
Scheduling Functionally Heterogeneous Systems with Utilization Balancing

Yuxiong He, Jie Liu

Microsoft Research
yuxhe;liuj@microsoft.com

Hongyang Sun

Nanyang Technological University
sunh0007@ntu.edu.sg

Abstract—Heterogeneous systems become popular in
both client and cloud. A parallel program can incur
operations on multiple processing resources such as CPU,
GPU, and vector processor units. This paper investigates
scheduling problems on functionally heterogeneous systems
with the objective of minimizing the completion time of
parallel jobs.

We first present performance bounds of online schedul-
ing and show that any online algorithm is at best around
(K + 1)-competitive with respect to job completion time,
where K is the total number of resource types. There
exist “bad” jobs that prevent any online algorithms from
obtaining good interleaving of heterogeneous tasks. This
lower bound suggests that the relative performance of
online algorithms versus an offline optimal could degrade
linearly as types of heterogeneous resources increase.

The limitation of online scheduling motivates our study
of how additional offline or lookahead information can
help improve scheduling performance. We propose a Multi-
Queue Balancing algorithm (MQB) that effectively trans-
forms the problem of minimizing completion time to one
of maximizing utilization of heterogeneous resources. It
promotes interleaving of heterogeneous tasks through bal-
ancing the task queues of different types. Our simulation
results suggest that MQB reduces the execution time of
online greedy algorithms up to 40% over various workloads
and outperforms other offline schemes in most cases.
Furthermore, MQB can use limited and approximated
offline information to improve scheduling decisions.

Keywords-completion time; DAG; functional hetero-
geneity; heterogeneous systems; offline; online; parallel;
scheduling; utilization balancing;

I. Introduction
Scheduling parallel jobs on multiprocessors, an important
area of research in computer science, has been exten-
sively explored on homogeneous resources [4], [6], [9],
[17], [23], [27], [31]. However, heterogeneous systems
are becoming popular in both client and cloud with
the increasing popularity of various accelerators, such
as GPU, FPGA, and vector processing units, as well
as better programming support across heterogeneous
platforms [13], [18], [24], [25].

Heterogeneity in computer systems can be charac-
terized in two ways. Performance heterogeneity exists
in systems that contain general-purpose processors of
different speeds. A task can execute on any processor,
but it will execute faster on some than others. Executing
parallel programs on processors with different speeds has
been studied intensely in scheduling theory [4], [8], [10],

[11], [31].
Functional heterogeneity, on the other hand, exists in

systems that contain various types of functional units,
and not all tasks of an application can be executed on all
functional units. A system that mixes different physical
processors and co-processors such as CPU, GPU, FPGA,
DSP, and vector processing units is functionally hetero-
geneous. However, functional heterogeneity is not limited
to hardware resources. For example, security and privacy
needs may restrict some application computations that
access sensitive data on local machines, while others
can be performed in a data center. Software licenses can
impose constraints that differentiate the functionality of
machines as well.

We motivate our problem further by a map-reduce
style parallel data analysis framework, known as Cos-
mos [2], that runs on a cluster of tens of thousands of
commodity servers in the back end of the Bing search
engine from Microsoft. User programs in Cosmos are
written in Scope [7], a mash-up language that mixes
SQL-like queries with native code. The Scope compiler
transforms a program, called a job, into a workflow,
which is a directed acyclic graph. Each node of the graph
represents a set of tasks that runs in parallel to perform
a computation on different parts of the input stream (i.e.,
data parallelism). A task, assigned to a server based on
data availability, will read its input over the network if
not locally available. Task outputs are always written to
the local disk. Each edge that joins two nodes represents
a data production and consumption relationship. A job
can have about 20 nodes on average, and each node can
involve thousands of servers. In a typical day, Cosmos
handles over a thousand jobs, with a total computation
time over 50 server-year.

We address the scheduling problem for functionally
heterogeneous systems (FHSs) like Cosmos. To minimize
the job completion time, schedulers should assign tasks
to machines based on data locations, dependence patterns
and cluster-wide resource availability. As a simplified
abstraction, we assume that the servers are clustered into
classes based on their data allocation and tasks are not
assigned across classes. Thus, we treat server classes as
heterogeneous functional units.

In an FHS, an application can perform operations on
multiple processing resources. We model such systems
and jobs as follows. Processors are categorized into K

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1174

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.113

1187

types. A parallel job can consist of different types of
tasks, and each task type can be executed only on the
matching type of resources. We model the execution
of a parallel job as a directed acyclic graph (DAG).
We extended the conventional DAG in prior work on
homogeneous resources [5], [6], [14], [22], [26] to a
parallel job with heterogeneous tasks as a K-resource
DAG, or K-DAG in short. We strive to find a schedule
to complete the job as soon as possible.

Although functional heterogeneity is quite common
in both client and cloud, we found little prior work
on this problem. Early work on FHSs uses job-shop
[3], [16], [23], [31] or DAG-shop scheduling [31] to
minimize the completion time of multiple jobs. Neither
of these approaches allows concurrent execution of tasks
in the same job. Despite the many prior results on
DAG scheduling of homogeneous systems [9], [17], [31],
little quantitative research exists on how these schemes
perform on functionally heterogeneous ones.

This paper presents scheduling algorithms for func-
tionally heterogeneous systems to minimize job com-
pletion time. To achieve this goal, key insight is that
a scheduler must achieve good interleaving of different
types of tasks. In other words, an effective scheduler
wants to balance resource utilization to keep all types
of resources as busy as possible. We elaborate the
importance and usage of utilization balancing in both
online and offline algorithms.

This paper first describes performance and limitations
of online scheduling algorithms on FHS. An online
scheduler lacks knowledge of future job information such
as remaining work and tasks. Let K represent the total
number of resource types and Pα represent the number
of type α resources where 1 ≤ α ≤ K. We show that any
online algorithm is at best

K + 1−
K∑

α=1

1

Pα + 1
− 1

Pmax

competitive with respect to job completion time, where
Pmax = maxα=1,...,K Pα. This lower bound suggests
that the relative performance of online algorithms against
an offline optimal could degrade linearly with increased
types of heterogeneous resources: the lack of lookahead
information can prevent any online algorithm from ef-
ficiently interleaving different types of tasks and make
them fail to balance the utilization of heterogeneous
resources.

We present a simple online greedy algorithm —
KGreedy — that provides the performance guarantee of
(K + 1)-competitiveness. This greedy scheduler is close
to the best that any online algorithm can get. This carries
two messages. On one side, it saves us effort in finding
better online algorithms, because they can at most lead
to marginal performance improvements. For less time-
critical applications where (K + 1)-competitiveness of
completion time is acceptable, KGreedy offers a simple

approximate. On the other side, for time-critical appli-
cations, the limitations of online scheduling motivate
our use of offline/lookahead information to improve
scheduling performance.

To achieve efficient offline scheduling, we propose a
Multi-Queue Balancing algorithm (MQB) that minimizes
job completion time by balancing the task queues of
different types of heterogeneous resources to maximize
task interleaving. It effectively transforms the problem
of minimizing completion time to one of balancing
and maximizing system utilization. If there are mul-
tiple ready tasks, MQB gives priority to those whose
execution can potentially activate more descendants that
can use under-utilized types of resources to achieve
better balanced system utilization. We conduct extensive
simulations to evaluate the performance of the online
KGreedy algorithm with MQB and four other common
offline heuristics. Experimental results suggest that MQB
reduces the execution time of online KGreedy by more
than 40% over various workloads and consistently out-
performs other offline schemes. Even with limited and
approximated offline information of a job, MQB can
make use of them to improve scheduling decisions.

The remainder of this paper is organized as follows.
Section II formulates the K-DAG scheduling problem,
and Section III presents online results. We introduce our
MQB algorithm and describe four other offline algo-
rithms in Section IV. Section V presents the experimental
results of comparing online and offline algorithms for
various workloads. Section VI explores related work, and
we offer concluding remarks in Section VII.

II. Problem Formulation
Our scheduling problem maps a job that consists a
collection of tasks with varied types and precedence
constraints. The processors and tasks are categorized into
K types, and a task can be executed only on a processor
with the matching type. For simplicity, we define the
processors belonging to category α as α-processors, and
the tasks running on α-processors as α-tasks. For each
category α ∈ {1, . . . ,K}, there are Pα α-processors in
the system. This section formalizes the job model and
present the optimization criteria for job completion time.

Job Model
We model the execution of a parallel job J with hetero-
geneous tasks as a K-DAG such that J = (V (J), E(J)),
where V (J) and E(J) represent the sets of J’s tasks (or
nodes) and edges respectively. A K-DAG can have up to
K types of tasks; each α-task v has its work (execution
time), denoted as T1 (v, α), that can be executed only
on an α-processor. The notation V (J, α) represents the
set of α-tasks of the job. The value of α-work T1 (J, α)

indicates the total amount of work of the α-nodes in the
K-DAG, i.e., T1 (J, α) =

∑
v∈V (J,α) T1 (v, α). Each edge

e ∈ E(J) from nodes u to v represents a dependency
between the two tasks, regardless of their types. A task

11881188117511881188118811881188

Figure 1. A job represented by a K-DAG with 3 different types of
tasks drawn as circles, squares, and triangles respectively.

becomes ready to execute if all of its parents have been
completed. The precedence relationship u ≺ v holds
if and only if there exists a path from task u to v in
E(J). The span — or the critical path length T∞ (J)

— corresponds to the amount of work on the longest
chain of the precedence dependencies. We consider both
online and offline schedulers. An offline scheduler knows
in advance the entire K-DAG of a job. For online
scheduling, the K-DAG is unfolded dynamically during
the job’s execution; at any moment, an online scheduler
knows only the tasks either in execution or completed,
as well as the tasks that are ready. The work of an
executing or a ready task, however, is unknown to the
online scheduler.

Figure 1 shows an example of a K-DAG J , with K =

3 represented by the shapes of the nodes. Each task has
unit-size work. Let the circular, square and the triangular
nodes denote α1-tasks, α2-tasks and α3-tasks of the job,
respectively. The work of each type is T1 (J, α1) = 7,
T1 (J, α2) = 4 and T1 (J, α3) = 3. The span of the job is
T∞ (J) = 7.

Objective Function

Our scheduler uses completion time as the performance
measure. The completion time T (J) of job J under a
schedule is the time at which the schedule completes J’s
execution.

We use competitive analysis to show online sched-
uler’s performance relative to an optimal offline algo-
rithm. Let T∗(J) denote the completion time produced by
an optimal algorithm on job J , and let TA(J) denote the
completion time produced by a deterministic algorithm
A for the same job. Algorithm A is said to be c-
competitive in terms of completion time if there exists
a constant b such that TA(J) ≤ c · T∗(J) + b holds for
any job. Similarly, let

T

R(

J

) denote the completion time

produced by a randomized algorithm R for the same
job. Algorithm R is said to be c-competitive in terms
of completion time if there exists a constant b such that
E[TR(J)] ≤ c · T∗(J) + b holds for any job J .

III. Online Scheduling
This section presents lower and upper bounds for online
scheduling on an FHS. In previous work [20], He, Sun
and Hsu showed that any deterministic online algorithm
can be no better than (K + 1 − 1/Pmax)-competitive
with respect to completion time for K-DAG scheduling,
where Pmax = maxα=1,...,K Pα. This section shows that
any randomized online algorithm is at best

K + 1−
K∑

α=1

1

Pα + 1
− 1

Pmax

competitive. In the worst case, these two lower bounds
suggest that, the completion time produced by an online
algorithm degrades linearly with an increase in types of
heterogeneous resources. We also present in this section
an online greedy algorithm that provides the performance
guarantee of (K + 1)-competitiveness and discuss its
implications.

Performance Lower Bound
This section presents a lower bound of randomized online
algorithms on completion time. We start from a technical
lemma that will be used in the lower bound analysis.

Lemma 1: There are n balls in a non-transparent box.
Of the n balls, r are red and n−r are black. At each step,
we can get one ball from the box without replacement,
and each ball has the same probability of being chosen.
The expected number of steps one needs to get all the
red balls is r

r+1 (n+ 1).
Proof: Given n balls and r red ones, there are

(n
r

)
possible combinations to arrange the r red balls at n total
positions, and each combination is equally likely. Let Q
denote the total number of steps we need to get all the
red balls for a trial. The expected value of Q is equal to
the average number of steps to get all red balls over all
combinations. The minimum value of Q is r because it
takes at least r steps to get r red balls. The probability
Pr {Q = r} is 1/

(n
r

)
because only one combination has all

red balls in the front among
(n
r

)
combinations. Similarly,

we have Pr {Q = r + i} =
(r+i−1

i

)
/
(n
r

)
because

(r+i−1
i

)
combinations give Q = r + i, where the last red ball is
at the (r + i)-th position and i black balls are in any of
the r + i− 1 positions in the front.

Therefore, the expected value of Q is

E [Q] =

n∑
i=r

i× Pr {Q = i}

=

n−r∑
i=0

(r + i)× Pr {Q = r + i}

=

(

r +

n−r

∑
i=1

(r + i)×

(

r

+ i

−

1

i

))

/

(

n

r

)

=
r

r + 1
(n+ 1).

11891189117611891189118911891189

...

...

...

...

... ...

... ...

.
.
.

Figure 2. An example of a job instance used in the analysis of
Theorem 2.

We now prove Theorem 2.
Theorem 2: The competitive ratio of any randomized

online algorithm cannot be better than

K + 1−
K∑

α=1

1

Pα + 1
− 1

Pmax

with respect to completion time for K-DAG scheduling,
where Pmax = maxα=1,...,K Pα.

Proof: We use Yao’s technique [32] in the analysis.
We show a lower bound on the performance ratio of
any deterministic algorithm on a job instance drawn
from a probabilistic distribution. According to Yao’s
theorem, the same lower bound holds for all randomized
algorithms.

We first describe the probabilistic distribution of jobs
that we use in this proof. An example of such a job is
illustrated in Figure 2. Without loss of generality, let us
assume PK = Pmax. The job has PαPKm number of
α-tasks for each type α = 1, ...,K, where m is a positive
integer constant. For α-tasks where α = 1, ...,K − 1, Pα

of them have outgoing edges to all (α+1)-tasks; we call
these active α-tasks. The remaining PαPKm − Pα have
no outgoing edges. The active α-tasks follow uniform
random distribution on all α-tasks. For K-tasks, mPK−1

of them form a chain, where each task but the last has
one outgoing edge. These tasks are called chain tasks.
Among the remaining PKPKm − mPK + 1 K-tasks,
PK active ones have outgoing edges to the first of the
chain tasks. The remaining K-tasks do not have outgoing
edges. Active K-tasks are uniformly distributed among
all K-tasks that are not chain tasks. All the tasks have
unit-size work.

Given a job instance J from the distribution, for α =

2, ...,K, any α-tasks can get ready to run only after all
the active (α − 1)-tasks have completed. The first chain
tasks get ready only after all the active K-tasks have

completed. We use Sα to denote the number of steps
from the time any α-tasks get ready to the time all active
α-tasks have completed. The job completion time is at
least the summation of Sα for all α = 1, ...,K plus the
time tc taken to complete the chain. So we have

T(J) ≥
K∑

α=1

Sα + tc . (1)

To schedule J , an optimal offline scheduler S always
executes the active tasks as soon as possible. Since 1-
tasks do not have any incoming edges, all of them are
ready at time step 0. An optimal scheduler runs all P1

active 1-tasks at the first time step. Then, all 2-tasks are
ready at time 1. So, we have S1 = 1. For α = 2, ...,K, all
α-tasks get ready at time α−1. Once ready, the scheduler
always executes active tasks first in one step, i.e., Sα = 1.
K-tasks, the last type of tasks, can be completed in mPK

time steps by executing one unit of K-task on the critical
path at each step and executing the remaining K-tasks
on the PK − 1 other processors. Therefore, the optimal
scheduler S produces a completion time of T∗(J) =

K − 1 +mPK .

We now bound Sα for any online deterministic al-
gorithm. We start from α = 1. Denote Q1 as the total
number of 1-tasks completed when the last active 1-
task is done. Computing the expected value of Q1 is
analogous to computing the expected number of balls
in Lemma 1 with the collection of balls equivalent to
the collection of 1-tasks, i.e., n = P1PKm and with
red balls corresponding to active tasks, i.e. r = P1.
According to Lemma 1, the expected value of Q1 is
E [Q1] = (P1/(P1 + 1))(P1PKm+ 1). Since at each time
step, at most P1 tasks can be processed, we have

E [S1] ≥ E [Q1] /P1 ≥ P1

P1 + 1
PKm (2)

Similarly, we can bound S2, ..., SK−1 as E [Sα] ≥
(Pα/(Pα + 1))PKm. For K-tasks, since there are
PKPKm −mPK + 1 non-chain K-tasks with PK active
tasks among them, we have E [SK] ≥ (PK/(PK +

1))(PK − 1)m. The time tc to complete the chain tasks
is at least mPK − 1 since they have a span of mPK − 1.

According to the linearity property of expectation and
Inequality (2), we can bound the expected time for any
deterministic algorithm to complete J as

E [T(J)]

≥
K∑

α=1

E [Sα] + E [tc]

≥

(
K + 1−

K∑
α=1

1

Pα + 1

)
mPK − PK

PK + 1
m− 1 .

11901190117711901190119011901190

Thus, the competitive ratio is given by

E [T(J)]

T∗(J)

≥

(
K + 1−

∑K
α=1

1
Pα+1

)
mPK − PK

PK+1m− 1

K − 1 +mPK

=
K + 1−

∑K
α=1

1
Pα+1 − 1

PK+1 − 1
PKm

1 + K−1
mPK

. (3)

Let m ≫ K, then K−1
mPK

and 1
PKm approach 0. Since

PK = Pmax, according to Inequality (3) we have

E [T(J)]

T∗(J)
≥ K + 1−

K∑
α=1

1

Pα + 1
− 1

Pmax + 1
(4)

According to Yao’s theorem, the above bound holds for
any randomized algorithms.

Theorem 2 gives a performance lower bound for any
online algorithms that use K-DAG scheduling. Accord-
ing to the analysis, some “bad” jobs (such as those in
Figure 2) prevent any online algorithms from obtaining
optimal interleaving and balancing different types of
tasks. At any moment, a few types of resources are
busy while other types are idle. Since offline optimal
algorithms can balance the utilization of different types
of resources but online algorithms cannot, we see the
Ω(K) times of performance difference as shown in
Inequality (4).

Performance Upper Bound
In homogeneous systems, list scheduling using a greedy
algorithm, one of the most well-known online algorithms,
represents the first problem for which competitive anal-
ysis was presented in 1966 (by Graham [17]). Given P

identical machines and a DAG job, a greedy scheduler
works as follows: at any time step, if there are more
than P ready tasks, the scheduler executes any P of
them; if there are at most P ready tasks, it executes
them all. Graham showed that this greedy scheduler was
(2− 1/P)−competitive for completion time.

In K-DAG scheduling, we consider a simple extension
to this greedy scheduler that we call KGreedy. KGreedy
uses K number of greedy schedulers, where each works
for one type of resource. For example, when K = 2,
KGreedy has two greedy schedulers working for 1-tasks
and 2-tasks. At any time step, if there are more than P1

ready 1-tasks, KGreedy executes any P1 of them; if there
are at most P1 ready tasks, it executes them all. KGreedy
performs the same greedy scheduling for type 2-tasks.

It is not hard to show that KGreedy is (K + 1)-
competitive for completion time. An extension of Gra-
ham’s competitive arguments [17] would serve the pur-
pose; refer to Theorem 3 of [20] for a complete proof.
This competitive result of KGreedy matches the lower
bound in Theorem 2 when there is a large number of
processors for each type of resources. Therefore, the
greedy scheduler performs close to the best that any
online algorithm can get. It saves us effort in finding

better online algorithms, which can at most lead to
marginal performance improvements in the worst case.
For non-time-critical applications that satisfy (K + 1)-
competitiveness of completion time, KGreedy offers a
simple solution. However, for time-critical ones, the
limitations of online scheduling motivated us to explore
whether additional offline/lookahead information on job
characteristics could help schedulers make better deci-
sions.

IV. Offline Algorithms
This section presents offline scheduling algorithms on
an FHS. Since computing optimal completion time
for homogeneous DAG jobs is already NP-hard [15],
K-DAG scheduling for minimum completion time is
NP-hard. Therefore, our study focuses on developing
efficient heuristic algorithms. We now present a new
offline algorithm, called Multi-Queue Balancing (MQB),
for scheduling K-DAG. MQB seeks to minimize job
completion time by balancing system utilization and
improving interleaving of different types of tasks. To
evaluate MQB performance, we will compare it to online
KGreedy and four other offline algorithms. Some of
these algorithms are from well-known heuristics in ho-
mogeneous scheduling, while others drive from popular
heuristics in job-shop scheduling.

A. Multi-Queue Balancing Algorithm
MQB maintains a set of K ready queues in the system,
one for each type of resources. At any time, if an α-
processor runs out of work, it selects a task to execute
from the corresponding ready queue, namely the α-
queue. MQB gives priority to tasks whose execution
can potentially activate more descendants, using under-
utilized resources to achieve better balanced system
utilization.

Two important concepts underpin the MQB algorithm.
The first is the notion of balance for the set of ready
queues. Intuitively, we say that a snapshot A of ready
queues has better balance than a snapshot B if the
shortest queue of A is larger than that of B: the short-
est queue will likely be the bottleneck to maximizing
system utilization. In the actual algorithm, MQB also
considers the number of processors for each resource.
We define the x-utilization metric for the α-queue to
be rα(A) = lα(A)/Pα, where lα(A) is the total work of
ready tasks in α-queue at snapshot A, and Pα is the total
number of α-processors. MQB compares the queues with
the smallest x-utilization values to decide the balance.
More precisely, let πA(·) denote a non-decreasing order
of all queues in terms of the x-utilization value, i.e.,
rπA(1) ≤ rπA(2) ≤ · · · ≤ rπA(K). The balance RA of
the K ready queues at snapshot A is then given by the
ordered set RA = {rπA(1), rπA(2), · · · , rπA(K)}. We say
that the set of K ready queues at snapshot A has better
balance than at snapshot B if we have RA > RB in the

11911191117811911191119111911191

lexicographical sense, that is, there exists a j ≤ K such
that rπA(j) > rπB(j) and rπA(i) = rπB(i) for all 1 ≤ i < j.

The second involves a task’s descendant value. For
each resource type α, a task in the K-DAG maintains
a descendant value dα approximating its descendant
workload of type α for each 1 ≤ α ≤ K. MQB calculates
the descendant value recursively, as follows:

dα(v) = 0 if task v has no children, otherwise ,

dα(v) =
∑

u∈{children(v)}
(dα(u) + wα(u))/pr(u) ,

where pr(u) represents the number of parents of task
u, and wα(u) is equal to the work of u if u is an α-
task and 0 otherwise. In other words, an α-task u with
pr(u) parents contributes 1/pr(u) of its own descendant
value to the descendant value of each of its parents for
any resource type, plus an additional 1/pr(u) of its own
work to dα of each parent.

MQB works as follows. For each type α, when there
are at most Pα ready α-tasks to run at any time, MQB
runs them all. When there are more than Pα ready
α-tasks, MQB gives priority to tasks whose execution
can potentially activate more descendants to achieve
better balanced utilization. Specifically, MQB assumes
that the work of each ready queue can be increased by
the corresponding descendant value of a ready task. It
chooses the task leading to the best balance when that
task’s descendant values are added to the existing ready
queues. MQB repeats this process until all processors
have been assigned.

B. Other Heuristic Algorithms
The four other offline heuristic algorithms, whose perfor-
mances we compare to MQB and KGreedy in Section V
include. These four algorithms are

• Longest span first (LSpan)
• Maximum descendants first (MaxDP)
• Different type first (DType)
• Shifting bottleneck (ShiftBT)

The first two heuristics, LSpan and MaxDP, well-
known for scheduling homogeneous resource, can be
directly applied to heterogeneous resource scheduling
by favoring tasks with the longest span and the maxi-
mum descendants, respectively. Specifically, when an α-
processor runs out of tasks, it uses the following rules to
select a ready α-task.
• LSpan picks an α-task with the longest remaining span.
If a task does not have a child, its remaining span is its
remaining work. Otherwise, its span can be computed
as the sum of its remaining work and the longest span
among its children.

• MaxDP picks an α-task with the largest descendant. A
task without children has descendant value 0. A task
u with pr(u) parents contributes 1/pr(u) of its own
descendant and its own work to the descendant of each
of its parents. The descendant calculation for MaxDP

resembles that for MQB. However, MaxDP does not
differentiate the descendant values of different types.

While LSpan and MaxDP are straightforward exten-
sions of the homogeneous resource scheduling heuristics
without considering the presence of different resource
types, the last two heuristics, DType and ShiftBT, do
consider the resource heterogeneity. Specifically, they
select a ready α-tasks using these rules:

• DType picks an α-task with the smallest different-
child distance, where a task’s different-child distance is
the shortest distance to any descendant with a different
type. The DType thus prioritize tasks that are parents
or ancestors of tasks of other types.

• ShiftBT, an extension of the well-known shifting bot-
tleneck heuristic [1] in job-shop scheduling, works as
follows. For each resource type α, assuming all other
types of resources have infinite number of processors,
ShiftBT finds a schedule that tries to minimize the
maximum lateness of all tasks. Lateness of a task
measures the difference between its actual completion
time and due date; the due date, the latest time to start
a task without delaying other tasks, is computed as the
total span of the job minus the remaining span of the
task. The larger the lateness, the worse a task could
delay the execution of other tasks. In order to find a
schedule that minimizes the maximum lateness, ShiftBT
uses a heuristic that always gives priority to tasks with
earlier due date. For a resource type α, let’s use Lα

to represent the maximum lateness value of all tasks
in the schedule produced by earliest due date heuristic.
ShiftBT finds the resource type k that maximizes the
lateness value, i.e., k = argmax {Lα|α = 1..K}. This
resource, considered to be the biggest bottleneck re-
source, gets priority to be scheduled first. ShiftBT then
repeats this process with the remaining resource types
until all types have been considered.

All scheduling algorithms described in this paper can
work in either non-preemptive or preemptive mode. A
non-preemptive scheduler decides task allocation when a
processor is idle, and the task runs through completion on
its assigned processor without preemption. A preemptive
scheduler makes decisions for each processor at the
beginning of every scheduling quantum, and a task can be
preempted at one processor and reallocated to another.

V. Experimental Evaluation
We conducted the following experiments to evaluate the
performance of our six scheduling algorithms (KGreedy,
LSpan, DType, MaxDP, ShiftBT, and MQB):

• Algorithm performance experiments to compare
the performance of the six algorithms over different
workloads

• Changing K experiments to investigate the impact
of changing K values from 1 to 6, where K repre-
sent the number of different resource types

11921192117911921192119211921192

• Skewed load experiments to study the impact of
biased workloads where some resources are more
heavily loaded than others

• Preemptive scheduling experiments to compare
performance of non-preemptive algorithms to their
preemptive counterparts

• Approximated information experiments to evaluate
the influence of partial and imprecise job informa-
tion on scheduling

We first discuss our simulation setup (Section V-A)
and workload (Section V-B) before presenting experi-
mental results (from Section V-C to Section V-G).

A. Simulation Setup
We built a discrete-time simulator using C# to evaluate
the scheduling algorithms. Composed of resources, jobs,
schedulers, our simulator simulates the interactions of
tasks on the resources. For preemptive scheduling, we
ignore the overhead caused by processor reallocation.
Our experiments assumes non-preemptive scheduling as
default except for preemptive scheduling experiments.
We use a default number of different resource types
K = 4 except for changing K experiments. In all figures
representing experimental results, each per bar/point plot
was collected from 5000 instances of jobs.

Given a job J and an algorithm A, we are interested in
the completion time generated by algorithm A comparing
to an offline optimal. Since obtaining an offline optimal
is NP-hard, we compare to the lower bound instead. The
lower bound we use is

L(J) = max

(
T∞ (J) , max

1≤α≤K
(T1 (J, α) /Pα)

)
.

We call this performance metric the completion time ra-
tio, which is calculated as the ratio of the job completion
time produced by algorithm A to the lower bound, i.e.,
T (J)/L(J).

B. Workloads and Resource Configuration
Our experiments use three types of workloads — em-
barrassingly parallel jobs, trees, and iterative reduction
jobs. Each represents a class of parallel programming
applications.

Embarrassingly Parallel Workload : An embarrass-
ingly parallel (EP) workload is one for which little or no
effort is required to separate the problem into a number
of parallel branches, and no dependency exists between
those parallel branches. Each branch is represented as
a chain of tasks. Monte Carlo calculations and other
forms of statistical simulation offer the cleanest example
of an EP job, but many applications in physics, image
processing, bioinformatics, etc., also fall into this gen-
eral category, In a heterogeneous environment, different
phases of an EP branch can be executed on different
resource types.

Figure 3(a) shows an example of an EP DAG. We
further divided them into two categories: (1) layered EP

where each branch includes a fixed sequence of tasks
with type from 1 to K, and (2) random EP where the
type of each task in any branch is decided uniformly at
random. To obtain an EP workload, we varied the number
of branches, the number of tasks in each branch, and the
work and type of each task.

Tree workload : A tree workload starts from a root
task and explores parallelism at each task by solving
the task using parallel execution of subtasks. A divide-
and-conquer parallel program with trivial conquer phases
represents the structure of this workload. Many useful
applications — such as search, graph traversal, and
applications applying speculated parallelism — fall into
this category.

Figure 3(b) shows an example of a tree DAG. We
further divided the tree workload into two categories: (1)
layered trees where all the nodes at each level of a tree
have the same type, and (2) random trees where the type
of each task in a tree is decided uniformly at random. A
tree workload involves the fanout number m and fanout
probability p of any node, i.e., a node has probability
p of having m direct children and probability 1 − p of
having no children. To obtain a tree workload, we vary
the fanout number, fanout probability, and the work of
each task.

Iterative Reduction Workload : An iterative reduction
(IR) workload resembles MapReduce [12] workload with
multiple iterations of map and reduce operations. The
map phase takes inputs, divides them into smaller sub-
problems and runs them in parallel. All map tasks in each
iteration are independent of one another. A reduce phase
combines the answers of all the sub-problems to get the
output. There can be many reduce tasks with each one
computing the final answers over a sub-range of final
results; each reduce task can depend on results from a
set of map tasks. Useful in both distributed and parallel
systems, MapReduce can be applied to a wide range of
applications [28] such as distributed sort, inverted index
construction, document clustering, machine learning, etc.

Figure 3(c) shows an example of an IR DAG. We
consider the case where a reduce task depends on a
subset of all map tasks. Each MapReduce iteration has
map tasks with different fanouts. Tasks with a high
fanout have a higher probability of providing output
to each reduce task. Similarly, some reduce tasks have
different fanins. To obtain an IR workload, we varied
the probability values, the total number of tasks at each
phase, and the work of each task. We also divided this
workload into two categories: (1) layered IR where all
nodes at each iteration of the IR computation have the
same type, and (2) random IR where the type of each
task is decided uniformly at random.

Resource Configuration : We test the workloads on
small- and medium-size systems. Our small system had
1 − 5 resources per type; if K = 4, the system was
composed of 4 − 20 resources in total. Our medium
system had 10− 20 resources per type; if K = 4, it was

11931193118011931193119311931193

(a) EP Random (b) Layered Tree (c) Layered IR

Figure 3. Example K-DAG of EP, tree and IR workloads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(a) Small Random EP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(b) Medium Random Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(c) Medium Random IR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

C
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(d) Small Layered EP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(e) Medium Layered Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(f) Medium Layered IR

Figure 4. Algorithms performance on various workload.

composed of 40−80 resources. Each workload we present
in this section combines application workload and ma-
chine configurations. For example, “medium layered IR”
represents a workload running layered IR K-DAG on
medium systems.

C. Algorithm Performance Experiments
These experiments compare the completion time ratio
of the six algorithms on EP, Tree and IR workloads.
Figure 4 shows the results.

Figures 4(a), 4(b) and 4(c) present algorithm perfor-
mance on the three randomized workloads — random
EP, random tree, and random IR. The average completion
time ratios of the corresponding workloads are close to
1. This suggests that KGreedy performs close to the
lower bound, close to optimal, and comparably with other
offline approaches. These results match our intuition:
the lack of structural information makes it difficult for
a scheduling algorithm to take advantage of a random
model. Therefore, any “best-effort“ algorithm would

work just fine, and a simple greedy online algorithm is
sufficient for such workloads.

Looking at more structured workloads like layered EP,
layered tree and layered IR (Figures 4(d), 4(e) and 4(f)),
appropriate offline information offers considerable im-
provements over KGreedy. Moreover, MQB outperforms
KGreedy by reducing completion time ratio by at least
40% in all layered workloads. Moreover, in practice,
structured programs occur more often because different
tasks and stages could require or better suit different
types of resources.

The following discussion about structured workloads
presents the comparison results:
• Some offline information helps greatly for simple
workloads. For example, all five offline heuristics re-
duce the average completion ratio of layered trees by
half compared to online KGreedy. It is relatively easy
in the tree workload to identify tasks whose execution
leads to better balancing on heterogeneous resources.
These tasks have more descendants, longer remaining

11941194118111941194119411941194

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

K

KGreedy
LSpan
DType
MaxDP

ShiftBT
MQB

(a) Small Layered EP

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 2 3 4 5 6

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

K

KGreedy
LSpan
DType
MaxDP

ShiftBT
MQB

(b) Medium Layered Tree

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 3 4 5 6

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

K

KGreedy
LSpan
DType
MaxDP

ShiftBT
MQB

(c) Medium Layered IR

Figure 5. Performance comparison when varying the total types of resources K from 1 to 6.

spans, and smaller distances to other type of resources.
An algorithm capturing any of this information works
well.

• A good choice of offline heuristics can be application
specific. For example, MaxDP performs well in layered
tree and IR workloads, but performs poorly in layered
EP ones: for EP jobs, balancing resource utilization
depends mostly on the type distribution of descendants,
not their number. However, this information is not cap-
tured by MaxDP. Similarly, LSpan works well for tree
workloads but not for others. An algorithm performing
well consistently would be highly desirable.

• A well-known and effective heuristic for job-shop
scheduling ShiftBT’s performance varies in K-DAG. In
particular, it works well in EP and trees but not in IR.
This is related to the optimality of the subcomputations
on minimizing the maximum lateness. With a chain
or a tree of tasks, the earliest due date heuristic that
ShiftBT uses to minimize the maximum lateness leads
to good solutions. However, there is no effective way to
minimize lateness for more general K-DAG. When the
quality of the subcomputation is compromised, ShiftBT
cannot perform well consistently.

• MQB works well in most of our workloads. Compared
to KGreedy and other offline heuristics, it performs
always the best, or almost the best. Intuitively, it
tries to balance the workload among all resources by
balancing the queue sizes. It minimizes completion
time by maximizing system utilization over different
resource types and effectively transforms a problem
of minimizing completion time into one of balancing
system utilization.

D. Changing K Experiments
These experiments investigate the impact of changing the
number of resource types K from 1 to 6. Figure 5 shows
the results. As indicated by the worst-case performance
bound in Theorem 2, increasing K linearly degrades
the competitiveness of any online algorithm compared
to an offline optimal. The competitive ratio of KGreedy
shown in Figure 5, although obtained in average sense,
nevertheless grows as K increases. The increase of
average competitiveness, however, is not always linear
in K because Theorem 2 is a worst-case performance

bound.
Offline information helps to reduce the performance

degradation of increased K, and yields results closer
to optimal even when K is large. In layered tree (Fig-
ure 5(b)), all offline algorithms perform very close to op-
timal at any K value. For layered EP (Figure 5(a)), MQB
performs close to optimal. In layered IR (Figure 5(c)),
although no algorithms perform close to the lower bound,
MQB and MaxDP consistently reduce the execution time
of a program produced by KGreedy by around half for
any K ≥ 2.

E. Skewed Load Experiments
These experiments study workloads where some re-
sources are more heavily loaded than others. To quantify
the resource load, we use a measure called work-per-
processor ratio. For a job’s type α resource, its α-work-
per-processor ratio is computed as the α-work divided by
the number of α-processors assigned to the job. When a
job has similar work-per-processor ratios for each type
of resource, its load is considered to be well balanced.
Otherwise, the larger the variance, the more skewed the
load.

Figure 6 shows the influence of a skewed load. Using
the same jobs as those tested in Figures 4(e) and 4(f), we
increased the skew by reducing the number of machines
for type 1 resources to 1/5 of the original and keeping the
other machines unchanged. From Figures 6(a) and 6(b),
we can see that the difference among algorithms shrinks,
and KGreedy performs closer to optimal. When a job’s
load is skewed, one or a few resource types become
the bottleneck. This situation resembles a homogeneous
case with the difference between algorithms becoming
smaller.

Although the scheduling issue is of less concern for
skewed load, such loads incur unavoidable waste on re-
sources with small work-per-processor ratios. Assigning
proper numbers of resources to a job is an aspect of
scheduling decisions that goes beyond the scope of this
work. However, on an FHS, achieving high resource
utilization depends upon having balanced load for each
job.

11951195118211951195119511951195

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(a) Medium Layered Tree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
P

S
h
i
f
t
B
T

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o

(b) Medium Layered IR

Figure 6. Impact of scheduling algorithms on jobs with skewed load.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
p

S
h
i
f
t
B
t

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o Non-Preemptive

Preemptive

(a) Small Layered EP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
p

S
h
i
f
t
B
t

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o Non-Preemptive

Preemptive

(b) Medium Layered Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

L
S
p
a
n

D
T
y
p
e

M
a
x
D
p

S
h
i
f
t
B
t

M
Q
B

A
v
e

c
o
m
p
l
e
t
i
o
n

t
i
m
e

r
a
t
i
o Non-Preemptive

Preemptive

(c) Medium Layered IR

Figure 7. Comparison of non-preemptive and preemptive scheduling.

F. Preemptive Scheduling Experiments
Previous experiments used non-preemptive scheduling;
we now evaluate the impact of preemptive scheduling.
Figure 7 compares the performance of both versions of
the algorithms. Results suggest that, in many cases, the
preemptive version performs comparably with or better
than its corresponding non-preemptive one: preemptions
offer earlier chances to correct bad scheduling decisions.
However, preemption does not solve the performance
degradation of online scheduling on heterogeneous sys-
tems since the average completion ratio of preemptive
KGreedy still greatly exceeds that of good offline algo-
rithms.

G. Approximated Information Experiments
Our previous experiments suggest that offline infor-
mation helps shorten job completion time. Although
complete information of a job’s K-DAG may not be
available during online execution, a job’s previous ex-
ecution history, statistics and internal characteristics can
provide us an approximation on its future behavior. For
example, for some data-intensive tasks, such as those
in MapReduce jobs, task processing time scales linearly
with the amount of data to be processed. One can collect
the scale factor of a task from its previous execution
and estimate the amount of data to be processed in
a new run to predict task’s total processing time. De-
tailed techniques to obtain job information through static
analysis or dynamic prediction exceed scope of this
work. We consider the case where estimates are available
and investigate how an offline algorithm performs with
approximated job information. Since MQB offers the

best overall performance, we now show how MQB with
partial and imprecise job information performs compared
to KGreedy.

We categorize the approximation of job information
into two types: (1) partial information, where one can
have only limited amount of lookahead into future, and
(2) imprecise information, where the approximation has
noise and uncertainty. For partial information, we study
a restricted case of MQB, called MQB+1Step, that has a
single step of lookahead. To schedule a task, MQB+1Step
considers only its immediate children. In comparison,
the original MQB algorithm uses information of all task
descendants, and we call it MQB+All to differentiate.

Imprecise information may come from different
sources and appear in various forms such as imprecise
workload calibration, user inputs, compiler outputs, etc.
While it is not feasible to examine them all, we con-
sider here two simple approximations: MQB+Exp with
stochastic uncertainly and MQB+Noise with the interfer-
ence of noise. In MQB+Exp, the descendant value of a
task is a random value following exponential distribution
with a mean equal to the true value. In MQB+Noise, the
descendant value of a task is its true value interfered
by a noise with a multiplicative and an additional term.
The multiplicative term is a uniformly distributed random
value from 0.5 to 1.5, and the additional term is a
uniformly distributed random value from 0 to the average
work of the task.

Combining the two cases (All/1Step) of complete
or partial information with the three cases (Pre-
cise/Exp/Noise) of precise or imprecise information, we

11961196118311961196119611961196

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

K
G
r
e
e
d
y

M
Q
B
+
A
l
l
+
P
r
e

M
Q
B
+
A
l
l
+
E
X
P

M
Q
B
+
A
l
l
+
N
o
i
s
e

M
Q
B
+
1
S
t
e
p
+
P
r
e

M
Q
B
+
1
S
t
e
p
+
E
X
P

M
Q
B
+
1
S
t
e
p
+
N
o
i
s
e

C
o
m
p
l
e
t
i
o
n

T
i
m
e

R
a
t
i
o

average
max

(a) Small Layered EP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

K
G
r
e
e
d
y

M
Q
B
+
A
l
l
+
P
r
e

M
Q
B
+
A
l
l
+
E
X
P

M
Q
B
+
A
l
l
+
N
o
i
s
e

M
Q
B
+
1
S
t
e
p
+
P
r
e

M
Q
B
+
1
S
t
e
p
+
E
X
P

M
Q
B
+
1
S
t
e
p
+
N
o
i
s
e

C
o
m
p
l
e
t
i
o
n

T
i
m
e

R
a
t
i
o

average
max

(b) Medium Layered Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

K
G
r
e
e
d
y

M
Q
B
+
A
l
l
+
P
r
e

M
Q
B
+
A
l
l
+
E
X
P

M
Q
B
+
A
l
l
+
N
o
i
s
e

M
Q
B
+
1
S
t
e
p
+
P
r
e

M
Q
B
+
1
S
t
e
p
+
E
X
P

M
Q
B
+
1
S
t
e
p
+
N
o
i
s
e

C
o
m
p
l
e
t
i
o
n

T
i
m
e

R
a
t
i
o

average
max

(c) Medium Layered IR

Figure 8. Comparison of KGreedy and MQB with approximated information.

have six cases of MQB. Figure 8 compares average and
maximum completion ratios of KGreedy to these six
cases of MQB. Our comparison yields these observa-
tions:

• Partial information. For some workloads, a scheduler
needs only a small amount of lookahead information
to obtain substantial performance improvement. The
results of MQB+All and MQB+1Step are similar for
both trees and IR, which suggests that one-step looka-
head offers sufficient information for these two work-
loads. This matches our intuition since in both cases a
good scheduler should give priority to tasks with more
children. However, the performance of MQB+1Step is
worse than MQB+All at EP since a good schedule of EP
can be decided only with more global job information.

• Imprecise information. Even with imprecise pre-
dicted or estimated information for a job’s future, a
fair estimate can still help improve scheduling. For
example, in all workloads, both MQB+All+Exp and
MQB+All+Noise offer performance benefits compared
to KGreedy. Even with one-step lookahead and when
approximated information can be two times off the true
value, MQB still outperforms KGreedy, with 20%-30%
improvements in both tree and IR workloads.

VI. Related Work
We start from classical results on scheduling homoge-
neous resources. The famous greedy scheduling algo-
rithm by Graham [17] guarantees that the completion
time of a DAG is no more than 2 − 1/P times that of
an optimal scheduler, where P is the total number of
processors. Shmoys, Wein and Williamson [31] showed
a matching lower bound of 2 − 1/P on the competitive
ratio of any deterministic online algorithm, and this
result holds true even if preemption is allowed. They
also showed a lower bound of 2 − O(1/

√
P) for any

non-preemptive randomized online algorithm. For offline
scheduling, the longest span first (LSpan) algorithm
has been shown to have an approximation ratio of
2 − 1/(P − 1) for P ≥ 3 [9]. In the special case where
the DAG is an out-tree, Hu [21] showed that LSpan
guarantees the optimal schedule. In K-DAG scheduling,
however, one can find simple counter-examples to show

that LSpan is no longer optimal for out-trees.
Many analytical results on functionally heterogeneous

systems have been obtained using the job-shop schedul-
ing model [3], [16], [23], [31]. This model has multiple
jobs, each consisting of a chain of heterogeneous tasks,
and there is only one machine from each resource type.
For the non-preemptive setting, the best known approxi-
mation ratio is O(log2 µP/ log2 log µP) [16], [31], where
µ is the maximum number of tasks in a job; the best
ratio for the preemptive setting is O(logP/ log logP) [3].
Shmoys et al. [30] generalized job-shop scheduling to
DAG-shop scheduling, where the precedence constraints
of each job are represented by a DAG instead of a
chain, and there are multiple processors for each resource
type. However, no two tasks from the same job can be
executed simultaneously. Similar results [16], [31] have
been derived for this model. Neither job-shop nor DAG-
shop scheduling allows concurrent execution of tasks in
the same job.

He, Sun and Hsu [20] studied the scheduling of
heterogeneous resources under the K-DAG model, which
generalizes DAG-shop scheduling by allowing concur-
rent executions of tasks from the same type. They showed
that the completion time of a K-DAG scheduled by an
online greedy algorithm is (K+1−1/Pmax)-competitive,
which matches a lower bound in the deterministic setting.
Similar results have been observed in [29] under a dif-
ferent job model. This paper showed that randomization
is of little help in improving the performances of online
scheduling algorithms.

Besides theoretical results, some empirical work has
studied different heuristics for scheduling functionally
heterogeneous resources [1], [19]. In particular, shifting
bottleneck, a popular heuristic [1], has been shown to
have good performance in practice for job-shop schedul-
ing [27]. Hamidzadeh, Lilja and Atif [19] considered
both computation and communication costs of assigning
a processor to a task and developed a dynamic scheduling
heuristic for heterogeneous computing platforms.

VII. Conclusion Remarks
This paper described some limitations of online schedul-
ing on functionally heterogeneous systems and proposed

11971197118411971197119711971197

an efficient algorithm — MQB that uses additional
offline information to achieve utilization balancing and
minimize completion time of K-DAG jobs.

Scheduling of functionally heterogeneous systems can
be extended to a more general context. In a K-DAG
model, each task can be executed only on its matching
type of processors, which is similar to the case that
a compiled binary of a task can only be executed on
its matching architecture. Just-In-Time (JIT) compilation
brings an interesting new dimension to this problem.
With the support of JIT, a task can be compiled to
different binaries at run time and flexibly executed on
different types of resources. Here, a scheduler requires
additional functionality and must choose appropriate
resource types to compile the task for and execute it. How
to schedule this more flexible job model on functionally
heterogeneous systems remains an interesting open prob-
lem.

Acknowledgement
We thank Jim Larus, Burton Smith, Dennis Crain, Xeno-
fon D. Koutsoukos, Wen-Jing Hsu and Paul Waterson for
helpful discussions. We also thank anonymous reviewers
for their valuable comments.

References
[1] J. Adams, E. Balas, and D. Zawack. The shifting bot-

tleneck procedure for job shop scheduling. Management
Science, 34(3):391–401, 1988.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-
ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers
in map-reduce clusters using mantri. In OSDI, October
2010.

[3] N. Bansal, T. Kimbrel, and M. Sviridenko. Job shop
scheduling with unit processing times. Mathematics of
Operations Research, 31(2):381–389, 2006.

[4] M. A. Bender and M. O. Rabin. Scheduling Cilk multi-
threaded computations on processors of different speeds.
In SPAA, pages 13–21, July 2000.

[5] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In ICFP, pages 213–
225, 1996.

[6] R. D. Blumofe and C. E. Leiserson. Space-efficient
scheduling of multithreaded computations. SIAM Journal
on Computing, 27(1):202–229, 1998.

[7] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and efficient parallel
processing of massive datasets. In VLDB 2008, August
2008.

[8] C. Chekuri and M. Bender. An efficient approximation
algorithm for minimizing makespan on uniformly related
machines. Journal of Algorithms, 41(2):212–224, 2001.

[9] N. F. Chen and C. L. Liu. On a class of scheduling
algorithms for multiprocessor computing systems. In In
SCCPP, pages 1–16, 1975.

[10] F. A. Chudak and D. B. Shmoys. Approximation algo-
rithms for precedence-constrained scheduling problems
on parallel machines that run at different speeds. In
SODA, pages 581–590, Philadelphia, PA, USA, 1997.

[11] E. Davis and J. M. Jaffe. Algorithms for scheduling tasks
on unrelated processors. Journal of ACM, 28(4):721–736,
1981.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2004.

[13] T. Endo and S. Matsuoka. Massive supercomputing
coping with heterogeneity of modern accelerators. In
IPDPS, pages 1–10, 2008.

[14] Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic pro-
cessor self-scheduling for general parallel nested loops.
IEEE Transactions on Computers, 39(7):919–929, 1990.

[15] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1979.

[16] Goldberg, Paterson, Srinivasan, and Sweedyk. Better
approximation guarantees for job-shop scheduling. In
SODA, 1997.

[17] R. L. Graham. Bounds on multiprocessing anomalies.
SIAM Journal on Applied Mathematics, pages 17(2):416–
429, 1969.

[18] M. Hall, Y. Gil, and R. Lucas. Self-configuring appli-
cations for heterogeneous systems: Program composition
and optimization using cognitive techniques. Proceedings
of the IEEE, 96(5):849–862, 2008.

[19] B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynamic
scheduling techniques for heterogeneous computing sys-
tems. Concurrency: Practice and Experience, 7(7):633–
652, 1995.

[20] Y. He, H. Sun, and W.-J. Hsu. Adaptive scheduling of
parallel jobs on functionally heterogeneous resources. In
ICPP, page 43, 2007.

[21] T. Hu. Parallel sequencing and assembly line problems.
Operations Research, 9(6):841–848, 1961.

[22] S. F. Hummel and E. Schonberg. Low-overhead schedul-
ing of nested parallelism. IBM Journal of Research and
Development, 35(5-6):743–765, 1991.

[23] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys. Sequencing and scheduling: Algorithms
and complexity. Technical report, Centre for Mathematics
and Computer Science, 1989.

[24] M. D. Linderman, J. Balfour, T. H. Meng, and W. J.
Dally. Embracing heterogeneity — parallel programming
for changing hardware. In HotPar, pages 1–6, 2009.

[25] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: a programming model for heterogeneous
multi-core systems. SIGOPS Operating Systems Review,
42(2):287–296, 2008.

[26] G. J. Narlikar and G. E. Blelloch. Space-efficient
scheduling of nested parallelism. ACM Transactions on
Programming Languages and Systems, 21(1):138–173,
1999.

[27] M. L. Pinedo. Scheduling: Theory, Algorithms, and
Systems. Springer (Third edition), 2008.

[28] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and
multiprocessor systems. In HPCA, pages 13–24, 2007.

[29] H. Shachnai and J. J. Turek. Multiresource malleable
task scheduling to minimize response time. Information
Processing Letters, 70(1):47–52, 1999.

[30] Shmoys, Stein, and Wein. Improved approximation algo-
rithms for shop scheduling problems. In SODA, 1991.

[31] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling
parallel machines online. In FOCS, pages 131–140, 1991.

[32] A. Yao. Probabilistic computations: Toward a unified
measure of complexity. In FOCS, 1977.

11981198118511981198119811981198

