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ABSTRACT 

The scalability and availability of cloud computing makes it 

an ideal platform for many database applications. However, 

it is challenging to secure sensitive client information in a 

practical and rigorous manner against both external 

attackers and curious cloud administrators. In this paper, we 

describe a novel secure FPGA-based query coprocessor and 

discuss how it can be tightly integrated with a commercial 

database system such as SQL Server. This combination, 

called Cipherbase, leverages efficient division of labor – 

using a conventional untrusted cloud server to handle 

mundane database operations while sensitive data is 

segregated and processed in trusted hardware to ensure 

confidentiality. We examine the architectural design issues 

that affect the achievable performance of the system and 

report initial results demonstrating the effectiveness for 

real-world cloud database applications. 

1. INTRODUCTION 

Several vendors such as Amazon RDS and SQL Azure 

offer cloud database-as-a-service. The low startup cost, 

scalability, and high-availability of these systems encourage 

organizations to migrate their database applications to the 

cloud. However many applications have sensitive 

information (e.g. employee payroll salaries, Social Security 

numbers, etc.) which needs to be secured in order to be 

placed in the cloud. 

 While most commercial database products support 

encryption [9][10], these solutions are insufficient from a 

security standpoint. This is because they only encrypt the 

database file while on disk. Although this protects against 

an adversary that physically steals a hard drive, during 

normal operation encrypted data is decrypted and stored as 

plaintext in main memory (not to mention the cryptographic 

keys to perform the decryption). This makes data accessible 

to a cloud administrator or hacker that can gain root 

privileges. A recent study [12] reflects this concern, 

showing that a primary deterrent towards moving 

applications to the cloud is precisely this problem of 

securing sensitive data from the service provider.  

 The only feasible solution to this issue is to encrypt 

sensitive data before storing it in the cloud. The problem 

now is how to safely perform database operations on 

encrypted data without dramatically affecting the system’s 

usability or performance. As we will discuss, existing 

solutions for operating on encrypted data have limitations in 

terms of generality, performance, cost, or security. These 

issues negate the advantages of migrating database 

applications like online transaction processing (OLTP) to 

the cloud. 

 In this paper, we outline a new architecture for servicing 

cloud database applications efficiently. A key component in 

this system is an FPGA-based secure database coprocessor. 

When tightly integrated with a commercial database 

system, this secure coprocessor enables the execution of 

SQL queries on encrypted data entirely in the cloud. This 

occurs without handling plaintext data or cryptographic 

keys in a conventional server where a user with root 

privileges could gain access. This system, Cipherbase, 

provides customers with strong security guarantees and a 

flexible, cost-effective way of ensuring the efficient 

migration of database applications to the cloud. 

2. SECURING CLOUD DATABASE PROCESSING 

In this section, we discuss different alternatives by which 

we can secure cloud database processing.  To make the 

discussion concrete, consider a simple banking application 

which maintains the accounts of different customers. The 

sensitive attributes that need to be protected include the 

customer ID (Social Security number) and their account 

balance. The queries that need to be executed on this 

database include computing the new account balance after a 

deposit or withdrawal and calculating the new account 

balance to reflect earned interest. 

 Secure Servers: As shown in Fig. 1, one approach is to 

secure an entire server in-cloud where a database system 

(DBMS) can run using plaintext. Similar to what is 

provided by Amazon GovCloud or high-end private cloud 

solutions, these servers are physically and logically isolated 

(e.g. in cages with cameras and guards, and placed on 

separate secured networks).  In general, this approach is 

very costly to implement due to the unique physical 



environment the service provider has to maintain and due to 

the management issues this isolation creates (e.g. 

complicated failover and load balancing).  

 Perhaps more seriously, though, it is very difficult to 

make rigorous security guarantees for these isolated servers. 

For example, many common security problems stem from 

the fact that these servers are built from general-purpose 

processors. General-purpose processors contain a single, 

physically unified memory space for both program and 

data. This makes them highly adaptable, but also opens the 

door for exploits such as buffer overruns and rootkits that 

can defeat memory protection mechanisms.  

 Thus, the security of these systems can only be 

guaranteed if the entire software stack can be proven to be 

bug-free. However, as shown in [11], formally verifying 

even a simple OS kernel with 8,700 lines of C and 600 lines 

of assembly is highly non-trivial. A modern cloud server 

built on a complex hypervisor and running full-featured 

virtual machines simply has too large a surface area to be 

formally verified in practice. 

 (Partial) Homomorphic Encryption: In contrast to 

secure servers where data is store unencrypted and operated 

upon in a trusted location, homomorphic encryption 

techniques enable computation directly on ciphertext. From 

a security perspective, this is ideal since the cloud database 

only stores ciphertext while still able to compute arbitrary 

SQL queries on the data. Since no keys or plaintext ever 

exist on cloud machines, the operations can run on 

untrusted machines in full view of would-be attackers. 

 However, to date, no computationally tractable fully 

homomorphic encryption technique [5] has been found. 

There are only efficient partial homomorphic encryption 

(PHE) techniques that can perform specific operations. For 

instance, the Paillier cryptosystem [7] can perform addition 

on ciphertext using public key algorithms. Similarly, 

deterministic encryption (e.g. AES-EBC mode) consistently 

produces the same ciphertext when presented with the same 

plaintext. This allows equality evaluation and, by extension, 

database operations such as grouping and joins. 

 CryptDB [8] is a recent system that supports a subset of 

SQL queries using such PHE techniques. However, since 

different PHE approaches use different underlying 

cryptographic principles, they are incompatible with one 

another. In the case of our simple banking application, there 

is no efficient PHE technique that can support both 

additions and multiplications on ciphertext. Thus, existing 

PHE techniques do not provide a sufficiently generic 

solution appropriate for arbitrary cloud database processing.  

 Trusted Client: The previous two approaches perform 

secure computation entirely in-cloud. Trusted client based 

techniques rely on a combination of untrusted cloud and 

trusted customer-owned resources. This is a currently 

popular solution for many cloud “success” stories [13]. 

 Here, data is stored using conventional encryption 

techniques in an untrusted (indicated with red in Fig. 2) 

cloud DBMS. The cloud DBMS connects to a trusted 

(indicated with blue) component in a customer-end machine 

which has the encryption key. Since the cloud database is 

untrusted and does not have access to the key, any 

computation that requires manipulation of ciphertext must 

be performed in the trusted client.  

 This results in distributed query evaluation between the 

trusted client and the untrusted cloud DBMS. Consider the 

task of computing earned interest.  The system must 

transmit the encrypted balance to the trusted client, decrypt 

the value, update it, and re-encrypt before sending the new 

value back to the cloud DBMS. Here, the overhead of 

transmitting data back and forth between the client and 

cloud server easily dwarfs the time actually spent 

computing. In fact, for many common queries this approach 

may result in shipping a large fraction of the database to the 

trusted client (e.g. calculating the sum of all accounts). 

Thus, this approach can incur a non-trivial performance 

penalty as well as a cost penalty (the cost to maintain client-

side servers and the cost of bandwidth consumed shuttling 

data between the cloud and client). This issue seriously 

reduces the benefits of migrating the database to the cloud. 

 Trusted Hardware: As we have seen, existing secure 

cloud database approaches all have limitations in terms of 

generality, performance, cost, or security. At the same time 

though, the general concept of distributed query evaluation 

cleanly divides work among trust and untrusted compute 

resources. Trusted compute is needed to handle operations 

on sensitive data, but untrusted resources can be used for 

other database operations – e.g. storage, retrieval, and 

logging services, computations that run on non-sensitive 

plaintext data, or computations that do not need to directly 

manipulate ciphertext. The only real issue with the trusted 
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Fig. 4. Tightly-Coupled Architecture 



client model is that the trusted compute resources are 

physically so far removed from the cloud itself. Thus, we 

could successfully leverage the advantages of the cloud 

(without exotic servers or encryption techniques) if we had 

a secure in-cloud location where we could store encryption 

keys, decrypt sensitive values, compute database 

operations, and re-encrypt the results. 

 Towards this end, using dedicated hardware as a secure 

co-processing platform is promising in terms of providing 

security for a fixed set of operations. Simply implementing 

these operations in a separate device helps protects the data, 

but beyond this, as discussed in [4], purpose-built circuits 

present a much smaller attack surface as compared to 

secure server solutions. Formal verification techniques are 

more tenable and the fundamental nature of custom 

hardware addresses many of the vulnerabilities of general-

purpose processor-based systems. For example, memory 

address spaces can be physically disjoint since we simply 

do not need the same degree of freedom as in a general-

purpose processor. Similarly, many of the complexities 

(and potential for bugs) associated with software-based 

systems revolve around multi-tasking an inherently 

sequential processor. Dedicated hardware, on the other 

hand, can natively support multi-tasking with completely 

independent circuits. 

 In terms of the cloud, FPGAs are a particularly 

attractive platform to provide dedicated hardware. While 

offering many of the previously mentioned advantages of 

dedicated circuits, they also offer a large degree of 

flexibility. This is important because a cloud provider can 

purchase and install a single chip that can be quickly 

repurposed to support a wide variety of applications. This 

allows the cloud to adapt these resources to meet current 

and future demands. When not running secure database 

operations, they could be used for other secure cloud 

computing applications [4], or play a more traditional role 

as high-performance computational accelerators. 

3. SECURE DATABASE COPROCESSOR DESIGN 

In this section, we describe the design of a secure database 

co-processor. As discussed earlier, this trusted compute 

resource augments an untrusted cloud DBMS by 

performing secure operations on sensitive data. 

3.1.  System Integration 

As shown in Fig. 3 and Fig. 4, there are two basic 

architectures for distributing query evaluation between the 

trusted and untrusted computing platforms: loosely and 

tightly coupled. In both options, the database encryption 

key is only present on client machines and on the trusted 

co-processor in the cloud (denoted as TM). The 

fundamental difference between these two architectures is 

in way that query execution is divided between the cloud 

DBMS and the TM.  Specifically, they differ in the 

granularity of operations. 

 In a loosely-coupled architecture, the TM contains a full 

DBMS and is responsible for executing entire queries or 

sub-queries. Queries or sub-queries that do not involve 

sensitive information are executed on the untrusted cloud 

DBMS, while queries that involve sensitive information are 

executed by the TM. The fact that the TM in a loosely-

coupled architecture contains a complete DBMS creates 

both advantages and disadvantages.  

 Perhaps the most important benefit of a loosely-coupled 

solution is that it is relatively easy to build. Since the TM is 

a self-contained DBMS, the client only needs to change the 

database schema to reflect which fields are encrypted. The 

queries themselves also need to be re-written to reflect the 

split nature of the computation, but this can utilize existing 

database features for distributed query processing, such as 

user-defined functions and remote stored procedures. This 

means that loosely-coupled systems can use largely off-the-

shelf software and hardware components. 

 At the same time, the loosely-coupled TM must be 

fairly complex to provide a full secure DBMS. For 

example, in our taxonomy, TrustedDB [3] is a loosely-

coupled architecture. TrustedDB utilizes an IBM 4764 

secure cryptographic processor running Linux and SQLite. 

The complexity of this type of TM creates two problems.  

 First, as mentioned in Section 2, the need for a full OS 

and DBMS has security implications due to the system 

complexity. Second, as a secure, fully self-contained 

system, the TM naturally has limited computational and 

storage resources. The high functionality requirements of a 

loosely-coupled architecture seriously stretch the TM’s 

capabilities. For example, the onboard memory in the 4764 

is very limited. Thus, to allow the TM to work on 

realistically-sized databases, TrustedDB stores all database 

pages in the primary untrusted DBMS (sensitive values are 

encrypted, so this does not create a security issue). As the 

TM processes queries, it requests database pages from the 

untrusted system. 

 In general, this arrangement leads to an inefficient use 

of both the precious secure computational power in the TM 

and the bandwidth between the TM and the outside world. 

This limits the achievable performance in high-throughput 

cloud applications. For example, aside from the essential 

cryptographic and data manipulation operations in queries 

that must run in the TM, the TM in a loosely-coupled 

architecture also parses queries, manages database pages, 

manages requests for database pages (only some of the data 

within a given page may actually be used), manages change 

logs, etc.. None of these operations manipulate ciphertext 

values and, thus, could be run in an untrusted system. 

 This brings us to the tightly-coupled architecture used in 

our work, Cipherbase. Here, the TM only contains 

expression evaluation functionality. Expression evaluation 

is the lowest-level database computational abstraction and 



is the part of SQL Server responsible for actually 

manipulating basic data types. This includes computations 

such as comparison, arithmetic and SQL intrinsic functions 

(MIN, MAX, etc.). SQL Server compiles all queries into a 

series of these simple expressions. In a conventional SQL 

Server installation, a logically separate data storage engine 

fetches and feeds the appropriate database pages to a simple 

expression interpreter that performs the necessary 

computation. The Cipherbase tightly-coupled architecture 

piggybacks on this existing computational model, 

augmenting conventional expression evaluation on plaintext 

in the untrusted DBMS with secure expression evaluation 

on ciphertext in the TM.  

 This type of tightly-coupled architecture has two 

specific advantages. First, the TM is comparatively simple, 

only implementing a small set of processing primitives. 

This greatly reduces the complexity of the TM and allows 

us to build a dedicated platform that can be provably 

secure. Second, the TM is highly efficient, both in terms of 

computational resources and bandwidth. During runtime, 

the TM only processes those operations that explicitly 

require access to the real values contained in encrypted 

fields. That is, all data management and staging tasks are 

offloaded to the comparatively cheap and plentiful 

computational resources in the untrusted DBMS. 

Furthermore, only values that the TM explicitly needs to 

read are transferred by the untrusted DBMS, conserving 

bandwidth to the outside world. 

 At the same time, to implement a tightly-coupled 

architecture also requires non-trivial changes to the existing 

untrusted DBMS codebase. Although for brevity we will 

not discuss the necessary modifications in detail here, 

briefly, the complication stems from the fact that the 

distribution of operations now occurs at a very fine-grained 

level. This redefines the basic operating procedures of 

expression evaluation, going beyond the capabilities of 

existing external hooks (e.g. user-defined functions) to 

achieve appropriate integration and acceptable 

performance. That said, considering the very high 

efficiency and security that is achievable, we have elected 

to implement a tightly-coupled architecture. 

3.2. Securing the FPGA 

Regardless as to how the system divides work between the 

trusted and untrusted components, client confidence in the 

system as a whole hinges upon the security of the TM. 

Beyond the fact that the Cipherbase TM is a purpose-built 

circuit and, thus, naturally more resistant to hacking than 

pure software, it is important that 1) the FPGA is loaded 

with a known and trusted bitstream and 2) the device can be 

uniquely identified by remote clients. 

 The use of FPGAs as a trusted cloud computing 

platform has been discussed in prior work [4]. Here, we rely 

on many of the same basic concepts: a trusted third-party 

 authority, standard FPGA bitstream protection 

hardware/techniques, and standard public-key infrastructure 

and key exchange mechanisms. 

 As shown in Fig. 5, this process begins with a third-

party authority, trusted by both the cloud operator and 

customers. The trusted authority generates an AES 

bitstream encryption key unique to a particular FPGA (or 

equivalent group of FPGAs). This key is then uploaded into 

the device, privately and before it is deployed in the cloud. 

The trusted authority then creates a unique RSA 

public/private key pair for each FPGA and inserts the 

private key into the bitstream representing the TM. This 

new binary is then encrypted and signed with the 

corresponding FPGA’s bitstream encryption key. This 

protected bitstream is then transferred to non-volatile 

memory on the appropriate FPGA board inside the cloud. 

Finally, the public identity of the FPGA is published using 

standard public-key infrastructure (PKI). 

 This process ensures security in several ways. First, 

both the cloud operator and clients trust the signing 

authority to validate the logic inside the TM bitstream (i.e. 

that it does exactly what is intended – nothing more and 

nothing less). Second, since the bitstream is signed, we can 

guarantee that this binary will load onto the FPGA 

unaltered. Any alterations to the signed bitstream will be 

detected during startup and cause the FPGA to fail the 

loading process. Third, since the bitstream (and thus the 

private RSA key inside) is encrypted, the identity of the 

FPGA cannot be stolen. When a client looks up the public 

key of a particular device and initiates communication, they 

are certain that they are truly connecting with the intended 

trusted recipient. 

 Before moving on, note that in some scenarios, the 

trusted authority could be the cloud service provider itself. 

That is, customers may trust the cloud provider as an 

organization to build and install the TM, but may not carry 

this faith to individual cloud administrators. 
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Fig. 5. Database coprocessor details 

Table 1. SQL Operations and TM Primitives 

SQL Operation (Plaintext) Primitives in TM 

SELECT …. WHERE A = 5 Dec(A) = Dec(5) 

SELECT A+B WHERE … Enc(Dec(A) + Dec(B)) 

SELECT … WHERE 

T1.a = T2.b … 

Hash(Dec(A)),Hash(Dec(B)) 

Dec(A) = Dec(B) 



3.3. Trusted Module Design 

As discussed in Section 3.1, we only need to implement 

expression evaluation in a tightly-coupled secure 

coprocessor to support general-purpose query processing. 

In Table 1, we provide a few examples of basic expression 

evaluation operations in SQL. In the left column, we show 

a plaintext query and in the right column we show the 

corresponding primitives that would execute in the TM if 

the operation were performed on encrypted data. For 

instance, for a SELECT query with a predicate (A = 5) 

where column A is encrypted, the TM evaluates the 

comparison between the encrypted column and the 

corresponding encrypted constant. Similarly for computing 

(A+B), the TM decrypts both columns, adds them and then 

re-encrypts the result. Finally, for the join predicate 

between tables T1 and T2, the query processor would match 

records in the two tables. The TM decrypts the values, 

hashes the join attributes, and then checks for equality. For 

a more detailed set of primitive examples, refer to [1].  

 SQL Server implements expression evaluation using a 

stack machine, compiling all tasks into database primitive 

programs that implement queries and sub-queries. 

Cipherbase leverages this existing computational 

abstraction. We built a stack machine in the FPGA-based 

TM that mirrors the “virtual machine” that traditionally 

runs in SQL Server. As a research prototype, our current 

hardware implementation does not support the complete 

suite of SQL stack operations, which number in the few 

hundreds. However, as we will see in Section 5, our 

implementation is sufficient to allow us to explore the 

potential (and potential pitfalls) of a full end-to-end secure 

database application for transactional workloads. 

 Fig. 5 depicts the different components of the complete 

Cipherbase system. Each Cipherbase server runs a modified 

SQL Server instance that has access to a TM. The first 

client (the database owner) sets up a schema for their 

database to indicate the format, including which fields are 

to be protected with encryption. This schema is signed and 

then installed into SQL Server and distributed among users 

of the database. Other clients can then connect to this SQL 

Server instance to upload data.  

 In the simplest execution model, this data is encrypted 

by clients before being loaded into SQL Server. In this case, 

the database owner defines a fixed cryptographic key for 

particular encrypted fields when defining the schema. This 

key is shared to other users and uploaded to the TM. 

Although the database owner and other clients can only 

communicate with the TM through the untrusted DBMS, 

clients can securely send keys to the TM by encrypting their 

keys with the TM’s public key. These wrapped keys will 

then only be accessible to the TM, which can decrypt the 

client’s keys with its private key. Notice that these wrapped 

keys are safe regardless as to how they are transmitted. 

Wrapped keys can even be cached by SQL Server in a key 

vault for later re-transmission to the TM.  

 At this point, the system is ready to service queries. To 

run queries, clients must first modify some of their normal 

SQL queries to reflect when they need manipulate 

encrypted fields. Although we will describe an example of 

this in more detail in the next section, specifically, these 

modified queries call out to stack programs that run on the 

TM. These programs are encrypted and signed so that they 

are protected in transit. When received by SQL Server, 

these programs are sent to the TM and cached for later 

reuse.  When the untrusted DBMS executes queries or sub-

queries over encrypted data, it packs the appropriate 

ciphertext together with a program ID, referring to which 

trusted program to execute on the data.  This forms a work 

unit, ready for transmission to the TM.  Multiple such work 

units are aggregated by the untrusted DBMS for batched 

transfer and execution. 

 Notice that the use of Cipherbase is largely transparent 

to clients (i.e. they do not have to modify their current 

applications to use Cipherbase). This is accomplished by 

installing a thin “shim” program on the client. This shim 

would be responsible for managing keys, 

encrypting/decrypting transmissions to and from the cloud, 

and converting queries to reflect the encrypted database 

schema. 

 Also notice that Cipherbase does not address the issue 

of correctness.  For example, a malicious attacker could 

duplicate/withhold queries or insert random ciphertext.  The 

issue of correctness is orthogonal to the primary focus of 

this paper (i.e. incorrect behavior is acceptable as long as no 

secrets are leaked). The problems of database validation 

and verification have been studied in the context of 

conventional databases and much of this work can be 

extended to a distributed system such as Cipherbase. 

4. END-TO-END EXAMPLE 

In this section we describe the operation of Cipherbase with 

an example query from the banking application discussed in 

Section 2. Consider the following plaintext SQL query: 

UPDATE Accounts 

SET AcctBal = AcctBal + :TransAmt 

WHERE AcctID = :ID 

 This update takes two input parameters: ID, the account 

to be updated, and TransAmt, the amount of a transaction. 

Assume that the Accounts table has the schema (AcctID, 

AcctBal) associating each account with a balance. 

 With Cipherbase, we can specify the encryption for 

each attribute separately – see [1] and [2] for more details. 

For the purpose of this example, assume the table encrypts 

AcctID using deterministic encryption (e.g. AES-ECB 

mode) and AcctBal using stronger, non-deterministic 

encryption (e.g. AES-CBC mode). TransAmt arrives from 

the client encrypted. Cipherbase executes the update query 

with the following series of operations: 



1) The untrusted DBMS looks up the ID record using an 

index (the AcctID column is encrypted using 

deterministic encryption which preserves equality, 

eliminating the need to access plaintext). 

2) The untrusted DBMS fetches the encrypted AcctBal 

value for this row. 

3) The untrusted DBMS sends AcctBal, TransAmt and the 

appropriate wrapped encryption key to the trusted 

module. The trusted module executes the following 

program, returning the result to the untrusted DBMS: 

a) PUSH AcctBal 

b) PUSH key 

c) DECRYPT 

d) PUSH TransAmt 

e) PUSH key 

f) DECRYPT 

g) ADD 

h) PUSH key 

i) ENCRYPT 

j) POP 

4) The untrusted DBMS updates the table with the 

encrypted AcctBal result and writes a log record to 

persist the effect of this operation. 

5. EXPERIMENTS AND RESULTS 

We built two proof-of-concept Cipherbase platforms in 

which SQL Server communicates with an FPGA-based TM 

either via Gigabit Ethernet or x4 PCIe v2.0. Although PCIe 

is a faster, lower latency transport mechanism, an Ethernet 

solution would more easily allow multiple cloud DBMS 

machines to share a single TM. 

 The FPGA resource requirements for these two 

prototypes are shown in Table 2.  Although our existing test 

platform TMs do not implement the full suite of SQL stack 

machine operations, the current resource utilization is very 

low – the core database processor uses less than 5% of the 

available V6LX240T.  Thus, we believe that there is 

sufficient headroom to expand the functionality of the 

system in the future.  The core database processor in both 

platforms is clocked at 125MHz. 

 We compare the performance of Cipherbase running on 

fully encrypted data against the performance of unmodified 

SQL Server running on plaintext data. All tests were 

performed on a Windows Server 2008 machine with dual 

2.0GHz Intel Xeon E5-2650 processors (for a total of 32 

logical cores) and 64GB of DDR3 RAM. 

 The goal of this evaluation is to understand the 

overhead of using encryption with the Cipherbase 

architecture. Our current system design and evaluation is 

focused on transactional workloads; such workloads are 

update intensive and each transaction (or query) touches a 

small number of records. In contrast, analytical workloads 

are read-oriented and each query typically touches a large 

number of records. Such workloads present new 

optimization opportunities and we plan to explore this space 

in future work.  

 TPC-A Benchmark: To evaluate Cipherbase, we use 

an industry standard TPC-A benchmark [6]. While simple, 

this benchmark is fairly representational of transactional 

workloads. Briefly, the benchmark models a bank with 10 

branches. Each branch has 10 tellers and 100,000 customer 

accounts. Each account, teller, and branch has a 

corresponding balance field in the database. Every 

transaction in the benchmark performs a deposit or 

withdrawal from a random customer account. Each 

customer account update is then also reflected in the 

corresponding teller and branch balances. 

 For the encrypted version of the benchmark, we assume 

that all fields are encrypted as described in Section 4. Since 

the primary key fields (i.e. AcctID) are encrypted using 

deterministic encryption, indexing is performed outside the 

FPGA co-processor. All other fields are encrypted using 

strong non-deterministic encryption, and so the three 

balance updates required to process every transaction occur 

within the FPGA. 

 The primary evaluation metric for the benchmark is the 

number of transactions per second (TPS) the system is able 

to sustain. In our evaluation, a driver program running on 

the same machine as SQL Server issues customer 

transactions. The number of concurrent threads in the driver 

program represents the maximum number of simultaneous 

transactions that can be requested.  This is a control 

parameter in the benchmark and for all our experiments we 

varied the number of driver threads from 1 to 500 (until the 

TPS reached a maximum).  

 TPC-A Relative Performance to Plaintext: Fig. 6 

compares the TPS for the plaintext (PT) and two ciphertext 

(CT-PCIe and CT-Ethernet) database systems. In all our 

graphs, TPS values are normalized to the maximum 

throughput achieved for a given benchmark
1
. All numbers 

are warm numbers (i.e. the database is entirely cached in 

main memory and the system does not need to read values 

off of the hard drive). This is the most challenging scenario 

for our system, since the I/O overhead in many common 

workloads will mask performance shortcomings in the 

processing engine. 

 Fig. 6 shows that for this benchmark, the PCIe and 

Ethernet-based Cipherbase implementations achieve a peak 

throughput of 0.83x and 0.80x the maximum plaintext 
 

Table 2. Resource Utilization (V6 LX240T). 

 LUTs FF BRAM DSP 

Full System - 

Ethernet 

9.1K 

(6.0%) 

6.1K 

(2.0%) 

67 

(16.1%) 

4 

(0.5%) 

Full System - PCIe 
21.5K 

(14.3%) 

20.7K 

(6.9%) 

102 

(24.5%) 

4 

(0.5%) 

∙ Ethernet 

Infrastructure 

1.9K 

(1.3%) 

1.1K 

(3.6%) 

51 

(12.2%) 

0 

(0.0%) 

∙ PCIe Infrastructure 
14.3K 

(9.5%) 

15.7K 

(5.2%) 

86 

(20.7%) 

0 

(0.0%) 

∙ DB Proc. 
7.2K 

(4.8%) 

5.0K 

(1.7%) 

16 

(3.8%) 

4 

(0.5%) 

                                                           
1
  Due to a DeWitt Clause, we are unable to report any absolute 

performance numbers and must use normalized comparisons. 
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Fig. 8. TM processing performance with pre-packed data 

database performance, respectively. Thus, the throughput 

degradation compared to plaintext processing is (1.0-

0.83=17%) and (1.0-0.80=20%), respectively. 

Although this is an acceptable penalty, especially given 

that the robust security of Cipherbase dramatically changes 

the fundamental functionality of the system, we would like 

to examine what issues contribute to this overhead. 

There are two issues that penalize the performance of 

Cipherbase. First, Cipherbase simply handles more data 

than an insecure SQL instance. Rather than using a single 

32-bit plaintext word to represent a balance, each 

encrypted field expands by a factor of four to a 128-bit 

AES block. In future work we plan to mitigate this data 

expansion.  

A second issue that causes the measured Cipherbase 

overhead in this test is insufficient concurrent work. Each 

secure operation must call out to the external TM. Thus, 

the latency of this processing is naturally higher than if we 

remained in-processor. Although this added delay is 

relatively small (on the order of microseconds), it is 

incurred along a very fundamental part of the database’s 

processing path. If we do not have a sufficient level of 

concurrency to amortize the latency to the TM, the host 

DBMS will be underutilized, waiting for data to return 

before processing can continue. 

Although we expect the level of concurrency to be very 

high in most large-scale cloud applications, the original 

TPC-A benchmark has an unusually low degree of 

concurrency. Recall that there are only 10 bank branches 

and that each customer transaction also updates both the 

teller and branch balances. To maintain correct behavior in 

the face of simultaneous transaction requests, SQL Server 

must lock the respective customer account, teller or branch 

balance when it is being modified. This prevents new 

transactions for a particular value to proceed. Thus, 

regardless as to how many driver threads are present, on 

average no more than 30 operations can be serviced at a 

given time (10 accounts, 10 tellers, and all 10 branches). 

Benchmark Scaling: To test the theory that the 

previously measured performance of Cipherbase is 

artificially low in the TPC-A benchmark due to limited 

effective concurrency, we repeated the previous 

experiment. Here, we scale the benchmark to contain 1000 

branches (again, each with 10 tellers and 100,000 customer 

accounts). In this scaled benchmark, the system could 

theoretically processes up to 3000 operations concurrently 

(updates to 1000 customer accounts, 1000 tellers and all 

1000 branches). As shown in Fig. 7, the increased level of 

concurrency dramatically improves performance. For 

example, the maximum throughput for even the 

conventional plaintext system increases by a factor of 

(1/0.17=5.9x), indicating that the system was indeed 

starved for parallel work and spinning on locked fields. 

Cipherbase also benefits from the increased 

concurrency. The PCIe-based Cipherbase implementation 

now achieves a peak of 0.87x the maximum plaintext 

database performance.  This reduces the overhead of this 

implementation to (1.0-0.87=13%).  At the same time, the 

added concurrency accentuates the performance difference 

between the PCIe and Ethernet based systems. The 

Ethernet implementation achieves 0.77x the maximum 

plaintext performance, for a penalty of (1.0-0.77=23%). 

Measuring TM Utilization: One last question we have 

regarding the performance of Cipherbase is the utilization 

of the FPGA itself. As mentioned earlier, the clock rate of 

the TM is very low compared to that of the primary 



processor. Although there are many operation performed 

by the DBMS to fetch and stage data, log transactions, etc., 

the system could be computationally limited by the TM. 

Thus, we developed a standalone executable 

independent of SQL Server to examine the load on the TM. 

This program produces a series of N TPC-A compliant 

queries. It then repeatedly sends this series of computations 

to the TM and receives the results. Since this system relies 

on pre-packed data with no operational load beyond 

sending and receiving data from the TM, this simulates the 

maximum computational load on the FPGA for this 

benchmark if the rest of the untrusted DBMS processing 

were infinitely fast. 

As shown in Fig. 8, the maximum achievable 

throughput of hardware by itself is very high and the TM is 

dramatically underutilized when running in conjunction 

with SQL Server. The maximum measured TPS of the 

original live-running plaintext TPC-A benchmark is only 

(0.01/1.0=1%) of the maximum measured capabilities of 

the PCIe Cipherbase system and (0.01/0.62=1.6%) that of 

the Ethernet Cipherbase system. Similarly, the maximum 

measured TPS of the live-running plaintext scaled TPC-A 

benchmark is only (0.08/1.0=8%) of the capabilities of the 

PCIe Cipherbase system and (0.08/0.62 =13%) that of the 

Ethernet Cipherbase system. 

6. CONCLUSIONS & FUTURE WORK 

In this paper, we outline a new architecture for servicing 

database applications efficiently in the cloud. Our system 

leverages a novel secure database coprocessor that provides 

an important security guarantee – any sensitive data in the 

database will be decrypted only in a trusted module. We 

presented the design of an FPGA-based specialized 

database stack machine with a modest footprint, only 

needing to implement expression evaluation in the trusted 

processor.  

 We have integrated a prototype of this processor with a 

commercial DBMS and our preliminary performance 

evaluation on transactional workloads indicates that this 

architecture can provide performance very close to that of a 

conventional insecure system.  Furthermore, our 

experiments shows that a single database installation is not 

capable of saturating the computational capabilities of the 

TM for a TPC-A style workload – there are simply too 

many non-processing oriented tasks required to stage and 

track the various operations. This finding has three 

implications. 

First, this suggests that multiple database instances may 

be able to share a single TM for  similar workloads (e.g. 

one FPGA per rack of conventional servers).  This would 

amortize the cost of additional hardware among more 

customers or more work.  Second, the system has 

considerable performance headroom.  This is important for 

future work as we migrate to benchmarks with more 

complex secure processing needs.  Third, this suggests that 

a tightly-coupled architecture is able to achieve better 

performance as compared to a loosely-coupled 

architecture.  Cipherbase offloads non-processing oriented 

database operations to highly scalable cloud host 

machines. If these extraneous database operations needed 

to run on the comparatively scarce resources of the TM, 

the overall performance of the system would likely be 

lower. 

 Looking to the future, we are in the process of 

evaluating the performance of the system for other 

workloads, such as analytical queries. Beyond this, we are 

also exploring further optimizations to better integrate the 

trusted co-processor with the untrusted DBMS software 

stack. 
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