
Feature Engineering in
Context-Dependent Deep Neural Networks
for Conversational Speech Transcription

Frank Seide1, Gang Li1, Xie Chen1,2, and Dong Yu3

1 Microsoft Research Asia, 5 Danling Street, Haidian District, Beijing 100080, P.R.C.
2 Department of Electronic Engineering, Tsinghua University, 10084 Beijing, P.R.C.

3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{fseide,ganl}@microsoft.com, chenxie09@mails.tsinghua.edu.cn, dongyu@microsoft.com

Abstract—We investigate the potential of Context-Dependent
Deep-Neural-Network HMMs, or CD-DNN-HMMs, from a
feature-engineering perspective. Recently, we had shown that for
speaker-independent transcription of phone calls (NIST RT03S
Fisher data), CD-DNN-HMMs reduced the word error rate by
as much as one third—from 27.4%, obtained by discrimina-
tively trained Gaussian-mixture HMMs with HLDA features, to
18.5%—using 300+ hours of training data (Switchboard), 9000+
tied triphone states, and up to 9 hidden network layers.

In this paper, we evaluate the effectiveness of feature
transforms developed for GMM-HMMs—HLDA, VTLN, and
fMLLR—applied to CD-DNN-HMMs. Results show that HLDA
is subsumed (expected), as is much of the gain from VTLN (not
expected): Deep networks learn vocal-tract length invariant struc-
tures to a significant degree. Unsupervised speaker adaptation
with discriminatively estimated fMLLR-like transforms works
(as hoped for) nearly as well as fMLLR for GMM-HMMs.

We also improve model training by a discriminative pretrain-
ing procedure, yielding a small accuracy gain due to a better
internal feature representation.

I. INTRODUCTION

In this paper, we investigate Context-Dependent Deep Neu-
ral Network Hidden Markov Models, or CD-DNN-HMMs,
from a feature-engineering perspective. CD-DNN-HMMs [1],
[2] are a recent very promising acoustic model. For speaker-
independent single-pass recognition, it achieved relative error
reductions of 16% on a business-search task [1], [2], and of
up to one-third on the Switchboard phone-call transcription
benchmark [3], over discriminatively trained GMM-HMMs.

Like the classical ANN-HMMs of the 90’s [4], CD-DNN-
HMMs replace the GMMs by an artificial neural network,
but they differ in (1) significantly increased network depth
(up to 11 hidden layers so far) and (2) in the way context
dependence is handled: Instead of factorizing the networks,
e.g., into a monophone and a context-dependent part [5],
or decomposing them hierarchically [6], CD-DNN-HMMs
directly model tied context-dependent states (senones). This
had long been considered ineffective, until [1] showed that it
works and yields large error reductions for deep networks.

This paper aims at evaluating the effectiveness of several
feature-engineering techniques developed for GMM-HMMs—
HLDA [7], VTLN [8], and fMLLR [9]—when applied to

CD-DNN-HMMs. We find that CD-DNN-HMMs subsume
not only HLDA (expected) but also most of the gains of
VTLN (unexpected). The DNN can be viewed as a complex
discriminative feature extractor which extracts environment-
and speaker-invariant representations optimized to predict the
tied triphone states. Unsupervised fMLLR adaptation, on the
other hand, carries over to the DNN.

Lastly, while in [3] CD-DNN-HMM training relied on deep-
belief-network pretraining [10], we show that replacing it with
a discriminative variant leads to small improvement in recogni-
tion accuracy due to improved internal feature representation.

II. THE CONTEXT-DEPENDENT

DEEP-NEURAL-NETWORK HMM

A deep neural network (DNN) is a conventional multi-layer
perceptron (MLP [11]) with many layers, where training is
typically initialized by a pretraining algorithm. Below, we
describe a statistical view and a discriminative feature-learning
view of the DNN, discuss its training and parameter initial-
ization, and describe its integration with context-dependent
HMMs for speech recognition and the application of feature-
space speaker adaptation. Extra details can be found in [2].

A. Deep Neural Network

1) DNN—A Statistical View:
A DNN as used in this paper models the posterior probability
Ps|o(s|o) of a class s given an observation vector o, as a stack
of (L + 1) layers of log-linear models. The first L layers,
� = 0...L − 1, model posterior probabilities of conditionally
independent hidden binary units h� given input vectors v�,
while the top layer L models the desired class posterior as

P �
h|v(h�|v�) =

N�∏
j=1

ez�
j(v

�)·h�
j

ez�
j(v

�)·1 + ez�
j(v

�)·0 , 0 ≤ � < L

PL
s|v(s|vL) =

ezL
s (vL)∑

s′ ezL
s′ (v

L)
= softmaxs(zL(vL))

z�(v�) = (W �)T v� + a�

with weight matrices W � and bias vectors a�, where h�
j and

z�
j(v

�) are the j-th component of h� and z�(v�), respectively.

24978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

The precise modeling of Ps|o(s|o) requires integration over
all possible values of h� across all layers which is infeasible.
An effective practical trick is to replace the marginalization
with the “mean-field approximation” [13]. Given observation
o, we set v0 = o and choose the conditional expectation
E�

h|v{h�|v�} = σ
(
z�(v�)

)
as input v�+1 to the next layer,

with component-wise sigmoid σj(z) = 1/(1 + e−zj).

2) DNN—A Discriminative Feature-Learning View:
In the DNN, the estimation of the posterior probability
Ps|o(s|o) can also be considered as a two step process: In
the first step, the observation vector o is transformed into a
feature vector vL through L layers of non-linear transforms.
A popular transformation is the sigmoid function:

v�+1 = σ
(
z�(v�)

)
, 0 ≤ � < L

In the second step, the posterior probability Ps|o(s|o) is
estimated using the log-linear model with features vL as

Ps|o(s|o) = PL
s|v(s|vL) = softmaxs(zL(vL))

If we thought of the first L layers as fixed, learning the
parameters in the softmax layer would amount to training a
conditional maximum entropy (MaxEnt) model. With conven-
tional MaxEnt models, features are manually designed. E.g.,
[14] uses first and second-order statistics of the observations.

In DNNs, however, the features defined by the first L layers
are also automatically learned. This not only eliminates the
tedious and erroneous process of manual feature construction
but also has the potential of extracting features that are impos-
sible to construct manually (e.g., through many layers of non-
linear transforms) and features that discriminate classes better.
This is shown by higher recognition accuracy when using deep
networks compared to shallow networks with the same number
of parameters [3], or manually constructed features [14].

Viewing DNNs as automatic feature learning plus con-
ditional MaxEnt model construction opens a path to using
different feature transformation functions (e.g., radial basis
function or pooling functions like max and sum), using differ-
ent optimization procedures (e.g., alternating between feature
extraction and MaxEnt model training), adding additional
feature transformation layers borrowed from GMM-HMMs,
or learning model parameters with different strategies like
discriminative pretraining as described in Section II-B3.

B. Training Deep Neural Networks

DNNs, being ‘deep’ MLPs, can be trained with the well-
known error back-propagation procedure (BP) [15]. Because
BP can easily get trapped in poor local optima for deep
networks, it is helpful to ‘pretrain’ the model in a layer-
growing fashion. The following will recap BP and describe two
pretraining methods, deep belief network (DBN) pretraining
[10] and what we call discriminative pretraining.

1) Error Back-Propagation:
The BP procedure [15] updates MLPs with stochastic gradient
ascent

(W �, a�) ← (W �, a�) + ε
∂D

∂(W �, a�)
, 0 ≤ � ≤ L,

for an objective function D and learning rate ε. If the objective
is to maximize the total log posterior probability over the T
training samples O = {o(t)} with ground-truth labels s(t), i.e.

D(O) =
T∑

t=1

log Ps|o(s(t)|o(t)), (1)

then the gradients are

∂D

∂W �
=

∑
t

v�(t) (ω�(t) e�(t))T ;
∂D

∂a�
=

∑
t

ω�(t) e�(t) (2)

eL(t) = (log softmax)′(zL(vL(t)))
e�−1(t) = W � · ω�(t) · e�(t) for 0 ≤ � < L

ω�(t) =
{

diag
(
σ′(z�(v�(t))

)
for 0 ≤ � < L

1 else

with error signals e�(t) = ∂D/∂v�+1(t) as back-propagated
from networks � + 1 and above; network �’s output-non-
linearity’s derivative ω�(t) if present; component-wise deriva-
tives σ′

j(z) = σj(z) · (1 − σj(z)) and (log softmax)′j(z) =
δs(t),j − softmaxj(z); and Kronecker delta δ.

2) Pretraining as a Deep Belief Network:
The deep belief network (DBN), proposed by Hinton [10],
provides a new way to train deep generative models. The layer-
wise greedy pretraining algorithm developed in DBN was later
found to be also effective in training DNNs.

The DBN pretraining procedure treats each consecutive pair
of layers in the MLP as a restricted Boltzmann machine (RBM)
[10] whose joint probability is defined as

Ph,v(h, v) =
1

Zh,v
· evT Wh+vT b+aT h

for the Bernoulli-Bernoulli RBM applied to binary v with a
second bias vector b and normalization term Zh,v , and

Ph,v(h, v) =
1

Zh,v
· evT Wh+(v−b)T (v−b)+aT h

for the Gaussian-Bernoulli RBM applied to continuous v. In
both cases the conditional probability Ph|v(h|v) has the same
form as that in an MLP layer.

The RBM parameters can be efficiently trained in an
unsupervised fashion by maximizing the likelihood L =∏

t

∑
h Ph,v(h, v(t)) over training samples v(t) with the ap-

proximate contrastive divergence algorithm [10], [18]. We use
the specific form given in [18]:

∂ logL
∂W

≈
∑

t

v(t) ·Eh|v{h|v(t)}T−
∑

t

v̂(t) ·Eh|v{h|v̂(t)}T

∂ logL
∂a

≈
∑

t

Eh|v{h|v(t)} −
∑

t

Eh|v{h|v̂(t)}

∂ logL
∂b

≈
∑

t

v(t)−
∑

t

v̂(t)

with v̂(t) = σ(Wĥ(t) + b), where ĥ(t) is a binary random
sample from Ph|v(·|v(t)).

25

Fig. 1. Word error rate gap in percentage points between the system without
pretraining and that with DBN pretraining.

To train multiple layers, one trains the first layer, freezes it,
and uses the conditional expectation of the output as the input
to the next layer and continue training next layers.

Hinton and many others have found that initializing MLPs
with pretrained parameters often helps [10]. Figure 1, which is
a different view of results originally presented in [3], illustrates
the word error rate (WER) gap between systems without
and with DBN pretraining. We can clearly see that DBN-
pretraining is not important when only one hidden layer is used
and it significantly outperforms the system without pretraining
with two hidden layers. When the number of hidden layers
increases, the effectiveness decreases as indicated by the
decreasing WER gap between the system with and without
pretraining. This is because DBN-pretraining employs two
approximations. First, the mean-field approximation is used
as the generation target when training the next layer. Second,
the approximated contrastive divergence algorithm is used
to learn the model parameters. Both these approximations
introduce modeling errors for each additional layer. As the
number of layers increases, the integrated errors increase and
the effectiveness of DBN-pretraining decreases.

3) Discriminative Pretraining:
To remedy the modeling inaccuracies in DBN pretraining, we
propose an alternative which we call discriminative pretrain-
ing, or DPT. We took a first step in [3] with “layer-wise
BP,” in which we first trained a one-hidden-layer DNN to full
convergence using senone labels discriminatively with BP, then
replaced the softmax layer by another randomly initialized
hidden layer and a new random softmax layer on top, again
discriminatively trained the network to full convergence, and
so on until the desired number of hidden layers was reached.
This is similar to ’greedy layer-wise training’ [16], but differs
in that [16] only updates newly added hidden layers.

While this achieved accuracies close to those obtained with
DBN pretraining, we found that it can be further improved by
(1) stopping very early by going through the data only once
and (2) using large learning rate (0.08 in our experiments). The
goal is to bring the weights close to a good local optimum.

As our results will show, DPT outperforms DBN pretrain-
ing, full-convergence “layer-wise BP,” and no pretraining for
deep networks. Yet, we believe better pretraining and/or opti-
mization algorithms exist to achieve even better performance.

4) Weight Sparseness:
DNNs can be improved by moderate sparsification of the

weight matrices. Enforcing weight sparseness is equivalent to
incorporating L0 and approximate L1 regularizations to the
training criterion. We have found, however, that enforcing
sparseness during pretraining or at the early stage of BP is
harmful. The strategy adopted in this paper, which proved
to be effective, is to fine-tune the models without sparseness
constraint until the weights are relatively stable. In our ex-
periments, we started enforcing sparseness after sweeping the
data at least four times. The strategy is to force all weights
smaller than a threshold to be 0, and to continue fine-tuning
the model with BP while keeping all weights smaller than half
of the threshold to be 0. This is to prevent reappearance of
small weights while avoiding sudden removal of weights that
shrink below the original threshold.

C. Speech Recognition with CD-DNN-HMMs

1) Integrating DNNs with CD-HMMs:
Following the traditional ANN-HMMs of the 90’s [4], we
replace the acoustic model’s Gaussian mixtures with an MLP
and compute the HMM’s state emission likelihoods po|s(o|s)
by converting state posteriors from the MLP to likelihoods:

po|s(o|s) =
Ps|o(s|o)

Ps(s)
· const(s). (3)

Here, classes s correspond to HMM states, and observation
vectors o are regular acoustic feature vectors augmented with
neighbor frames (5 on each side in our case). Ps(s) is the
prior probability of state s.

However, unlike earlier ANN-HMM systems, we model tied
triphone states directly. It had long been assumed that the
thousands of triphone states were too many to be accurately
modeled by an MLP, but [1] has shown that doing so is not
only feasible but works very well. This is a critical factor in
achieving the unusual accuracy improvements in this paper.
The resulting model is called the Context-Dependent Deep
Neural Network HMM, or CD-DNN-HMM.

2) Speaker Adaptation With Feature-Space Transforms:
Feature-space transforms for speaker adaptation developed
for GMM-HMMs—VTLN and fMLLR—can conceptually be
applied to DNNs, although with limits, as results will show.

Vocal-Tract Length Normalization, or VTLN, warps the
frequency axis to account for the fact that the precise locations
of vocal-tract resonances vary roughly monotonically with the
physical size of the speaker. Using 20 quantized warping
factors from 0.8 to 1.18, the optimal warping factor per
conversation side in training is found EM-like by repeatedly
selecting the best factor given the current model and then
updating the model. In testing, we pick the best factor by
“brute-force,” running recognition for all factors and selecting
the highest cumulative log probability per conversation side.

Feature-space Maximum-Likelihood Linear Regression, or
fMLLR, transforms feature frames with a speaker-specific
square matrix M and a bias c. For GMM-HMMs, M and
c are estimated to maximize the likelihood of the adaptation
data given the model. In this paper, the ’ground truth’ are
unsupervised recognition transcripts. We iterate four times.

26

For DNNs, we can either use fMLLR transforms from the
GMM, or estimate M and c by maximizing D′(O) = D(M ·
O + c) on the unsupervised adaptation data with BP [17].
Without augmenting neighbor frames, the gradients are:

∂D′

∂M
=

∑
t

o(t) · (W 0e0(t))T ;
∂D′

∂c
=

∑
t

W 0e0(t)

while with neighbor augmentation, M is block-diagonal, with
blocks and bias tied across neighbor frames. We call this
Feature-space Discriminative Linear Regression, or fDLR.

III. TRAINING CD-DNN-HMMS

In this section, we will describe the process and some
practical considerations in training CD-DNN-HMMs.

A. Basic Training Process

DNN model learning begins with the pretraining (DBN or
discriminative), using one full sweep through the 309 hours of
training data for all hidden layers (for DBN, we use two full
sweeps for the first layer, and slight gains may be obtained by
sweeping the data additional times, but it seems not critical
[1]). RBMs are not scale-invariant, so the training corpus is
normalized to zero mean and unit variance [19].

After pretraining, the DNN is fine-tuned using BP with state
labels obtained through forced alignment. The model structure
(phone set, HMM topology, tying of context-dependent states)
and the HLDA transform, if used, are inherited from our best
GMM-HMM model ML-trained on the same data, which is
also used to initialize the state alignment s(t) (Eq. (1)). The
alignment is updated once during training.

B. Gradient Ascent

The gradient ascents are done in mini-batches. The mini-
batch size trades off noisy gradients with slow convergence.
In our case, around 1000 frames generally worked best for
back-propagation (except for the first mini-batches, where we
reduced it by a factor of 4), and 100-300 for pretraining.

For pretraining, we used a learning rate ε ≈ 1 per minute of
speech, and for early BP iterations about 1 per 3 seconds which
was reduced 40-fold after 3 sweeps. Following the original BP
paper [15], we also smooth the gradients with a first-order
low-pass (“momentum,” time constant ≈ 25 seconds). The
minibatch size and learning rates used in this work are very
close to what have been used in other tasks [1], [2].

Gradient ascent in mini-batches works best if data is
presented in random order, but that is problematic because
relevant speech corpora do not fit into RAM. As a compromise,
we limit randomization to within a rolling window of 48 hours
of data which is held in RAM.

C. GPGPU Considerations

Gradient ascent with small mini-batches cannot be meaning-
fully parallelized across multiple servers. Instead, we utilize
one or two NVidia Tesla 448-core GPGPU devices connected
to a single host. With mini-batches, much of the algorithm can
be written as operations on large matrices, for which GPGPUs
are an excellent match [10].

TABLE I
Core results and effect of modeling techniques on CD-DNN-HMM accuracy.
‘SI’ means speaker-independent single-pass, and ‘nz’ ’non-zero’. The last

row is our ‘best-ever’ speaker-adaptive multi-pass system trained on 7 times
more data. Word-error rates in % for Hub5’00-SWB and RT03S-FSH.

modeling #params WER (±relative change)
technique [106] Hub5’00-SWB RT03S-FSH

GMM 40 mix DT 309h SI 29.4 23.6 27.4

CD-DNN 1 layer×4634 nodes 43.6 26.0 (+10%) 29.4 (+7%)
+ 2×5 neighbor frames 45.1 22.4 (-14%) 25.7 (-13%)
CD-DNN 7 layers×2048 nodes 45.1 17.1 (-24%) 19.6 (-24%)
+ updated state alignment 45.1 16.4 (-4%) 18.6 (-5%)
+ sparsification 15.2 nz 16.1 (-2%) 18.5 (-1%)

(total gain GMM→DNN) (-32%) (-33%)
+ VTLN speaker adaptation 16.9 nz 16.1 (±0%) 17.6 (-5%)
+ fDLR (4 iterations) 16.9 nz 15.5 (-4%) 16.9 (-4%)

GMM 72 mix DT 2000h SA 102.4 17.1 (-28%) 18.6 (-32%)

To reduce data transfer between CPU and GPGPU(s),
model parameters (W, a, b) and accumulators are kept only
in GPGPU memory during operation. Thus, when using a
single GPGPU device, data transfer is limited to minibatches
of features and ground-truth labels. With more than one
device, we distribute model parameters and gradients in dis-
joint stripes across the GPGPU devices, while layer state is
scattered/gathered between devices. Due to this, the second
GPGPU device only yields an additional 25% speed-up.

IV. EXPERIMENTAL RESULTS

A. Setup and Core Results

We evaluate the effectiveness of CD-DNN-HMMs and
feature transforms on the task of speech-to-text transcription
using the 309-hour Switchboard-I training set [20]. The sys-
tem uses 13-dimensional PLP features with rolling-window
mean-variance normalization and up to third-order derivatives,
reduced to 39 dimensions by HLDA. The speaker-independent
3-state cross-word triphones share 9304 CART-tied states.

The GMM-HMM baseline system has 40-Gaussian mixtures
per state, trained with maximum likelihood (ML), and refined
discriminatively (DT) with the boosted maximum-mutual-
information (BMMI) criterion. Using more than 40 Gaussians
did not improve the ML result.

The CD-DNN-HMM system replaces the Gaussian mixtures
with likelihoods derived from the MLP posteriors (Eq. (3)),
while leaving everything else the same.

The data for system development is the 1831-segment SWB
part of the NIST 2000 Hub5 eval set. The FSH half of the 6.3h
Spring 2003 NIST rich transcription set (RT03S) acts as the
evaluation set.1 The trigram language model was trained on the
2000h Fisher transcripts and interpolated with a written-text
trigram. Test-set perplexity with the 58k lexicon is 84.

The right column of Table I shows the core accuracy
improvement from using DNNs on the evaluation set: For
single-pass speaker-independent recognition, the word-error
rate (WER) is reduced from the discriminatively trained

1We learned recently that 36 of the 40 Hub5’00-SWB test speakers have
(disjoint) data in the training set [21]. Table I eased our concerns by showing
that the RT03S-FSH set, which has no speaker overlap, behaves very similarly.

27

TABLE II
Effect of modeling techniques for GMM on a shallow and a deep NN.

Word-error rates in % for Hub5’00-SWB (relative change in parentheses).

modeling GMM CD-DNN
technique 40 mix 1×2k 7×2k

PLP baseline 28.7 24.1 17.0
+ HLDA 52→39 dim. 26.5 (-8%) 24.2 (+0%) 17.1 (+1%)
+ DT (GMM only) 23.6 (-11%) - -
+ VTLN from resp. model 21.5 (-9%) 22.5 (-7%) 16.8 (-2%)
+ {fMLLR,fDLR}×4 20.4 (-5%) 21.5 (-4%) 16.4 (-2%)
vs. VTLN from GMM 21.5 (-9%) 22.7 (-6%) 17.1 (-0%)
+ fMLLR×4 from GMM 20.4 (-5%) 21.1 (-7%) 16.3 (-5%)

HLDA-based GMM-HMMs’ 27.4% to 18.5% for CD-DNN-
HMMs (row labeled “sparsification”)—a quite significant 33%
relative gain.

The speaker-independent 309-hour CD-DNN-HMM system
also marginally outperforms our best speaker-adaptive multi-
pass system (18.6%, last row) which uses additional acoustic
training data (the 2000h Fisher corpus), VTLN, MLLR, and
ROVER. For comparison, results on more recent but similar
test sets are around 17-18% [22] using 2000 hour training data.

The gains are not tied to Switchboard. In [3], we showed
that much of the gain also carries over for four less well-
matched test sets—the cell-phone SW portion of RT03S, two
voice-mail sets, and wideband recordings of teleconferences.
The relative improvements were 22–28% over HLDA/DT.

B. Modeling Techniques

1) Effects of DNN Modeling Techniques:
Table I also shows the system development for a CD-DNN-
HMM with 7 hidden layers to illustrate the impact of several
factors. Here, all DNNs are trained with DBN pretraining and
have a softmax layer for 9304 tied states.2

Starting with a 1-hidden-layer MLP, we see that the use of
context frames yields a 14% relative gain on the development
data, nearly twice what is achieved using neighbor frames
with GMM-HMMs (LDA, fMPE). The effective exploitation
of neighbor frames is one of the DNN’s strengths.

Rearranging the parameters from 1 into 7 layers (while
keeping their number constant) shows the modeling power of
intermediate layers: Errors are reduced by 24% relative. Note
that even dramatic further increase of the hidden layer size
would not even come close—a single-layer DNN with 16k
nodes is only marginally better (22.1% [3]). This suggests
that the deep models’ additional factorization by means of
intermediate layers is indeed critical.

The above networks were trained using state alignments
generated from the GMM-HMM ML model. Updating the
state alignment using the CD-DNN-HMM yields another 4%
relative reduction. Lastly, moderate sparsification of the weight
matrices that zeroes about two thirds of the weights yields
another small improvement of 0.3 points. Overall, this model
has seen about 20 sweeps through the training data, taking
about 30 days of processing.

Up to this point, the model is speaker independent us-
ing single-pass decoding. Adding VTLN and unsupervised

2To our knowledge, [3] was the first to ever use such a large softmax layer
for acoustic modeling in ASR.

conversation-side fDLR speaker adaptation yields an addi-
tional 4% relative reduction for the dev set, and a total of
9% for the eval set. More on that in the next section.

2) Effects of GMM Modeling Techniques for DNN:
Table II shows the effect of three common GMM-HMM
technologies, applied to the DNN. The ‘PLP baseline’ is a
system as described in section IV-A but with HLDA and
DT disabled. For the GMM, the three ‘work horses’ HLDA,
DT, and VTLN together reduce errors by one quarter. HLDA
and DT, accounting for an 18% reduction for the GMM, are
‘innate’ to the DNN and do not lead to explicit gains ([23]
finds the same for LDA). Actually, HLDA causes a small loss.

While the DNN, with a WER of 17.0%, improves the
‘naı̈ve’ ML-trained PLP baseline of 28.7% by a massive
relative 41% (top row of Table II), we should meaningfully
compare it against the GMM system with HLDA and DT
applied (23.5%), since these are well-understood standard
techniques. Hence, the DNN achieves 28% error reduction
(or 32% if DNN state realignments and sparseness are used,
cf. Table I). It does so without the hassle of estimating HLDA
or generating word-lattice for discriminative training.

The center section of Table II considers multi-pass speaker
adaptation. We applied VTLN in training (warping factors
for DNN training copied from GMM-ML VTLN training),
and testing (factors selected by conversation-side decoding
likelihood using the model under test). To our great surprise,
we found that VTLN does not quite carry over to the deep NN
with 7 hidden layers. It achieves only a meager 2% relative
gain (and even none for the final sparse model trained with
DNN state alignments, Table I). On the eval set (Table I), the
VTLN gain is 5%, a little more than half as that for the GMM.
VTLN is more effective on the shallow 1-hidden layer NN,
though (7% gain). Since the implementation is identical to the
deep NN, we conclude that the deep NN is able to learn vocal-
tract length invariant structures to a significant degree. On the
eval set, about one third of the post-HLDA/DT gain obtained
by the DNN is explained by this. We had not expected that.

For validation, we compare using VTLN warping factors
chosen by the GMM system in DNN decoding (Table II,
bottom). The VTLN gain reduces to 0 for the deep network—
The DNN learns VTL invariance well enough to be sensitive
to minor inconsistencies of warping factors.

fDLR (on top of VTLN, in test only; Table II center) further
reduces WER by 7% rel. for the shallow network, but only by
2% for the deep NN. It falls short by 0.1 percentage points
compared to directly using the GMM’s fMLLR transform. For
the eval set (Table I), the fDLR gain is 4%. This re-validates
the fDLR criterion [17] in the context of a DNN, but raises
the question whether BP is effective even through a deep stack
of 8 model layers. It also shows that the DNN cannot learn
speaker invariance to this degree.

C. Layers and Training Procedures

Figure 2 illustrates the effect of the number of hidden layers
and different training procedures to the word error rate. First,
increasing from 1 to 7 layers (2048 hidden nodes at each

28

Fig. 2. Comparing different pretraining techniques—DBN, discriminative,
LBP and none—by word-error rate as a function of the number of layers.
The baseline WER for the discriminatively trained GMM-HMM is 23.6%.

layer), using DBN pretraining, reduces WER from 24.2%
to 17.1%, where it saturates (further increasing to 9 and 11
layers3 yields 17.0%).

In the Figure, “No Pretraining” refers to pure BP (section
II-B1) with random initialization of all layers, while “DBN
pretraining,” “layer-wise BP,” and “discriminative pretraining”
use the pretraining methods (sections II-B2 and II-B3) to
initialize the model parameters and then optimize parameters
in all layers jointly with BP.

As expected, pure BP without pretraining performs worst.
In fact, it is nearly 2 percentage points worse than the
DBN pretraining for 2 and 3 hidden layers. However, when
the number of layers increases, the difference continuously
reduces and becomes only 0.3 points for 7 hidden layers.

Layer-wise BP (with iteration until full convergence at each
layer) outperforms pure BP and gets close to DBN pretraining.
This suggests that pretraining helps but is not critical for CD-
DNN-HMMs to outperform GMM-HMMs. It also indicates
that DBN pretraining is less effective for 5 and more layers.

Discriminative pretraining slightly outperforms DBN pre-
training. The gap grows at 5 layers and reaches 0.3 percentage
points with 7 hidden layers. Discriminative pretraining has the
added benefit of using the same BP algorithm, and thus allows
us to focus on improving just one single unified algorithm.

V. CONCLUSION

In this paper, we investigated the potential of CD-DNN-
HMMs from a feature-engineering perspective. We looked at
the DNN from a different angle by considering training it as
joint optimization of a complex discriminative feature extrac-
tor and a log-linear model that exploits these environment- and
speaker-invariant features. Our experiments on the conversa-
tional speech-to-text transcription task indicate that DNNs can
subsume HLDA and much of the gain of VTLN, while still
benefiting from unsupervised fMLLR-like speaker adaptation
(fDLR) and from discriminative pretraining.

Our results suggest that shallow neural networks have much
less effective feature extraction power than the deep neural
networks. As a result, feature-engineering techniques such as
VTLN, commonly used in GMM-HMMs, can bring further
gains for shallow NNs but less so for deep NNs. On the other
hand, the 30+% relative WER reduction of CD-DNN-HMM

3The 11-hidden-layer network has 66 million parameters, and is to our
knowledge the largest artificial neural network for ASR to date.

over CD-GMM-HMM with HLDA, DT, and VTLN indicates
that the features automatically extracted by DNNs are far
superior than those already captured in HLDA and VTLN.

The main challenge we are facing for making CD-DNN-
HMMs mainstream is to improve efficiency of the training to
scale up further to tens of thousands of hours of data.

VI. ACKNOWLEDGEMENTS

We thank Asela Gunawardana, Kit Thambiratnam, Jasha
Droppo, Nikko Ström, Zhijie Yan, and Andreas Stolcke for
their help with baselines and fruitful discussion. Special thanks
to Ajith Jayamohan and Igor Kouzminykh of the MSR Ex-
treme Computing Group for access to a Tesla server farm,
without which this work would not have been possible.

REFERENCES

[1] D. Yu, L. Deng, and G. Dahl, “Roles of Pretraining and Fine-Tuning in
Context-Dependent DNN-HMMs for Real-World Speech Recognition,”
in Proc. NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, Dec. 2010.

[2] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-Trained
Deep Neural Networks for Large Vocabulary Speech Recognition,” IEEE
Trans. Speech and Audio Proc., Special Issue on Deep Learning for
Speech and Lang. Processing, 2011 (to appear).

[3] F. Seide, G. Li, and D. Yu, “Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks,” Interspeech, 2011.

[4] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco, “Con-
nectionist Probability Estimators in HMM Speech Recognition,” IEEE
Trans. Speech and Audio Proc., January 1994.

[5] H. Franco et al., “Context-Dependent Connectionist Probabilty Estimata-
tion in a Hybrid Hidden Markov Model–Neural Net Speech Recognition
System,” Computer Speech and Language, vol. 8, pp. 211–222, 1994.

[6] J. Fritsch et al., “ACID/HNN: Clustering Hierarchies of Neural
Networks for Context-Dependent Connectionist Acoustic Modeling,”
Proc. ICASSP, May 1998.

[7] G. Saon et al., “Maximum Likelihood Discriminant Feature Spaces,”
ICASSP, 2000.

[8] P. Zhan et al., “Vocal Tract Length Normalization for LVCSR,” Tech-
nical Report CMU-LTI-97-150, Carnegie Mellon Univ., 1997.

[9] M. Gales, “Maximum Likelihood Linear Transforms for HMM-Based
Speech Recognition,” Computer Speech & Language, vol. 12, 1998.

[10] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for
Deep Belief Nets”, Neural Computation, vol. 18, pp. 1527–1554, 2006.

[11] F. Rosenblatt, “Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms”, Spartan Books, Wash. DC, 1961.

[12] A. Stolcke et al., “Recent Innovations in Speech-to-Text Transcription at
SRI-ICSI-UW,” IEEE Trans. on Audio, Speech, and Lang. Processing,
vol. 14, No. 5, Sep. 2006.

[13] L. Saul et al., “Mean Field Theory for Sigmoid Belief Networks”,
Journal: Computing Research Repository–CORR, pp. 61-76, 1996.

[14] D. Yu and L. Deng, “Deep-Structured Hidden Conditional Random
Fields for Phonetic Recognition”, Proc. Interspeech, 2010.

[15] D. Rumelhart, G. Hinton, and R. Williams, “Learning Representations
By Back-Propagating Errors,” Nature, vol. 323, Oct. 1986.

[16] Y. Bengio et al., “Greedy layer-wise training of deep networks,” Ad-
vances in Neural Information Processing Systems 19, 2007.

[17] V. Abrash et al., “Connectionist speaker normalization and adaptation,”
Proc. Eurospeech, 1995.

[18] G. Hinton, “A Practical Guide to Training Restricted Boltzmann Ma-
chines”, Technical Report UTML TR 2010–003, Univ. of Toronto, 2010.

[19] A. Mohamed, G. Dahl, and G. Hinton, “Deep Belief Networks for
Phone Recognition,” in Proc. NIPS Workshop Deep Learning for Speech
Recognition, 2009.

[20] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,” Linguistic Data
Consortium, Philadelphia, 1997.

[21] J. Fiscus et al., “2000 NIST Evaluation of Conversational Speech Recog-
nition over the Telephone: English and Mandarin Performance Results,”
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.5417.

[22] IEEE Trans. Audio, Speech, and Lang. Processing, Special Section on
Rich Transcription, vol. 14, No. 5, pp. 1490-1608, 2006.

[23] A. Mohamed et al., “Deep Belief Networks Using Discriminative
Features for Phone Recognition,” Proc. ICASSP, 2011.

29

