is stored in the DFS. This allows an OTM’s state to be recovered even if it

fails completely.
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Control Layer

This layer consists of two components: the TM Master and the Metadata Man-

ager (MM). The TM Master monitors the status of the OTMs and maintains overall

system load and usage statistics for performance modeling. The TM Master is respon-

sible for assigning partitions to OTMs, detecting and recovering from OTM failures,

and controlling elastic load balancing. On the other hand, the MM is responsible for

maintaining the system state to ensure correct operation. This metadata consists of

leases that are granted to every OTM and the TM Master, watches, a mechanism to

notify changes to a lease’s state, and (a pointer to) the system catalog, an authoritative

mapping of a partition to the OTM currently serving the partition. Leases are uniquely

granted to a server for a fixed time period and must be periodically renewed. Since the

control layer stores only meta information and performs system maintenance, it is not

in the data path for the clients. The state of the MM is critical for ElasTraS’s operation

and is replicated for high availability; the TM Master is stateless.

Routing Layer

ElasTraS dynamically assigns partitions to OTMs. Moreover, for elastic load bal-

ancing, a database partition can be migrated on-demand in a live system. The routing

layer, the ElasTraS client library which the applications link to, hides the logic of

connection management and routing, and abstracts the system’s dynamics from the ap-

plication clients while maintaining un-interrupted connections to the tenant databases.

4.1.2 Design Rationales

Before we present the details of ElasTraS’s implementation, we explain the ratio-

nale that has driven this design. We relate these design choices to the principles outlined

in Section 3.1.

ElasTraS uses a decoupled storage architecture where the persistent data is stored on

a cluster of servers that is logically separate from the servers executing the transactions.

This architecture distinguishes ElasTraS from systems such as Cloud SQL Server [14]

and RelationalCloud [28] that resemble the classical shared nothing architecture where

the persistent data is stored in disks locally attached to the transaction managers. The

rationale for decoupling the storage layer is that for high performance OLTP workloads,

the active working set must fit in the cache or else the peak performance is limited by

the disk I/O. OLTP workloads, therefore, result in infrequent disk accesses. Hence,

decoupling the storage from transaction execution will result in negligible performance

since the storage layer is accessed infrequently. Moreover, since the storage layer is

connected to the TM layer via a low latency and high throughput data center network,
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remote data access is fast. Furthermore, this decoupling of the storage layer allows

independent scaling of the storage and transaction management layers, simplifies the

design of the transaction managers by abstracting fault-tolerance in the storage layer,

and allows lightweight live database migration without migrating the persistent data.

ElasTraS’s use of decoupled storage is, however, different from traditional shared disk

systems [87], Hyder [13], or Megastore [11] that use the shared storage as the point

of arbitration between different servers. In ElasTraS, each server is allocated a storage

location that does not overlap with any other server.

Co-locating a tenant’s data into a single partition, serving a partition within a sin-

gle database process, and limiting transactions to a partition allows ElasTraS to limit

transactions to a single node, thus limiting the most frequent operations to a single

node. This allows efficient transaction processing and ensures high availability during

failures. For small tenants contained in a single partition, ElasTraS supports flexible

multi-step transactions. The size and peak loads of a single-partition tenant is limited

by the capacity of a single server.

ElasTraS separates the application state, stored in the storage layer and served by

the transaction management layer, from the system state, managed by the control layer.

ElasTraS replicates the system state, using protocols guaranteeing strong replica consis-

tency, to ensure high availability. The clean separation between the two types of state

allows ElasTraS to limit distributed synchronization to only the critical system state

while continuing to use non-distributed transactions to manipulate application state.

ElasTraS’s use of the shared process multitenancy model is in contrast to the shared

table model used by systems such as Salesforce.com [88] and Megastore [11]. In ad-

dition to providing effective consolidation (scaling to large numbers of small tenants)

and low cost live migration (elastic scaling), the shared process model provides good

isolation between tenants and provides for more flexible tenant schema.

4.1.3 Partitioning the Database Schema

ElasTraS supports partitioning the big databases. We now explain a particular in-

stance of schema level partitioning. ElasTraS supports a tree-based schema for par-

titioned databases. Figure 4.2(a) provides an illustration of such a schema type. This

schema supports three types of tables: the Root Table, Descendant Tables, and Global

Tables. A schema has one root table whose primary key acts as the partitioning key.

A schema can however have multiple descendant and global tables. Every descendant

table in a database schema will have the root table’s key as a foreign key. Referring

to Figure 4.2(a), the key kr of the root table appears as a foreign key in each of the

descendant tables.
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(a) Tree Schema. (b) TPC-C as a tree schema.

Figure 4.2: Schema level database partitioning.

This tree structure implies that corresponding to every row in the root table, there

are a group of related rows in the descendant tables, a structure similar to row groups

in Cloud SQL Server [14]. All rows in the same row group are guaranteed to be co-

located. A transaction can only access rows in a particular row group. A database

partition is a collection of such row groups. This schema structure also allows efficient

dynamic splitting and merging of partitions. In contrast to these two table types, global

tables are look-up tables that are mostly read-only. Since global tables are not updated

frequently, these tables are replicated on all the nodes; decoupled storage allows Elas-

TraS to cache the global tables at the OTMs without actually replicating the data. In

addition to accessing only one row group, an operation in a transaction can also read

from a global table. Figure 4.2(b) shows a representation of the TPC-C schema [81] as

a tree schema. The TATP benchmark [70] is another example of a schema conforming

to the tree schema.

ElasTraS requires databases to conform to the tree schema to enable partitioning;

small tenant databases contained within a single partition do not require to have a tree

schema. For such a configuration, a transaction can access any data item within the

partition and the partition is the granule of transactional access. This configuration is

similar to table groups in Cloud SQL Server.

The “tree schema” has been demonstrated to be amenable to partitioning using a

partition key shared by all the tables in the schema. Even though such a schema does

not encompass the entire spectrum of OLTP applications, a survey of real applications

within a commercial enterprise shows that a large number of applications either have

such an inherent schema pattern or can be easily adapted to it [14]. A similar schema

pattern is observed in two other concurrently developed systems, Cloud SQL Server and

Megastore. Since ElasTraS operates at the granularity of the partitions, the architecture

can also leverage other partitioning techniques, such as Schism [30].
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4.2 Implementation Details

4.2.1 Storage layer

Many existing solutions provide the guarantees required by the ElasTraS storage

layer; in our prototype, we use the Hadoop Distributed File System (HDFS) [50].

HDFS is a replicated append-only file system providing low-cost block-level replication

with strong replica consistency when only one process is appending to a file. ElasTraS

ensures that at any point in time, only a single OTM appends to an HDFS file. A write

is acknowledged only when it has been replicated in memory at a configurable number

of servers (called data nodes in HDFS). ElasTraS optimizes the number of writes to

HDFS by batching DFS writes to amortize the cost.

4.2.2 Transaction manager layer

The transaction manager layer consists of a cluster of OTMs serving the partitions.

Even though each ElasTraS OTM is analogous to a relational database, we imple-

mented our own custom OTM for the following reasons. First, most existing open-

source RDBMSs do not support dynamic partition re-assignment which is essential for

live migration. Second, since traditional RDBMSs were not designed for multitenancy,

they use a common transaction and data manager for all partitions sharing a database

process. This makes tenant isolation and guaranteeing per tenant SLA more challeng-

ing. Third, ElasTraS uses advanced schema level partitioning for large tenants while

most open-source databases only support simple table-level partitioning mechanisms

off-the-shelf.

An ElasTraS OTM has two main components: the transaction manager responsible

for concurrency control and recovery and the data manager responsible for storage and

cache management.

Concurrency control and Recovery

Concurrency Control. There exists a rich literature of concurrency control tech-

niques that can be used for transaction management in an OTM [15, 87]. In our pro-

totype, we implement Optimistic Concurrency Control (OCC) [61] to ensure serializ-

ability. In OCC, transactions do not obtain locks when reading or writing data. They

rely on the optimistic assumption that there are no conflicts with other concurrently ex-

ecuting transactions. Before a transaction commits, it is validated to guarantee that the

optimistic assumption was indeed correct and the transaction did not conflict with any

other concurrent transaction. In case a conflict is detected, the transaction is aborted.

Writes made by a transaction are kept local and are applied to the database only if the
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transaction commits. We implemented parallel validation in OCC which results in a

very short critical section for validation, thus allowing more concurrency [61].

Log Management. Transaction logging is critical to ensure the durability of commit-

ted transactions in case of OTM failures. Every OTM maintains a transaction log (or

log for brevity) where updates from transactions executing at the OTM are appended.

All partitions at an OTM share a common log which is stored in the DFS to allow quick

recovery from OTM failures. This sharing minimizes the number of DFS accesses and

allows effective batching. Each log entry has a partition identifier to allow a log entry to

be associated to the corresponding partition during recovery. Log entries are buffered

during transaction execution. Once a transaction has been successfully validated, and

before it can commit, a COMMIT record for this transaction is appended to the log, and

the log is forced (or flushed) to ensure durability. The following optimizations mini-

mize the number of DFS accesses: (i) no log entry is written to record the start of a

transaction, (ii) a COMMIT entry is appended only for update transactions, (iii) no log

entry is made for aborted transactions, so the absence of a COMMIT record implies an

abort, and (iv) group commits are implemented to commit transactions in groups and

batch their log writes [87]. (i) and (ii) ensure that there are no unnecessary log writes

for read-only transactions. Buffering and group commits allow the batching of updates

and are optimizations to improve throughput.

Recovery. Log records corresponding to a transaction’s updates are forced to the disk

before the transaction commits. This ensures durability and transaction recoverability.

In the event of a failure, an OTM recovers the state of failed partitions. In OCC, un-

committed data is never flushed to the DFS, and hence, only redo recovery is needed.

The OTM replays the log to recreate the state prior to failure and recovers updates from

all the committed transactions. We use a standard two-pass recovery algorithm [87].

The first pass is the analysis pass that determines the transactions that committed. Only

those transactions that have a COMMIT record in the log are considered committed. The

second pass re-does the updates of all committed transactions. Once the redo pass over

the log is complete, the cache is flushed to the DFS, old log files are deleted, and the

OTM starts serving the partition. Version information in the storage layer is used to

guarantee idempotence of updates to guarantee safety during repeated OTM failures.

Storage and Cache management

Storage Layout. The storage layer in ElasTraS is append-only and the DM is de-

signed to leverage this append-only nature. Persistent data for a partition consists of

a collection of immutable segments which store the rows of a table in sorted order of
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their primary keys. Internally, a segment is a collection of blocks with an index to

map blocks to key ranges. This segment index is used to read directly from the block

containing the requested row and thus avoiding an unnecessary scan through the entire

segment. In traditional database terminology, a segment is equivalent to a clustered

index on the primary key of a table, secondary or non-clustered indices are stored as

separate segments pointing to the segments storing the clustered index. This storage

layout allows efficient lookups and range scans on the clustered index while allowing a

simple storage layout.

Cache Management. Each OTM caches recently accessed data; the cache at an OTM

is shared by all partitions being served by the OTM. Due to the append-only nature of

the storage layout, a DM in ElasTraS uses separate read and write caches. Updates are

maintained in the write cache which is periodically flushed to the DFS as new segments;

a flush of the write cache is asynchronous and does not block new updates. As in-

memory updates are flushed to the DFS, the corresponding entries in the transaction

log are marked for garbage collection. The append-only semantics of the storage layer

adds two new design challenges: (i) fragmentation of the segments due to updates and

deletions, and (ii) ensuring that reads see the updates from the latest writes in spite

of the two separate caches. A separate garbage collection process addresses the first

challenge. The second challenge is addressed by answering queries from a merged view

of the read and write caches. A least recently used policy is used for cache maintenance.

Since a segment is immutable, a cache eviction does not result in a DFS write.

Garbage Collection. The immutable segments get fragmented internally with up-

dates and deletes. A periodic garbage collection process recovers unused space and

reduces the number of segments. In the same vein as Bigtable [24], we refer to this pro-

cess as compaction. This compaction process executes in the background and merges

multiple small segments into one large segment, removing deleted or updated entries

during this process. Old segments can still be used to process reads while the new com-

pacted segments are being produced. Similarly, the log is also garbage collected as the

write cache is flushed, thus reducing an OTM’s recovery time.

4.2.3 Control layer

The control layer has two components: the metadata manager (MM) and the TM

Master. We use Zookeeper [54] as the MM. The Zookeeper service provides low over-

head distributed coordination and exposes an interface similar to a filesystem where

each file is referred to as a znode. A Zookeeper client can request exclusive access to
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a znode, which is used to implement timed leases in the MM. Zookeeper also supports

watches on the leases that notify the watchers when the state of a lease changes.

ElasTraS uses the Zookeeper primitives—leases and watches—to implement timed

leases granted to the OTMs and the TM Master. Each OTM and the TM Master acquires

exclusive write access to a znode corresponding to the server; an OTM or the TM

Master is operational only if it owns its znode. The OTMs register a watch on the TM

Master’s znode, while the TM Master registers watches for each OTM’s znode. This

event-driven mechanism allows the MM to scale to large numbers of OTMs. Even

in the presence of concurrent requests and arbitrary failures, Zookeeper ensures that

only one client has exclusive access to a znode. Zookeeper’s state is replicated on an

ensemble of servers; an atomic broadcast protocol ensures replica consistency [58].

A system catalog maintains the mapping of a partition to the OTM serving the par-

tition. Each partition is identified by a unique partition identifier; the catalog stores

the partition-id to OTM mapping as well as the metadata corresponding to tenant par-

titions, such as schema, authentication information, etc. The catalog is stored as a

database within ElasTraS and is served by one of the live OTMs. The MM maintains

the address of the OTM serving the catalog database.

The TM Master automates failure detection using periodic heart-beat messages and

the MM’s notification mechanism. Every OTM in the system periodically sends a heart-

beat to the TM Master. In case of an OTM failure, the TM Master times-out on the heart

beats from the OTM and the OTM’s lease with the MM also expires. The master then

atomically deletes the znode corresponding to the failed OTM. This deletion makes the

TM Master the owner of the partitions that the failed OTM was serving and ensures

safety in the presence of a network partition.

Once the znode for an OTM is deleted, the TM Master reassigns the failed partitions

to another OTM. In an infrastructure supporting dynamic provisioning, the TM Master

can spawn a new node to replace the failed OTM. In statically provisioned settings,

the TM Master assigns the partitions of the failed OTM to the set of live OTMs. After

reassignment, a partition is first recovered before it comes online. Since the persistent

database and the transaction log are stored in the DFS, partitions can be recovered

without the failed OTM recovering. An OTM failure affects only the partitions that

OTM was serving; the rest of the system remains available.

ElasTraS also tolerates failures of the TM Master. A deployment can have a standby

TM Master which registers a watch on the active TM Master’s znode. When the acting

TM Master fails, its lease on the znode expires, and the standby TM Master is notified.

The standby TM Master then acquires the master lease to become the acting TM Master.

The MM’s notification mechanism notifies all the OTMs about the new master which

then initiates a connection with the new TM Master. This TM Master fail-over does not
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affect client transactions since the master is not in the data path of the clients. Therefore,

there is no single point of failure in an ElasTraS installation.

4.2.4 Routing layer

The routing layer comprises of the ElasTraS client library that abstracts the com-

plexity of looking up and initiating a connection with the OTM serving the partition

being accessed. Application clients link directly to the ElasTraS client library and sub-

mit transactions using the client interface. The ElasTraS client is responsible for: (i)
looking up the catalog information and routing the request to the appropriate OTM, (ii)
retrying the requests in case of a failure, and (iii) re-routing requests to a new OTM

when a partition is migrated. When compared to the traditional web-services architec-

ture, the client library is equivalent to a proxy/load balancer, except that it is linked with

the application server.

The ElasTraS client library determines the location of the OTM serving a specific

partition by querying the system catalog. When a client makes the first connection to

ElasTraS, it has to perform two lookups: a query to the MM to determine the address of

the OTM serving the catalog, and then a query to the catalog to determine the location of

the OTM serving the partition. However, a client caches this information for subsequent

accesses to the same partition. The catalog tables are accessed again only if there is a

cache miss or an attempt to connect to a cached location fails. Performance is further

improved by pre-fetching rows of the catalog tables to speedup subsequent lookups for

different partitions. Therefore, in the steady state, the clients directly connect to the

OTM using cached catalog information. The distributed nature of the routing layer

allows the system to scale to large numbers of tenants and clients.

4.2.5 Advanced implementation aspects

Multi-version data

The storage layer of ElasTraS is append-only and hence multi-version. This allows

for a number of implementation optimizations. First, read-only queries that do not need

the latest data can run on snapshots of the database. Second, for large tenants spanning

multiple partitions, read-only analysis queries can be executed in parallel without the

need for distributed transactions. Third, if a tenant experiences high transaction load,

most of which is read-only, the read-only transactions can be processed by another

OTM that executes transactions on a snapshot of the tenant’s data read from the storage

layer. Since such transactions do not need validation, they can execute without any

coordination with the OTM currently owning the tenant’s partition. The use of snapshot

OTMs in ElasTraS is only on-demand to deal with high load. The snapshot OTMs also
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allow the co-existence of transaction processing and analysis workloads without the

cost of data duplication.

Dynamic Partitioning

When using a tree schema, ElasTraS can be configured to dynamically split or

merge partitions. In a tree schema configuration, a partition is a collection of row

groups. A partition can therefore be dynamically split into two sets of row groups. To

split a partition, an OTM first splits the root table and then uses the root table’s key to

split the descendant tables. Global tables are replicated, and hence are not split. The

root table is physically organized using its key order and the rows of the descendant

tables are first ordered by the root table’s key and then by the descendant’s key. This

storage organization allows efficient splitting of partitions, since the key used to split

the primary key can also be used to split the descendant tables into two parts. To en-

sure a quick split, an OTM performs a logical split; the two child partitions reference

the top and bottom halves of the old parent partition. The OTM performing the split

updates the system state to reflect the logical split. Thus, splitting does not involve data

shuffling and is efficient. To ensure correctness of the split in the presence of a failure,

this split is executed as a transaction, thus providing an atomic split. Once a partition

is split, the TM Master can re-assign the two sub-partitions to different OTMs. Data is

moved to the new partitions asynchronously and the references to the old partition are

eventually cleaned up during garbage collection.

4.3 Correctness Guarantees

Correctness in the presence of different types of failure is critical. Our failure model

assumes that the node failures are fail-stop and we do not tolerate Byzantine failures

or malicious behavior. We do not consider scenarios of complete data loss or message

failures. ElasTraS ensures safety in the presence of network partitions. Before we delve

into the correctness arguments, we first define safety and liveness.

Definition 4.3.1. Safety: At no instant of time should more than one OTM claim own-

ership of a database partition.

Definition 4.3.2. Liveness: In the absence of repeated failures, i.e., if the TM Mas-

ter and OTMs can communicate for sufficiently long durations and the MM is live, no

database partition is indefinitely left without an owner. The MM is live if it can suc-

cessfully perform updates to its state, i.e., renew existing leases and grant new leases.

Safety guarantees that nothing bad happens to the data in the event of failures,

while liveness ensures that something good will happen in the absence of repeated
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failures. ElasTraS’s correctness is dependent on certain guarantees by the storage and

metadata management layers. We first list these guarantees and then use them to reason

informally about the correctness of ElasTraS.

4.3.1 Guarantees provided by the MM and DFS

The MM provides the following guarantees.

Guarantee 4.3.3. System state stored in the MM is not lost or left in an inconsistent

state in the presence of arbitrary failures or network partitions.

Guarantee 4.3.4. The MM is live if a majority of replicas are non-faulty and can com-

municate.

Guarantee 4.3.5. At any instant of time, the MM will assign a lease to only a single

node, i.e., a lease is mutually exclusive.

If a lease (or znode) is available, the request to acquire a lease is granted only when

a majority of MM replicas have acknowledged the request to grant the lease. This ma-

jority approval ensures that a lease is granted to only a single node and also ensures

that any other concurrent request for the same lease is rejected, thus guaranteeing con-

sistency of the MM’s state. Our implementation uses Zookeeper which provides all the

above guarantees [54].

The DFS layer provides the following guarantees.

Guarantee 4.3.6. Durability. Appends flushed to the DFS are never lost.

This is guaranteed by acknowledging a flush only after the appends have propagated

to a configurable number of replicas. If all the replicas of a data block fails, then the

data becomes unavailable, but is recovered when the replicas recover.

Guarantee 4.3.7. Strong replica consistency. When only a single process is appending

to a file, the replicas of the file are strongly consistent.

The block level replication protocol in HDFS guarantees strong replica consistency

with a single appender.

4.3.2 Safety Guarantees

We first prove that there can be at most one operational TM Master in an ElasTraS

installation and then use it to prove that at most one OTM can own a database partition

in ElasTraS.

Lemma 4.3.8. At any instant of time there is only a single operational TM master in

one ElasTraS installation.
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Proof. Assume for contradiction that an ElasTraS installation has more than one op-

erational TM Masters. A TM Master is operational only if it owns the master lease

with the MM. Since an ElasTraS installation contains a single master lease, multiple

TM Masters imply that the master lease is concurrently owned by multiple nodes, a

contradiction to Guarantee 4.3.5.

Theorem 4.3.9. At any instant of time, at most one OTM has write access to a database

partition.

Proof. Assume for contradiction that at least two OTMs have write access to a database

partition (P). Let us assume that P was assigned to OTM1 and OTM2. Only an opera-

tional TM Master can assign P to an OTM. Therefore, following Lemma 4.3.8, P cannot

be assigned by two different TM Masters. Two scenarios are possible: (i) a single TM

Master assigned P to both OTM1 and OTM2; or (ii) a TM Master assigned P to OTM1,

then the TM Master failed, and a subsequent TM Master assigned P to OTM2.

Scenario (i): Without loss of generality, assume that P was assigned to OTM1 first,

and then to OTM2 while OTM1 still owns P. Such a reassignment is impossible during

normal operation, i.e., when the TM Master and OTM1 can communicate. The TM

Master will reassign P to OTM2 if it mistakenly determined that OTM1 has failed. This

is possible when the network connecting the TM Master and OTM1 has partitioned.

The TM Master will reassign P only if it successfully obtained OTM1’s lease. OTM1

owns P only if it owns its lease with the MM, i.e., OTM1 can communicate with the

MM. In case OTM1 is also partitioned from the MM, OTM1 will lose P’s ownership.

Therefore, before the TM Master reassigns P, there is a time instant when both the TM

Master and OTM1 concurrently own the same lease with the MM, a contradiction to

Guarantee 4.3.5.

Scenario (ii): Once the TM Master assigns P to OTM1, it updates the metadata to

persistently store this mapping with the MM. After this TM Master fails, a subsequent

operational TM Master will reassign P to OTM2, even though OTM1 owns P, only

if the metadata reflects that P was unassigned. However, this is a contradiction to

Guarantee 4.3.3.

4.3.3 Transactional Guarantees

An OTM executes transactions on a partition and is responsible for ensuring the

transactional guarantees.

Lemma 4.3.10. Transactions on a single partition are guaranteed to be atomic, con-

sistent, durable, and serializable.
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A transaction commit is acknowledged by an OTM only after the log records for a

transaction, including the COMMIT record, has been forced to the DFS. Guarantee 4.3.6

ensures that the log records survive a failure of the OTM. This ensures that the trans-

action state is recoverable and guarantees durability. On failure of an OTM, the REDO

recovery operation on a partition from the commit log applies all updates of a transac-

tion whose COMMIT record is found in the commit log (i.e., the transaction successfully

committed) and discards all updates of a transaction whose COMMIT record is missing

(meaning either the transaction aborted and was rolled back, or it did not commit before

the failure and hence is considered as aborted). This ensures atomicity of the transac-

tions. Consistency and serializable isolation is guaranteed by the concurrency control

protocol [61].

4.3.4 Liveness Guarantees

ElasTraS’s liveness is contingent on the MM’s liveness. As discussed in Sec-

tion 4.2.3, if the MM is alive and is able to communicate with the rest of the nodes,

then ElasTraS can also tolerate the failure of the TM Master and continue to serve the

partitions without a functioning TM Master until an OTM fails.

Lemma 4.3.11. The failure of an OTM does not leave its partitions without an owner

for indefinite periods.

If an ElasTraS cluster has an operational TM Master, then the TM Master detects

that the OTM has failed, obtains the lease for the failed OTM, and reassigns ownership

of the partitions owned by the failed OTM. If there is no operational TM Master. Once

a new TM Master joins the cluster, the partitions are reassigned.

4.4 Elasticity and Load balancing

Elasticity is one of the major goals of ElasTraS’s design. To be effective, elastic

scaling and load balancing in a live system must result in minimal service interrup-

tion and negligible impact on performance. The TM Master in ElasTraS automates

these decisions to minimize the need for human intervention. We now discuss the most

important components for elastic load balancing.

System modeling. Modeling the system’s performance and behavior plays an impor-

tant role in determining when to scale up the system, when to consolidate to a fewer

number of nodes, and how to assign partitions to the OTMs. Every live OTM periodi-

cally sends heartbeats to the TM Master which include statistics about the load on the
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OTM, i.e., the number of partitions, the number of requests per partition, CPU, IO and

other resource utilization metrics. The TM Master aggregates these statistics across

all the OTMs to create a model for the overall system performance and incrementally

maintains it to create a history of the system’s behavior. This model is then used to

predict future behavior, load balance partitions, or to decide on elastic scaling of the

system.

A combination of modeling techniques can be used to improve the accuracy of pre-

dictions and decisions. The simplest model is rule based: if the system’s load is above a

max-threshold, then new OTM instances are added, while if it is below a min-threshold,

partitions are consolidated into a smaller number of nodes. The threshold values are

based on performance measurements of utilization levels above which a considerable

impact on tenant transactions is observed, or under which the system’s resources are

being under-utilized. Historical information is used to predict future behavior and to

detect transient spikes in load, while allowing proactive scaling when a high impending

load is predicted. These simple modeling techniques work well for a class of workloads

with predictable behavior. We plan to explore other advanced modeling techniques

based on control theory, machine learning, and time series.

The partition assignment algorithm determines an assignment of partitions to OTMs

ensuring that the tenant SLAs are met while consolidating the tenants into as few servers

as possible. Therefore, the partition assignment problem is an optimization problem. In

our current prototype, we use a greedy heuristic where the historical load and resource

utilization statistics per partition are used to assign partitions to an OTM without over-

loading it.

Live database migration. Elastic load balancing mandates that migration of parti-

tions between OTMs incurs minimal overhead on the system as well as negligible im-

pact on the users. Since ElasTraS uses the shared process multitenancy model, live VM

migration techniques cannot be directly applied. The decoupled storage architecture of

ElasTraS allows a lightweight migration of ownership without moving the persistent

data. We developed Albatross [34], a live migration technique for decoupled storage

database architectures such as ElasTraS. Chapter 7 presents the details of Albatross.

4.5 Experimental Evaluation

We now experimentally evaluate our prototype implementation of ElasTraS to ana-

lyze the impact of the three major design choices of ElasTraS: the shared storage layer,

shared process multitenancy, and co-locating tenant’s data into a single partition and

limiting transactions to a single partition.
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Figure 4.3: Cluster setup for experiments to evaluate ElasTraS’s performance.

The performance of the storage layer (HDFS) impacts ElasTraS’s performance.

Several studies have reported on HDFS performance [80]. In our experimental con-

figuration using three replicas, we observed an average read bandwidth of 40 MBps

when reading sequentially from a 64 MB block in HDFS. When reading small amounts

of data, the typical read latency was on the order of 2 to 4 ms. A latency on the order

of 5 ms was observed for appends. In our implementation, log appends are the only

synchronous writes, a flush of the cache is performed asynchronously. Group commit

amortizes the cost of a log append over multiple transactions. The cost of accessing

data from the storage layer is therefore comparable to that of a locally attached storage.

4.5.1 Experimental Setup

Our experiments were performed on a local cluster and on Amazon Web Services

Elastic Compute Cloud (EC2). Servers in the local cluster had a quad core processor, 8
GB RAM, and 1 TB disk. On EC2, we use the c1.xlarge instances each of which is a

virtual machine with eight virtual cores, 7 GB RAM, and 1.7 TB local storage. ElasTraS

is implemented in Java and uses HDFS v0.21.0 [50] as the storage layer and Zookeeper

v3.2.2 [54] as the metadata manager. We use a three node Zookeeper ensemble in our

experiments. The nodes in the Zookeeper ensemble also host the ElasTraS TM Master

and the HDFS Name node and Secondary Namenode. A separate ensemble of nodes

host the slave processes of ElasTraS and HDFS: i.e., the ElasTraS OTMs which serve

the partitions, and the Data nodes of HDFS which store the filesystem data. In the local

49



Chapter 4. Statically Defined Partitions

cluster, the OTMs and the Data nodes were executed on different nodes, while in EC2,

each node executed the Data node and the OTM processes. Figure 4.3 illustrates the

experimental cluster set-up.

4.5.2 Workload Specification

Our evaluation uses two different OLTP benchmarks that have been appropriately

adapted to a multitenant setting: (i) the Yahoo! cloud serving benchmark (YCSB) [27]

adapted for transactional workloads to evaluate performance under different read/write

loads and access patterns; and (ii) the TPC-C benchmark [81] representing a complex

transactional workload for typical relational databases.

Yahoo! Cloud Serving Benchmark

YCSB [27] is a benchmark to evaluate DBMSs serving web applications. The

benchmark was initially designed for Key-value stores and hence did not support trans-

actions. We extended the benchmark to add support for multi-step transactions that

access data only from a single database partition. We choose a tenant schema with

three tables where each table has ten columns of type VARCHAR and 100 byte data per

column; one of the tables is the root and the two remaining tables are descendant. The

workload consists of a set of multi-step transactions parameterized by the number of

operations, percentage of reads and updates, and the distribution (uniform, Zipfian, and

hotspot distributions) used to select the data items accessed by a transaction. We also

vary the transaction loads, database sizes, and cache sizes. To simulate a multitenant

workload, we run one benchmark instance for each tenant. YCSB comprises small

transactions whose logic executes at the clients.

TPC-C Benchmark

The TPC-C benchmark is an industry standard benchmark for evaluating the per-

formance of OLTP systems [81]. The TPC-C benchmark suite consists of nine tables

and five transactions that portray a wholesale supplier. The five transactions represent

various business needs and workloads: (i) the NEWORDER transaction which models

the placing of a new order; (ii) the PAYMENT transaction which simulates the pay-

ment of an order by a customer; (iii) the ORDERSTATUS transaction representing a

customer query for checking the status of the customer’s last order; (iv) the DELIVERY

transaction representing deferred batched processing of orders for delivery; and (v)
the STOCKLEVEL transaction which queries for the stock level of some recently sold

items. A typical transaction mix consists of approximately 45% NEWORDER trans-

actions, 43% PAYMENT transactions, and 4% each of the remaining three transaction
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Parameter Default value

Transaction size 10 operations

Read/Write distribution 9 reads 1 write

Database size 4 GB

Transaction load 200 transactions per second (TPS)

Hotspot distribution 90% operations accessing 20% of the database

Table 4.1: Default values for YCSB parameters used in ElasTraS’s evaluation.

types, representing a good mix of read/write transactions. The number of warehouses

in the database determines the scale of the system. Since more than 90% of transactions

have at least one write operation (insert, update, or delete), TPC-C represents a write

heavy workload. Each tenant is an instance of the benchmark. The TPC-C benchmark

represents a class of complex transactions executed as stored procedures at an OTM.

4.5.3 Single tenant behavior

We first evaluate the performance of ElasTraS for a single tenant in isolation, i.e.,

an OTM serving only one tenant whose database is contained within a partition. This

allows us to analyze the performance of the different components in the design, i.e., the

transaction manager, cache, and interactions with the storage layer.

Yahoo! Cloud Serving Benchmark

Table 4.1 summarizes the default values of some YCSB parameters. To evaluate the

performance of a single tenant in isolation, we vary different YCSB parameters while

using the default values for the rest of the parameters. The YCSB parameters varied

in these experiments are: number of operations in a transaction or transaction size,

number of read operations in a transaction or read/write ratio, database size, number

of transactions issued per second (TPS) or offered load, and cache size. The data items

accessed by a transaction are chosen from a distribution; we used Zipfian (co-efficient

1.0), uniform, and hotspot. A hotspot distribution simulates a hot spot where x% of

the operations access y% of the data items. We used a hot set comprising 20% of the

database and two workload variants with 80% and 90% of the operations accessing the

hot set.

Figure 4.4 plots the transaction latency and throughput as the load on the tenant

varied from 20 to 1400 TPS. Until the peak capacity is reached, the throughput increases

linearly with the load and is accompanied by a gradual increase in transaction latency;

limiting transactions to a single partition allows this linear scaling. The throughput
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(b) Transaction throughput.

Figure 4.4: Evaluating the impact of offered load on throughput and latency. This

experiment uses YCSB and runs a single tenant database in isolation at an OTM.

plateaus at about 1100 TPS and a sharp increase in latency is observed beyond this

point. The system thrashes for a uniform distribution due to high contention in the

network arising from high cache miss percentage. Thrashing is observed in OCC only

in the presence of heavy resource contention. This behavior is confirmed for the skewed

distributions where the working set is mostly served from the database cache. A higher

cache miss rate also results in higher latency for the uniform distribution.

An ElasTraS OTM is similar to a single node RDBMS engine and should therefore

exhibit similar behavior. To compare the behavior of ElasTraS with that of a traditional

RDBMS, we repeated the above experiment using two other open-source RDBMSs,

MySQL v5.1 and H2 v1.3.148, running on the same hardware with the same cache

settings.2 A behavior similar to that shown in Figure 4.4 was observed; the only dif-

ference was the peak transaction throughput: MySQL’s peak was about 2400 TPS and

H2’s peak was about 600 TPS.

As observed from Figure 4.4, the behavior of all skewed workloads is similar as long

as the working set fits in the database cache. We therefore choose a hotspot distribution

with 90% operations accessing 20% data items (denoted by Hot90-20) as a represen-

tative skewed distribution for the rest of the experiments. Since our applied load for

the remaining experiments (200 TPS) is much lower than the peak, the throughput is

equal to the load. We therefore focus on transaction latency where interesting trends

are observed.

Figure 4.5 plots the impact of transaction size; we vary the number of operations

from 5 to 30. As expected, the transaction latency increases linearly with a linear

2MySQL: www.mysql.com/, H2: www.h2database.com.
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Figure 4.5: Impact of transaction size

on response times.
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Figure 4.6: Impact of read percent on

response times.
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Figure 4.7: Impact of database size on

response times
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Figure 4.8: Impact of cache size on re-

sponse times.

increase in the transaction size. Transaction latency also increases as the percentage of

update operations in a transaction increases from 10% to 50% (see Figure 4.6). This

increase in latency is caused by two factors: first, due to the append-only nature of the

storage layer, more updates results in more fragmentation of the storage layer, resulting

in subsequent read operations becoming more expensive. The latency increase is less

significant for a skewed distribution since the more recent updates can often be found in

the cache thus reducing the effect of fragmentation. Second, a higher fraction of write

operations implies a more expensive validation phase for OCC, since a transaction must

be validated against all write operations of concurrently executing transactions.

Figure 4.7 plots the effect of database size on transaction latency; we varied the

database size from 500 MB to 5 GB. For a database size of 500 MB, the entire database

fits into the cache resulting in comparable transaction latencies for both uniform and
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Figure 4.9: Evaluating the performance of a single tenant in isolation using TPC-C.

skewed distributions. As the database size increases, a uniform access distribution re-

sults in more cache misses and hence higher transaction latency. When the database

size is 5 GB, the working set of the skewed distribution also does not fit in the result,

resulting in a steep increase in latency. Similarly, when varying the cache size, trans-

action latency decreases with an increase in cache size resulting from higher cache hit

ratios (see Figure 4.8 where we varied the cache size from 200 MB to 1 GB).

TPC-C Benchmark

In this experiment, we use a TPC-C database with ten warehouses resulting in a data

size of 2.5 GB. The cache size is set to 1 GB. Figure 4.9 plots the average transaction

latency and throughput as the TPC-C metric of transactions per minute (tpmC), where a

behavior similar to that in YCSB is observed. We report the latency of NEWORDER and

PAYMENT transactions that represent 90% of the TPC-C workload. The NEWORDER

is a long read/write transaction accessing multiple tables while Payment is a short read-

/write transaction accessing a small number of tables. Hence the payment transaction

has a lower latency compared to NEWORDER. The throughput is measured for the en-

tire benchmark workload. The gains from executing transactions as stored procedures

is evident from the lower latency of the more complex NEWORDER transaction (exe-

cuting close to a hundred operations per transaction) compared to that of the simpler

transactions in YCSB (executing 10-20 operations).

4.5.4 Multitenancy at a single OTM

We now evaluate performance of multiple tenants hosted at the same OTM, thus

evaluating the tenant isolation provided by the shared process multitenancy model. We

54



Experimental Evaluation – Section 4.5

0 5 10 15
0

100

200

300

400

No. of tenants

T
ra

n
s
a
c
ti
o
n
 L

a
te

n
c
y
 (

m
s
)

 

 

Hot90−20

Uniform

0 5 10 15
0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t 
(T

P
S

)

No. of tenants

 

 

Hot90−20

Uniform

Figure 4.10: Evaluating performance when multiple tenants shared an OTM. In this

experiment, each tenant’s workload is an instance of YCSB. Multiple concurrent YCSB

instances simulate a multitenant workload.

use YCSB for these experiments. Figure 4.10 reports transaction latency and through-

put at one OTM. In the plot for transaction latency, the data points plotted correspond to

the average latency across all tenants, while the error bars correspond to the minimum

and maximum average latency observed for the tenants. Each tenant database is about

500 MB in size and the total cache size is set to 2.4 GB. The load on each tenant is set

to 100 TPS. We increase the number of tenants per OTM, thus increasing the load on

the OTM. For clarity of presentation, we use a hot spot distribution where 90% of the

operations access 20% of the data items as a representative skewed distribution, and

a uniform distribution. For skewed workloads when the working set fits in the cache,

even though different tenants compete for the OTM resources, the performance is sim-

ilar to that of a single tenant with the same load. The only observable difference is for

uniform distribution at high loads where high contention for the network and storage

results in a higher variance in transaction latency. Similarly, the peak throughput is

also similar to that observed in the experiment for a single tenant (see Figure 4.4). This

experiment demonstrates the good isolation provided by ElasTraS.

We now analyze the effectiveness of ElasTraS in handling large numbers of tenants

with small data footprints. In this experiment, each OTM serves an average of 100
tenants each between 50 MB to 100 MB in size. We evaluate the impact on transac-

tion latency and aggregate throughput per OTM as the load increases (see Figure 4.11).

Even when serving large numbers of tenants that contend for the shared resources at the

OTM, a similar behavior is observed when compared to the experiment with a single

isolated tenant or one with a small number of tenants. Even though the peak through-

put of an OTM is lower when compared to the other scenarios, transaction latencies

remain comparable to the experiments with a much smaller number of tenants. The
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Figure 4.11: Performance evaluation using YCSB for large numbers of small tenants

sharing resources at an OTM. In this experiment, each tenant’s workload is an instance

of YCSB. Multiple concurrent YCSB instances simulate a multitenant workload.
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Figure 4.12: Impact of a heavily loaded tenant on other co-located tenants.

reduction in throughput arises from the overhead due to the large number of network

connections, large number of transaction and data managers, and higher contention for

OTM resources. This experiment demonstrates that ElasTraS allows considerable con-

solidation where hundreds of tenants, each with small resource requirement, can be

consolidated at a single OTM.

When co-locating multiple tenants at an OTM, it is also important that the system

effectively isolates a heavily loaded tenant from impacting other co-located tenant. Fig-

ure 4.12 shows the impact of an overloaded tenant on other co-located tenants. In this

experiment, we increase the load on a tenant by 5× and 10× the load during normal

operation and analyze the impact on the transaction latency of other co-located tenants.

The OTM under consideration is serving 10 tenants each with an average load of 25

56



Experimental Evaluation – Section 4.5

0 5000 10000
0

2000

4000

6000

8000
T

h
ro

u
g

h
p

u
t 

(T
P

S
)

Load (TPS)

 

 

Linear

Hot90−20

Zipfian

Uniform

(a) 10 node cluster.

0 1 2

x 10
4

0

5000

10000

15000

T
h

ro
u

g
h

p
u

t 
(T

P
S

)

Load (TPS)

 

 

Linear

Hot90−20

Zipfian

Uniform

(b) 20 node cluster.

Figure 4.13: Aggregate system throughput using YCSB for different cluster sizes.

TPS during normal operation (an aggregate load of 250 TPS at the OTM). The first

group of bars (labeled ‘Normal’) plots the minimum, average, and maximum transac-

tion latency for the tenants during normal operation. The next set of bars plots the

latencies when the load on one of the tenants is increased by 5× from 25 TPS to 125
TPS. As is evident from Figure 4.12, this sudden increase in load results in less than

10% increase in the average transaction latency of other tenants co-located at the same

OTM. A significant impact on other tenants is observed only when the load on a tenant

increases by 10× from 25 TPS to 250 TPS; even in this case, the increase in transac-

tion latency is only about 40%. This experiment demonstrates the benefits of having an

independent transaction and data manager per tenant; the impact on co-located tenants

arise from contention for some shared resources like the CPU and the cache. Elas-

TraS’s use of the shared process multitenancy model therefore provides a good balance

between effective resource sharing and tenant isolation.

4.5.5 Overall system performance

Figure 4.13 plots the aggregate throughput for different cluster sizes and number of

tenants served, as the load on the system increases. We use YCSB for this experiment.

Each OTM on average serves 50 tenants; each tenant database is about 200 MB and

the cache size is set to 2.4 GB. Experiments were performed on EC2 using c1.xlarge

instances. Since there is no interaction between OTMs and there is no bottleneck, the

system is expected to scale linearly with the number of nodes. This (almost) linear

scaling is evident from Figure 4.13 where the peak capacity of the twenty node cluster

is almost double that of the 10 node cluster; the 20 node cluster serves about 12K

TPS compared to about 6.5K TPS for the 10 node cluster. The choice of co-locating a
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Figure 4.14: Evaluating the benefits of elastic scaling.

tenant’s data within a single partition allows ElasTraS to scale linearly. The reason for

the small reduction in per-node throughput in the 20 node cluster compared to the 10
node cluster is, in part, due to the storage layer being co-located with the OTMs, thus

sharing some of the resources available at the servers.

The peak throughput of 12K TPS in an ElasTraS cluster of 20 OTMs serving 1000
tenants corresponds to about a billion transactions per day. Though not directly compa-

rable, putting it in perspective, Database.com (the “cloud database” serving the Sales-

force.com application platform) serves 25 billion transactions per quarter hosting about

80, 000 tenants [75].

4.5.6 Elasticity and Operating Cost

ElasTraS uses Albatross for low cost live database migration. We now evaluate the

effectiveness of Albatross in elastic scaling of the overall system; Figure 4.14 illustrates

this effect as OTMs are added to (or removed from) the system. We vary the overall

load on the system during a period of two hours using YCSB. Along the x-axis, we plot

the time progress in seconds, the primary y-axis (left) plots the transaction latency (in

ms) and the secondary y-axis (right) plots the operating cost of the system (as per the

cost of c1.xlarge EC2 instances). We plot the moving average of latency averaged

over a 10 second window. The number of tenants is kept constant at 200 and the load

on the system is gradually increased. The experiment starts with a cluster of 10 OTMs.

As the load on the system increases, the transaction latency increases (shown in Fig-

ure 4.14). When the load increases beyond a threshold, elastic scaling is triggered and

five new OTMs are added to the cluster. The TM Master re-balances the tenants to the
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Figure 4.15: Scaling-out a single tenant by partitioning and scaling to different cluster

sizes and varying number of clients. This experiment reports the impact on transaction

latency as the load on the system increases.

new partitions using Albatross. The ElasTraS client library ensures that the database

connections are re-established after migration. After load-balancing completes, load is

distributed on more OTMs resulting in reduced average transaction latency. When the

load decreases below a threshold, elastic scaling consolidates tenants to 7 OTMs (also

shown in Figure 4.14). Since the number of OTMs is reduced, the operating cost of the

system also reduces proportionately. This experiment demonstrates that elastic scaling

using low overhead migration techniques can effectively reduce the system’s operating

cost with minimal impact on tenant performance.

4.5.7 Scaling large tenants

In all our previous experiments, we assume that a tenant is small enough to be

contained within a single partition and served by a single OTM. In this experiment,

we evaluate the scale-out aspect of ElasTraS for a single tenant that grows big. We

leverage schema level partitioning to partition a large tenant. The partitions are then

distributed over a cluster of OTMs. In this experiment, we vary the number of OTMs

from 10 to 30. As the number of OTMs is increased, the size of the database is also

increased proportionally and so is the peak offered load. We use the TPC-C benchmark

for this experiment and leverage the inherent tree schema for partitioning. As per the

original TPC-C benchmark specification, about 15% transactions are not guaranteed to

be limited to a single partition. In our evaluation, all TPC-C transactions access a single

partition. For a cluster with 10 OTMs, the database is populated with 1000 warehouses

and the number of clients is increased from 100 to 600 concurrent clients in steps of
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Figure 4.16: Scaling-out a single tenant by partitioning and scaling to different cluster

sizes and varying number of clients. This experiment reports the impact on transaction

throughput as the load on the system increases.

100. For a cluster with 30 OTMs, the database size is set to 3000 warehouses (about 2
TB on disk), and the number of concurrent clients is varied from 300 to 1800.

Figure 4.15 plots the transaction latencies of the NEWORDER and PAYMENT trans-

actions and the aggregate system throughput. Figure 4.16 plots the aggregate through-

put of the system in terms of the TPC-C metric of transactions per minute C (tpmC).

We used two variants of transactional workload: (i) the clients do not wait between

submitting transaction requests, and (ii) the clients wait for a configurable amount

of time (10 − 50ms) between two consecutive transactions. As per TPC-C specifica-

tions for generating the workload, each client is associated with a warehouse and issues

requests only for that warehouse. As expected, transaction latency increases as the

load increases, a behavior similar to the previous experiments. These experiments also

demonstrate that in addition to serving large numbers of small tenants, ElasTraS can ef-

ficiently scale-out large tenants serving thousands of concurrent clients and sustaining

throughput of more than 0.2 million transactions per minute. Putting it in perspective,

the performance of ElasTraS is comparable to many commercial systems that have pub-

lished TPC-C results (http://www.tpc.org/tpcc/results/tpcc_results.asp).

4.5.8 Analysis and Lessons Learned

Our evaluation of the ElasTraS prototype using a wide variety of workloads and

scenarios show that when the working set fits in the cache, the high cost of accessing

the de-coupled storage layer in ElasTraS is amortized by caching at the OTM. Since

for most high performance OLTP systems, the working set must fit the cache such that
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the peak throughput is not limited by disk I/O, this architecture will suit most practical

OLTP workloads. On the other hand, using a de-coupled storage layer allows migrat-

ing partitions with minimal performance impact. Using separate TMs for each tenant

partition allows effective isolation between the tenants. Limiting small tenants to a sin-

gle database process obviates distributed synchronization and lends good scalability to

the design. On one hand, the shared process multitenancy model in ElasTraS provides

effective resource sharing between tenants allowing consolidation of hundreds of small

tenants at an OTM. On the other hand, schema level partitioning allows scaling-out

large tenants.

Our experiments revealed an important aspect in the design—whether to share the

cache among all the partitions (or tenants) at the OTM or provide an exclusive cache to

each tenant. It is a trade-off between better resource sharing and good tenant isolation.

In our current implementation, all OTMs share the cache at an OTM. This allows better

sharing of the RAM while allowing the tenants to benefit from temporal distributions

in access—when a tenant requires a larger cache, it can steal some cache space from

other tenants that are not currently using it. However, when multiple tenants face a

sudden increase in cache requirements, this lower isolation between tenants results in

contention for the cache. In such a scenario, some tenants suffer due to a sudden change

in behavior of a co-located tenant, which is not desirable in a multitenant system that

must guarantee every tenant’s SLAs. In the future, we plan to explore the choice of

having an exclusive cache for each partition. We also plan to explore modeling tenant

behavior to determine which cache sharing scheme to use for a given set of tenants

co-located at an OTM.

Another important aspect is whether to store an OTM’s transaction log on a disk

locally attached to the OTM or in the DFS; our current implementation stores the log

in the DFS. Storing the log in the DFS allows quick recovery after an OTM failure,

since the partitions of the failed OTM can be recovered independent of the failed OTM.

However, in spite of using group commit, DFS appends are slower compared to that

of a local disk which limits the peak OTM throughput and places a higher load on the

network. It is, therefore, a trade-off between performance during normal operation and

recovery time after a failure.

Finally, it is also important to consider whether to co-locate an OTM and a storage

layer daemon, if possible. Since the OTMs do not result in disk I/O for any locally

attached disks, co-locating the storage layer with the transaction management layer

allows effective resource usage. As CPUs become even more powerful, they will have

abundant capacity for both the OTMs as well as storage layer daemons.

During the experiments, we also learnt the importance of monitoring the perfor-

mance of the nodes in a system, in addition to detecting node failures, especially in a

shared (or virtualized) cluster such as EC2. There were multiple instances in an EC2

61



Chapter 4. Statically Defined Partitions

cluster when we observed a node’s performance deteriorating considerably, often mak-

ing the node unusable. Detecting such unexpected behavior in the cluster and replacing

the node with another new node or migrating partitions to other OTMs is important

to ensure good performance. We augmented our system models with node-specific

performance measures to detect such events and react to them.

4.6 Summary

In this chapter, we presented ElasTraS, an elastically scalable transaction processing

system to meet the unique requirements of a cloud platform. ElasTraS leverages the

design principles of scalable Key-value stores and decades of research in transaction

processing, thus resulting in a scale-out DBMS with transactional semantics. ElasTraS

can effectively serve large numbers of small tenants while scaling-out large tenants

using schema level partitioning. ElasTraS allows effective resource sharing between

multiple partitions (or tenant databases) co-located at the same OTM while scaling-out

to large numbers of partitions. ElasTraS operates at the granules of database partitions

which are the granules of assignment, load balancing, and transactional access. For

applications with a small data footprint, a partition in ElasTraS can be a self contained

database. For larger application databases, ElasTraS uses schema level partitioning to

effectively scale-out while supporting rich transactional semantics.

We demonstrated that a prototype implementation deployed on a cluster of com-

modity servers can efficiently serve thousands of tenants while sustaining aggregate

throughput of billions of transactions per day. We further demonstrated that while hav-

ing performance similar to RDBMSs, ElasTraS can achieve lightweight elasticity and

effective multitenancy, two critical facets of a multitenant database for cloud platforms.
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Dynamically Defined Partitions

“Coming together is a beginning; keeping together is progress; working together is

success.”

– Henry Ford.

In the previous chapter, we presented the design of a system that allowed scale-

out for databases that can be statically partitioned. Many applications, however, have

fast evolving access patterns, thus negating the benefits of static partitioning based on

access patterns. Consider the example of an online multi-player game, such as an on-

line casino. An instance of the game has multiple players and the gaming application

requires transactional access to the player profiles while the game is in progress. For

example, every player profile might have an associated balance (in a real or virtual

currency) and the balance of all players must be transactionally updated as the game

proceeds. To allow efficient execution of these transactions, it is imperative that the data

items corresponding to the profiles are co-located within a database partition. However,

a game instance lasts for small periods of time as players move from one game to an-

other. Furthermore, over a period of time, a player might participate in game instances

involving different groups of players. Therefore, the group of data items on which

the application requires transactional access changes rapidly over time. Moreover, as

the game becomes popular, there can be hundreds of thousands of similar independent

game instances that concurrently exist [53, 86]. A DBMS serving these applications

must therefore scale to large numbers of concurrent transactions.

In a statically partitioned system, the profiles of the players participating in a game

instance might belong to different partitions. Providing transaction guarantees across

these groups of player profiles will result in distributed transactions. The challenge is

to design a scalable DBMS to support such applications that provides the benefits of

partitioning (i.e., efficient non-distributed transaction execution) even when the access
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patterns do not statically partition. In this chapter, we present our solution to this prob-

lem. Ours is the first solution, and to the best of our knowledge the only published

solution, to this problem.

We present the Key Group abstraction that allows the application to dynamically

specify the data items on which it wants transactional access [33]. A Key Group,

therefore, is a dynamically defined granule of transactional access. To allow efficient

transaction execution on a Key Group, we propose the Key Grouping protocol, that

co-locates the read/write accesses rights (or ownership) of the data items part of a

Key Group at a single node. In essence, the Key Grouping protocol is a lightweight

mechanism to re-organize data ownership without actually moving the data. The Key

Grouping protocol ensures that this transfer of ownership is completed safely even in

the presence of message or node failures. The Key Group abstraction and the Key

Grouping protocol are designed to operate as layer on top of a statically partitioned

distributed DBMS. 1

5.1 The Key Group Abstraction

5.1.1 Key Groups

Key Group is a powerful yet flexible abstraction for applications to define the gran-

ules of transactional access. Any data item (or key) in the data store can be selected as

part of a Key Group. The Key Groups are transient; the application can dynamically

create (and dissolve) the groups. For instance, in the multi-player gaming application,

a Key Group is created at the start of a game instance and deleted at its completion. At

any instant of time, a given key is part of a single group. However, a key can participate

in multiple groups whose lifetimes are temporally separated. For instance, a player can

participate in a single game at any instant of time, but can be part of multiple game

instances that do not temporally overlap.

Transactional guarantees are provided only for keys that are part of a group, and

only during the lifetime of the group. All keys in the data store need not be part of

groups. At any instant, multiple keys might not be part of any group; they conceptually

form one-member groups.

Every group has a leader selected from one of the member keys in the group; the

remaining members are called the followers. The leader is part of the group’s identity.

However, from an application’s perspective, the operations on the leader are no different

1An earlier version of the work reported in this chapter was published as the paper entitled

“G-Store: a scalable data store for transactional multi key access in the cloud” in the proceed-

ings of the 2010 ACM International Conference on Symposium on Cloud Computing (SoCC). DOI:

http://doi.acm.org/10.1145/1807128.1807157.
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Figure 5.1: An illustration of the Key Group abstraction and the subsequent co-location

of the Key Group’s members to efficiently support transactions on the Key Group.

from those supported for the followers. For ease of exposition, in the rest of the chapter,

we will use the terms leader and follower to refer to the data items as well as the nodes

where the data items are stored. Even though keys are often co-located at a node in a

Key-value store, their co-location is by chance and not by choice. Therefore, these keys

are treated as independent.

5.1.2 Design Rationales

The Key Group abstraction captures an application-defined relationship amongst

the members of a group. Once this relationship is established, ownership of the keys

in a Key Group is co-located at a single node by choice, thus limiting transactions on a

Key Group to a single node. As postulated earlier, this co-location of the data items is

the critical to efficient transaction execution and high scalability.

Figure 5.1 provides an illustration of how the Key Group abstraction allows owner-

ship co-location. The leader key’s owner (called the leader node) is assigned owner-

ship of the group and the nodes corresponding to the followers yield ownership to the

leader, i.e., the leader node gains exclusive ownership to all the followers. Once this

ownership transfer is complete, all read/write accesses for the group members is served

by the leader. Note that group creation, conceptually, transfers the ownership of the fol-
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lowers to the leader while the followers’ data remain with nodes that originally owned

the followers (i.e., the follower nodes). A Key Group, therefore, decouples the owner-

ship of the data items from their storage, thus allowing a lightweight re-organization of

ownership.

Ownership transfer from followers to the leader during group creation, and the op-

posite during group deletion, must be resilient to failures or other dynamic changes of

the underlying system. Therefore, we propose the Key Grouping protocol to guarantee

correct ownership transfer. The Key Grouping protocol involves distributed synchro-

nization between the leader and the followers. However, this distributed synchroniza-

tion is limited to only the group creation and deletion phases; transactions executing

on the group execute locally at the leader. The rationale is to limit distributed synchro-

nization only to update the ownership information which is part of the system state.

The cost of this distributed synchronization is amortized by the efficient transaction

execution during the group’s lifetime.

5.2 The Key Grouping Protocol

Group creation is initiated by an application client (or a client) sending a group

create request with the group id and the members. The group id is a combination of

a unique system generated id and the leader key. Group creation can either be atomic

or best effort. Atomic group creation implies that either all members join the group

or else the group is automatically deleted if one of the followers did not join. Best

effort creation forms the group with whatever keys that joined the group. A data item

might not join a group either if it is part of another group (since we require groups to

be disjoint), or if the data item’s follower node is not reachable.

In the Key Grouping protocol, the leader is the coordinator and the followers are

the participants or cohorts. The leader key can either be specified by the client or is

selected by the system. The group create request is routed to the node which owns the

leader key. The leader logs the member list, and sends a Join Request (〈J〉) to all the

followers (i.e., each node that owns a follower key). Once the group creation phase

terminates successfully, the client can issue operations on the group. When the client

wants to disband the group, it initiates the group deletion phase with a group delete

request.

Conceptually, ownership transfer from followers to the leader is equivalent to the

leader acquiring “locks” on the followers. Similarly, the reverse process is equivalent

to releasing the “locks”. The Key Grouping protocol is thus reminiscent of the locking

protocols for transaction concurrency control [40, 87]. The difference is that in our

approach, the locks are held by the Key Groups (i.e., the system) whereas in classical

lock based schedulers, the locks are held by the transactions.
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Figure 5.2: Key Grouping protocol with reliable messaging.

In the rest of the section, we discuss two variants of the Key Grouping protocol as-

suming different message delivery guarantees and show how group creation and dele-

tion can be safely done in the presence of various failure and error scenarios. In our

initial description of the protocol, we assume no failures. We then describe protocol

operation in the presence of message failures and node failures.

5.2.1 Protocol with Reliable Messaging

We first describe the Key Grouping protocol assuming reliable messaging, i.e., the

messages are not lost, duplicated, or reordered. The leader requests key ownership

from the followers (Join Request 〈J〉), and depending on availability, ownership is ei-

ther transferred to the leader or the request is rejected (Join Ack 〈JA〉). The 〈JA〉 mes-

sage indicates whether the follower joined the group. Depending on the application’s

requirements, the leader can inform the application as members join the group or when

the group creation phase has terminated. The group deletion phase involves notifying

the followers with a Delete Request 〈D〉. Figure 5.2 illustrates the protocol in a failure

free scenario.

5.2.2 Protocol with Unreliable Messaging

Reliable message delivery guarantees are often expensive. For example, protocols

such as TCP provide guaranteed delivery and ordering only on an active connection.

However, group creation requires delivery guarantees across connections. Hence, using

TCP alone will not be enough to provide message delivery guarantees in the presence of

node failures or network partitions. We now present a variant of the Key Grouping pro-

tocol that does not require any message delivery guarantees. The basics of the protocol
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Figure 5.3: Key Grouping protocol with unreliable messaging.

Figure 5.4: Message failures resulting in creation of a phantom group.

remain similar to that described in Section 5.2.1. Additional messages are incorporated

to deal with message failures.

Figure 5.3 illustrates the protocol with unreliable messaging which, in the steady

state, results in two additional messages, one during creation and one during deletion.

During group creation, the 〈JA〉 message, in addition to notifying whether a key is free

or part of a group, acts as an acknowledgement for the 〈J〉 request. On receipt of a 〈JA〉,
the leader sends a Join Ack Ack 〈JAA〉 to the follower, the receipt of which finishes the

group creation phase for that follower. This group creation phase is two phase, and

is similar to the 2PC protocol [44] for transaction commitment. The difference stems

from the fact that our protocol also allows best effort group creation while 2PC would

be equivalent to atomic group creation. During group dissolution, the leader sends a

Delete Request 〈D〉 to the followers. On receipt of a 〈D〉 the follower regains ownership

of the key, and then responds to the leader with a Delete Ack 〈DA〉. The receipt of 〈DA〉
from all the followers completes group deletion.
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Though simple in scenarios without failures, group creation can be complicated

in the presence of message failures, such as lost, reordered, or duplicated messages.

For example, consider the pathological scenario in Figure 5.4 which has message loss,

duplication, and reordering in a protocol instance where the group delete phase overlaps

with the group create phase. The leader sends a 〈J〉 message to a follower and this

〈J〉 message is duplicated in the network due to some error (the duplicate message

is shown as a dashed line). The follower receives a copy of the 〈J〉 message, and

replies with the 〈JA〉 message. On receipt of a 〈JA〉, the leader sends a 〈JAA〉 which

is delayed in the network and is not immediately delivered to the follower. In the

meantime, the client requests deletion of the group, and the leader sends out the 〈D〉
message. The follower, before receiving the 〈JAA〉, responds to the 〈D〉 message with a

〈DA〉 message and the group has been deleted from the follower’s perspective. Once the

leader receives the 〈DA〉, it also purges the state of the group. After a while, the follower

receives the duplicate 〈J〉 message for the deleted group, and sends out a 〈JA〉 for the

group which is lost in the network. The follower then receives the delayed 〈JAA〉 and its

receipt completes a group creation phase for the follower. In this pathological scenario,

the follower has yielded control to a non-existent group, or a phantom group, which

has no leader. Since the follower’s 〈JA〉 message was lost, the leader is not aware of

the existence of this phantom group. Creation of a phantom group makes data items

unavailable due to a non-existent leaders and hence non-existent owners of data items.

The Key Grouping protocol must therefore provide mechanisms to detect and tolerate

duplicate and stale messages and ensure that phantom groups, if any, are detected and

deleted.

We now describe the Key Grouping protocol in detail, and then explain how various

message failure scenarios are handled. We first describe the actions taken by the nodes

on receipt of the different protocol messages. We then describe the handling of lost,

reordered, and duplicate messages.

Group creation phase

Group create request. On receipt of a group create request from the client, the leader

verifies the request for a unique group id. The leader appends an entry to its log that

stores the group id and the members in the group. After the log entry is forced (i.e.,

flushed to persistent storage), the leader sends a 〈J〉 request to each of the follower

nodes. The 〈J〉 messages are retried until the leader receives a 〈JA〉 from the followers.

Join request 〈J〉. On receipt of a 〈J〉 request at a follower, the follower ascertains the

freshness and uniqueness of the message. If the message is detected as a duplicate, then

the follower sends a 〈JA〉 without appending any log entry. Otherwise, if the follower
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key is not part of any active group, the follower appends a log entry denoting the own-

ership transfer and the identity of the leader key. This ownership transfer is an update

to the system’s metadata and the follower’s log is the persistent storage for this infor-

mation. This log entry must therefore be forced before a reply is sent. The follower’s

state is set to joining. The follower then replies with a 〈JA〉 message notifying its intent

to yield. To deal with spurious 〈JAA〉 messages and eliminate the problem of phantom

groups, the follower should be able to link the 〈JAA〉 to the corresponding 〈JA〉. This is

achieved by using a sequence number generated by the follower called the yield id. A

yield id is associated to a follower node and is monotonically increasing. The yield id

is incremented every time a follower sends new 〈JA〉 and is logged along with the entry

logging the 〈J〉 message. The yield id is copied into the 〈JA〉 message along with the

group id. The 〈JA〉 message is retried until the follower receives the 〈JAA〉 message.

This retry ensures that the phantom groups are not left undetected.

Join Ack 〈JA〉. On receipt of a 〈JA〉 message, the leader checks the group id. If it

does not match the identifiers of any of the currently active groups, then the leader

sends a 〈D〉 message and does not log this action or retry this message. Occurrence of

this event is possible when the message was a delayed message, or the follower yielded

to a delayed 〈J〉. In either case, a 〈D〉 message would be sufficient and also deletes

any phantom groups that might have been formed. If the group id matches a current

group, then the leader sends a 〈JAA〉 message copying the yield id from the 〈JA〉 to the

〈JAA〉 irrespective of whether the 〈JA〉 is a duplicate. If this is the first 〈JA〉 received

from that follower for this group, a log entry is appended to indicate that the follower

has joined the group; however, the leader does not need to force the entry. The 〈JAA〉
message is never retried, and the loss of 〈JAA〉 messages is handled by the retries of

the 〈JA〉 message. The receipt of 〈JA〉 messages from all the followers terminates the

group creation phase at the leader.

Join Ack Ack 〈JAA〉. On receipt of a 〈JAA〉 message, the follower checks the group

id and yield id to determine freshness and uniqueness of the message. If the yield id

in the message does not match the expected yield id, then this 〈JAA〉 is treated as a

spurious message and is ignored. This prevents the creation of phantom groups. In

the scenario shown in Figure 5.4, the delayed 〈JAA〉 will have a different yield id since

it corresponds to an earlier group. Hence, the follower will reject it as a spurious

message, thus preventing the creation of a phantom group. If the message is detected

to be unique and fresh, then the follower key’s state is set to joined. The follower node

logs this event, which completes the group creation process for the follower; the log

entry does not need to be forced.
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Group deletion phase

Group delete request. When the leader receives the group delete request from the ap-

plication client, it forces a log entry for the request and initiates the process of yielding

ownership back to the followers. The leader then sends a 〈D〉 message to each follower

in the group. The 〈D〉 messages are retried until all 〈DA〉 messages are received. At

this point, the group has been marked for deletion and the leader will reject any future

transactions accessing this group.

Delete request 〈D〉. When the follower receives a 〈D〉 request, it validates this mes-

sage, and appends a log entry on successful validation of the message. This log entry

signifies that it has regained ownership of the key. Since regaining ownership is a

change in the system state, the log is forced after appending this entry. Irrespective of

whether this 〈D〉 message was duplicate, stale, spurious, or valid, the follower responds

with a 〈DA〉 message; this 〈DA〉 message is not retried.

Delete ack 〈DA〉. On receipt of a 〈DA〉 message, the leader checks for the validity

of the message. If this is the first message from that follower for this group, and the

group id corresponds to an active group, then a log entry is appended indicating that

the ownership of the data item has been successfully transferred back to the follower.

Once the leader has received a 〈DA〉 from all the followers, the group deletion phase

terminates. The log is not forced on this protocol action.

Analysis

In the steady state without any failures, the group creation phase results in three

messages and two log forces (one each at the leader and the follower) for every follower

node. Since the 〈JA〉 and 〈JAA〉 are acknowledgements, they need not be forced; these

entries are flushed as a side-effect of other force requests or when the log buffer fills

up and is flushed. Similarly, the group deletion phase results in two messages and two

log forces (one at the leader and one at the follower) for every follower; the log is not

forced on receipt of a 〈DA〉 message.

Message loss, reordering, or duplication

Message related errors occur due to a variety of reasons, such as network equip-

ment errors, partitions, and node failures. Lost messages are handled by associating

timers with transmitted messages and retrying a message if an acknowledgement is not

received before the timeout. For messages that do not have an associated acknowledge-

ment (i.e., the 〈JAA〉 and 〈DA〉), the sender relies on the recipient’s retry. For example,
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in the case of the 〈JAA〉 message, the follower is expecting the 〈JAA〉 as an acknowl-

edgement of the 〈JA〉 message. Therefore, if a 〈JAA〉 message is lost, the follower will

retry the 〈JA〉 message, on receipt of which, the leader will resend the 〈JAA〉. The loss

of 〈DA〉 is handled in a similar way.

To detect duplicate and reordered messages, the protocol uses unique identifiers for

all messages. All the messages have the group id, and the ordering of the messages

within the group creation phase is achieved using a yield id which is unique within a

group. Referring back to the scenario of Figure 5.4 where phantom groups are formed

due to stale and duplicate messages, the follower uses the yield id to detect that the

〈JAA〉 is stale, i.e., from a previous instance of a 〈JA〉 message, and rejects this message.

As a result, it will retry the 〈JA〉 message after a timeout. On receipt of the 〈JA〉 at the

leader, it determines that this message is from a deleted or stale group, and replies with

a 〈D〉 message. It is intuitive that the loss of messages does not cause issues since the

messages will be retried by the follower. Therefore, group id and yield id together allow

the protocol to deal with duplicate and reordered messages.

Concurrent group creates and deletes

A leader might receive a group delete request from the application before group

creation has completed; the Key Grouping protocol handles such scenarios. For the

followers that had received the 〈J〉 and/or 〈JAA〉, this is equivalent to a normal delete

and is handled the same way a 〈D〉 is handled during normal operation. Special handling

is needed for the followers that have not received the 〈J〉 message yet as a result of

message loss or reordering. For those followers, the 〈D〉 message is for a group about

which the follower has no knowledge. If the follower rejects this message, the leader

might be blocked. To prevent this, the follower sends a 〈DA〉 to the leader. However,

since the follower is unaware of the group, it cannot maintain any state associated with

this message; maintaining this information in the log prevents garbage collection of

this entry. When the follower receives the 〈J〉 request, it has no means to determine

that this is a stale message and thus accepts it as a normal message and replies with a

〈JA〉. However, when the leader receives the 〈JA〉 for this non-existent group, it sends

a 〈D〉 message which frees the follower and deletes the group at the follower. Similar to

a normal 〈JA〉 message, this 〈JA〉 is retried. This retry handles the loss of 〈JA〉 or 〈D〉.

5.3 Transactions on a Key Group

The Key Grouping protocol ensures that the ownership of the group members are

co-located at a node. Furthermore, since the leader node is the unique owner of the

group’s data, it can cache the data to serve the read and writes locally. This co-location
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Figure 5.5: Efficient transaction execution on a Key Group.

and caching allows efficient single-site transaction execution. Figure 5.5 illustrates the

transaction execution logic at the leader, similar to that of classical RDBMS storage

engines [15, 87]. The transaction manager is responsible for concurrency control and

recovery using the log. The cache manager is responsible fetching the data for the group

members from their respective follower nodes, cache updates made by transactions

executing during the lifetime of the group, and asynchronous propagation of the updates

to the follower nodes that now act as storage nodes. The cache manager guarantees that

the updates are propagated to the followers before a group is deleted. In this section, we

provide the details of transaction management and propagation of the cached updates.

5.3.1 Transaction Manager

Once group creation completes, application clients can issue transactions accessing

the data items within a Key Group. Transactions are routed to the leader. Standard con-

currency control techniques, such as two phase locking (2PL), optimistic concurrency

control (OCC), or snapshot isolation (SI), can be used to guarantee transaction isola-

tion. To guarantee atomicity and durability of the updates made by a transaction, all

update operations are appended to a transaction log that is logically separate from the

log used for the Key Grouping protocol. Log entries for a transaction are buffered dur-

ing transaction execution and before a transaction commits, a commit entry is appended

and the log is forced. This log force ensures that the log entries are persistent. In the

event of a failure, recovery on the transaction log guarantees atomicity and durability.

Updates made by a transaction are cached at the leader. The cache manager guarantees

update propagation to the followers and the log’s garbage collection.
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5.3.2 Cache Manager

The cache manager’s design is similar to that in a classical RDBMS where data is

stored and fetched from multiple disks; the follower nodes are equivalent to the multiple

disks. The group’s data can either be piggy-backed with the group creation requests or

can be fetched on-demand when accessed by the group. For cache management, the

cache manager uses standard data eviction policies [87].

As updates on the group’s data accumulate, the cache manager batches the updates

and asynchronously ships them to the follower nodes. For every follower, the cache

manager maintains a map of the sequence number for the last update that was acknowl-

edged by the follower. Once a follower node acknowledges receipt of the updates, this

map is updated and the corresponding log entries at the leader are marked for garbage

collection. The frequency of update propagation is configurable and is a trade-off be-

tween network I/O and the time taken to recover the leader’s state. Since the cache

manager guarantees update propagation before group deletion, a group deletion request

has to wait until update propagation is complete. In the event of a follower node failure,

updates for the data items served by the follower node will be queued at the leader. A

group delete request will block in such a scenario. Conceptually, the update propaga-

tion logic is a guaranteed ordered delivery publish/subscribe system where the leader is

the publisher and the followers are the subscribers.

5.4 Recovering from Node Failures

For node failures, we assume fail-stop behavior and do not consider Byzantine or

malicious failures. We use write-ahead logging for node recovery. We further assume

that this log is persistent beyond a node’s failure, i.e., a node failure does not result in

permanent data loss or the log is replicated to tolerate a node’s permanent data loss. The

Key Grouping protocol is oblivious of the dynamics, such as node failures or partition

reassignments, in the underlying statically partitioned data store. The Key Grouping

protocol uses identities of the data items instead of identities of the nodes owning the

data items. We assume that the underlying partitioned system store maintains a per-

sistent mapping of the data items to the nodes owning them. The leader and follower

nodes use this information to communicate.

The Key Grouping protocol appends log entries for every protocol action and forces

the entries corresponding to the critical protocol actions. This write-ahead log is the

persistent storage for the grouping information and is used to recover the state after a

node failure. After a failure, a node must recover from the leader and follower logs and

resume disrupted group operations. This includes restoring the state of the groups that

were successfully formed, as well as restoring the state of the protocol for the groups
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whose creation or deletion were in progress when the node crashed. The recovery

algorithm is a one-pass algorithm that starts at the oldest log entry and replays the

messages in the order in which they were received. Recall that duplicate, delayed, or

spurious messages are not logged during normal operation and hence are not replayed

during recovery. Once the log replay completes, the leader’s (or the follower’s) state

has been re-created and it can resume normal operation. The leader and the follower

logs are logically separate; however, they might be physically stored in a single log file

in case a node is hosting both the leader and follower processes.

In addition to the protocol and group states, the unique identifiers, such as the group

id and the yield id, are also critical to protocol operation and are recovered after a fail-

ure. This information is also logged during normal protocol operation and is recovered.

During normal operation, the yield id is monotonically incremented and the highest

known yield id is forced to the log before the last 〈JA〉 message was sent by the fol-

lower. Therefore, a failed node can recover the highest yield id and restart with a yield

id larger than that obtained from the log. Therefore, after recovery is complete, the

entire state of the protocol is restored to the point before the crash.

The leader node must also recover the group’s transaction state from the transaction

log. Standard log replay algorithms for transaction recovery [69,87] are used to recover

the committed transactions’ state and undo the aborted transactions’s effects. Log re-

play recreates that state of the cache before the failure. Data item versions are used at

the follower nodes to guarantee idempotence and handle repeated failures resulting in

duplicate cache flushes.

The Key Grouping protocol recovers from node and message failures. However,

there are various availability tradeoffs in the presence of arbitrary failures. On one hand,

failures with groups might result in data unavailability. For example, consider the case

when a follower, due to the receipt of a delayed 〈J〉 request, has yielded control of a key

k to a phantom group. Since the group to which k joined is already deleted, k should

be available to be accessed independently or to join another group. However, k cannot

be accessed since k’s status indicates that it is part of a group. k will be available

only after the 〈D〉 message is received from the phantom group’s leader. Deletion of

phantom groups is, therefore, dependent on the availability of the leader. If the leader

has failed or cannot communicate with k’s storage node, then k remains unavailable for

an extended period of time even though the node on which k resides is available. This

scenario is impossible when storage and ownership is coupled.

On the other hand, the Key Group abstraction also allows for extended availability

in the presence of certain types of failures. For example, consider the case where key

k is part of a group. The leader of the group owns k during the group’s lifetime. If the

leader has cached k’s data, the leader can continue serving k even if the follower node

storing k has crashed. If storage and ownership was coupled, failure of the node on
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which k resides would make k unavailable. In our design, k remains available as long

as the leader node is available.

5.5 Correctness Guarantees

The Key Grouping protocol guarantees safety and liveness in the presence of mes-

sage or node failures. Our failure model assumes that messages can fail, i.e., messages

can be lost, reordered, delayed, or duplicated. Node failures are fail-stop and we do

not tolerate Byzantine failures or malicious behavior. The Key Grouping protocol can

tolerate network partitions but does not guarantee progress in the event of a network

partition. We first define the safety and liveness guarantees and then prove that the Key

Grouping protocol provides these guarantees.

Definition 5.5.1. Safety: At no instant of time should more than one node claim own-

ership of a data item.

Definition 5.5.2. Liveness: In the absence of repeated failures, i.e., if the leader and

the follower nodes can communicate for sufficiently long durations, no data item is

indefinitely left without an owner.

Our definitions of safety and liveness are in terms of ownership of data items. Safety

ensures that a data item has at most one owner and liveness ensures that in the absence

of failures, a data item has at least one owner. The rationale is that in the underlying

statically partitioned system, every data item has exactly one owner. The Key Grouping

protocol transfers this data ownership dynamically between nodes, and is therefore

correct if it guarantees the same behavior.

The protocol’s safety is straightforward in the absence of any failures. The hand-

shake between the leader and the follower guarantees that there is at most one owner

of a data item. During group creation, once a follower yields ownership of a data item,

the leader becomes the new owner. Similarly, during group deletion, once the leader

relinquishes ownership, the follower regains ownership of the data item. Thus, a data

item is guaranteed to have at least one owner in the absence of failures.

Theorem 5.5.3. Safety and liveness is guaranteed in the absence of any failures.

We now prove safety and liveness in the presence of both message and node failures.

5.5.1 Ensuring Safety

We first prove that message failures cannot jeopardize data safety.
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Lemma 5.5.4. Message failures do not result in multiple concurrent owners of a data

item.

A follower yields ownership of a data item only if it received a 〈J〉 message and the

data item is not part of a group. Lemma 5.5.4 follows directly from the fact that the

above check is independent of message failures.

Lemma 5.5.5. Node failures do not result in multiple concurrent owners of a data item.

Proof. Assume for contradiction that a node failure results in multiple concurrent own-

ers of a data item. Concurrent ownership is impossible during normal operation without

failures (see Theorem 5.5.3). Therefore, yielding ownership to different leaders must

be interleaved by a node failure. Let i be the data item and G1 and G2 be the two

groups. Further assume that i yielded ownership to G1 before failure and G2 after the

failure. Therefore, the event corresponding to i joining G1 was not recovered after Fi

failed, thus allowing i to join G2. However, this contradicts that Fi forced a log entry

corresponding to the receipt of G1’s 〈J〉 and recovery after Fi’s failure will restore i’s
state as part of G1.

Corollary 5.5.6. It is impossible to have multiple concurrent owners of a data item.

Corollary 5.5.6 follows directly from Theorem 5.5.3 and Lemmas 5.5.4 and 5.5.5.

5.5.2 Ensuring Liveness

Liveness of data items will be jeopardized if either a data item is part of a phantom

group or a group is left without a leader node. In either case, the data items are unavail-

able to application accesses. We show that both scenarios are impossible if the leader

and the followers can communicate for sufficiently long duration.

Lemma 5.5.7. Creation of phantom groups is impossible.

Proof. Assume for contradiction that a phantom group might have been formed. This

is possible only if the follower receives a spurious delayed 〈J〉 message followed by a

delayed 〈JAA〉 message (similar to that shown in Figure 5.4). The follower will yield

to a phantom group when it accepts the 〈JAA〉 and terminates the group creation phase.

However, such a scenario is impossible since the follower, using the yield id, detects

that the 〈JAA〉 message does not correspond to the current group creation phase and

rejects it.

Lemma 5.5.7 proves that phantom groups cannot be formed. In addition, the Key

Grouping protocol must also ensure that a data item that yielded to a spurious 〈J〉
message, and hence is without an owner, is freed eventually if the follower node can

communicate with the perceived leader node.
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Lemma 5.5.8. A spurious 〈J〉 message does not indefinitely leave a data item without

an owner.

Proof. Proof by contradiction. Assume for contradiction that a data item that yielded

control to the spurious 〈J〉 message is left without an owner, i.e., the follower never

received a 〈D〉 for the phantom group. The follower will retry the 〈JA〉 message until it

receives a 〈JAA〉 that matches the yield id of the 〈JA〉 or it receives a 〈D〉 message. If

the follower received a 〈D〉 message, the data item will be freed and the follower will

regain ownership. Therefore, the follower must have received a 〈JAA〉 matching the

yield id of the 〈JA〉, i.e., the perceived leader replied with a 〈JAA〉 corresponding to the

〈JA〉 message. This is, however, impossible since the group is a phantom and hence is

non-existent at the leader. Hence the proof.

Corollary 5.5.9. Message failures do not leave a data item without an owner for indef-

inite periods.

Corollary 5.5.9 follows directly from Lemmas 5.5.7 and 5.5.8. We now prove that

liveness is not jeopardized in the presence of a node failure.

Lemma 5.5.10. In the event of a failure of a group’s leader node, the group is not

orphaned, i.e., left without a leader node.

Proof. Assume for contradiction that a group Gi is indefinitely left without a leader

after its original leader node Li failed. If Li’s failure was transient, it will recover from

its log after a restart. If Li’s failure was permanent, another node will recover Li’s state

from the log. In either case, Gi left without an owner implies that the replay of Li’s log

did not contain any entry corresponding to Gi. This is however impossible since the

log at the leader was forced on the receipt of the group create request and before the

first 〈J〉 message was sent for Gi.

Forcing of the leader’s log at critical protocol events ensures that these events are

persistent beyond the leader node’s failures. Log replay during recovery restores the

state of active groups and resumes any group creation or deletion that were in progress

before the failure.

Corollary 5.5.11. A data item is not left without an owner for indefinite periods af-

ter a failure, i.e., ownership is restored after the failed leader or follower nodes have

recovered and can communicate with each other.

Corollary 5.5.11 follows directly from Corollary 5.5.9 and Lemma 5.5.10.
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5.6 Prototype Implementation

In this section, we present the details of a prototype implementation, called G-Store,

which uses the Key Group abstraction and the Key Grouping protocol to efficiently

support transactional multi-key accesses. We provide two implementation designs of

G-Store. In the first design, the grouping protocol is executed as a layer outside the data

store, and all accesses to the data store are handled by this layer. We refer to this design

as the client based implementation since the grouping layer is a client to the Key-value

store. This design is suitable for building a pluggable grouping library compatible with

multiple underlying Key-value stores or in the case where the Key-value store is part

of an infrastructure and cannot be modified. The second design involves extending a

Key-value store to implement the Key Grouping protocol as a middleware layer within

the Key-value store. We refer to this design as the middleware based design. The

middleware layer handles the group specific operations and the Key-value store handles

data storage. This design is suitable where the infrastructure provider is implementing

a data store which supports multi-key accesses and has access to the code base for the

Key-value store.

The operations supported by G-Store are a superset of the operations supported

by the underlying Key-value store’s operations. In addition to reads/scans, writes, or

read/modify/update of a single row of data, G-Store supports multi-step transactions

accessing one or more data items in a group. Any combination of read, write, or read/-

modify/update operations on keys of a group can be enclosed in a transaction.

In our implementation, we consider Key-value stores, such as Bigtable [24] and

HBase [49], which support reads with strong replica consistency, thus allowing the

grouping layer to operate on the most up-to-date data. Therefore, the transactions on

a group can also guarantee strong consistency on data accesses. Key-value stores such

as PNUTS [26] and Dynamo [35] can be configured to support weaker consistency

of reads. The interplay of strong consistency guarantees of transactions with weaker

consistency guarantees of the data store can result in weaker consistency and isolation

guarantees of transactions on a group; a detailed analysis of this interplay is beyond the

scope of this work. In the rest of this section, we first describe these two implementation

designs, and then describe some implementation issues common to both these designs.

5.6.1 Client based Implementation

This implementation consists of a client layer outside the Key-value store which

provides the Key Group semantics using the single key accesses supported by the under-

lying Key-value store. Figure 5.6 provides an illustration of this design. The application

clients interact with the grouping layer, which provides a view of a data store support-
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Figure 5.6: A client based implementation of G-Store.

ing transactional access to a Key Group. The grouping layer treats the Key-value store

as a black box and interacts with it using the store’s client APIs.

The grouping layer executes the Key Grouping protocol to co-locate ownership of

the keys at a single node. For scalability, the grouping layer can potentially be dis-

tributed across a cluster of nodes as depicted in Figure 5.6. The key space is hori-

zontally partitioned amongst the nodes in the grouping layer; our implementation uses

range partitioning, but other partitioning schemes can also be supported. A group create

request from the application client is forwarded to the grouping layer node responsible

for the leader key in the group. That node is designated as the leader node and executes

the Key Grouping protocol.

In this design, the followers are the actual keys resident in the Key-value store. The

〈J〉 request acquires exclusive locks on the follower keys. Locking information for each

key is stored in a new column introduced to each table. If a key is available, then the

lock column is set to a special value FREE. If the key is part of a group, the lock column

stores the group id of the key’s group. The 〈J〉 request performs a test and set operation

on the lock column to test availability. If the key is available, then the test and set

operation atomically obtains the lock and stores the group id. Since the test and set

operation is on a single key, all Key-value stores support this operation. Moreover, if

multiple concurrent group create requests content for a key, only one is guaranteed to

succeed. The result of the test and set operation acts as the 〈JA〉. Once the 〈J〉 request

has been sent to all the keys in the group, the group creation phase terminates. Very
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Figure 5.7: A middleware based implementation of G-Store.

little state about the groups is maintained in the grouping layer, so that failures in the

grouping layer need minimal recovery.

5.6.2 Middleware based Implementation

We now provide a design of G-Store where the Key Grouping protocol and the

group related operations are implemented as a middleware layer conceptually resident

within a Key-value store. In this implementation, we use an open-source Key-value

store, HBase [49], where the entire key space is horizontally range-partitioned into

regions. Regions are distributed on a cluster of nodes, called region servers, and each

region server is responsible for multiple regions. The grouping layer logic is co-located

with the region server logic, as shown in Figure 5.7. The grouping layer logic owns

all the keys served by that region server. This implementation allows the protocol

messages to be batched for all the keys co-located at a follower node. The grouping

layer provides the abstraction of Key Groups and executes the Key Grouping protocol,

while the transaction manager guarantees transactional access to keys in a Key Group.

In this design, the grouping layer maintains the group’s state and the Key-value store

is not aware of the groups’ existence. The grouping layer is responsible for logging the

protocol actions and also recovering the state of the groups. On receipt of a group

creation request, the leader node sends the 〈J〉 message to all the follower nodes. The

grouping layer logic at each region server keeps track of its share of keys that are part

of an existing group. Depending on the state of the key, the follower replies with a 〈JA〉
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message. Since the Key Group abstraction does not mandate all keys to be part of a

group, accesses to keys not part of any group are delegated to the Key-value store logic.

Our implementation showed that this middleware based design is minimally intrusive

to the design of the Key-value store and requires minimal modifications to the code of

the Key-value stores.

5.6.3 Transaction Management

Our prototype implements OCC [61] and 2PL [40] as two different concurrency

control mechanisms to ensure serializability. In OCC, transactions do not obtain locks

when reading or writing data. They rely on the optimistic assumption that there are no

conflicts with other concurrently executing transactions. Before a transaction commits,

it is validated to guarantee that the optimistic assumption was indeed correct and the

transaction did not conflict with any other concurrent transaction. In case a conflict is

detected, the transaction is aborted. Writes made by a transaction are kept local and

are applied to the database only if the transaction commits. We implemented parallel

validation in OCC which results in a very short critical section for validation, thus

allowing more concurrency.

The lock based scheduler is pessimistic and acquires appropriate locks before ac-

cessing a data item. The two phase locking rule, where a transaction can acquire a lock

only if it has not yet released a lock, guarantees serializability. We implemented strict

2PL where the locks are released at transaction completion.

All groups co-located at the same leader node share a common log which is stored

in the DFS to allow quick recovery from node failures. The leader, follower, and trans-

action logs share the same physical log. This sharing minimizes the number of DFS

accesses and allows effective batching. Each log entry has the group id to allow the

entry to be associated to the corresponding group. Log entries are buffered until a force

request is made or until the log buffer fills up. A force on the log guarantees that the

log is persistent. The log is forced corresponding to some critical events in the group-

ing protocol and when a transaction on a group commits. The following optimizations

minimize the number of DFS accesses: (i) no log entry is written to record the start

of a transaction, (ii) a COMMIT entry is appended only for update transactions, (iii) no

log entry is made for aborted transactions, the absence of a COMMIT record implies an

abort, and (iv) group commits are implemented to commit transactions in groups and

batch their log writes.
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5.6.4 Discussion

Leader key selection. The leader key for a group determines at which node the own-

ership of all the group members will be co-located. Selecting the leader key, therefore,

presents various trade-offs. In order the minimize the protocol cost and the cost of data

movement, a greedy strategy might be to determine the node which owns the biggest

portion of the group members and then select one of the node’s owned keys as the

leader. This strategy minimizes the data movement costs. However, this strategy might

create hotspots and results and add the cost of leader key selection during group cre-

ation. Moreover, due to node failures or re-assignments in the underlying partitioned

system during the lifetime of the group, some other node might own more keys that the

node selected at the time of group creation. On the other hand, the system can randomly

select one key from the group to become the leader. The randomness in selection pro-

vides better load balancing but might lead to higher messaging costs compared to the

greedy strategy. Our prototype implements the random strategy.

Group id and yield id generation. The unique identifiers, group id and yield id, play

an important role in protocol correctness. The group id is a collection of the leader key

and a another identifier; the combination of the two identifiers should be unique. Since

the leader key is owned by a single node, a unique identifier local to the leader node is

sufficient. Similarly, the yield id is monotonically increasing at a given follower node

and need not have a global order. Therefore, both identifiers can be generated locally

by the leader and the follower processes. An atomic counter, incremented for every

new id generated, is sufficient to generate the identifiers.

Non-overlapping groups. The Key Grouping protocol does not allow the Key Groups

to overlap. As a result, if there are concurrent requests for a key to join different Key

Groups, only one of them will succeed. This strategy simplifies the protocol imple-

mentation and also ensures that transactions on a Key Group executes at a single node.

Overlapping Key Groups can, however, be handled if the overlaps are few. The over-

lapping Key Groups are co-located at the same leader node so that the same transaction

manager can execute the transactions that span the Key Groups due to the overlap. This

co-location of overlapping Key Groups allows non-distributed transaction execution.

However, the co-location strategy cannot handle scenarios of large numbers of overlap-

ping Key Groups.

Non blocking group creation and deletion. When a follower node receives a 〈J〉
request for a key that is currently part of another group, the request can be blocked

until the key becomes available. Such blocking is, however, not desirable for multiple
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practical considerations. First, concurrent group create requests with overlapping keys

might result in a deadlock due to the blocking behavior. Second, as observed in the

case of transaction locking, as data contention increases, i.e., more groups overlap, the

blocking behavior will result in higher group creation latency. On the other hand, during

group deletion, the leader must first propagate all the updates to the followers. The

delete request might therefore be blocked in the event of failures. Our implementation

takes a non-blocking strategy for both the scenarios. During group create, if a follower

key is unavailable, the follower node sends a negative acknowledgement as part of the

〈JA〉 message. Depending on the configuration, the leader might either retry the request

or create the group without the follower. When the application requests a group delete,

the request is logged at the leader node and the application is acknowledged without

blocking for the group to be deleted. The leader then asynchronously deletes the group.

5.7 Experimental Evaluation

We now experimentally evaluate the performance of the Key Grouping protocol

and G-Store on a cluster of machines in the Amazon Web Services Elastic Compute

Cloud (EC2) infrastructure. Both the Key Grouping protocol as well as G-Store have

been implemented in Java. We use HBase version 0.20.2 [49] as the Key-value store

in both the client based and middleware based designs. We evaluate the performance

of the system using an application benchmark which resembles the type of workloads

for which the system has been designed. We first describe the benchmark used for

the experiments and the experimental set up used for evaluating the system, and then

provide results from the experiments.

5.7.1 An Application Benchmark

The application benchmark is based on an online multi-player game. The game’s

participants have a profile represented as a key-value pair with a user’s unique id used

as the key. All information about the players is contained in a single Players table.

Note that even though the benchmark uses only a single table, G-Store is designed to

support operations over multiple tables; the keys are composed from the table name

and the row key. In this benchmark, the number of concurrent groups and the average

number of keys in a group are used are used as scaling factors for the Players table’s

size. If there are G concurrent groups with an average of K keys per group, then the

Players table must contain at least n × G × K keys, where n is the scaling factor used

to determine the number of keys that are not part of any group.

The application clients submit group create requests where the number of keys in

the group are chosen from a normal distribution with K as the mean and σK as the stan-
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Figure 5.8: Cluster setup for experiments to evaluate G-Store’s performance.

dard deviation. Keys in a group are either chosen from a uniform random distribution

(called random) or as a contiguous sequence of keys where the first key in the se-

quence is chosen from a uniform random distribution (called contiguous). Once group

creation succeeds, the client issues operations on the group. The number of operations

on a group is chosen from a normal distribution with mean N and standard deviation

σN . Each client submits an operation on a group, and once the operation is completed,

the client waits for a random time between δ and 2δ before submitting the next opera-

tion. On completion of all operations, the group is deleted, and the client starts with a

new group create request. A client can have concurrent independent requests to multi-

ple groups, and a group can also have multiple clients. Since G-Store provides isolation

against concurrent operations on a group, clients need not be aware of the existence of

concurrent clients.

The parameters in the benchmark—the number of concurrent groups G, the average

number of keys K, the scaling factor n, the average number of operations on a group

N , and the time interval between operations δ—are used to evaluate various aspects of

the system’s performance. The first three parameters control the scale of the system,

while N controls the amortization effect that the group operations have on the group

creation and deletion overhead. The parameter δ allows the clients to control the load

on the grouping layer.
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5.7.2 Experimental Setup

Experiments were performed on a cluster of commodity machines in Amazon EC2.

All machines in the cluster were “High CPU Extra Large Instances” (c1.xlarge) with

7 GB of memory, 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units

each), 1690 GB of local instance storage, and a 64-bit platform. Figure 5.8 provides

an illustration of the experimental cluster setup. HBase uses HDFS [50] as a fault

tolerant distributed file system, and we use HDFS version 0.20.1 for our experiments.

HBase also uses Zookeeper [54] for distributed lease management; we used Zookeeper

version 3.2.2. An ensemble of servers is used to replicate Zookeeper’s state; to tolerate

n failures, the ensemble must have (2n + 1) nodes. We used a 3 node Zookeeper

ensemble referred to as the master ensemble. The nodes in the master ensemble also

host the HBase Master, the HDFS Namenode, and the HDFS Secondary Namenode.

The HBase Master and HDFS Namenode perform metadata operations and hence are

lightly loaded. A separate ensemble of nodes, referred to as the slave ensemble, is

used to host the slave processes of HBase and HDFS, i.e., the HBase region servers

and the HDFS Data nodes. The slave ensemble also hosts the G-Store logic for the

Key Grouping protocol transaction manager, and cache manager implementations. Our

experiments used a slave ensemble of 10 nodes which amounts to about 70 GB of

main memory, 16.15 TB of disk space, and 80 virtual CPU cores. Together the master

and slave ensembles constitute the data management infrastructure. Application clients

were executed on a different set of nodes within EC2.

The Players table has 25 column families, loosely similar to columns in RDBMSs,

which store various profile-related information such as Name, Age, Sex, Rating, and

Account Balance. Each column family contains a single column. The table contains

about 1 billion randomly generated rows and each column family in a row contains

about 20–40 bytes of data. The data size on disk is about a terabyte without compres-

sion and with 3× replication. After the data insertion, the HBase cluster is allowed

to repartition and load balance the data before any group-related operations are per-

formed, thus allowing more even distribution of the workload across all nodes. During

the rest of the experiment, data in the table are updated, but no bulk insertions or dele-

tions are performed. We use best effort group creation which succeeds when a response

is received from all the followers, irrespective of whether they joined.

5.7.3 Group Creation

In this section, we evaluate the group creation latency, i.e., the time taken to create

a group, and the group creation throughput, i.e., the number of groups concurrently

created. The goal of these experiments is to evaluate the overhead of group creates and

the system’s scalability in dealing with thousands of concurrent group create requests.
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(a) 10 keys per group.
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(b) 50 keys per group.
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(c) 100 keys per group.

Figure 5.9: The average time taken to create a group.

The group creation-only workload is simulated by setting the number of operations on

the group (N ) to 0 so that the application client creates the group, and then deletes the

group once group creation succeeds. We evaluate both the variants of G-Store, the client

based design and the middleware based design, and the two different key selection

distributions, random and contiguous. The contiguous selection emulates Megastore’s

entity group abstraction [11] which mandates that keys in an entity group are from a

contiguous key space. The random selection demonstrates the flexibility of the Key

Group abstraction in allowing arbitrarily selected keys.

Figure 5.9 plots the latency of group-create requests as the number of concurrent

clients submitting requests increases. The group creation latency is measured as the

time elapsed between the client issuing the group create request and obtaining the group

creation notification from the grouping layer. The latency (in ms) is plotted along the

y-axis, and the number of concurrent clients is plotted along the x-axis. The different
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(a) 10 keys per group.

50 100 150 200
10

2

10
3

10
4

10
5

# of Concurrent Clients

G
ro

u
p

s
 c

re
a

te
d

 p
e

r 
s
e

c
o

n
d

 

 

Clientbased−Contiguous
Clientbased−Random
Middleware−Contiguous
Middleware−Random

(b) 50 keys per group.
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(c) 100 keys per group.

Figure 5.10: Number of concurrent group create requests served.

lines in the graphs correspond to different G-Store implementations and the different

key distribution. The different plots correspond to different sizes of the groups (varying

parameter K).

As expected, the middleware based design outperforms the client based design as

the group size increases. Additionally, when the keys in a Key Group are from a con-

tiguous space, the performance of the Key Grouping protocol is considerably improved.

The performance benefits of the middleware based design can be attributed to the ben-

efits of batching the protocol messages. When the keys are contiguous, group creation

typically results in a single 〈J〉 message. By contrast, in the client based design, ir-

respective of whether the keys are contiguous or not, multiple messages are needed,

thus resulting in higher latency. This is because the Key-value store only supports sin-

gle key test and set operations which are used to implement the “lock” or followers

yielding control to the leader.
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Another interesting observation is that the middleware based design is not very

sensitive to the number of keys in a group. This is again due to batching of the requests

resulting in fewer messages. If there are n nodes in the cluster, there can be at most

n messages irrespective of the group’s size. On the other hand, the latency of the

client based design is dependent on the number of keys in the group. Therefore, for

most practical applications, the middleware based implementation will result in better

performance.

Figure 5.10 further asserts the superior performance of the middleware based de-

sign. We plot the throughput of group-create requests served per second, aggregated

over the entire cluster. Along y-axis is the number of group-create requests processed

per second (drawn in a logarithmic scale), and along the x-axis is the number of concur-

rent clients. Figure 5.10 also demonstrates the almost linear scalability in terms of the

group create requests being served; as the number of clients increase from 20 to 200,

an almost 10 times increase in group creation throughput is observed. Furthermore, a

10 node G-Store cluster is able to processes tens of thousands of concurrent groups.

5.7.4 Operations on a Group

In this experiment, we evaluate the performance of G-Store for a workload with

operations after group creation. Once a group has been formed, transaction execution is

similar in the client based and the middleware based designs. In these experiments, we

compare the performance of G-Store to that of HBase in terms of the average operation

latency. For G-Store, the reported average latency includes the group creation and

deletion times, in addition to the time taken by the operations. Since HBase does not

have any notion of groups, no transactional guarantees are provided on accesses made

to the group members. HBase performance numbers provide a baseline to measure

the overhead of providing transactional guarantees using the Key Group abstraction

compared to accesses without any guarantees. For HBase, the updates to a group of

keys are applied as a batch of updates to the rows which are part of the group without

any transactional guarantees. We evaluate the system’s performance for different values

of N , i.e., the number of operations on a group. We set the number of keys in a group

(K) to 50, and the sleep interval δ between consecutive operations to 10 ms.

Figure 5.11 plots the average latency of each operation, as the number of operations

on a group are varied. The x-axis plots the number of concurrent clients which is varied

from 20 to 200. The y-axis plots the average latency per operation (in ms). The average

operation latency in G-Store includes the group creation latency and is computed as:

Group Create Latency + Latency of operations

Number of operations
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(b) 50 operations per group created.
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(c) 100 operations per group created.

Figure 5.11: Average latency per operation on a group. The HBase workload simulates

grouping operations by issuing operations only limited to a group of keys. No groups

are formed in HBase and no guarantees are provided for the operations on the group.

For HBase, the latency is the average over all operations. As is evident from Fig-

ure 5.11, the grouping layer introduces very little overhead (10–30%) compared to that

of HBase while providing ACID guarantees on Key Group accesses which HBase does

not provide. The overhead is considerably reduced as the number of operations per

group increases. This reduction in overhead is primarily due to the benefits of batching

of the updates and local transaction execution. The asynchronous propagation of up-

dates from the grouping layer to the data store also results in low transaction latencies.

Therefore, for a very low overhead, G-Store provides transactional accesses to a Key

Group using a Key-value store as a substrate.
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5.8 Extensions to the Key Group Abstraction

Our discussion till now assumes that all the data items join a Key Group when it is

created and all of them leave when the group is deleted. The Key Grouping protocol,

however, can handle data items joining and leaving a Key Group at any point during

the group’s lifetime. The Key Group abstractions can therefore be generalized. A Key

Group is a set of data items on which an application seeks transactional access. This set

can be dynamic over the lifetime of a group, thus allowing data items to join or leave

the group while the group is active. Transactional guarantees are provided only to the

data items that are part of the group when the transaction is executing. As earlier, new

groups can be formed and groups can be deleted at any time. Key Groups continue to

remain disjoint, i.e., no two concurrent Key Groups will have the same data item.

Conceptually, the Key Grouping protocol handles the joining and deletion of a

group’s data items individually; these requests are batched to improve performance.

Therefore, the Key Grouping protocol remains unchanged to support this generalized

Key Group abstraction. When the application requests a data item k to join an already

existing group, the leader executes the creation phase of the Key Grouping protocol

only for k joining the group. When k leaves a group, the leader ensures that k is not be-

ing accessed an active transaction and all of k’s updates have propagated to the follower

node. The leader then executes the deletion phase only for k leaving the group.

Since the Key Grouping protocol remains unchanged, correctness of the Key Group-

ing protocol is straightforward. Atomicity and durability of transactions is similarly

guaranteed using logging and recovery as earlier. Transaction serializability within a

group is guaranteed by the concurrency control technique used. However, as data items

move from one group to another, conflict dependencies are carried over. We now show

that the generalized Key Group abstraction can guarantee transaction serializability. In-

tuitively, the leader has to release the logical “lock” on k when it leaves the group and

the deletion executes as a transaction serialized after all transactions that accessed k.

Our discussion uses 2PL which guarantees serializability by locking data items ac-

cessed by a transaction. However, the proofs can be extended to other concurrency

control techniques that guarantee serializability. Let T1, T2, . . . denote the transactions

and G1, G2, . . . denote the groups. Let lT1
(k) and ulT1

(k) denote the lock and unlock

actions on a data item k by transaction T1. Further, due to the two phase rule, any

lock acquired by a transaction must precede a lock released by the transaction, i.e.,

lT1
(i) < ulT1

(j) for all data items i and j accessed by T1.

Lemma 5.8.1. It is impossible to have a cyclic conflict dependency of the form T1 →
T2 → · · · → T1 for transactions executing on two groups G1 and G2.

Proof. Assume for contradiction that a cyclic conflict dependency is possible. Without

loss of generality, assume that T1 executed on G1. Further, let us assume that T1 and T2
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conflict on data item x. Therefore, ulT1
(x) < lT2

(x). Similarly, if T2 and T3 conflict on

y, then ulT2
(y) < lT3

(y). Due to the two phase rule, we know, lT2
(x) < ulT2

(y), and

hence we have, ulT1
(x) < lT3

(y). Using similar arguments, the conflict dependency

T1 → · · · → Ti implies that ulT1
(x) < lTi

(z).
Let Ti+1 be the first transaction executing on G2 in the sequence T1 → · · · → Ti →

Ti+1. Let Ti and Ti+1 conflict on data item k that moved from G1 to G2. Since k can

leave G1 only if it is not locked by an active transaction executing on G1, therefore,

ulTi
(k) < lTi+1

(k), i.e., ulT1
(x) < lTi+1

(k). The dependency Ti+1 → · · · → T1 and

arguments similar to above implies that ulTi+1
(k′) < lT1

(k′′), where k′′ is the data item

that moved from G2 to G1. Since, lTi+1
(k) < ulTi+1

(k′), we have ulT1
(x) < lT1

(k′′),
which means that T1 violated the two phase rule, a contradiction.

Corollary 5.8.2. It is impossible to have a cyclic conflict dependency of the form T1 →
T2 → · · ·T1 for transactions executing on groups G1, G2, . . . , Gn.

Corollary 5.8.2 follows Lemma 5.8.1 by induction on the number of groups. There-

fore, transaction serializability is guaranteed.

5.9 Summary

In this chapter, we presented the Key Group abstraction that allows the applica-

tions to dynamically specify the groups of data items on which it wants transactional

access; a Key Group is a dynamically defined granule of transactional access. We also

presented the Key Grouping protocol that allows the system to co-locate the owner-

ship of a group’s data items at a single node, thus allowing efficient transaction exe-

cution. We further showed how the Key Grouping protocol can handle message and

node failures while guaranteeing safe ownership transfer during group creation and

group deletion. We demonstrated the benefits of the Key Group abstraction and the

Key Grouping protocol by building a prototype implementation, G-Store, that provided

transactional multi-key access on top of a Key-value store that only supports single-key

based accesses. Our evaluation showed the low overhead of Key Grouping protocol

in co-locating ownership of the data items in a Key Group. We also present a more

dynamic variant of the Key Group abstraction allowing data items to join and leave a

group during its lifetime.

Our current implementation requires the applications to specify the data items that

form a Key Group. In the future, we would like to explore the possibility of mining the

application’s access patterns to automatically identify the data items that will form a

Key Group. Another future direction would be to explore the feasibility of supporting a

wider class of applications the involve overlapping Key Groups or require queries span

multiple Key Groups.
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Chapter 6

Live Migration for Database Elasticity

“To him whose elastic and vigorous thought keeps pace with the sun, the day is a

perpetual morning.”

– Henry David Thoreau.

Elasticity and pay-per-use pricing are the key features of cloud computing that ob-

viate the need for static resource provisioning for peak loads and allows on-demand

resource provisioning based on the workload. However, as noted in Chapter 1, the

database tier is not as elastic as the other tiers of the web-application stack. In order to

effectively leverage the underlying elastic infrastructure, the database tier must also be

elastic, i.e., when the load increases, add more servers to the database tier and migrate

some database partitions to the newly allocated servers to distribute the load, and vice

versa. Elastic scaling and load balancing therefore calls for lightweight techniques to

migrate database partitions in a live system.

In this dissertation, we formulate the problem of live database migration for elas-

tic scaling and load balancing in DBMSs and present the first two approaches to live

database migration. In this Chapter, we define some cost metrics to evaluate live mi-

gration techniques, analyze some existing approaches to live database migration and

formally define the problem.

6.1 Migration Cost Metrics

Migrating database partitions in a live system is a hard problem and comes at a cost.

We discuss four cost metrics to evaluate the effectiveness of a live database migration

technique, both from the user and the system perspective.
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• Service unavailability: The duration of time for which a database partition is

unavailable during migration. Unavailability is defined as the period of time

when all requests to the database fail.

• Number of failed requests: The number of well-formed requests that fail due

to migration. Failed requests include both aborted transactions and failed opera-

tions; a transaction consists of one or more operations. Aborted transactions sig-

nify failed interactions with the system while failed operations signify the amount

of work wasted as a result of an aborted transaction. The failed operations ac-

count for transaction complexity; when a transaction with more operations aborts,

more work is wasted for the tenant. We therefore quantify both types of failures

in this cost metric.

• Impact on response time: The change in transaction latency (or response time)

observed as a result of migration. This metric factors any overhead introduced

in order to facilitate migration as well as the impact observed during and after

migration.

• Data transfer overhead: Any additional data transferred during migration. Data-

base migration involves the transfer of data corresponding to the partition being

migrated. This metric captures the messaging overhead during migration as well

any data transferred in addition to the minimum required to migrate the partition.

The first three cost metrics measure the external impact on the application users

of the system and their SLAs while the last metric measures the internal performance

impact. In a cloud data platform, a provider’s service quality is measured through

SLAs and satisfying them is foremost for customer satisfaction. A long unavailability

window or a large number of failed requests resulting from migration might violate the

availability SLA, thus resulting in a penalty. For instance, in Google AppEngine, if the

availability drops below 99.95%, then tenants receive a service credit [8]. Similarly, low

transaction latency is critical for good tenant performance and to guarantee the latency

SLAs. For example, a response time higher than a threshold can incur a penalty in some

service models. A live migration technique must have minimal impact on tenant SLAs

to be effective in elastic scaling.

6.2 Problem Formulation

Various approaches to database migration are possible. One straightforward ap-

proach is to leverage VM migration [17, 25, 67] which is a standard feature in current

VMs. The shared hardware multitenancy model, as shown in Figure 6.1(a), is one pos-

sible approach. In this approach, every database partition has its independent database

process and VM and a Hypervisor (or a virtual machine monitor) orchestrates resource
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(a) One partition per VM. (b) Multiple partitions per VM. (c) Shared process multitenancy.

Figure 6.1: Live database migration for lightweight elasticity.

sharing between VMs (and hence partitions) co-located at the same node. VM migra-

tion techniques can be used to migrate individual VMs. Therefore, any partition can be

migrated between two nodes, thus enabling fine-grained load balancing. However, this

approach results in high performance impact during normal operation. This overhead

arises from heavy contention for the I/O resources due to uncoordinated and competing

accesses by the independent database servers. This is in addition to the overhead intro-

duced due to duplication of some components, such as the OS and database process, as

well as due to the use of virtualized resources. A recent experimental study shows that

compared to the shared process model, this design requires 2× to 3× more machines

to serve the same number of database partitions, and for a given assignment results in

6× to 12× less performance [28].

An alternative design to mitigate this performance problem is shown in Figure 6.1(b).

Multiple partitions are consolidated within a single database process that is executing

within a VM. This design only suffers from the overhead introduced due to virtual-

ization and can still leverage VM migration. However, since multiple partitions are

co-located within a single VM, all of them must now be migrated, thus losing the abil-

ity of fine grained load balancing as supported in the shared hardware model.

To minimize the performance impact due to resource sharing between partitions it

is imperative that multiple partitions share the same database process. This design is

called shared process multitenancy (shown in Figure 6.1(c)). Furthermore, to enable

lightweight fine-grained elastic load balancing, the system must possess the ability to

migrate individual partitions on-demand in a live system. We characterize this as vir-

tualization embedded into the database tier allowing the individual database partitions

to be virtualized from the node serving the partition. This decoupling of the partitions

from the nodes serving the partitions allows the system to effectively react to changes in

load patterns by dynamically orchestrating resources, i.e., allocating and de-allocating
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Notation Description

PM The tenant database or partition being migrated

NS Source node for PM

ND Destination node for PM

TS, TD Transaction executing at nodes NS and ND respectively

Pk Database page k

Table 6.1: Notational conventions for live database migration.

resources on-demand. These technologies are critical to effective capacity planning, to

ensure high resource utilization, and to optimize the system’s operating cost.

Most traditional DBMSs do not support live migration primarily because enterprise

infrastructures are typically statically provisioned for peak expected load, and elasticity

was not considered an important feature in database systems. A partition can still be

migrated in a traditional DBMS without leveraging VM migration. The source DBMS

node (NS) stops serving the partition (PM ), aborts all transactions active on PM , flush-

ing all the changes made at NS , copies the partition’s data to the destination DBMS

node (ND), and restarts serving PM at ND. We call this approach stop and copy.

This approach has high migration cost: PM becomes unavailable during migration and

all transactions active at the start of migration are aborted. Furthermore, the entire

database cache is lost when the PM is restarted at ND, thereby incurring a high post

migration overhead for warming up the database cache. Therefore, this approach has

a high impact on the tenant’s SLA, thus preventing it from being effectively used for

elastic scaling.

In this dissertation, we propose two different techniques for live migration within

the database tier using the shared process multitenancy model. Our techniques focus

on OLTP systems running short read-write transactions. The first technique, Albatross,

allows for live database migration in decoupled storage architectures where the parti-

tion’s persistent data is stored in a network-addressable storage abstraction. In such an

architecture, the persistent data is not migrated. Albatross focusses on migrating the

database cache and the state of active transactions to minimize the performance impact

when PM restarts at ND. The second technique, Zephyr, allows for live database mi-

gration in a shared nothing architecture where the partition’s persistent data is stored on

disks locally attached to the DBMS nodes and hence must also be migrated. Therefore,

Zephyr focusses on migrating this persistent data with no downtime. Chapter 7 presents

the details of Albatross while Chapter 8 presents the details of Zephyr. Table 6.1 sum-

marizes the notational conventions used.
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Chapter 7

Decoupled Storage Architectures

“Man could not stay there forever. He was bound to spread to new regions, partly

because of his innate migratory tendency and partly because of Nature’s stern

urgency.”

– Huntington Ellsworth.

In this chapter, we present the detailed design and implementation of Albatross [34],

a live migration technique for decoupled storage architectures.1 In a decoupled stor-

age architecture, the persistent data is stored in network-addressable storage (NAS)

servers—an architecture used by ElasTraS and G-Store presented earlier in the disserta-

tion. Albatross assumes the shared process multitenancy model and migrates a database

partition (PM ) from the source DBMS node (NS) to the destination DBMS node (ND).

For simplicity of exposition, we assume that a partition is a self contained database for

a small application tenant; we use the terms tenant and partition interchangeably.2

Albatross leverages the semantics of database systems to migrate the database cache

and the state of transactions active during migration. In decoupled storage architectures,

the persistent data of a database partition is stored in the NAS and therefore does not

need migration. Migrating the database cache allows the partition being migrated to

start “warm” at the destination, thus minimizing the impact on transaction latency. To

minimize the unavailability window, this copying of the state is performed iteratively

while the source continues to serve transactions on the partition being migrated. Copy-

ing the state of transactions active during migration allows them to resume execution

1The name Albatross is symbolic of the lightweight nature and efficiency of the technique that is

typically attributed to Albatrosses.
2The work reported in this chapter was published as the paper entitled “Albatross: lightweight elas-

ticity in shared storage databases for the cloud using live data migration” in the proceedings of the Very

Large Data Bases endowment (PVLDB), Vol 4, No. 8, May 2011.
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Figure 7.1: A reference de-coupled storage multitenant DBMS architecture.

at the destination. Therefore, Albatross results in negligible impact from the tenants’

perspective, allowing the system to effectively use migration while guaranteeing that

(i) the tenants’ SLAs are not violated, (ii) transaction execution is serializable, and

(iii) migration is safe in spite of failures. Moreover, in Albatross, the destination node

performs most of the work of copying the state, thus effectively relieving load on the

overloaded source node.

7.1 Reference System Architecture

We consider a decoupled storage database architecture for OLTP systems executing

short running transactions (see Figure 7.1). Our reference system model uses the shared

process multitenancy model where a partition is entirely contained in a single database

process which co-locates multiple partitions. Application clients connect through a

query router which abstracts physical database connections as logical connections

between a tenant and its partition. Even though Figure 7.1 depicts the query router

as a single logical unit, a deployment will have a distributed query router to scale to a

large number of connections. The mapping of a partition to its server is stored as system

metadata which is cached by the router.

A cluster of DBMS nodes serves the partitions; each node has its own local trans-

action manager (TM) and data manager (DM). A TM consists of a concurrency control

component for transaction execution and a recovery component to deal with failures.
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Figure 7.2: Migration timeline for Albatross (times not drawn to scale).

A partition is served by a single DBMS node, called its owner. This unique ownership

allows transactions to execute efficiently without distributed synchronization amongst

multiple DBMS nodes.

Network-addressable storage provides a scalable, highly available, and fault-tolerant

storage of the persistent image of the tenant databases. This decoupling of storage from

ownership obviates the need to copy a tenant’s data during migration. This architec-

ture is different from shared disk systems which use the disk for arbitration amongst

concurrent transaction [15]. A system controller performs control operations including

determining the partition to migrate, the destination, and the time to initiate migration.

7.2 The Albatross Technique

7.2.1 Design Overview

Albatross aims to have minimal impact on tenant SLAs while leveraging the se-

mantics of the database structures for efficient database migration. This is achieved by

iteratively transferring the database cache and the state of active transactions. For a

two phase locking (2PL) based scheduler [40], the transaction state consists of the lock

table; for an Optimistic Concurrency Control (OCC) [61] scheduler, this state consists

of the read-sets and write-sets of active transactions and a subset of committed trans-

actions. Figure 7.2 depicts the timeline of Albatross when migrating PM from NS to

ND.
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Phase 1: Begin Migration: Migration is initiated by creating a snapshot of the database

cache at NS . This snapshot is then copied to ND. NS continues processing transac-

tions while this copying is in progress.

Phase 2: Iterative Copying: Since NS continues serving transactions for PM while ND

is initialized with the snapshot, the cached state of PM at ND will lag that of NS .

In this iterative phase, at every iteration, ND tries to “catch-up” and synchronize the

state of PM at NS and ND. NS tracks changes made to the database cache between

two consecutive iterations. In iteration i, Albatross copies to ND the changes made

to PM ’s cache since the snapshot of iteration i − 1. This phase terminates when

approximately the same amount of state is transferred in consecutive iterations or a

configurable maximum number of iterations have completed.

Phase 3: Atomic Handover: This phase transfers the ownership of PM is transferred

from NS to ND. NS stops serving PM , copies the final un-synchronized database

state and the state of active transactions to ND, flushes changes from committed

transactions to the persistent storage, transfers control of PM to ND, and notifies the

query router of the new location of PM . To ensure safety in the presence of failures,

this operation is guaranteed to be atomic. The successful completion of this phase

makes ND the owner of PM and completes the migration.

The iterative phase minimizes the amount of PM ’s state to be copied and flushed

in the handover phase, thus minimizing the unavailability window. In the case where

the transaction logic executes at the client, transactions are seamlessly transferred from

NS to ND without any loss of work. The handover phase copies the state of active

transaction along with the database cache. For a 2PL scheduler, it copies the lock table

state and reassigns the appropriate locks and latches at ND; for an OCC scheduler, it

copies the read/write sets of the active transactions and that of a subset of committed

transactions whose state is needed to validate new transactions. For a 2PL scheduler,

updates of active transactions are done in place in the database cache and hence are

copied over during the final copy phase; in OCC, the local writes of the active trans-

actions are copied to ND along with the transaction state. For transactions executed

as stored procedures, NS tracks the invocation parameters of transactions active during

migration. Any such transactions active at the start of the handover phase are aborted

at NS and are automatically restarted at ND. This allows migrating these transactions

without moving the process state at NS . Durability of transactions that committed at

NS is ensured by synchronizing the commit logs of the two nodes.

Iterative copying in Albatross is reminiscent of migration techniques used in other

domains, such as in VM migration [25] and process migration [82]. The major differ-

ence is that Albatross leverages the semantics of the database internals to copy only the

information needed to re-create the state of the partition being migrated.
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7.2.2 Failure Handling

In the event of a failure, data safety is primary while progress towards successful

completion of migration is secondary. Our failure model assumes node failures and a

connection oriented network protocol, such as TCP, that guarantees message delivery

in order within a connection. We do not consider Byzantine failures or malicious node

behavior. We further assume that node failures do not lead to complete loss of the

persistent data: either the node recovers or the data is recovered from the NAS where

data persists beyond DBMS node failures. If either NS or ND fails prior to Phase 3,

migration of PM is aborted. Progress made in migration is not logged until Phase 3.

If NS fails during Phases 1 or 2, its state is recovered, but since there is no persistent

information of migration in the commit log of NS , the progress made in PM ’s migration

is lost during this recovery. ND eventually detects this failure and in turn aborts this

migration. If ND fails, migration is again aborted since ND does not have any log

entries for a migration in progress. Thus, in case of failure of either node, migration is

aborted and the recovery of a node does not require coordination with any other node

in the system.

The atomic handover phase (Phase 3) consists of the following major steps: (i) flush-

ing changes from all committed transactions at NS; (ii) synchronizing the remaining

state of PM between NS and ND; (iii) transferring ownership of PM from NS to ND;

and (iv) notifying the query router that all future transactions must be routed to ND.

Steps (iii) and (iv) can only be performed after the Steps (i) and (ii) complete. Owner-

ship transfer involves three participants—NS , ND, and the query router—and must be

atomic. We perform this handover as a transfer transaction and a Two Phase Commit

(2PC) protocol [44] with NS as the coordinator guarantees atomicity in the presence of

node failures. In the first phase, NS executes steps (i) and (ii) in parallel, and solicits

a vote from the participants. Once all the nodes acknowledge the operations and vote

yes, the transfer transaction enters the second phase where NS relinquishes control of

PM and transfers it to ND. If one of the participants votes no, this transfer transaction

is aborted and NS remains the owner of PM . This second step completes the transfer

transaction at NS which, after logging the outcome, notifies the participants about the

decision. If the handover was successful, ND assumes ownership of PM once it re-

ceives the notification from NS . Every protocol action is logged in the commit log of

the respective nodes.

7.3 Correctness guarantees

Migration correctness or safety implies that during normal operation or in case of a

failure during migration, the system’s state or application data is not corrupted or lost.
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Definition 7.3.1. Safe Migration. A migration technique is safe if the following condi-

tions are met: (i) Data Safety and Unique ownership: The persistent data of a partition

is transactionally consistent and at most one DBMS node owns a partition at any in-

stant of time; and (ii) Durability: Updates from committed transactions are durable.

We argue migration safety using a series of guarantees provided by Albatross and

reason about how these guarantees are met.

Guarantee 7.3.2. Atomicity of handover. PM is owned by exactly one of NS or ND.

This is trivially satisfied when no failures occur. We now describe how logging and

recovery ensures atomicity during failures.

At most one owner: A failure in the first phase of the atomic handover protocol is

handled similar to a failure during Phases 1 and 2—both NS and ND recover normally

and abort PM ’s migration and NS remains the owner. Failure in this phase does not need

coordinated recovery. After receiving responses (both yes or no votes), NS is ready

to complete the transfer transaction and enters the second phase of atomic handover.

Once the decision about the outcome is forced into NS’s log, the transfer transaction

enters the second phase. Forcing the log record constitutes the atomic event. A failure

in this phase requires coordinated recovery. If NS forced the log record to commit,

ND is the new owner of PM , otherwise NS continues as the owner. If NS failed before

notifying ND, ND must wait until the state of NS is recovered from its log before ND

starts serving PM . Therefore, the atomic handover protocol guarantees that there is at

most one owner of PM .

At least one owner: A pathological condition arises when after committing the transfer

transaction at NS , both NS and ND fail. Atomic handover guarantees that in such a

scenario, both NS and ND do not relinquish ownership of PM . If the handover was

complete before NS failed, when NS recovers, it transfers ownership to ND. Otherwise

NS continues as the owner of PM . The synchronized recovery of NS and ND guarantees

at least one owner.

Guarantee 7.3.3. Changes made by aborted transactions are neither persistently stored

nor copied over during migration.

This follows from the invariant that in the steady state, the combination of the

database cache and the persistent disk image does not have changes from aborted trans-

actions. In OCC, changes from uncommitted transactions are never publicly visible.

In locking based schedulers, the cache or the persistent data might have changes from

uncommitted transactions. Such changes are undone if a transaction aborts. Any such

changes copied over during the iterative phases are guaranteed to be undone during the

first round of the atomic handover phase.

Guarantee 7.3.4. Changes made by committed transactions are persistent and never

lost during migration.
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Cache flush during the handover phase ensures that writes from transactions that

have committed at NS , are persistent. The log entries of such committed transactions

on PM are discarded at NS after successful migration.

Guarantee 7.3.5. Migrating active transactions does not violate the durability condi-

tion even if the commit log at NS is discarded after successful migration.

This is ensured since Albatross copies the commit log entries for transactions ac-

tive during migration to ND, which are then forced to ND’s commit log when these

transactions commit.

Guarantee 7.3.2 ensures data safety and Guarantees 7.3.3, 7.3.4, and 7.3.5 together

ensure durability, thus guaranteeing the safety of Albatross. Therefore, in the presence

of a failure of either NS or ND, the migration process is aborted without jeopardizing

the safety.

Guarantee 7.3.6. Serializability. Copying the transaction state in the final handover

phase of Albatross ensures serializable transaction execution after migration.

OCC guarantees serializability by validating transactions against conflicts with other

concurrent and committed transactions. The handover phase copies the state of active

transactions and that of a subset of transactions that committed after the earliest of the

active transactions started. Therefore, all such active transactions can be validated at

ND and checked for conflicts.

For a 2PL Scheduler, the two phase locking rule ensures serializability of a locking

based scheduler. The final handover phase copies the state of the lock table such that

active transactions have the locks that were granted to them at NS when they resume

execution at ND. Therefore, a transaction continues to acquire locks using the two

phase rule at ND, thus ensuring serializability.

We now articulate two important properties of Albatross that allow the system to

gracefully tolerate failures and characterize its behavior in the presence of failures dur-

ing migration.

Property 7.3.7. Independent Recovery. Except during the execution of the atomic han-

dover protocol, recovery from a failure of NS or ND can be performed independently.

At any point of time before atomic handover, NS is the owner of PM . If NS fails, it

recovers without interacting with ND and continues to be the owner of PM . Similarly,

if ND fails, it recovers its state. Unless the handover phase was initiated (Phase 3 of

the protocol), ND has no log record about the migration in progress, so it “forgets” the

migration and continues normal operation. Similarly, once handover has been success-

fully completed, ND becomes the new owner of PM . A failure of NS at this instant can

be recovered independently as NS does not need to recover the state of PM . Similarly,

a failure of ND requires recovery of only its state; ND can independently recover the

state of PM since it had successfully acquired the ownership of PM .
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Property 7.3.8. A single failure does not incur additional unavailability. Any un-

availability of PM resulting from the failure of one of NS or ND during migration is

equivalent to unavailability due to a failure during normal operation.

From an external observer’s perspective, NS is the owner of PM until the atomic

handover phase (Phase 3) has successfully completed. Any failure of ND before Phase 3

does not affect the availability of PM . A failure of NS during this phase makes NS

unavailable, which is equivalent to a failure of NS under normal operation where PM

would also become unavailable. Similarly, after migration is complete, ND becomes

the owner of PM . Any failure of NS does not affect PM , and a failure of ND which

makes PM unavailable is equivalent to the failure of ND during normal operation. The

only complexity arises in the case of a failure in Phase 3 when a coordinated recovery

is needed. If NS fails before successful completion of Phase 3, even if NS had locally

relinquished ownership of PM , if the transfer transaction did not complete, ND cannot

start serving PM in which case it becomes unavailable. This is similar to the blocking

behavior in 2PC [44]. However, since the handover transaction did not complete, from

an observer’s perspective, NS was still the owner of PM , and hence this unavailability

is equivalent to the failure of NS during normal operation. Thus, it is evident, single

site failures during migration does not impact availability of PM .

The ability to safely abort migration at an incomplete state and the single owner

philosophy allow independent recovery of the failed node’s state even after a failure

during migration. This is crucial for effective use of migration for elasticity without

unnecessarily making tenants unavailable when a node fails. Furthermore, one of the

implications of Property 7.3.8 is that in spite of using a 2PC protocol, the handover

phase does not block any system resources as a result of a failure, limiting the impact

of failure to only the partitions being served by the failed node. This is contrary to

the case where a coordinator failure in 2PC causes other transactions conflicting with

blocked transactions to also block.

During normal operation, the progress of Albatross is guaranteed by the maximum

bound on the number of iterations that forces a handover. Since Albatross does not log

the progress of migration, the state synchronized at ND is not persistent. The rationale is

that since Albatross copies the main memory state of PM , which is lost after a failure,

little gain can be achieved by logging the progress at either node. Progress towards

migration is therefore not guaranteed in case of repeated failures.

7.4 Implementation Details

We implemented Albatross in ElasTraS, a scale-out decoupled storage OLTP DBMS

presented earlier in Chapter 4. ElasTraS’s architecture is similar to the abstract system
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model depicted in Figure 7.1. The DBMS Nodes are equivalent to Owning Transaction

Managers (OTM) which own a number of partitions and provide transactional guaran-

tees on them using optimistic concurrency control (OCC). The NAS is the distributed

fault tolerant storage (DFS) which stores the persistent data and the transaction logs.

The controller is equivalent to the TM Master which is responsible for system man-

agement and initiating migration. Its role in migration is only limited to notifying

the source OTM (NS) and the destination OTM (ND) to initiate migration. Transac-

tion routing is handled by the client library that is linked to every application client; the

router transparently migrates the client connections after migration without any changes

to the application code. The client library uses a collection of metadata tables that store

the mapping of a partition to the OTM which is currently serving the partition. The

combination of the client library and the metadata tables constitute the query router.

ElasTraS uses an append-only storage layer (the Hadoop distributed file system).

Updates to a tenant’s data is periodically flushed to create new files on the DFS. Data is

physically stored as a collection of immutable segments which store the data sorted by

the keys. A segment is a collection of blocks with an index to map blocks to key ranges.

An OTM caches the contents of blocks that were read by the application. Updates are

maintained as a separate main memory buffer which is periodically flushed to the DFS

as new segments.

Creating a database snapshot. In the first step of migration, NS creates a snapshot

of the tenant’s database cache. Albatross does not require a transactionally consistent

snapshot of the cache. NS’s cache snapshot is a list of identifiers for the immutable

segment blocks that are cached. This list of block identifiers is obtained by scanning

the read cache using a read lock. It is passed to ND which then reads the blocks directly

from the DFS and populates its cache. This results in minimal work at NS and delegates

all the work of warming up the cache to ND. The rationale is that during migration, ND

is expected to have less load than NS . Therefore, transactions at NS observe minimal

impact during snapshot creation and copying. After ND has loaded all the blocks into

its cache, it notifies NS of the amount of data transferred (∆0); both nodes now enter

the next iteration. No transaction state is copied in this phase.

Iterative copying phase. In every iteration, changes made to the read cache at NS

are copied to ND. After a first snapshot is created, the data manager of PM at NS tracks

changes to the read cache (both insertions and evictions) and incrementally maintains

the list of identifiers for the blocks that were evicted from or loaded in to the read cache

since the previous iteration, which is copied to ND in subsequent iterations. Again,

only the block identifiers are passed; ND populates its cache using the identifiers and

notifies NS of the amount of data transferred (∆i). This iterative phase continues until
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the amount of data transferred in successive iterations is approximately the same, i.e.,

∆i ≈ ∆i−1. The rationale behind this termination condition is that when ∆i ≈ ∆i−1,

irrespective of the magnitude of ∆i, little gain is expected from subsequent iterations.

∆i is small for most cases, except when the working set of the database does not fit into

the cache, thus resulting in frequent changes to the cache due to blocks being evicted

and new blocks added to the cache. A maximum bound on the number of iterations

ensures termination when ∆i fluctuates between iterations.

The write cache is periodically flushed during the iterative copying phase when

its size exceeds a specified threshold. A write-cache flush creates a new block whose

identifier is passed to ND which loads the new block into its read cache. After the

handover, ND starts serving PM with an empty write cache, but the combination of the

read and write cache contains the same state of data as in NS . Since the data manager

hides this cache separation, transactions on PM continue execution at ND unaware of

the migration.

Copying the transaction state. ElasTraS uses OCC [61] for concurrency control. In

OCC, the transaction state consists of the read and write sets of the active transactions

and a subset of committed transactions needed to validate new transactions. The read-

/write sets of active transactions and committed transactions are maintained in separate

main-memory structures. Two counters are used to assign transaction numbers and

commit sequence numbers. In Albatross, the transaction state is copied only in the final

handover phase. Writes of an active transaction, stored locally with the transaction’s

state, are also copied to ND during handover along with the counters maintained by the

transaction manager. The state of a subset of committed transactions (ones that com-

mitted after any one of the current set of active transactions started) is copied to ND

to validate the active transactions at ND. The small size of transaction states allows

efficient serialization. After handover, ND has the exact same transaction state of PM

as NS , thus allowing it to continue executing the transactions that were active at the

start of the handover phase.

Handover phase. The handover phase flushes changes from committed transactions.

After the transaction state and the final changes to the read cache have been copied, the

atomic handover protocol makes ND the unique owner of PM and updates the mapping

in the metadata used by the query router. The query router (ElasTraS clients) caches the

metadata. After handover, NS rejects any request to PM which invalidates the system

metadata cached at the clients; the clients subsequently read the updated metadata.

The metadata tables in ElasTraS are served by one of the live OTMs. The OTM

serving the metadata tables participates in the transfer transaction of the atomic han-

dover phase. The TM Master can be a participant of the transfer transaction so that it
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is aware of the outcome of migration; however, it is not needed for correctness. In our

implementation, the TM Master is notified by NS after handover completes. Clients

that have open connections with PM at NS are notified directly about the new address

of ND. This prevents an additional network round-trip to read the updated metadata

mappings.

For a transaction accessing PM during the atomic handover phase, the ElasTraS

client library transparently retries the operation; once the handover completes, this re-

tried operation is routed to ND. Since an OTM’s commit log is stored in the DFS, it

is not migrated. PM ’s transaction log at NS is garbage collected once the transactions

active at the start of the handover phase have completed at ND, though the entries for

transactions that committed at NS can be purged after the handover completes.

7.5 Experimental Evaluation

We now evaluate our prototype implementation of Albatross using a variety of

workloads. We measure migration cost using four cost measures: tenant unavailability

window, number of failed requests (aborted transactions or failed operations), impact

on transaction latency (or response time), and additional data transfer during migration.

We compare performance with the stop and copy technique presented in Chapter 6; we

call the technique stop and migrate (S&M) since when using a decoupled storage, data

is not copied to the destination; S&M only migrates the ownership of PM after all the

updates at NS have been flushed. In S&M, flushing the cached updates from committed

transactions results in a long unavailability window. An optimization, called flush and

migrate (F&M), performs a flush while continuing to serve transactions, followed by

the final stop and migrate step. Both S&M and F&M were implemented in ElasTraS

along with Albatross.

7.5.1 Experimental Setup

Experiments were performed on a six node cluster, each with 4 GB memory, a quad

core processor, and a 200 GB disk. The distributed fault-tolerant storage and the OTMs

are co-located in the cluster of five worker nodes. The TM master (controller) and

the clients generating the workloads were executed on a separate node. Each OTM

was serving 10 partitions on average. When an operation fails due to a partition be-

ing unavailable (due to migration or otherwise), the ElasTraS client library transpar-

ently retries these operations until the tenant becomes available again and completes

the request. We set the maximum number of iterations in Albatross to 10; Albatross

converged within 3− 7 iterations in our experiments.
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Parameter Default value

Transaction size 10 operations

Read/Write distribution 80% reads, 20% writes

Partition size 1 GB

Transaction load 50 transactions per second (TPS)

Cache size 250 MB

Access distribution Hotspot distribution

Default hotspot distribution 80% operations accessing 20% of the database

Table 7.1: Default values for YCSB parameters used in Albatross’s evaluation.

In all experiments, except the one presented in Section 7.5.5, we evaluate migration

cost when both NS and ND were lightly loaded so that the actual overhead of migration

can be measured. The load on a node is measured using the amount of resources (for

instance CPU cycles, disk I/O bandwidth, or network bandwidth) being utilized at the

node. When resource utilization is less than 25%, it is referred to as lightly loaded,

utilization between 25− 70% is referred to as moderately loaded, and utilization above

70% is called overloaded. For simplicity, we only consider CPU utilization.

7.5.2 Methodology

We evaluate migration cost using the modified Yahoo! cloud serving benchmark

(YCSB) and the TPC-C benchmark presented in Chapter 4 (see Section 4.5.2). In our

experiments, we consider tenant applications with small databases and every tenant

is assigned a partition in ElasTraS. We therefore use the terms tenant and partition

interchangeably.

For the experiments using YCSB, we vary different YCSB parameters to cover a

wide spectrum of workloads. These parameters include the percentage of read oper-

ations in a transaction, number of operations in a transaction, size of a partition, load

offered on a partition, cache size, and the distribution from which the keys accessed are

selected. For experiments using the Zipfian distribution, the co-efficient is set to 1.0. In

a specific experiment, we vary one of these parameters while using the default values

for the rest of the parameters; the default values of these parameters are provided in Ta-

ble 7.1. In every experiment, we execute about 12, 000 transactions (about 240 seconds

at 50 TPS) to warm up the cache, after which migration is initiated. Clients continue

to issue transactions while migration is in progress. We only report the latency for

committed transactions; latency measurements from aborted transactions are ignored.
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Figure 7.3: Transaction latency distribution (box and whisker plot). Inset shows the

same graph but with a limited value of the y-axis to show the box corresponding to the

25th and 75th percentiles.

Each instance of YCSB corresponds to a single tenant served by one of the live OTMs.

Multiple YCSB instances emulate a multitenant workload.

For the experiments using TPC-C, each tenant database size is about 1 GB and

contains 4 TPC-C warehouses. The cache per tenant is set to 500 MB. We vary the load

on each tenant from 500 tpmC (transactions per minute TPC-C) to 2500 tpmC. Again,

multiple TPC-C benchmark instances simulate a multitenant workload.

7.5.3 Evaluation using Yahoo! Cloud Serving Benchmark

Impact on response times and throughput

In the first experiment, we analyze the impact of migration on transaction latency

using the default workload parameters described above. We ran a workload of 10, 000
transactions, after warming up the cache with another workload of 10, 000 transactions;

Figure 7.3 plots the distribution of latency (or response time) of each individual trans-

action as a box and whisker plot. The four series correspond to the observed transaction

latency of an experiment when migration was not initiated (Normal) and that observed

when migration was initiated using each of the three different techniques. The inset

shows the same plot, but with a restricted range of the y-axis. The box in each series

encloses the 25th and 75th percentile of the distribution with the median shown as a

horizontal line within each box. The whiskers (the dashed line extending beyond the

box) extend to the most extreme data points not considered outliers, and outliers are
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Figure 7.4: Transaction latency observed for different migration techniques. There

are 3 different series and each correspond to an execution using one of the discussed

migration techniques. All series are aligned at the time at which migration was initiated

(about 38 seconds).

plotted individually as circles (in blue).3 The number beside each series denotes the

number of outlier data points that lie beyond the whiskers.

As is evident from Figure 7.3, when migrating a tenant using Albatross, the transac-

tion latencies are almost similar to that in the experiment without migration. A cluster

of data points with latency about 1000− 1500 ms correspond to transactions that were

active during the handover phase which were stalled during the handover and resumed

at ND. On the other hand, both S&M and F&M result in a high impact on transac-

tion latency with about 1500 or more transactions having a latency higher than that

observed during normal operation. The high impact on latency for S&M and F&M is

due to cache misses at ND and contention for the NAS. Since all transactions active

at the start of migration are aborted in F&M and S&M, they do not contribute to the

increase in latency.

The low impact of Albatross on transaction latency is further strengthened by the

experiment reported in Figure 7.4 which plots the average latency observed by the ten-

ants as time progresses; latencies were averaged in disjoint 500 ms windows. The

different series correspond to the different migration techniques and are aligned based

on the migration start time (about 38 seconds). Different techniques complete migra-

tion at different time instances as is shown by the vertical lines; S&M completes at

about 40 seconds, F&M completes at around 45 seconds, while Albatross completes

3The whiskers denote the sampled minimum and sampled maximum

(http://en.wikipedia.org/wiki/Sample_minimum).
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Figure 7.5: Impact of migration on transaction throughput.

at around 160 seconds. The iterative phase for Albatross is also marked in the figure.

As is evident, both F&M and S&M result in an increase in latency immediately after

migration completes, with the latency gradually decreasing as the cache at ND warms

up. On the other hand, even though Albatross takes longer to finish, it has negligible

impact on latency while migration is in progress. This is because in Albatross, most

of the heavy lifting for copying the state is done by ND, thus having minimal impact

on the transactions executing at NS . A small spike in latency is observed for Albatross

immediately after migration completes which corresponds to active transactions being

stalled temporarily during the final handover phase.

The low impact on latency ensures that there is also a low impact on transaction

throughput. Figure 7.5 plots the impact of migration on throughput as time progresses

(plotted along the x-axis). The y-axis plots the throughput measured for a second long

window. The load is generated by four clients threads which issue transactions im-

mediately after the previous transaction completes. The different series correspond to

different migration techniques. As is evident from the figure, both S&M and F&M re-

sult in a high impact on the client throughput due to increased transaction latency after

migration, coupled with throughput reduction during the unavailability window. On

the other hand, Albatross results in minor throughput fluctuations, once during the first

snapshot creation phase and once during the unavailability window in the handover

phase; Albatross results in negligible impact during migration since the list of block

identifiers in the cache snapshot is maintained incrementally and ND performs most of

the work done during the synchronization phase.

For all the techniques, an impact on transaction latency (and hence throughput) is

observed only in a time window immediately after migration completes. Hence, for
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Figure 7.6: Evaluating the impact of transaction load on partition unavailability and

number of failed requests. For failed requests (7.6(b)), the wider bars represent aborted

transactions and narrower bars represent failed operations.

brevity in reporting the impact on latency, we report the percentage increase in transac-

tion latency for PM in the time window immediately after migration, with the base value

being the average transaction latency observed before migration. We select 30 seconds

as a representative time window based on the behavior of latency in Figure 7.4 where

ND is warmed up within about 30− 40 seconds after the completion of migration. We

also measured the percentage increase in latency in the period from start of migration

to 30 seconds beyond completion of the respective migration techniques. Since Alba-

tross takes much longer to complete compared to the other techniques and has minimal

impact on latency during migration, this measure favors Albatross and unfairly reports

a lower increase for Albatross. Therefore, we consider the 30 second window after

migration such that all techniques can be evenly evaluated.

Effect of load

Figures 7.6 and 7.7 plot migration cost as a function of the load, expressed as trans-

actions per second (TPS), on PM . As the load on a partition increases (from 20 TPS to

100 TPS), the amount of un-flushed changes in the write cache also increases. Hence

the unavailability window of S&M increases with load (see Figure 7.6(a)). But since

both Albatross and F&M flush the cache (at least once) before the final phase, they

are not heavily impacted by load. The unavailability window of Albatross increases

slightly since at higher load more transaction state must be copied during the final han-

dover phase. Similarly, a higher load implies more transactions are active at the start

of migration; all such active transactions which are aborted in F&M and S&M, thus
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Figure 7.7: Evaluating the impact of transaction load on transaction latency and the

amount of data transferred during migration.

resulting in a large number of failed requests. Figure 7.6(b) plots the number of failed

requests, where the wider bars represent transactions aborted and the narrower bars rep-

resent failed operations. Albatross does not result in any failed requests since it copies

transaction state and allows transactions to resume at ND.

Both F&M and S&M incur a high penalty on transaction latency. The impact on

latency increases with load since more read operations incur a cache miss, resulting

in higher contention for accessing the NAS (see Figure 7.7(a)). Albatross results in

only 5− 15% transaction latency increase (over 80− 100 ms average latency) in the 30
second window after migration, while both F&M and S&M result in 300−400% latency

increase. Finally, Figure 7.7(b) plots the amount of data synchronized as a function

of load. In spite of the increase in data transmission, this does not adversely affect

performance when using Albatross. Both S&M and F&M incurs the cost of warming

the cache at ND which starts with an empty cache. Thus, S&M and F&M incur data

transfer overhead of approximately the cache size, i.e., 250 MB in this experiment.

Effect of Read/Write Ratio

We now present results from experiments varying other parameters of YCSB. Fig-

ures 7.8 and 7.9 plot the impact of varying the percentage read operations in a trans-

action; we vary the read percentage from 50 to 90. For an update heavy workload, the

write cache has a large amount of un-flushed updates that must be flushed during mi-

gration. As a result, S&M incurs a long unavailability window of about 2− 4 seconds;

the length of which decreases with a decrease in the percentage of writes (see Fig-

ure 7.8(a)). On the other hand, both F&M and Albatross flush the majority of updates

115



Chapter 7. Decoupled Storage Architectures

50 60 70 80 90
0

1000

2000

3000

4000

U
n
a
v
a
ila

b
ili

ty
 W

in
d
o
w

 (
m

s
)

Percentage read operations

 

 

Albatross F&M S&M

(a) Partition unavailability.

50 60 70 80 90
0

50

100

N
o
. 
o
f 
fa

ile
d
 r

e
q
u
e
s
ts

Percentage read operations

 

 

No failed requests in Albatross

Albatross F&M S&M

(b) Failed requests.

Figure 7.8: Evaluating the impact of varying the percentage of read operations in a

transaction on partition unavailability and number of failed requests.
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Figure 7.9: Evaluating the impact of varying the percentage of read operations in a

transaction on transaction latency and the time to migrate a partition.

before the final stop phase. Therefore, their unavailability window is unaffected by the

distribution of reads and writes. However, since both S&M and F&M do not migrate

transaction state, all transactions active at the start of migration are aborted, resulting

in a large number of failed requests (see Figure 7.8(b)). Albatross, on the other hand,

does not have any failed requests.

As observed in Figure 7.9(a), Albatross results in only 5− 15% transaction latency

increase, while both F&M and S&M incur a 300−400% increase in transaction latency

due to the cost of warming up the cache at the destination. Since Albatross warms up the

cache at the destination during the iterative phase, the total time taken by Albatross from
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Figure 7.10: Evaluating the impact of varying the number of operations in a transaction

on partition unavailability and number of failed requests.

the start to finish is much longer compared to that of F&M and S&M; S&M is the fastest

followed by F&M (see Figure 7.9(b)). However, since PM is still active and serving

requests with no impact on transaction latency, this background loading process does

not contribute to migration cost from the tenant’s perspective. The iterative copying

phase transfers about 340 MB data between NS and ND, which is about 35% greater

that the cache size (250 MB). F&M and S&M also incur network overhead of 250 MB

resulting from cache misses at ND and a fetch from NAS.

Effect of Transaction Size

Figures 7.10 and 7.11 show the effect of transaction size on migration cost; we vary

the number of operations in a transaction from 8 to 24. As the transaction size increases,

so does the number of updates, and hence the amount of un-flushed data in the write

cache. Therefore, the unavailability window for S&M increases with increased trans-

action size (see Figure 7.10(a)). In this experiment, F&M has a smaller unavailability

window compared to Albatross. This is because Albatross must copy the transaction

state in the final handover phase, whose size increases with increased transaction size.

F&M, on the other hand, aborts all active transactions and hence does not incur that

cost. The number of failed requests is also higher for F&M and S&M, since an aborted

transaction with more operations result in more work wasted (see Figure 7.10(b)).

The impact on transaction latency also increases with size since larger transactions

have more reads (see Figure 7.11(a)). This is because the transaction load is kept con-

stant in this experiment and more operations per transactions implies more operations

issued on PM per unit time. Transaction size also impacts the amount of time spent
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(b) Percentage time distribution.

Figure 7.11: Evaluating the impact of varying the number of operations in a transaction

on latency and the distribution of time spent in the different migration phases.

in the different migration phases; Figure 7.11(b) shows a profile of the total migration

time. As expected, the majority of the time is spent in the first sync or flush, since it

results in the greatest amount of data being transferred or flushed. As the number of

operations in a transaction increases, the amount of state copied in the later iterations of

Albatross also increases. Therefore, the percentage of time spent on the first iteration

of Albatross decreases. On the other hand, since the amount of data to be flushed in

F&M increases with transaction size, the time taken for the first flush increases.

Effect of Access Distributions

Figures 7.12 and 7.13 plot the migration cost as a function of the distributions that

determine the data items accessed by a transaction; we experimented with uniform,

Zipfian, and four different variants of the hotspot distribution where we vary the size of

the hot set and the number of operations accessing the hot set. Since the cache size is

set to 25% of the database size, uniform distribution incurs a high percentage of cache

misses. As a result, during the iterative copy phase, the database cache changes a lot

because of a lot of blocks being evicted and loaded. Every iteration, therefore, results

in a significant amount of data being transferred. Albatross tracks the amounts of data

transferred in each iteration and this value converges quickly; in this experiment, Alba-

tross converged after 3 iterations. However, the final handover phase has to synchronize

a significant amount of data, resulting in a longer unavailability window. Therefore, a

high percentage of cache misses results in a longer unavailability window for Alba-

tross. F&M and S&M are, however, not affected since these techniques do not copy

the database cache. This effect disappears for skewed workload where as expected,
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Figure 7.12: Evaluating the impact of different data access distributions on the par-

tition’s unavailability and the number of failed requests. U denotes uniform and Z

denotes Zipfian. H1–H4 denote hotspot distributions: 90-10, 90-20, 80-10, and 80-20,

where x-y denotes x% operations accessing y% data items.

Albatross and F&M have similar unavailability window and S&M has a comparatively

longer unavailability window.

Albatross does not result in any failed requests, while the number of failed requests

in F&M and S&M is not heavily affected by the distribution (see Figure 7.12(b)). The

uniform distribution results in a higher number of cache misses even at NS which offsets

the impact of cache misses at ND. Therefore, the percentage increase in transaction la-

tency for S&M and F&M is lower for the uniform distribution when compared to other

access patterns (see Figure 7.13(a)). Irrespective of the access distribution, Albatross

has little impact on latency.

Figure 7.13(b) plots the amount of data synchronized by Albatross. Following di-

rectly from our discussion above, a uniform distribution results in larger amounts of

data being synchronized when compared to other distributions. It is however interest-

ing to note the impact of the different hotspot distributions on data synchronized. For

H1 and H3, the size of the hot set is set to 10% of the database, while for H2 and H4,

the size of the hot set is set to 20%. Since in H1 and H3, a fraction of the cold set is

stored in the cache, this state changes more frequently compared to H2 and H4 where

the cache is dominated by the hot set. As a result, H1 and H3 result in larger amounts of

data synchronized. For the Zipfian distribution, the percentage of data items accessed

frequently is even smaller than that in the experiments with 10% hot set, which also

explains the higher data synchronization overhead.
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(a) Transaction latency increase.
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(b) Data transferred during migration.

Figure 7.13: Evaluating the impact of different data access distributions on transaction

response times and the amount of data transferred during migration. U denotes uniform

and Z denotes Zipfian. H1–H4 denote hotspot distributions: 90-10, 90-20, 80-10, and

80-20, where x-y denotes x% operations accessing y% data items.

Effect of Cache Size

Figure 7.14 plots migration cost as a function of the cache size while keeping the

database size fixed; the cache size is varied from 100 MB to 500 MB and the database

size is 1 GB. Since Albatross copies the database cache during migration, a smaller

database cache implies lesser data to synchronize. When the cache size is set to 100
MB, the unavailability window of Albatross is longer than that of F&M and S&M (see

Figure 7.14(a)). This behavior is caused by the fact that at 100 MB, the cache does

not entirely accommodate the hot set of the workload (which is set to 20% of the data

items or 200 MB), thus resulting in a high percentage of cache misses. This impact of

a high percentage of cache misses on unavailability window is similar to that observed

for the uniform distribution. However, since the iterations converge quickly, the amount

of data synchronized is similar to that observed in other experiments. For cache sizes

of 200 MB or larger, the hot set fits into the cache, and hence expected behavior is

observed. Even though Albatross has a longer unavailability window for a 100 MB

cache, the number of failed operations and the impact on transaction latency continues

to be low. For F&M and S&M, the impact on transaction latency is lower for the 100
MB cache because a large fraction of operations incurred a cache miss even at NS which

somewhat offsets the cost due to cache misses at ND (see Figure 7.14(b)). Number of

failed operations and data synchronized show expected behavior.

Figure 7.15 plots the impact of migration on latency as time progresses. In this

experiment, we consider a scenario where the working set of the database does not fit
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(b) Transaction latency increase.

Figure 7.14: Evaluating the impact of varying the cache size allocated to each partition

on unavailability and the increase in transaction latency.

in the cache. The cache size is set to 100 MB when using a hotspot distribution where

the hot set is 20% of the database. This experiment confirms our earlier observation

that when the working set does not fit in the cache, even though Albatross results in a

longer unavailability window, there is minimal impact on transaction latency.

Effect of Database Size

Figure 7.16 plots the migration cost as a function of the database size. Since PM ’s

persistent data is not migrated, the actual database size does not have a big impact on

migration cost. We therefore vary the cache size along with the database size such

that the cache is set to 25% of the database size. Since the cache is large enough to

accommodate the hot set (we use the default hotspot distribution with the hot set as 20%
of the database), the migration cost will be lower for a smaller database (with a smaller

cache); the cost increases with an increase in the database size (see Figure 7.16(a)).

Similarly, as the size of the database cache increases, the amount of state synchronized

and the time taken for the synchronization also increases (see Figure 7.16(b)).

7.5.4 Evaluation using the TPC-C Benchmark

We now evaluate the migration cost using the TPC-C benchmark [81] adapted for a

multitenant setting. The goal is to evaluate Albatross using complex transaction work-

loads representing real-life business logic and complex schema. Figure 7.17 plots the

migration cost as the load on each tenant partition is varied; in both sub-figures, the

y-axis plots the migration cost measures, while the x-axis plots the load on the system.
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Figure 7.15: Impact of migration on transaction latency when working set does not fit

in the cache. Even though Albatross results in longer unavailability window, it contin-

ues to have low impact on transaction latency.

As the load on each partition increases, the amount of data transferred to synchronize

state also increases. As a result, the length of the unavailability window increases with

an increase in the load on the tenant (see Figure 7.17(a)). Furthermore, since the arrival

rate of operations is higher at a higher load, more transactions are active at any instant

of time, including the instant when migration is initiated. As a result, S&M and F&M

result in more failed requests as the load increases. This increase in number of failed

requests is evident in Figure 7.17(b).

From this experiment, it is evident that even with complex transactional workloads,

the performance of Albatross is considerably better than S&M and F&M. The behavior

of transaction latency increase and amount of data synchronized is similar to previous

set of experiments. Albatross incurred less than 15% increase in transaction latency

compared to a 300% increase for F&M and S&M, while Albatross synchronized about

700 MB data during migration; the cache size was set to 500 MB.

7.5.5 Migration cost during overload

In all the previous experiments, neither NS nor ND were overloaded. We now eval-

uate the migration cost in a system with high load; we use YCSB for this experiment.

Figure 7.18 shows the impact of migrating a tenant from an overloaded node (NS) to

a lightly loaded node (ND). In this experiment, the load on each tenant (or partition)

is set to 50 TPS and the number of tenants served by NS is gradually increased to 20
when NS becomes overloaded. As the load on NS increases, all tenants whose database
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Figure 7.16: Evaluating the impact of varying the tenant database size (or size of a

partition) on the length of unavailability window and the amount of data synchronized

and the time taken to complete synchronizing the initial snapshot.
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Figure 7.17: Evaluating migration cost using the TPC-C benchmark.

is located at NS experience an increase in transaction latency. At this point, one of the

tenants at NS is migrated to ND.

In Figure 7.18, the y-axis plots the percentage change in transaction latency in the

30 second window after migration; a negative value implies reduction in latency. TM is

the tenant that was migrated, TS is a tenant at NS and TD is a tenant at ND. The latency

of TM ’s transactions is higher when it is served by an overloaded node. Therefore, when

TM is migrated from an overloaded NS to a lightly loaded ND, the transaction latency

of TM should decrease. This expected behavior is observed for Albatross, since it has a
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Figure 7.18: Impact of migrating tenant TM from a heavily loaded node to a lightly

loaded node. TS and TD represent a representative tenant at NS and ND respectively.

low migration cost. However, the high cost of F&M and S&M result in an increase in

transaction latency even after migrating TM to a lightly loaded ND. This further asserts

the effectiveness of Albatross for elastic scaling/load balancing when compared to other

heavyweight techniques like S&M and F&M. All migration techniques, however, have

low overhead on other tenants co-located at NS and ND. This low overhead is evident

from Figure 7.18, where a small decrease in latency of TS results from lower aggregate

load on NS and a small increase in transaction latency of TD results from the increased

load at ND.

Discussion

A low cost migration technique is important to allow aggressive consolidation in

a multitenant system. It is evident from our experiments that Albatross results in a

much lower performance impact than S&M and F&M. In Albatross, the impact of

cache size on transaction latency is not significant. However, a larger cache results in

a more significant impact on S&M and F&M due to the higher cost of warming up

the larger cache at ND. Therefore, as the available memory and hence the available

cache at the servers grow, S&M and F&M are expected to have a more significant

impact on transaction latency than that of Albatross. As servers grow in memory, so

will the network bandwidth. However, the rate of growth in memory is expected to be

faster than that of the network bandwidth. The benefits of Albatross will be even more

significant in such scenarios.

Albatross enables the system to guarantee that if the need arises, tenants can be

migrated to ensure that their SLAs are met. For instance, as is evident from the exper-

iment reported in Figure 7.18, even though the load on every tenant at NS is only 50

124



Summary – Section 7.6

TPS, as the number of tenants at NS increases, it causes an overload. A low cost migra-

tion technique can help alleviate such scenarios commonly encountered in multitenant

systems.

Albatross is also useful in the scenario of a load spike. The system can either mi-

grate other lightly loaded tenants from the overloaded node to another node or migrate

the overloaded tenant to a node with more resources. The first option minimizes the

total load on the source while isolating other tenants from being impacted by the heav-

ily loaded tenant. Moreover, as observed in our experiments, migrating lightly loaded

tenants is less expensive than migrating a highly loaded tenant. On the other hand, the

second option requires migrating only one tenant, though at a higher migration cost.

The migration strategy chosen will depend on the workload and tenant characteristics.

An intelligent system controller can make prudent use of live migration for elastic load

balancing.

7.6 Summary

In this chapter, we presented Albatross, a technique for live database migration in

a decoupled storage architecture that results in minimal performance impacts and min-

imal disruption in service for the tenant whose database is being migrated. Albatross

decouples a partition from the DBMS node owning it, and allows the system to rou-

tinely use migration as a primitive for elastic load balancing. Since the persistent data

is not migrated in a decoupled storage architecture, Albatross focusses on migrating

the database cache and the state of the active transactions. This ensures that the des-

tination node of migration starts with a warm cache, thus minimizing the impact of

migration. We presented the detailed design of Albatross and discussed its correctness

guarantees and behavior in the presence of failures. We also demonstrated the effec-

tiveness of Albatross and analyzed its trade-offs using two OLTP benchmarks, YCSB

and TPC-C. Our evaluation showed that Albatross can migrate a live database partition

with no aborted transactions, negligible impact on transaction latency and throughput

both during and after migration, and an unavailability window as low as 300 ms.

Albatross is the first end-to-end solution for live database migration in a decoupled

storage architecture. Our focus was therefore on proving feasibility and ensuring the

safety in the presence of failures. DBMSs provide stringent guarantees in the event of a

failure and all those guarantees must be provided even during migration. Various simple

optimizations are possible in the design of Albatross. For instance, since Albatross

iteratively copies the state of the database cache, segments that are frequently being

updated are copied more than once. Incorporating the access patterns into deciding

which segments to copy during an iteration might reduce the amount of data transferred

during migration. It will also be useful to predict the migration cost so that the system
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controller can effectively use migration without violating the SLAs. In the future, we

would like to explore the feasibility of using machine learning techniques, such as

kernel canonical correlation analysis [10], for predicting the migration cost.
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Chapter 8

Shared Nothing Architectures

“The gentle wind that blows And whispers as it goes.”

– Ina L. Jenkins.

In this chapter, we present the detailed design and implementation of Zephyr [39],

a live migration technique for shared nothing database architectures.1 In a shared

nothing database architecture, the persistent data is stored on disks locally attached

to the DBMS servers. This architecture is used in many systems, such as Cloud SQL

Server [14], Relational Cloud [28], and MySQL Cluster. In a shared nothing architec-

ture, the persistent data must also be moved when migrating a database partition. This

is contrary to the decoupled storage architecture where persistent data is not migrated.

Zephyr assumes a shared process multitenancy model and migrates a database partition

(PM ) from the source DBMS node (NS) to the destination DBMS node (ND).2

Zephyr views migration as a sequence of phases, called migration modes, and mi-

grates PM with no unavailability. Zephyr guarantees no downtime by introducing a

synchronized dual mode that allows both NS and ND to simultaneously execute trans-

actions on PM . Migration starts with the transfer of PM ’s metadata to ND which can

then start serving new transactions, while NS completes the transactions that were ac-

tive when migration started. Zephyr views a partition as a collection of database pages.

Read/write access (or ownership) on the database pages of PM is partitioned between

the two nodes with NS owning all pages at the start and ND acquiring page ownership

on-demand as transactions at ND access those pages. At any instant of time, at most one

1Zephyr, meaning a gentle breeze, is symbolic of the lightweight nature of the proposed technique.
2The work reported in this chapter was published as the paper entitled “Zephyr: live

migration in shared nothing databases for elastic cloud platforms” in the proceedings

of the 2011 ACM International Conference on Management of Data (SIGMOD). DOI:

http://doi.acm.org/10.1145/1989323.1989356.
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Figure 8.1: A reference shared nothing multitenant DBMS architecture.

of NS or ND owns a database page. Lightweight synchronization between the source

and the destination, only during the short dual mode, guarantees serializability, while

obviating the need for 2PC. Once NS completes execution of all active transactions,

migration completes by transferring ownership of all database pages owned by NS to

ND. Zephyr minimizes the amount of data transferred between the nodes during migra-

tion, guarantees correctness in the presence of failures, and ensures the strongest level

of transaction isolation. Zephyr uses standard tree-based indices and lock-based con-

currency control, thus allowing it to be used in a variety of RDBMS implementations.

8.1 Reference System Architecture

We consider a standard shared nothing database architecture for OLTP systems ex-

ecuting short-running transactions, with a two phase locking [40] based scheduler, and

a page-based model with a B+ tree index [15]. Figure 8.1 provides an overview of the

architecture. Following are the salient features of the system.

First, clients connect to the database through query routers that handle client con-

nections and hide the physical location of the tenant’s database. Routers store this

mapping as metadata which is updated whenever there is a migration.

Second, a cluster of DBMS nodes serves the partitions; each node has its own local

transaction manager (TM) and data manager (DM). A partition is served by a single

DBMS node, called its owner. We consider the shared process multitenancy model
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Figure 8.2: Migration timeline for Zephyr (times not drawn to scale).

which strikes a balance between isolation and scale. Conceptually, each partition has

its own transaction manager and buffer pool. However, since most current systems do

not support this, we use a design where co-located partitions share all resources within

a database instance.

Third, there exists a system controller that determines the partition to be migrated,

the initiation time, and the destination of migration. The system controller gathers

usage statistics and builds a model to optimize the system’s operating cost while guar-

anteeing the SLAs.

8.2 The Zephyr Technique

To ease presentation, in this section, we provide an overview of Zephyr using some

simplifying assumptions. We assume no failures, small tenants limited to a single

database partition, and no replication. For small tenants limited to a single partition, we

use the terms tenant and partition interchangeably. Furthermore, we freeze the index

structures during migration, i.e., we disallow any structural changes to them. Failure

handling and correctness is discussed in Section 8.3, while an extended design relaxing

these assumptions is described in Section 8.4.

8.2.1 Design Overview

Zephyr’s main design goal is to minimize the service interruption resulting from

migrating a tenant’s database (PM ), i.e., migrate PM without making it unavailable for
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(a) Dual Mode. (b) Finish Mode.

Figure 8.3: Ownership transfer of the database pages during migration. Pi represents a

database page. A white box around Pi represents that the node currently owns the page

while a grayed box around Pi implies that the node knows about Pi but does not own it.

updates. Zephyr uses a sequence of three modes to allow the migration of PM while

transactions are executing on it. During normal operation (the Normal Mode), NS is

the node serving PM and executing all transactions (TS1, . . . , TSk) on PM , i.e., NS is

the owner of PM . Once the system controller determines the destination for migration

(ND), it notifies NS which initiates migration to ND.

Figure 8.2 shows the different migration modes as time progresses from the left to

the right: the Init Mode where migration starts, the Dual Mode where both NS and

ND share the ownership of PM and simultaneously execute transactions on PM , and

the Finish Mode which is the last step of migration before ND assumes sole owner-

ship of PM . Figure 8.3 shows the transition of PM ’s data through the three migration

modes, depicted using ownership of database pages and executing transactions. We

now explain the three migration modes in detail.

Init Mode In the Init Mode, NS bootstraps ND by sending the minimal information

(the wireframe of PM ) that allows ND to execute transactions on PM . The wireframe

consists of the schema and data definitions of PM , the index wireframe, and user au-

thentication information. In this mode, NS is still the unique owner of PM and executes

transactions (TS1, . . . , TSk) without synchronizing with any other node. However, the

wireframe is made immutable and remains in this frozen state for the remaining dura-

tion of migration. Therefore, there is no service interruption for PM while ND initializes

the necessary resources for PM .

Zephyr views a database partition as a collection of database pages with some index

to keep track of the database pages. Indices in a database include the clustered index
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Figure 8.4: A B+ tree index structure with page ownership information. The rectangle

enclosing the internal nodes of the tree index comprises the index wireframe. Zephyr

augments the index to also store the page ownership information. A page in white

represents an owned page. A sentinel marks missing pages. An allocated database

page without ownership is represented as a grayed page.

storing the database and all the secondary indices; non-indexed attributes are accessed

through the clustered index. For concreteness, we assume a B+ tree index, where the

internal nodes of the index contain only the keys while the actual data pages are in the

leaves. The index wireframe therefore only includes the internal nodes of the indices

for the database tables. Figure 8.4 provides an illustration of a B+-tree index where the

part of the tree enclosed in a rectangular box is the index wireframe.

NS constructs the wireframe with minimal impact on concurrent operations using

shared multi-granularity intention locks on the indices. When ND receives the wire-

frame, it has PM ’s metadata, but the data pages are still owned by NS . Since migration

involves a gradual transfer of page level ownership, both NS and ND must maintain a

list of owned pages. We use the B+ tree index for tracking page ownership. A valid

pointer to a database page implies unique page ownership, while a sentinel value (NULL)

indicates a missing page. In the init mode, ND therefore initializes all the pointers to

the leaf nodes of the index to the sentinel value. Once ND completes initialization of

PM , it notifies NS , which then initiates the transition to dual mode. NS then executes an

atomic handover protocol, a variant of the 2PC protocol [44], which notifies the query

router to route all new transactions to ND which now shares the ownership of PM with

NS . After the atomic handover, migration enters dual mode.
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Dual Mode In dual mode, both NS and ND execute transactions on PM , and database

pages are migrated to ND on-demand. All new transactions (TD1, . . . , TDm) arrive at

ND, while NS continues executing transactions that were active at the start of this mode

(TSk+1, . . . , TSl). Since NS and ND share ownership of PM , they synchronize to ensure

transaction correctness. Zephyr, however, requires minimal synchronization between

these nodes.

When a transaction TDi executing at ND accesses a page Pi that is not owned by

ND, it pulls Pi from NS on demand (pull phase as shown in Figure 8.3(a)). This pull

request is serviced only if Pi is not locked at NS , in which case the request is blocked.

If Pi is available, or once it becomes available, NS updates its index to relinquish own-

ership and Pi is migrated to ND which becomes its unique owner. Zephyr migrates a

page only once from NS to ND. As the pages are migrated, both NS and ND update

their ownership mapping. Once ND receives Pi, it proceeds to execute TDi. At NS ,

transactions execute normally using local index and page level locking, until a transac-

tion TSj accesses a page Pj which has already been migrated. In our simple design, a

database page is migrated only once. Therefore, such an access fails and the transaction

is aborted at NS .

Apart from fetching missing pages from NS , transactions at NS and ND do not need

to synchronize. Since the index wireframe is frozen, local locking of the index structure

and pages is enough; a formal proof of this appears later in the chapter. This ensures

minimal synchronization between NS and ND only during the short dual mode while

ensuring serializable transaction execution.

When NS has finished executing all transactions TSk+1, . . . , TSl that were active at

the start of dual mode (i.e., T(NS)= φ), NS initiates transfer of exclusive ownership

to ND. This transfer is achieved through a handshake between NS and ND after which

both nodes enter the finish mode for PM .

Finish Mode In the finish mode, ND is the only node executing transactions on PM

(TDm+1, . . . , TDn). However, ND does not yet have ownership of all the database pages

(Figure 8.3(b)). In this phase, NS pushes the remaining database pages to ND. While

the pages are migrated from NS , if a transaction TDi accesses a page that is not yet

owned by ND, the page is requested as a pull from NS in a way similar to that in dual

mode. The index metadata is used to detect duplicate pages that were pushed and pulled

concurrently.

NS can migrate the pages at the highest possible transfer rate such that the delays re-

sulting from ND fetching missing pages is minimized. However, such a high throughput

push can impact other tenants co-located at NS and ND. Therefore, the rate of transfer

is a trade-off between the tenant SLAs and migration overhead. The page ownership

information is also updated during this bulk transfer. When all the database pages have
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been moved to ND, NS initiates the termination of migration so that operation switches

back to the normal mode. This again involves a handshake between NS and ND. On

successful completion of this handshake, it is guaranteed that ND has a persistent image

of PM , and so NS can safely relinquish all of PM ’s resources. Once migration termi-

nates, ND executes transactions on PM without any interaction with NS and NS notifies

the system controller.

8.2.2 Migration Cost Analysis

Migration cost in Zephyr results from copying the initial wireframe, operation over-

head during migration, and transactions or operations aborted during migration. In the

wireframe transferred, the schema and authentication information is typically small.

The indices for the tables however have a non-trivial size. A simple analysis provides

an estimate of index sizes.

Let us assume 4 KB pages, 8 byte keys (integers or double precision floating point

numbers), and 4 byte pointers. Each internal node in the tree can hold about 4096/12 ≈
340 keys. Therefore, a three-level B+ tree can have up to 3402 = 115600 leaf nodes,

which can index a (115600×4096×0.8)/106 ≈ 400 MB database, assuming 80% page

utilization. Similarly, a four-level tree can index a 125 GB database. For a three level

tree, the size of the wireframe is a mere 340× 4096/106 ≈ 1.4 MB while for a 4-level

tree, it is about 400 MB. For most multitenant databases whose representative sizes are

in the range of hundreds of megabytes to a few gigabytes [88, 90], an index size of the

order of tens of megabytes is a realistic conservative estimate. These index sizes add

up for the multiple tables and indices maintained for the database.

Overhead during migration stems from creating the wireframe and fetching pages

over the network. NS uses standard multi-granularity locking [45] of the index to

construct the index wireframe. This scan to create the wireframe needs intention read

locks at the internal nodes which only conflict with write locks [15] on the internal

node. Therefore, this scan can execute in parallel with any transaction TSi executing at

NS , only blocking update transactions that result in an update in the index structure that

requires a conflicting write lock on an internal node.

On the other hand, on-demand pull of a page from NS over the network is also not

very expensive compared to fetches from the disk; disks have an access latency of about

a millisecond while most data center networks have round trip latencies of less than a

millisecond. In theory, the pull requests can result in random I/O at NS . However, due

to temporal and spatial locality of data accesses observed in practice, most of these

pages are served from the cache at NS . Hence, the cost incurred by a remote pull

is therefore of the same order as a cache miss during normal operation resulting in a

disk access. Assuming an OLTP workload with predominantly small transactions, the
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period for which PM remains in dual mode is expected to be small. Therefore, the cost

incurred in this short period in dual mode is expected to be small.

Another contributor to the migration cost is failed transactions at NS that access

pages already migrated. In its simplest form as described, Zephyr does not guarantee

zero transaction failure; this however can be guaranteed by an extended design as shown

later in Section 8.4. However, Zephyr guarantees no unavailability for PM since at least

one of NS or ND is available to execute transactions on PM .

8.2.3 Discussion

Zephyr’s approach to migrating a database partition is radically different from Al-

batross’s. We now discuss why a variant of Albatross, adapted to the shared nothing

architecture, is not the best possible alternative and rationalize the design of Zephyr.

The key aspect of Albatross is to minimize the long unavailability of the stop and

copy technique which arises due to the time taken to create the checkpoint and to copy

it to the destination. It is possible to adapt Albatross for the shared nothing architecture,

we refer to this adaptation as Iterative State Replication (ISR). ISR uses an iterative ap-

proach, similar to Albatross, where the checkpoint is created and iteratively copied. NS

checkpoints PM and starts migrating the checkpoint to ND while NS continues serv-

ing requests. While ND loads the checkpoint, NS maintains the differential changes,

which are then iteratively copied until the amount of change to be transferred is small

enough or a maximum iteration count is reached. At this point, a final stop and copy

is performed. The iterative copy can be performed using either page level copying or

shipping the transaction log and replaying it at the destination.

In case ISR updates the cached pages in-place, ISR will create multiple checkpoints

during migration, thus resulting in higher disk I/O at the source. In case the cache pages

are copied-on-write, ISR will result in higher CPU and network overhead. Therefore,

when migrating a tenant from a heavily loaded source node, this additional overhead,

i.e., the additional disk and network I/O, can result in significant impact on co-located

tenants which are potentially already I/O limited. However, since ISR replays the log

at the destination, transactions executing at the destination will have lesser impact on

response times due to a partially warm cache, thus minimizing the post migration over-

head. On the other hand, Zephyr does not incur additional disk I/O at the source due

to checkpointing, but the cold start at the destination results in higher post migration

overhead and more I/O at the destination. Therefore, Zephyr results in less overhead

at the source and is suitable for scale-out scenarios where the source is already heavily

loaded, while ISR is attractive for consolidation during scale-down where it will result

in lower impact on tenants co-located at the destination.
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Furthermore, the iterative copying of differential updates in ISR can lead to more

data being transferred during migration, because some pages are transferred more than

once. This is especially true for update heavy workloads that result in more changes to

the database state. Zephyr, on the other hand, migrates a database page only once and

hence is expected to have lower data transfer overhead.

Consider applications such as shopping cart management or online games such as

Farmville that represent workloads with a high percentage of reads followed by updates,

and that require high availability for continued customer satisfaction. In ISR, PM is un-

available to updates during the final stop phase. Even though the system can potentially

serve read-only transactions during this window, all transactions with at least one up-

date will be aborted during this small window. On the other hand, Zephyr does not

render PM unavailable by allowing concurrent transaction execution at both NS and

ND. However, during migration, Zephyr will abort a transaction in two cases: (i) if

at NS , the transaction accesses an already migrated page, or (ii) if at either node, the

transaction issues an update operation that modifies the structure of the index. Hence,

Zephyr may abort a fraction of update transactions during migration. The exact impact

of either technique on transaction execution will depend on the workload characteris-

tics, and needs to be evaluated experimentally.

Finally, since ISR creates a replica of the tenant’s state at another node, it can it-

eratively copy the updates to multiple nodes, thus creating replicas on the fly during

migration. Zephyr however does not allow for this easy extension.

We believe that Zephyr provides a more lightweight alternative for the shared noth-

ing database architectures. This chapter, therefore, focusses on Zephyr since it is ex-

pected to have minimal service interruption which is critical to ensure high availability.

8.3 Correctness and Fault Tolerance

Any migration technique should guarantee transaction correctness and migration

safety in the presence of arbitrary failures. We first prove that Zephyr guarantees se-

rializable isolation even during migration. We then prove the atomicity and durability

properties of both transaction execution as well as the migration protocol.

8.3.1 Isolation guarantees

We assume that transactions executing with serializable isolation use strict 2PL [15]

with multi-granularity locking [45]. We use strict 2PL where all locks for a transaction

are held until it completes; most common RDBMSs implement this variant of 2PL. In

the init mode and finish mode, only one of NS and ND is executing transactions on

PM . The init mode is equivalent to normal operation while in finish mode, NS acts as
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the storage node for the database serving pages on demand. Guaranteeing serializabil-

ity is straightforward in these modes. Therefore, we only need to prove the isolation

guarantees in dual mode where both NS and ND are executing transactions on PM .

In dual mode, NS and ND share the internal nodes of the index which are immutable

in our design, while the leaf nodes (i.e., the data pages) are still uniquely owned by one

of the two nodes. To guarantee serializability, we first prove that the phantom prob-

lem [40] is impossible. The phantom problem arises from predicate based accesses

where a transaction inserts or deletes an item that matches the predicate of a concur-

rent transaction. We then prove that a serialization graph for transactions executing

in dual mode can not have a cycle. A serialization graph is formed with transac-

tions represented as vertices and a conflict between two transactions represented as

an edge [15, 87].

Lemma 8.3.1. Impossibility of Phantoms: Local predicate locking at the internal in-

dex nodes and exclusive page level locking between nodes is enough to ensure impos-

sibility of phantoms.

Proof. Assume for contradiction that a phantom is possible resulting in predicate insta-

bility. Let T1 and T2 be two transactions such that T1 has a predicate and T2 is inserting

(or deleting) at least one element that matches T1’s predicate. T1 and T2 cannot be ex-

ecuting at the same node, since local predicate locking would prevent such a behavior.

Therefore, these transactions must be executing on different nodes. Without loss of

generality, assume that T1 is executing at NS and T2 is executing at ND. Let T1’s predi-

cate match pages Pi, Pi+1, . . . , Pj representing a range of keys. Since Zephyr does not

allow a write operation that changes the index during migration, T2 cannot insert to a

newly created page at ND. Therefore, if T2 was inserting to (or deleting from) one of

the pages Pi, Pi+1, . . . , Pj while T1 was executing, then it implies that both NS and ND

have ownership of the page. This results in a contradiction, since a database page can

be owned by at most one or NS and ND.

Lemma 8.3.2. Serializability at a node: Transactions executing at the same node (ei-

ther NS or ND) cannot have a cycle in the serialization graph involving these transac-

tions.

The proof of Lemma 8.3.2 follows directly from the correctness of 2PL [40], since

all transactions executing at the same node use 2PL for concurrency control.

Lemma 8.3.3. Let TSj be a transaction executing at NS and TDi be a transaction

executing at ND. It is impossible to have a conflict dependency TDi → TSj .

Proof. Assume for contradiction that there exists a dependency of the form TDi → TSj .

This implies that TSj makes a conflicting access to an item in page Pi at NS after TDi
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accessed Pi at ND. This leads to a contradiction since in Zephyr, once Pi is migrated

from NS to ND, all subsequent accesses to Pi at NS fail.

Corollary 8.3.4 follows by applying induction on Lemma 8.3.3.

Corollary 8.3.4. It is impossible to have a path TDi → . . . → TSj in the serialization

graph.

Theorem 8.3.5. Serializability in dual mode. It is impossible to have a cycle in the

serialization graph of transactions executing in dual mode.

Proof. Assume for contradiction that there exists a set of transactions T1, T2, . . . , Tk

such that there is a cycle T1 → T2 → . . . → Tk → T1 in the serialization graph.

If all transactions executed at the same node, then this contradicts Lemma 8.3.2. So

suppose some transactions executed at NS and some at ND. Let us first assume that

T1 executed at NS . Let Ti be the first transaction in the sequence that executed at

ND. If i = 1, then all transactions in the cycle executed at ND. However, since the

transactions use 2PL, the cycle is impossible. If not, then there exists a non-empty

path Ti → . . . → T1 where Ti executed at ND and T1 executed at NS . This contradicts

Corollary 8.3.4. If T1 executed at ND, then there exists at least one transaction Tj which

executed at NS , which implies a path of the form T1 → . . . → Tj , again a contradiction

to Corollary 8.3.4.

Snapshot Isolation (SI) [12] can also be guaranteed in Zephyr. A transaction Ti

writing to a page Pi must have unique ownership of Pi, while a read can be performed

from a snapshot shared by both nodes. This condition of unique page ownership is

sufficient to ensure that during validation of transactions in SI, the transaction manager

can detect two concurrent transactions writing to the same page and abort one. Zephyr

therefore guarantees transactional isolation with minimal synchronization and without

much migration overhead.

8.3.2 Fault tolerance

Our failure model assumes that all message transfers use reliable communication

channels that guarantee in-order, at least once delivery. We consider node crash failures

and network partitions; however, we do not consider malicious node behavior. We

assume that a node failure does not lead to loss of the persistent data stored in a disk. In

case of a failure during migration, our design first recovers the state of the committed

transactions and then recovers the state of migration.
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Transaction State Recovery

Transactions executing during migration use write ahead logging for transaction

state recovery [15, 69]. Updates made by a transaction are forced to the log before

it commits, thus resulting in a total order of transactions executing at the node. Af-

ter a crash, a node recovers its transaction state using standard log replay techniques,

ARIES [69] being an example.

In dual mode, NS and ND append transactions to their respective node’s local trans-

action log. Log entries in a single log file have a local order. However, since the log for

PM is spread over NS and ND, a logical global order of transactions on PM is needed

to ensure that the transactions from the two logs are applied in the correct order to re-

cover from a failure during migration. The ordering of transactions is important only

when there is a conflict between two transactions. If two transactions, TS and TD, ex-

ecuting on NS and ND, conflict on item i, they must access the same database page

Pi. Since at any instant of time only one of NS and ND is the owner of Pi, the two

nodes must synchronize on Pi. This synchronization establishes a total order between

the transactions. During migration, a commit sequence number (CSN) is assigned

to every transaction at commit time, and is appended along with the commit record of

the transaction. This CSN is a monotonically increasing sequence number maintained

locally at the nodes and determines the order in which transactions commit. If Pi was

owned by NS and TS was the last committed transaction before the migration request

for Pi was made, then CSN(TS) is piggy-backed with Pi. On receipt of a page Pi,

ND sets its CSN as the maximum of its local CSN and that received with Pi such that

at ND, CSN(TD) > CSN(TS). This causal conflict ordering creates a global order

per database page, where all transactions at NS accessing Pi are ordered before all

transactions at ND that access Pi. We formally state this property as Theorem 8.3.6:

Theorem 8.3.6. The transaction recovery and the conflict ordering protocol ensures

that for every database page, conflicting transactions are replayed in the same order in

which they committed.

Migration State Recovery

Migration progress is logged to guarantee atomicity and consistency in the presence

of failures. Migration safety is ensured by using rigorous recovery protocols. A failure

of either NS or ND in dual mode or the finish mode requires coordinated recovery

between the two nodes. We first discuss recovering from a failure during transition of

migration modes and discuss recovery after failure in different migration modes.

Transitions of Migration Modes During migration, a transition from one state to

another is logged. Except for the transition from the init mode to dual mode, which
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involves the query router metadata in addition to NS and ND, all other transitions in-

volve only NS and ND. Such transitions occur through a one-phase handshake between

NS and ND. To transition between migration modes, NS forces an entry logging the

initiation of the transition and sends a message to ND. On receipt of the message, ND

moves to the next migration mode, forces a log entry for this change, and sends an

acknowledgment to NS . Receipt of this acknowledgment completes this transition and

NS forces an entry logging the completion of the transition.

If NS fails before sending the message to ND, the mode remains unchanged when

NS recovers, and NS re-initiates the transition. If NS fails after sending the message,

then it knows about the message after it recovers and establishes contact with ND.

Therefore, a state transition results in two messages and three writes to the log. Log-

ging of messages at NS and ND provides message idempotence, i.e., detect and reject

duplicate messages resulting from failure of NS or ND, and guarantees safety with re-

peating failures.

Atomic Handover A transition from the init mode to dual mode involves three par-

ticipants (NS , ND, and the query router metadata) that must together change the state

atomically. That is, they must either all be in dual mode or all in init mode. A one-

phase handshake is therefore not enough. We use the two-phase commit (2PC) [44]

protocol which is a standard protocol for atomic commitment over multiple sites. Once

ND has acknowledged the initialization of PM , NS initiates the transition and serves as

the coordinator of 2PC. First, NS sends a message to the router to direct all future trans-

actions accessing PM to ND, and a message to ND to start accepting new transactions

for PM whose ownership is shared with NS . NS forces an entry logging the initiation

of this handover; though a force is not required if assuming presumed-abort [87]. On

receipt of the messages, both ND and the router log their messages and reply back to

NS . Logging at the router enables it to recover from a failure independent of NS . Once

NS has received messages from both ND and the router, it logs the successful han-

dover in its own log which commits the change of state from init mode to dual mode,

and sends acknowledgments to ND and the router which then update their respective

states. Atomicity of this handover process follows directly from the atomicity proof of

2PC [44]. This protocol also exhibits the blocking behavior of 2PC when NS (the co-

ordinator) fails. However, this blocking only affects PM which is anyway unavailable

as a result of NS’s failure.

Recovering Migration Progress The page ownership information is critical for mi-

gration progress as well as safety. A simple fault-tolerant design is to make this own-

ership information durable; any page (Pi) transferred from NS is immediately flushed

to the disk at ND. NS also makes this transfer persistent, either by logging the transfer
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or by updating Pi’s parent page in the index, and flushing it to the disk. This simple

solution will guarantee resilience to failure but will introduce a lot of disk I/O which

considerably increases migration cost and impacts other co-located tenants.

An optimized solution uses the semantics of the operation that resulted in Pi’s on-

demand migration. When Pi is migrated, NS has a persistent (or at least recoverable)

image of Pi. After the migration of Pi, if a committed transaction at ND updated Pi,

then the update will be in ND’s transaction log. Therefore, after a failure, ND recovers

Pi from its log and the persistent image of Pi that it can obtain from NS . The presence of

a log entry accessing Pi at ND implies that ND owns Pi, thus preserving the ownership

information after ND’s recovery.

In case Pi was migrated only for a read operation or if an update transaction at ND

did not commit, then this migration of Pi is not persistent at ND, though NS has already

migrated Pi’s ownership. That is, ND will not recover as the owner of Pi. Therefore,

in case of ND’s failure, Pi can potentially become an orphan page, i.e., without an

owner. However, synchronization between NS andND ensures that such orphan pages

are not left without an owner for indefinite periods. After ND’s recovery completes,

it synchronizes its page ownership information with that of NS . Any orphan page Pi

is detected during this synchronization, after which ND assumes ownership of Pi and

copies Pi’s from the persistent image at NS .

Similarly, if NS fails after migrating Pi, it recovers assuming it is the owner of Pi,

even though the ownership was migrated to ND. However, this dual ownership of Pi is

detected when NS synchronizes its page ownership information with ND; NS updates

its ownership information after this synchronization completes.

Failure of both NS and ND immediately following Pi’s transfer is equivalent to the

failure of ND without Pi making it to the disk at ND, and ND becomes the owner of the

orphan pages.

Logging the pages at ND guarantees idempotence of page transfers, thus allowing

migration to deal with repeated failures and prevent lost updates at ND.

Therefore, the optimized version of the page transfer protocol reduces the logging

necessary during normal operation and hence considerably reduces the disk I/O during

dual mode. In the finish mode, since pages are transferred in bulk, the pages transferred

can be immediately flushed to the disk; the large number of pages per flush amortizes

the disk I/O.

Since the transfer of pages to ND does not force an immediate flush, after migra-

tion completes, ND must ensure a flush before PM ’s information can be purged at NS .

This is achieved using a fuzzy checkpoint at ND [15]. A fuzzy checkpoint is used by

a DBMS during normal operation to reduce the recovery time after a failure. It causes

minimal disruption to transaction processing, as a background thread scans through the

database cache and flushes modified pages, while the database can continue to process
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updates. As part of the final state transition all transferred pages are marked dirty and

ND initiates a fuzzy checkpoint. After the checkpoint, ND can independently recover

and NS can safely purge PM ’s state. This recovery protocol guarantees that in the

presence of a failure, migration recovers to a consistent point before the crash. Theo-

rem 8.3.7 formalizes this recovery guarantee.

Theorem 8.3.7. Migration recovery: At any instant during migration, its progress is

recoverable, i.e., after transaction state recovery is complete, database page ownership

information is restored to a consistent state and every page has exactly one owner.

Failure and Availability A failure during migration results in partial or complete

unavailability of PM .

• Init Mode. In the init mode, NS is still the exclusive owner of PM .

– NS fails: PM becomes unavailable and this state is equivalent to NS’s failure

during normal operation. ND can either abort migration or wait until NS

recovers and resumes migration. If ND aborts migration, NS detects this

outcome after recovery and notifies the controller.

– ND fails: NS has two options: it can unilaterally abort the migration, or

it can continue processing new transactions until ND recovers and resumes

migration. If migration is aborted in the init mode, NS notifies the controller

which might select a new destination and re-initiate migration.

• Dual Mode. In the dual mode, NS and ND share ownership of PM . Failure of

one of NS or ND does not render PM completely unavailable.

– NS fails: ND can only process transactions that access pages whose own-

ership was migrated to ND before NS failed. This is equivalent to a disk

failing, making parts of the database unavailable.

– ND fails: NS can only process transactions that do not access the pages that

have already been migrated.

• Finish Mode. In the finish mode, ND is the exclusive owner of PM .

– NS fails: Similar to NS’s failure in the dual mode, ND can only process

transactions that access pages whose ownership was migrated to ND before

NS failed.

– ND fails: PM becomes unavailable since ND is now the exclusive owner of

PM . This failure is equivalent to ND’s failure during normal operation.
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8.3.3 Migration Safety and Liveness

Migration safety ensures correctness in the presence of a failure, while liveness

ensures that ‘something good’ will eventually happen. We first establish formal defini-

tions for safety and liveness, and then show how Zephyr guarantees these properties.

Definition 8.3.8. Safety of migration requires the following conditions: (i) Transac-

tional isolation: serializability is guaranteed for transactions executing during migra-

tion; (ii) Transaction durability: updates from committed transactions are never lost;

and (iii) Migration consistency: a failure during migration does not leave the system’s

state and data inconsistent.

Definition 8.3.9. Liveness of migration requires the following conditions to be met:

(i) Termination: if NS and ND are not faulty and can communicate with each other for a

sufficiently long period during migration, this process will terminate; and (ii) Starvation

Freedom: in the presence of one or more failures, PM will eventually have at least one

node that can execute its transactions.

Transaction correctness follows from Theorem 8.3.5. We now prove transaction

durability and migration consistency.

Theorem 8.3.10. Transaction durability: Changes made by a committed transaction

are never lost, even in the presence of an arbitrary sequence of failures.

Proof. The proof follows from the following two conditions: (i) during normal opera-

tion, transactions force their updates to the log before commit, making them durable;

and (ii) on successful termination of migration, NS purges its transaction log and the

database image only after the fuzzy checkpoint at ND completes, ensuring that changes

at NS and ND during migration are durable.

Theorem 8.3.11. Migration consistency: In the presence of arbitrary or repeated fail-

ures, Zephyr ensures: (i) updates made to data pages are consistent even in the presence

of failures; (ii) a failure does not leave a page Pi of PM without an owner; and (iii) both

NS and ND are in the same migration mode.

The condition for exclusive page ownership along with Theorem 8.3.5 and 8.3.6

ensures that updates to the database pages are always consistent, both during normal

operation and after a failure. Theorem 8.3.7 guarantees that no database page is without

an owner, while the atomicity of the atomic handover and other state transition proto-

cols discussed in Section 8.3.2 guarantee that both NS and ND are in the same migration

mode. Theorem 8.3.5, 8.3.10, and 8.3.11 therefore guarantee migration safety.

Theorem 8.3.12. Migration termination: If NS and ND are not faulty and can com-

municate for a long enough period, Zephyr guarantees progress and termination.
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Proof. Zephyr successfully terminates if: (i) the set of active transactions (T) at NS at

the start of dual mode have completed, i.e., T = φ; and (ii) the persistent image of PM

is migrated to ND and is recoverable. If NS is not faulty in dual mode, all transactions

in T will eventually complete, whether ND has failed or not. If there is a failure of NS at

any point during migration, then after recovery it is guaranteed that T = φ. Therefore,

the first condition is guaranteed to be satisfied eventually. After T = φ, if NS and

ND can communicate long enough, all the pages of PM at NS will be migrated and

recoverable at ND.

Theorem 8.3.13. Starvation freedom: Even after an arbitrary sequence of failures,

there will be at least one node that can execute transactions on PM .

The proof of Theorem 8.3.13 follows from Theorem 8.3.11 which ensures that NS

and ND are in the same migration mode, and hence have a consistent view of PM ’s

ownership.

Theorem 8.3.12 and 8.3.13 together guarantee liveness. Zephyr guarantees safety

in the presence of repeated failures or a network partition between NS and ND, though

progress is not guaranteed. Even though such failures are rare, proven guarantees in

such scenarios improves the users’ reliance on the system.

8.4 Optimizations and Extensions

We now discuss some extensions that relax some of the assumptions made to sim-

plify our initial description of Zephyr.

8.4.1 Replicated Tenants

In our discussion so far, we assume that the destination of migration does not have

any prior information about PM . Many production database installations however use

some form of replication for fault-tolerance and availability. In such a scenario, PM

can be migrated to a node which already has its replica. Since most DBMS imple-

mentations use lazy replication techniques to circumvent the high cost of synchronous

replication [15], replicas often lag behind the master. Zephyr can be adapted to leverage

this form of replication. Since ND already has a replica, there is no need for init mode.

When NS is notified to initiate migration, it executes the atomic handover protocol to

enter dual mode. Since ND’s copy of the database is potentially stale, when a transac-

tion TDi accesses a page Pi, similar to the original design, ND synchronizes with NS to

transfer ownership. ND sends the sequence number associated with its version of Pi to

determine if it has the latest version of Pi; Pi is transferred only if ND’s version is stale.

Furthermore, in finish mode, NS only needs to send a small number of pages that were
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not replicated to ND due to a lag in replication. Replication can therefore considerably

improve the performance of Zephyr.

8.4.2 Sharded Tenants

Our initial description assumes that a tenant is small and is served from a single

node, i.e., a single partition tenant. However, Zephyr can also handle a large tenant

that is sharded across multiple nodes, primarily due to the fact that NS completes the

execution of all transactions that were active when migration was initiated. Let PM

consist of partitions PM1, . . . ,PMp and assume that we are migrating PMi from NS

to ND. Transactions accessing only PMi are handled similar to the case of a single

partition tenant. Let Ti be a multi-partition transaction where PMi is a participant. If Ti

was active at the start of migration, then NS is the node that executes Ti, and PMi will

transition to finish mode only when all such Ti’s have completed. On the other hand,

if Ti started after PMi transitioned to dual mode, then ND is the node executing Ti. At

any given node, Ti is executed in the same way as in a single partition tenant.

8.4.3 Data Sharing in Dual Mode

In Dual Mode, both NS and ND are executing update transactions on PM . This

design is reminiscent of data sharing systems [23], the difference being that our design

does not use a shared lock manager. However, our design can be augmented to use a

shared lock manager to support a larger set of operations during migration, including

arbitrary updates and minimizing transaction aborts at NS .

In the modified design, we replace the concept of page ownership with page level

locking, allowing the locks to be shared when both NS and ND are reading a page.

Every node in the system has a Local Lock Manager (LLM) and a Global Lock

Manager (GLM). The LLM is responsible for the local locking of pages while the

GLM is responsible for arbitrating locks for remote pages. In all migration modes

except dual mode, locks are local and hence serviced by the LLM. However, in dual

mode, NS and ND must synchronize through the GLMs. The only change needed is

in the page ownership transfer; the rest of the algorithm remains unchanged. Note that

scalability limitations of a shared lock manager are not significant since any instance

of the lock manager is shared by only two nodes. We now describe how this extended

design can remove some limitations of the original design. Details have been omitted

due to space constraints.

In the original design of Zephyr, when a transaction TDi requests access for a page

Pi, ND transfers ownership from NS . Therefore, future accesses to Pi (even reads) must

fail to ensure serializable isolation. In this extended design, if ND only needs a shared
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lock on Pi to service reads, then NS can also continue processing reads that access Pi.

Furthermore, even if ND had acquired an exclusive lock, NS can request a lock to ND’s

GLM for the desired lock on Pi. This allows processing transactions at NS that access

a migrated page; the request to migrate the page back to NS might be blocked in case

it is locked at ND. The trade-off associated with this flexibility is the cost of additional

synchronization between NS and ND to arbitrate shared locks, and the higher network

overhead arising from copying Pi multiple times, while in the initial design, Pi was

migrated exactly once.

The original design made the index structure at both NS and ND immutable during

migration and did not allow insertions or deletions that required a change in the index

structure. The shared lock manager in the modified design circumvents this limitation

by sharing locks at the index level as well, such that normal index traversal will use

shared intention locks while an update to the index will acquire an exclusive lock on

the index nodes being updated.

Zephyr, adapted to the data sharing architecture, allows more flexibility by allowing

arbitrary updates and minimizing transactions or operations aborted due to migration.

The effect on the correctness is straightforward. Since page ownership can be trans-

ferred back to NS , Lemma 8.3.3 does not hold any longer. However, Theorem 8.3.5

still holds since page level locking is done in a two phase manner using the shared lock

managers, which ensures that a cycle in the serialization graph is impossible. Simi-

larly, the proof for Lemma 8.3.1 has to be augmented with the case for index changes.

However, since a transaction inserting an item (T2 in Lemma 8.3.1) needs to acquire

an exclusive on the index page being modified, it will be blocked by the predicate lock

acquired by the transaction with the predicate (T1 in Lemma 8.3.1) on the index pages.

Therefore, transactional correctness is still satisfied in the modified design; the other

correctness arguments remain unchanged.

8.5 Implementation Details

Our prototype implementation of Zephyr extends an open source OLTP database

H2 [46]. H2 is a lightweight relational database with a small footprint. H2 is built

entirely in Java and supports both embedded and server mode operation. Though pri-

marily designed for embedded operation, one of the major applications of H2 is as a

replacement of commercial RDBMS servers for development and testing. It supports

a standard SQL/JDBC API, serializable and read-committed isolation levels [12], tree

indices, a relational data model, and referential integrity constraints [15].

H2’s architecture resembles the shared process multitenancy model where an H2 in-

stance can have multiple independent databases with different schemas. Each database

maintains its independent database cache, transaction manager, transaction log, and
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recovery manager. In H2, a database is stored as a file on disk which is internally

organized as a collection of fixed size database pages. The first four pages store the

database’s metadata. The data definitions and user authentication information is stored

as a metadata table (called INFORMATION SCHEMA) which is part of the database. Every

table in H2 is organized as a tree index. If a table is defined with a primary key which

is of type integer or real number, then the primary key index stores data for the table.

If the primary key is of another type (such as VARCHAR) or was not specified at table

creation, then the table’s data is stored in a tree index whose key is auto-generated by

the system. A table can have multiple indices which are maintained separate from the

primary key index. The fourth page in the database file stores a pointer to the root of the

INFORMATION SCHEMA table, which in turn stores pointers to the other user tables. H2

supports classic multi-step transactions with serializable and read-committed isolation.

We use SQL Router3, an open source package, to implement the query router. It is

a JDBC wrapper that transparently migrates JDBC connections from NS to ND. This

SQL router runs a server listener that is notified when PM ’s location changes. When

migration is initiated, NS spawns a migration thread T . In init mode, T transfers the

database metadata pages, the entire INFORMATION SCHEMA table of H2, and the internal

nodes of the indices. Conceptually, this wireframe can be constructed by traversing the

index trees to determine the internal index nodes. However, this might incur a large

number of random disk accesses for infrequently accessed parts of the index, which

increases migration overhead. We therefore use an optimization in the implementation

where T sequentially scans the database file and transfers only the internal nodes of the

indices. When processing a database index page, it synchronizes with any concurrent

transactions and obtains the latest version from the cache, if needed. Since the index

structure is frozen during migration, this scan uses shared locking, allowing other up-

date transactions to proceed. T notifies ND of the number of pages skipped, which is

used to update page ownership information at ND.

In dual mode, ND pulls pages from NS on-demand while NS continues transaction

execution. Before a page is migrated, NS obtains an exclusive lock on the page, updates

the ownership mapping, and then sends it to ND. This ensures that the page is migrated

only if it is not locked by any concurrent transaction. In finish mode, NS pushes all

remaining pages that were not migrated in dual mode, while serving any page fetch

request from ND; pages transferred twice as a result of both the push from NS and

pull from ND are detected at ND and duplicate pages are rejected. Since NS does not

execute any transactions in finish mode, this push does not require any synchronization

at NS .

3http://www.continuent.com/community/tungsten-sql-router
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Parameter Default value

Transaction size 10 operations

Read/Write distribution 80% reads, 15% updates, 5% inserts

Database size 250 MB

Transaction load 50 transactions per second (TPS)

Cache size 32 MB

Database page size 16 KB

Table 8.1: Default values for parameters used in Zephyr’s evaluation.

8.6 Experimental Evaluation

We now present a thorough experimental evaluation of Zephyr for live database

migration using our prototype implementation. We compare Zephyr with the off-the-

shelf stop and copy technique that stops the database at NS , flushes all changes, copies

over the persistent data, and restarts the database at ND. We measure the migration

cost as the number of failed client interactions (or failed requests), the amount of data

transferred during migration, and the impact on transaction latency during and after

migration.

8.6.1 Experimental Setup

Our evaluation uses two server nodes that run the database instances and a separate

set of client machines that generate load on the database. Each server node has a 2.4
GHz Intel Core 2 Quad processor, 8 GB RAM, a 7200 RPM SATA hard drive with

32 MB Cache, and runs a 64-bit Ubuntu Server Edition with Java 1.6. The nodes are

connected via a gigabit switch. Workload is generated from a different set of client

machines. Since migration only involves NS and ND, our evaluation focusses only on

these two nodes and is oblivious to other nodes.

8.6.2 Methodology

In our evaluation, we use the modified Yahoo! cloud serving benchmark (YCSB)

presented in Chapter 4 (see Section 4.5.2). In our experiments, we consider tenant ap-

plications with small databases, where every tenant is assigned a partition. We therefore

use the terms tenant and partition interchangeably.

The workload emulates multiple user sessions where a user connects to a tenant’s

database, executes hundred transactions and then disconnects. A workload consists of
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Figure 8.5: Impact of the distribution of reads, updates, and inserts on the number of

failed requests. We also vary the insert ratios–5% inserts correspond to a fixed percent-

age of inserts, while 1/4 inserts correspond to a distribution where a fourth of the write

operations are inserts. The benchmark executes 60,000 operations.

sixty such sessions, i.e., a total of 6, 000 transactions. We vary different YCSB param-

eters to cover a wide spectrum of workloads. These parameters include the percentage

of read operations in a transaction, number of operations in a transaction (or transac-

tion size), a tenant’s database size, load offered on a partition, cache size, and the page

size used by a database. We use Zipfian distribution to select the data items accessed

with the co-efficient set to 1.0. In an experiment, we vary one of these parameters

while using the default values for the rest of the parameters. The default values of

these parameters are provided in Table 8.1, which are representative of medium sized

tenants [88, 90].

8.6.3 Evaluating Migration Cost

Our first experiment analyzes the impact on migration cost when varying the per-

centage read operations in a transaction. Figure 8.5(a) plots the number of client re-

quests that failed during migration; clients continue issuing requests on PM even dur-

ing migration. A client thread sequentially issues the operations of a transaction. All

client requests are well-formed, and any error reported by the database server after a

request has been issued account for a failed request. As is evident from Figure 8.5(a),

the number of failed requests in Zephyr is one to two orders of magnitude lower than

that of stop and copy. Two reasons contribute to more failed requests in stop and copy:

(i) aborts of all transactions active at the start of migration, and (ii) aborts of all new

transactions that access the tenant when it is unavailable during migration. Zephyr does
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Figure 8.6: Impact of the distribution of reads, updates, and inserts on the average

transaction latency and the percentage of database pages pulled in dual mode.

not incur any unavailability; requests fail only when they result in a change to the index

structure during migration.

Figure 8.5(b) plots the number of failed requests for Zephyr when using workloads

with different insert ratios. Zephyr results in only a few tens of failed requests when the

workload does not have a high percentage of inserts, even for cases with a high update

proportion. As the workload becomes predominantly read-only, the probability of a

request resulting in a change in the index structure decreases. This results in a decrease

in the number of failed requests in Zephyr. Stop and copy also results in fewer failed

requests for higher values of read percentages, due to the smaller unavailability window

resulting from fewer updates that need to be flushed before migration.

Figure 8.6(a) plots the average transaction latency observed by a client during nor-

mal operation (i.e., when no migration is performed) and with a migration occurring

midway. We report latency averaged over all the 6, 000 transactions in the workload.

We only report latency of committed transactions; aborted transactions are ignored.

Compared to normal operation, the increased latency in stop and copy results from the

cost of warming up the cache at ND and the cost of clients re-establishing the database

connections after migration. In addition to the aforementioned costs, Zephyr fetches

pages from NS on-demand during migration; the page can be fetched from NS’s cache

or from its disk. This adds latency overhead in Zephyr compared to stop and copy.

Figure 8.6(b) shows the percentage of database pages pulled during dual mode.

Since dual mode runs for a very short period, only a small fraction of pages are pulled

on demand. Therefore, Zephyr incurs low data transfer overhead.

In our experiments, stop and copy took 3 to 8 seconds to migrate a tenant. Since

all transactions in the workload have at least one update operation, when using stop
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Figure 8.7: Impact of varying the transaction size and load on number of failed

transactions.

and copy, all transactions issued during migration are aborted. On the other hand,

even though Zephyr requires about 10 to 18 seconds to migrate the tenant, there is no

downtime. As a result, the tenants observe few failed requests. Zephyr also incurs

minimal messaging overhead beyond that needed to migrate the persistent database

image. Every page transferred is preceded by its unique identifier; a pull request in

dual mode requires one round trip of messaging to fetch the page from NS . Stop and

copy only requires the persistent data for PM to be migrated and does not incur any

additional data transfer/messaging overhead.

We now evaluate the impact of transaction sizes and load (see Figure 8.7). Varying

the transaction size implies varying the number of operations in a transaction. Since the

load is kept constant at 50 TPS, a higher number of operations per transaction implies

more operations issued per unit time. Varying the load implies varying the number

of transactions issued. Therefore, higher load also implies more operations issued per

unit time. Since the percentage of updates is kept constant, more operations result

in more updates. For stop and copy, more updates result in more data to be flushed

before migration. This results in a longer unavailability window which in turn results

in more operations failing. On the other hand, for Zephyr, more updates imply a higher

probability of changes to the index structure during migration, resulting in more failed

requests. However, the rate of increase in failed requests is lower in Zephyr compared

to stop and copy. This is evident from the slope of an approximate linear fit of the data

points in Figure 8.7; the linear fit for Zephyr has a considerably smaller slope than that

for stop and copy. The effect on transaction latency is similar and hence is omitted. We

also varied the cache size allocated to the tenants, but, the impact on service interruption

was not significant. Even though a large cache size potentially results in more changes
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Figure 8.8: Impact of the database page size and database size on number of failed

requests.

to be flushed to the disk, the Zipfian access distribution coupled with a high percentage

of read operations results in very few changed objects in the cache.

Figure 8.8(a) plots the impact of database size on failed requests. In this experi-

ment, we increase the database size up to 500K rows (about 1.3 GB). As the database

size increases, more time is needed to copy its persistent data, resulting in a longer un-

availability window for stop and copy. On the other hand, for Zephyr, a larger database

implies a longer finish mode. However, since Zephyr does not result in any unavailabil-

ity, the database size has almost no impact on the number of failed requests. Therefore,

Zephyr is more robust for larger databases when compared to stop and copy.

Figure 8.8(b) shows an interesting interplay between the database page size on the

number of failed requests. As the database page size increases, the number of failed

requests decreases considerably for Zephyr, while that of stop and copy is almost un-

affected. When the page size is small, each page contains only a few rows. For instance,

in our setting, each row is close to a kilobyte, and a 2K page only holds two rows. As a

result, a majority of inserts result in structural changes to the index, which result in a lot

of these inserts failing during migration. If we consider the experiment with 2K page

size, more than 95% of the failed requests were due to inserts. However, as the page

size increases, the leaf pages have more unused capacity. Therefore, fewer inserts result

in a change to the index structure. Since stop and copy is oblivious to the page size and

transfers the raw bytes of the database file, its performance is almost unaffected by a

change in the page size. However, when the page size is increased beyond the block size

of the underlying file system, reading a page from the disk becomes more expensive,

resulting in an increase in the transaction latency when the page size is larger than the

file system block size.
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In summary, Zephyr results in minimal service interruption. In a cloud platform,

high availability is extremely critical for customer satisfaction, thus making Zephyr

more attractive. In spite of Zephyr not allowing changes to the index structure during

migration, it results in very few requests failing. A significant failure rate was observed

only with a high ratio of row-size to page size. Zephyr is therefore more robust to

variances in read-write ratios, database sizes, and transaction sizes when compared to

stop and copy, thus making it suitable for a variety of workloads and applications.

8.7 Summary

In this chapter, we presented Zephyr, an efficient technique to migrate a live database

(or partition) in a shared nothing architecture. Zephyr uses a combination of on-demand

pull and asynchronous push to migrate a tenant with minimal service interruption. Us-

ing lightweight synchronization, Zephyr minimizes the number of failed operations

during migration, while reducing the amount of data transferred during migration. We

presented a detailed analysis of the guarantees provided and proved the safety and live-

ness of Zephyr. Our technique relies on generic structures such as lock managers,

standard B+ tree indices, and minimal changes to write-ahead logging, thus making it

suitable for most standard database engines with minimal changes to the existing code

base. Our implementation in a lightweight open source RDBMS showed that Zephyr

allows lightweight migration of a live database partition with minimal service interrup-

tion, thus allowing migration to be effectively used for elastic load balancing.

Zephyr is the first end-to-end solution for live database migration in a shared noth-

ing architecture. We therefore focussed on a simple design to demonstrate feasibility

and guarantee correctness. Section 8.4 discussed some optimization and extensions.

Various other extensions are also possible. For instance, to handle inserts resulting in

page splits in an index, Zephyr can be augmented to store the newly inserted data items

in overflow buckets similar to B-link trees [64]. As with Albatross, it will also be use-

ful to predict the migration cost of Zephyr so that the system controller can effectively

use migration without violating the SLAs. These extensions, in addition to a detailed

discussion of the ones presented in Section 8.4, are interesting directions for future

work.
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Concluding Remarks
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Chapter 9

Conclusion and Future Directions

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the

mind discovers it by the path of experience.”

– Roger Bacon.

9.1 Concluding Discussion

Over the past few years, cloud computing has emerged as a multi-billion dollar

industry and as a successful paradigm for web application deployment. Irrespective

of the cloud provider or the cloud abstraction, data is central to applications deployed

in the cloud. Since DBMSs store and serve an application’s critical data, they form a

mission critical component in the cloud software stack.

DBMSs deployed in a cloud infrastructure and supporting diverse applications face

unique challenges. The overarching goal of this dissertation was to enable DBMSs to

scale-out while efficiently supporting transactional semantics and being elastic without

introducing high performance overhead. On one hand, the ability to scale-out using

clusters of commodity servers allows the DBMSs to leverage from the economies of

scale, and the ability to efficiently support transactional semantics simplifies applica-

tion design. On the other hand, the ability to dynamically scale-up and scale-down

the number of nodes in a live DBMS allows the system to consolidate to fewer nodes

during periods of low load and to add nodes when the load increases. This elastic scal-

ing leverages the underlying pay-per-use cloud infrastructure to minimize the system’s

operating cost and ensures good performance. This dissertation makes fundamental

contributions in the two thrust areas of scale-out transaction processing and lightweight

elasticity. These advances are critical to the design of DBMSs for cloud computing

infrastructure and significantly advances the state-of-the-art in that field.
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In the area of scale-out transaction processing, we proposed the design and im-

plementation of two systems that guarantee transactional access to database partitions

where the partitions can be statically or dynamically defined. The key insight for both

designs was to co-locate data frequently accessed data items within a database partition

and limit transactions to access only a single partition, thus allowing efficient transac-

tion execution, high scalability, and high availability.

We proposed ElasTraS, an elastically scalable transaction processing system to sup-

port applications whose access patterns allow the database to be partitioned statically.

ElasTraS operates at the granularity of database partitions which are the units of assign-

ment, load balancing, and transactional access. ElasTraS can effectively serve large

numbers of small tenants and scale-out large tenants using schema level partitioning.

ElasTraS is one of the first systems to allow efficient scale-out transaction processing

while leveraging schema-level partitioning to support rich transactional semantics.

To serve applications whose access patterns evolve rapidly, we proposed the Key

Group abstraction that allows applications to dynamically specify the group of data

items on which it wants transactional access. We proposed the Key Grouping protocol

to dynamically co-locate the read/write access (or ownership) of the data items form-

ing a Key Group. The protocol ensures safe-ownership transfer within an operational

system even in the presence of node or message failures. Ours is the first approach to al-

low a lightweight dynamic re-organization of ownership of the data items to provide the

benefits of co-location even when the access patterns can not be statically partitioned.

In the area of lightweight elasticity in DBMSs, we proposed the design and imple-

mentation of two techniques for live database migration in the decoupled storage and

shared nothing database architectures. The key insight for both techniques was to lever-

age the semantics of the DBMS internals to migrate a database partition with minimal

disruption and performance overhead while ensuring transactional guarantees and cor-

rectness even in the presence of failures during migration. Our techniques are the first

published end-to-end solutions for live database migration for elastic load balancing.

We proposed Albatross, a lightweight live migration technique for decoupled stor-

age database architectures where the persistent data is stored in network-addressable

storage and does not need migration. Albatross focusses on migrating the database

cache and the state of active transactions to allow the partition being migrated to start

warm at the destination.

We proposed Zephyr, a lightweight live migration technique for shared nothing

database architectures where the persistent data is stored on disks locally attached to

the database servers and hence must be migrated to the destination. Zephyr uses a

combination of on-demand pull and asynchronous push to migrate a database partition

with minimal service interruption.
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9.2 Future Directions

The continued growth of data sizes, advent of novel applications, and evolution of

the infrastructure ensures that the area of data management in the cloud has many in-

teresting research challenges. While some of these future research directions are direct

extensions of the techniques presented in this dissertation, others are more radical.

Access driven database partitioning techniques rely on the application’s access pat-

terns to partition data to avoid distributed transactions. However, as the application’s

access patterns change, it might need re-partitioning. Most web-applications strive for

high availability. Traditional approaches rely on long unavailability windows to re-

partition the database and are therefore not amenable to support regular re-partitioning.

The challenge is to re-partition the database in a live system while minimizing service

interruption. We envision two sub-problems towards this goal: techniques to incre-

mentally determine the partitions based on changes in access patterns, and techniques

to dynamically re-organize data in a live system without any downtime. Mining the

transactions’ access logs to discover access patterns, and extensions to the Key Group

abstraction and the Key Grouping protocol are possible directions towards this goal.

In traditional enterprise settings, transaction processing and data analysis systems

were typically managed as separate systems. The rationale behind this separation was

that OLTP and analysis workloads have very different characteristics and requirements.

Therefore, in terms of performance, it is prudent to separate the two types of sys-

tems [79]. However, the growing need for real-time analysis and the costs involved

in managing two different systems have resulted in the compelling need for the con-

vergence of the transaction processing and data analysis systems, especially in cloud

infrastructures. In this dissertation, we focussed on the design of OLTP systems and

presented the design principles and architectures for such systems. One major chal-

lenge in the design of these hybrid systems is to find the suitable design principles and

architectures that will allow scale-out, elasticity, and augmented functionality. Exist-

ing approaches, such as Agrawal et al. [6], Nishimura et al. [71], and Cao et al. [21],

present interesting trade-offs. A thorough analysis of the design space and the candi-

date systems, similar to those presented in Chapter 2, is essential in distilling the design

principles the on-line transaction and analytical processing (OLTAP) systems.

Administering large scale database systems is expensive and labor intensive. Auto-

matic administration of large DBMSs minimizes the need for human intervention for

resource orchestration. The responsibilities of such a self-managing controller include

monitoring the behavior and performance of the system, elastic scaling and load balanc-

ing based on dynamic usage patterns, modeling behavior to forecast workload spikes

and take pro-active measures to handle such spikes. The design of a self-managing sys-

tem controller for such large scale systems is an important area of future work. The goal
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is to ensure that the performance guarantees are met while ensuring effective resource

utilization. As the scale of such systems increases, there is a super-linear growth in

complexity of the problem, so the challenge is to make this problem tractable while en-

suring competitive bounds. Leveraging machine learning techniques for the controller’s

design is a possible direction for future exploration [1, 38].

The current cloud infrastructure consists of a static collection of powerful data cen-

ters (or cores). This model misses out on the substantial computing power that resides

outside the data centers. We envision a dynamic cloud [4] that will be formed of the

static cloud that forms the nucleus of the infrastructure and a collection of cores that dy-

namically join the cloud from time to time. Such an infrastructure presents challenges

beyond the current generation of cloud infrastructures. Examples of some challenges

are: how to provide a consistent and uniform namespace spanning the dynamic collec-

tion of cloud cores, what are the practical consistency models and abstractions for such

large scale dynamic environments, how to efficiently integrate surplus capacity as and

when they become available, how to effectively migrate load and data and efficiently

replicate state across the cores, and how to monitor and model such large scale systems.

Extending the designs of elastic, self-managing, and scalable systems to this dynamic

cloud infrastructure spanning larger scale operations, higher network latency, and lower

network bandwidth is a worthwhile direction of future work.
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