
113

C h a p t e r 5

Educational Software
Engineering
Where Software Engineering,
Education, and Gaming Meet

Tao Xie, Nikolai Tillmann,

Jonathan de Halleux, and Judith Bishop

CoNTeNTs
5.1 Introduction 114
5.2 Background: Online Programming Exercise Systems 115

5.2.1 CodingBat 115
5.2.2 CloudCoder 117
5.2.3 Practice-It 117
5.2.4 CodeLab 118
5.2.5 Codecademy 118
5.2.6 BetterProgrammers 119
5.2.7 Discussion 119

5.3 Pex4Fun: Gamification of an Online Programming Exercise
System 120
5.3.1 Software Engineering Technologies Underlying Pex4Fun 121
5.3.2 Gaming in Pex4Fun 122
5.3.3 Social Dynamics in Pex4Fun 123

5.3.3.1 Ranking of Players and Coding Duels 123
5.3.3.2 Live Feeds 123

5.3.4 Educational Usage of Pex4Fun 125
5.3.5 Code Hunt 126

K22498_C005.indd 113 01/21/15 12:03 PM

114 ◾ Computer Games and software engineering

5.1 INTroduCTIoN
Among various subfields of software engineering, software engineering
 education [1] has been an important one, focusing on educational topics for
software engineering (e.g., how to better teach and train software engineering
skills). Typically, research work on software engineering education does not
appear in research tracks of major software engineering conferences but appears
in their education tracks or conferences with focus on software engineering
education. For example, the International Conference on Software Engineering
(ICSE; http://www.icse-conferences.org) typically has a track on software
engineering education. The ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications has also recently included
a colocated Educator’s Symposium (http://www.splashcon.org/ history). The
Conference on Software Engineering Education and Training (http://
conferences.computer.org/cseet) has focused on software engineering educa-
tion and training since 1987. Indeed, research work on software engineering
education sometimes also appears in meetings on computer science education,
such as the SIGCSE Technical Symposium (http://www.sigcse.org/events/
symposia) and the Annual Conference on Innovation and Technology in
Computer Science Education (http://www.sigcse.org/events/iticse).

In this chapter, we define and advocate the subfield of educational soft-
ware engineering (i.e., software engineering for education) within the
domain of software engineering research. This subfield develops software
engineering technologies (e.g., software testing and analysis [2], software
analytics [3,4]) for general educational tasks, going beyond educational
tasks for software engineering. For example, general educational tasks can
even be on teaching math [5–7]. As an analogy, data mining for software
engineering [8] (also called mining software repositories [9]) leverages
data mining technologies (which typically come from the data mining
community) to address tasks in software engineering, whereas educational
software engineering leverages software engineering technologies (which
typically come from the software engineering community) to address tasks
in education. In addition, in the solution space, gaming technologies often
play an important role together with software engineering technologies.

5.4 Discussion 128
5.5 Conclusion 129
Acknowledgment 130
References 130

K22498_C005.indd 114 01/21/15 12:03 PM

educational software engineering ◾ 115

We expect that researchers in educational software engineering would
be among the key players in the education domain and in the coming age
of massively open online courses (MOOCs) [10,11], which have recently
gained high popularity among various universities and even in global
societies. Educational software engineering can and will contribute sig-
nificant solutions to address various critical challenges in education, espe-
cially MOOCs, such as automatic grading [12,13], intelligent tutoring [14],
problem generation [5–7], and plagiarism detection [15,16].

To provide a concrete example of educational software engineering, in
this chapter,* we first lay out the background on online programming exer-
cise systems by describing a number of existing representative systems.
As a concrete example of gamificating an online programming exercise
system, we illustrate Pex for Fun [13] (Pex4Fun, for short), which leverages
software engineering and gaming technologies to address educational
tasks on teaching and learning programming and software engineering
skills. In particular, our illustration of Pex4Fun focuses on its underlying
software engineering technologies (Section 5.3.1), its gaming (Section 5.3.2),
social dynamics (Section 5.3.3), and educational usage (Section 5.3.4), which
are the four common aspects of a typical project on educational software
engineering. We also describe Code Hunt (Section 5.3.5), which is a recent
gaming platform evolved from Pex4Fun.

5.2 BaCkGrouNd: oNlINe ProGrammING
eXerCIse sysTems

5.2.1 CodingBat

CodingBat (http://codingbat.com/), created by Nick Parlante, is an online
platform for providing a set of programming exercises in Java and Python.
Note that some of the exercises in CodingBat are equipped with hint text
and/or the solution code. We next use an example (http://codingbat.com/
prob/p146974) to illustrate how a student can solve an exercise problem
in CodingBat. In this example, the web page for the exercise problem
includes a short natural language problem statement: “Given an array of
scores, return true if each score is equal or greater than the one before.

* This chapter significantly extends a previous short article [31] presented in the 3rd International
Workshop on Games and Software Engineering (2013). This new extension in this chapter primar-
ily includes surveying-related online programming exercise systems (Section 5.2); restructuring
and enriching the description of Pex4Fun as an example for gamificating an online programming
exercise system, adding the description of Code Hunt (Section 5.3.5), a recent gaming platform
evolved from Pex4Fun; and discussing additional more recent related work.

AQ 1

K22498_C005.indd 115 01/21/15 12:03 PM

116 ◾ Computer Games and software engineering

The array will be length 2 or more.” In addition, the web page also includes
a table for showing a small number of sample expected input/output pairs:

scoresIncreasing({1, 3, 4}) → true
scoresIncreasing({1, 3, 2}) → false
scoresIncreasing({1, 1, 4}) → true

Then the code editor in the middle of the web page includes an empty
method body for public boolean scoresIncreasing(int[]
scores) (note that when a problem creator creates a problem, the
method, such as scoresIncreasing in the problem, should return
a value). A student who tries to solve the problem is expected to fill in
code in the empty method body to solve the given programming prob-
lem. After the student fills in code and clicks the Go button, CodingBat
displays compilation issues, if any, that are encountered when the code
is compiled; otherwise, CodingBat runs a predefined set of test cases (prepared
by the problem creator) against the code and reports these test cases being
labeled as failing test cases or passing test cases. Note that these test cases
are reported in the form of the preceding example expected input/output
pairs. Based on the feedback (i.e., the reported test cases and their failing/
passing statuses), the student can further attempt to improve his or her
code to make all test cases as passing test cases.

Because the predefined set of test cases is visible to the student, the
student can “fool” CodingBat by writing code that includes a conditional
statement for each reported test case so that the conditional in the condi-
tional statement checks whether the method arguments are the same as the
input in a reported test case and then the true branch of the conditional
statement simply returns the expected output in the reported test case.
Apparently, the code written in this way to overfit the reported test cases is
not the correct code for the exercise problem. However, CodingBat would
still report All Correct because all the predefined test cases are indeed
passing test cases.

CodingBat allows the student to view the progress graph for a prob-
lem, showing the problem-solving history (e.g., the percentage of passing
test cases and percentage of failing test cases) for each version of the code
written and submitted by the student for the problem over time. The stu-
dent can also view graphs from some random users just for fun. A student
can earn code badges by solving problems across all of the fundamental
 sections (which include very common code patterns that often come up at

K22498_C005.indd 116 01/21/15 12:03 PM

educational software engineering ◾ 117

coding, such as problems related to strings, arrays, and logic). For example,
a student earns a five-star badge when the student solves three problems
in each fundamental section. The student can share his or her account
with a “teacher” account, from which the associated teacher can view the
problem-solving statistics of the student along with the code written by
the student for each problem. However, the teacher is not suggested to use
CodingBat as a grading platform of exams or homework assignments, but
is suggested to leverage CodingBat as a practice platform for students.

5.2.2 CloudCoder

CloudCoder [17] (http://cloudcoder.org/) and CodeWrite [18] (http://code-
write.cs.auckland.ac.nz/) are two systems closely related to CodingBat.
CloudCoder is an open-source web-based programming exercise system
with exercises in C/C++, Java, Python, and Ruby. CloudCoder provides
similar mechanisms as CodingBat’s for students to solve problems based
on the testing results against a predefined set of test cases. However,
CodeWrite allows a student to construct an exercise problem along with
the test cases for the problem so that other peer students can solve the
exercise problem (in the same way as solving an exercise problem in
CodingBat or CloudCoder). Note that in CodingBat or CloudCoder, only
teachers or platform providers (not students) are supposed to construct
exercises.

5.2.3 Practice-It

Practice-It (http://practiceit.cs.washington.edu/) is an online platform
for students to practice solving Java programming problems. Many of
the problems were drawn from the University of Washington’s introduc-
tory programming courses. A student can select a problem from the list
of problems organized by chapter topics of a programming textbook or
section topics of the University of Washington’s introductory program-
ming courses. Once granted permission by the platform administrators,
users of the platform can also create and upload a problem. If the problem
creator defines some constraints for the problem, Practice-It first checks
the student’s code against such constraints and reports constraint viola-
tion errors such as the following: Error: Your solution doesn’t meet one or
more constraints required by this problem. Your solution must use a static
method. (must appear 2 times in your solution). If the student’s code does
not compile, Practice-It reports repairing hints based on the compilation
errors. After the student’s code compiles, Practice-It runs a predefined set

K22498_C005.indd 117 01/21/15 12:03 PM

118 ◾ Computer Games and software engineering

of test cases (prepared by the problem creator) against the student’s code.
Then Practice-It reports a table that includes testing information for each
test case: the test input, expected output, actual output (produced by the
student’s code), and result (pass or fail). When the expected output is dif-
ferent from the actual output, the result is fail; the different outcomes of the
actual output and the expected output are also reported.

5.2.4 Codelab

CodeLab (http://www.turingscraft.com/), providing paid access of full
exercises to students, is a web-based programming exercise system with
exercises in Python, Java, C++, C, JavaScript, C#, VB, and SQL. CodeLab
provides short exercises, each of which typically focuses on a program-
ming concept or language construct. Different from other related systems,
CodeLab does not report any explicit test cases (i.e., input/output pairs)
to a student after the student submits code for a given exercise problem.
Instead, CodeLab informs the student whether his or her submitted code
is correct (the correctness judgment of the code seems to be based on
running a predefined set of test cases, without considering code elegance
or efficiency). If incorrect, CodeLab additionally informs the student of
repairing hints such as likely locations of faulty code portions and hint
sentences, for example, You almost certainly should be using:/. These
repairing hints seem to be identified based on syntactic comparison of the
submitted code and the solution code. CodeLab provides no feedback to
the student in terms of specific correct (or incorrect) input/output behav-
iors of the submitted code. CodeLab organizes exercises in a sequence
related to a programming concept or language construct (typically 3–10
exercises in a sequence). The exercises included in a sequence are of gradu-
ally increasing sophistication. The teacher of a class is suggested to allocate
5%–10% of a student’s class grade to be correct completion of the CodeLab
exercises. Besides leveraging the existing exercises in CodeLab, a teacher
can create additional exercises in CodeLab for his or her class to use.

5.2.5 Codecademy

Codecademy (http://www.codecademy.com/) is an online interactive plat-
form that offers free programming classes in Python, PHP, jQuery,
JavaScript, Ruby, HTML and CSS. In a browser, on the left-hand side, a
student is provided short texts that illustrate a programming knowledge
point and instructions for the student to carry out a related programming
exercise in the online code editor displayed in the middle of the browser.

K22498_C005.indd 118 01/21/15 12:03 PM

educational software engineering ◾ 119

The instructions also include a hint portion that can be viewable only after
the student clicks Stuck? Get a hint After the student finishes writing code
in the code editor following the instructions and then clicks the bottom
Save and Submit Code, Codecademy assesses the written code against the
instructions (based on checking the outputs of the code against the pre-
defined outputs of the exercise); if the code is incorrect, Codecademy pro-
vides a simple hint sentence to the student, such as Did you include two
console.log()s in your code? (This hint is based on syntactic differences of
the student’s code and the solution code.)

Note that, different from programming exercise systems (such as
CodingBat) in which code written by students needs to be in the form of
a method with non-void return, CodeLab and Codecademy allow code
written by students to be just one or multiple lines of code.

5.2.6 BetterProgrammers

BetterProgrammers (http://www.betterprogrammer.com/) is an online plat-
form for Java programmers to solve a sequence of programming tasks
with increasing complexities. Instead of focusing on training, the plat-
form focuses on assessing and certifying programmers so that companies
can leverage such certification information in interviewing and hiring
programmer candidates. The top 50 programmers ranked by the plat-
form are posted on the front page of the platform website. The platform
does not provide rich code editor but just requests programmers to copy
the code skeleton embedded with the task description as code comments
(from the simple code editor in the platform) to the programmers’ favor-
ite Java IDE, finish the programming task, copy the completed code for
the task back to the simple code editor in the platform, and submit the
completed code. It is unclear how BetterProgrammers checks the cor-
rectness of the submitted code. For each programming task, the recom-
mended time and maximum time for task completion are listed along
with the elapsed task time in real time.

5.2.7 discussion

Software engineering technologies underlying the existing online pro-
gramming exercise systems [19] are typically simple. For example,
a simple testing technique (i.e., running a predefined set of test cases
against the code submitted by a student to check the code’s correct-
ness) is commonly used in these existing systems. Some systems such
as Practice-It and CodeLab seem to use lightweight static program

AQ 2

K22498_C005.indd 119 01/21/15 12:03 PM

120 ◾ Computer Games and software engineering

analysis to check the code submitted by students against some predefined
constraints or against the correct solution code to give the students
repairing hints. Gamification does not play an explicit role in designing
these existing systems. Some systems provide some social dynamics: a
user can view progress graphs from some random users (CodingBat), a
user can earn code badges (CodingBat), a user can construct exercise
problems for other users to solve (CodeWrite), and users are ranked
(BetterProgrammers). All these systems place heavy emphasis on their
educational value.

5.3 PeX4FuN: GamIFICaTIoN oF aN oNlINe
ProGrammING eXerCIse sysTem

In this section, we present Pex4Fun [13] (http://www.pexforfun.com/), an
example of gamificating an online programming exercise system based on
software engineering technologies. In particular, Pex4Fun is an interac-
tive gaming-based teaching and learning platform for .NET programming
languages such as C#, Visual Basic, and F#. Figure 5.1 shows a screen snap-
shot of the user interface of the Pex4Fun website, which includes an exam-
ple coding duel under solving by a player. It is a browser-based teaching
and learning environment [20] with target users as teachers, students, and

AQ 3

FIGure 5.1 The user interface of the Pex4Fun website.

K22498_C005.indd 120 01/21/15 12:03 PM

educational software engineering ◾ 121

even software practitioners. In particular, in a coding duel game, a major
game type in Pex4Fun, a student needs to write the code to implement
the functionalities of a secret specification (in the form of sample solution
code not visible to the student). Based on an automated test generation
tool, Pex4Fun finds any discrepancies in behavior between the student’s
code and the secret specification. Such discrepancies are given as feedback
to the student to guide how to fix the student’s code to match the behavior
of the secret specification.

We next illustrate Pex4Fun by focusing on its underlying software
engineering technologies (Section 5.3.1), its gaming (Section 5.3.2), social
dynamics (Section 5.3.3), and educational usage (Section 5.3.4), which
are the four common aspects of a typical project on educational software
engineering. Finally, we describe Code Hunt (Section 5.3.5), which is a
recent gaming platform evolved from Pex4Fun.

5.3.1 software engineering Technologies underlying Pex4Fun

Behind the scenes on the server in the cloud, the Pex4Fun website lever-
ages dynamic symbolic execution (DSE) [21] implemented by Pex [22,23],
in order to (1) determine whether the code submitted by a student is cor-
rect, (2) check the code’s correctness and game progress of the player, and
(3) compute customized feedback [24]. Pex is an automatic white box test
generation tool for .NET. It has been integrated into Microsoft Visual
Studio as an add-in. Besides being used in the industry, Pex was also used
in classroom teaching at different universities [25].

In particular, DSE [21] is a variation of symbolic execution [26,27]
and leverages run-time information from concrete executions. DSE is
often conducted in iterations to systematically increase code coverage
such as block or branch coverage. In each iteration, DSE executes the
program under test with a test input, which can be a default or ran-
domly generated input in the first iteration or an input generated in one
of the previous iterations. During the execution of the program under
test, DSE performs symbolic execution in parallel to collecting sym-
bolic constraints on program inputs obtained from predicates in branch
statements along the execution. Then DSE flips a branching node in the
executed path to construct a new path that shares the prefix to the node
with the executed path, but then deviates and takes a different branch.
Finally, DSE relies on a constraint solver to compute a satisfying assign-
ment (if possible), which forms a new test input whose execution will
follow the flipped path.

AQ 4

K22498_C005.indd 121 01/21/15 12:03 PM

122 ◾ Computer Games and software engineering

5.3.2 Gaming in Pex4Fun

The core type of Pex4Fun games is a coding duel where the player has to
solve a particular programming problem. A coding duel created by a game
creator (who could be any user of Pex4Fun) consists of two methods with
the same method signature and return type.* One of these two methods is
the secret (golden) implementation, which is not visible to the player. The
other is the player implementation, which is visible to the player and can be
an empty implementation or a faulty implementation of the secret imple-
mentation. The player implementation can include optional comments to
give the player some hints in order to reduce the difficulty level of gaming.

After a player selects a coding duel game to play, the player’s winning
goal is to modify the player implementation (visible to the player, shown in
the upper part of Figure 5.1) to make its behavior (in terms of the method
inputs and results) to be the same as the secret implementation (not visible
to the player). Apparently, without any feedback or help, the player has no
way to guess how the secret implementation would behave. The player can
get some feedback by clicking the button Ask Pex! (shown in the middle-
left part of Figure 5.1) to request the following two types of feedback:
(1) under what sample method input(s), the player implementation and the
secret implementation have the same method result and (2) under what
sample method input(s), the player implementation and the secret imple-
mentation have different method results. An example feedback is shown
in the table near the bottom of Figure 5.1. In the table, the first line pre-
fixed indicates the first type of feedback, and the second and third lines
indicate the second type of feedback.

As described in Section 5.3.1, Pex4Fun leverages the underlying test
generation engine called Pex [22,23] to generate such feedback and deter-
mine whether the player wins the game: the player wins the game if the
test generation engine cannot generate any method input to cause the
player implementation and the secret implementation to have different
method results.

The design of coding duel games and the gaming platform follows
a number of design principles [13]. For example, the games need to be
interactive, and the interactions need to be iterative and involve multiple
rounds. The feedback given to the player should be adaptive and personal-
ized to the modifications made by the player on the player implementation.

* The method signature of a coding duel must have at least one input parameter. The return type of
a coding duel must not be void.

AQ 5

K22498_C005.indd 122 01/21/15 12:03 PM

educational software engineering ◾ 123

The games should have a clear winning criterion. There should be no or
few opportunities for the player to cheat the games (e.g., by adding very
complicated code portions in the player implementation to pose difficul-
ties for the underlying test generation engine).

5.3.3 social dynamics in Pex4Fun

To add more fun to Pex4Fun, we have developed a number of features
related to social dynamics, making games in Pex4Fun a type of social
games. For example, Pex4Fun allows a player to learn what coding duels
other people were already able to win (or not). For a given coding duel
opened by a player, the description text box above the working area shows
some statistics such as the following: Can you write code that matches
a secret implementation? Other people have already won this Duel 322
times! (see Figure 5.1).

5.3.3.1 Ranking of Players and Coding Duels
Initially, when only a relatively small number of coding duels were pro-
vided by us in Pex4Fun, we provided a mechanism of earning medals to
encourage users to play coding duels. After signing in, a user could earn
virtual medals for winning coding duels. The user got the first medal for
winning any five of the coding duels that were built into Pex4Fun. The user
got the second medal for winning another 20 of the built-in coding duels.

Furthermore, a user can click the Community link on the Pex4Fun
main page to see how the user’s coding duel skills compare with other
users. In the community area (http://www.pexforfun.com/Community.
aspx), there are two ranked lists of all users (one based on the number of
points earned by a user and the other one based on the number of coding
duels won by a user), as well as coding duels that other users have pub-
lished. Figure 5.2 shows the ranked list of all users based on their earned
points. A user can earn points by winning a coding duel, rating a coding
duel that the user won, registering in a course, creating a coding duel that
somebody else attempts to win, creating a coding duel that somebody else
wins, and so on. Note that a user can rate any coding duel that the user
wins as Fun, Boring, or Fishy. All ratings are shared with the community.

5.3.3.2 Live Feeds
A player can click the Live Feed link on the Pex4Fun main page to see
what coding duels other players are winning (or not) right now (http://
www.pexforfun.com/Livefeed.aspx). Maybe someone else is trying to win

K22498_C005.indd 123 01/21/15 12:03 PM

124 ◾ Computer Games and software engineering

a coding duel that the player has created or the player is also trying to win.
Figure 5.3 shows an example screen snapshot of the live feed.

Social dynamics in Pex4Fun share similar motivations as other recent
gamification examples in software engineering. For example, Stack
Overflow badges (http://stackoverflow.com/badges) have been used to
provide incentives for Stack Overflow users to ask or answer questions

FIGure 5.2 User ranking in Pex4Fun.AQ 6

FIGure 5.3 User ranking in Pex4Fun.AQ 7

K22498_C005.indd 124 01/21/15 12:03 PM

educational software engineering ◾ 125

there. Through asking or answering questions, a user earns reputation
points. For example, 10 reputation points are given to a user when his
or her answer to a question receives an “up” vote. In addition, a user
can earn three ranks of badge: bronze, silver, and gold badges. Bronze
badges are given to users who often help teach other users on how to
use the system. Silver badges are given to users who post very insightful
questions and answers, and show dedication to moderate and improve
the Stack Overflow contents. Gold badges are given to users who dem-
onstrate outstanding dedication or achievement. Such badges earned by
a user appear on the user’s profile and in the user’s user card. Along a
similar spirit, early 2012, Microsoft added a new plug-in to the Microsoft
Visual Studio to allow software developers to unlock achievements
(http://channel9.msdn.com/achievements/visualstudio), receive badges,
and increase their ranking on a leaderboard based on the program code
that they have written.

5.3.4 educational usage of Pex4Fun

The game type of coding duels within Pex4Fun is flexible enough to
allow game creators to create various games to target a range of skills
such as skills of programming, program understanding, induction,
debugging, problem solving, testing, and specification writing, with
different difficulty levels of gaming. In addition, Pex4Fun is an open
platform: anyone around the world can create coding duels for others
to play besides playing the existing coding duels themselves. Teachers
can create virtual classrooms in the form of courses by customizing
the existing learning materials and games or creating new materials
and games. Teachers can also enjoy the benefits of automated grading
of exercises assigned to students. Pex4Fun has provided a number of
open virtual courses that include learning materials along with games
used to reinforce students’ learning (http://www.pexforfun.com/Page.
aspx#learn/courses).

Pex4Fun was adopted as a major platform for assignments in a gradu-
ate software engineering course. A coding duel contest was held at a major
software engineering conference (2011) for engaging conference attendees
to solve coding duels in a dynamic social contest. Pex4Fun has been gain-
ing high popularity in the community: Because it was released to the pub-
lic in June 2010, the number of clicks of the Ask Pex! button (indicating
the attempts made by users to solve games at Pex4Fun) has reached over
1.5 million (1,540,970) as of July 21, 2014.

K22498_C005.indd 125 01/21/15 12:03 PM

126 ◾ Computer Games and software engineering

Various Pex4Fun users posted their comments on the Internet to
express their enthusiasm and interest (even addiction) to Pex4Fun. Here
we included some examples:

PEX4fun could become a better FizzBuzz than FizzBuzz.
it really got me *excited*. The part that got me most is about

 spreading interest in/teaching CS: I do think that it’s REALLY great
for teaching—learning!

Frankly this is my favorite game. I used to love the first person
shooters and the satisfaction of blowing away a whole team of
Noobies playing Rainbow Six, but this is far more fun.

Teaching, learning—isn’t this really the same, in the end? In fact,
for me personally, it’s really about leveraging curiosity, be it mine
or someone else’s—at best both! And PexForFun (+ all the stuff
behind) is a great, promising platform for this: you got riddles, you
got competition, you get feedback that makes you think ahead…

I’m afraid I’ll have to constrain myself to spend just an hour or
so a day on this really exciting stuff, as I’m really stuffed with work.

PexForFun improves greatly over projecteuler w.r.t. how pro-
posed solutions are verified; in fact what it adds is that you don’t
just get a ‘nope’ but something more articulate, something you can
build on. That’s what I think is really great and exciting—let’s push
it even further now!

5.3.5 Code Hunt

Code Hunt [28,29] is a recent gaming platform evolved from Pex4Fun.
Code Hunt includes more gaming aspects to offer more engaging expe-
riences to the player. Figure 5.4 shows the main page of the Code Hunt
website. The gaming platform also has sounds and a leaderboard to keep
the player engaged.

With coding duels as the game type, Code Hunt organizes games in a
series of worlds, sectors, and levels, which become increasingly challeng-
ing. Figure 5.5 shows the example list of sectors available for the player
to choose from. In each level, a coding duel game is played by the player,
who has to discover a secret code fragment and write code (in Java or C#)
for it. Figure 5.6 shows an example coding duel for the player to play, with
the player’s code shown on the left-hand side of the figure. After the player
clicks the Capture Code button (shown near the middle-top part of the
figure, with the same effect of clicking the Ask Pex! button in Pex4Fun),

K22498_C005.indd 126 01/21/15 12:03 PM

educational software engineering ◾ 127

the underlying Pex tool gives customized progress feedback to the player
via the generated test cases, as displayed in the table on the right-hand side
of Figure 5.6. In addition, Code Hunt might hint a user to focus on a par-
ticular line of code, as shown in the last line of the table on the right-hand
side of the figure. When the player’s code achieves the same result as the
secret implementation, Code Hunt flashes Captured Code and provides a
score to the player based on how good the code was. Other improvements

FIGure 5.4 (See color insert.) The main page of the Code Hunt website.

FIGure 5.5 Example sectors in Code Hunt.

K22498_C005.indd 127 01/21/15 12:03 PM

128 ◾ Computer Games and software engineering

for Code Hunt beyond Pex4Fun are that Code Hunt offers Java as a supported
language (via a source code translator) and it runs on Microsoft Azure,
making it scalable to a large number of simultaneous users.

5.4 dIsCussIoN
Educational software engineering is closely related to the field of educa-
tional games [30] (i.e., games for education), with example conferences such
as the Games+Learning+Society Conference (http://www.gameslearning-
society.org/conference) and example initiatives such as the MacArthur
Digital Media and Learning initiative (http://www.macfound.org/programs/
learning). The field of educational games typically focuses on gaming tech-
nologies for supporting educational purposes, whereas educational soft-
ware engineering typically focuses on software engineering technologies
for supporting educational purposes. In the context of Pex4Fun and Code
Hunt, the field of educational games would focus more on the aspect of
gaming (Section 5.3) whereas the field of educational software engineer-
ing would focus more on the aspect of software engineering technologies
(Section 5.3.1). Note that educational software engineering deals with not
only educational games but also other educational tools not being games.

In addition, it is reasonable to consider that software engineering for devel-
oping educational games or generally educational tools (such as software
quality assurance for educational game software) would be part of educa-
tional software engineering. In other words, educational software engineering

FIGure 5.6 (See color insert.) An example coding duel in Code Hunt.

K22498_C005.indd 128 01/21/15 12:03 PM

educational software engineering ◾ 129

is not limited to software engineering technologies as infrastructure support
for educational tools (as exemplified by Pex4Fun and Code Hunt) and can
also include software engineering tools or processes to assist the development
of educational tools.

We advocate educational software engineering to be within software
engineering research and to contribute to software engineering research
in three example ways:

 1. First, when targeting at educational tasks, researchers may be able to
leverage or develop software engineering technologies (to be effec-
tive for such tasks), which generally may not be effective or mature
enough to deal with tasks related to software industry. An example
case would be developing program synthesis technologies for edu-
cational tasks [5–7]. Another example case would be developing test
generation technologies for Pex4Fun and Code Hunt, because secret
implementations created for coding duels tend to be simpler than
real-world code implementations.

 2. Second, targeting at educational tasks may pose unique requirements
for software engineering technologies. For example, test generation
for software engineering tasks such as achieving code coverage aims
at generating and reporting test inputs that can achieve new code
coverage. However, test generation for Pex4Fun and Code Hunt aims
at generating and reporting test inputs that can serve as feedback to
achieve effective learning purposes.

 3. Some educational tasks (such as intelligent tutoring [14] and prob-
lem generation [5–7]) call for creation of new software engineering
technologies, which may not exist in traditional software engineer-
ing (because there are no counterparts in the software engineering
domain for such tasks in the education domain).

5.5 CoNClusIoN
In this chapter, we have defined and advocated educational software engineer-
ing as an emerging subfield of software engineering. Educational software
engineering develops software engineering technologies for general educa-
tional tasks. In this subfield, gaming technologies often play an important role
together with software engineering technologies. We have presented Pex4Fun
(along with Code Hunt), one of our recent examples on leveraging software

K22498_C005.indd 129 01/21/15 12:03 PM

130 ◾ Computer Games and software engineering

engineering and gaming technologies for teaching and learning programming
and software engineering skills. Pex4Fun and Code Hunt can also be used in
the context of MOOCs to address issues such as automatic grading.

aCkNowledGmeNT
We thank the reviewers for their valuable feedback. Tao Xie’s work is
supported in part by a Microsoft Research Award, NSF grants CCF-1349666,
CNS-1434582, CCF-1434596, CCF-1434590, and CNS-1439481, and the
NSF of China, number 61228203.

reFereNCes

 1. Mary Shaw. Software engineering education: A roadmap. In Proceedings of
FOSE, pp. 371–380, 2000.

 2. Mary Jean Harrold. Testing: A roadmap. In Proceedings of FOSE, pp. 61–72,
2000.

 3. Dongmei Zhang, Yingnong Dang, Jian-Guang Lou, Shi Han, Haidong Zhang,
and Tao Xie. Software analytics as a learning case in practice: Approaches
and experiences. In Proceedings of MALETS, pp. 55–58, 2011.

 4. Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang,
and Tao Xie. Software analytics in practice. Special Issue, IEEE Software,
5(30):30–37, 2013.

 5. Erik Andersen, Sumit Gulwani, and Zoran Popovic. A trace-based frame-
work for analyzing and synthesizing educational progressions. In Proceedings
of CHI, pp. 773–782, 2013.

 6. Sumit Gulwani, Vijay Korthikanti, and Ashish Tiwari. Synthesizing geom-
etry constructions. In Proceedings of PLDI, pp. 50–61, 2011.

 7. Rohit Singh, Sumit Gulwani, and Sriram Rajamani. Automatically generat-
ing algebra problems. In Proceedings of AAAI, 2012.

 8. Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. Data mining for
software engineering. IEEE Computer, 42(8):35–42, 2009.

 9. Ahmed E. Hassan. The road ahead for mining software repositories. In
Proceedings of FoSM, pp. 48–57, 2008.

 10. Armando Fox and David Patterson. Crossing the software education chasm.
Communications of the ACM, 55(5):44–49, 2012.

 11. Ken Masters. A brief guide to understanding MOOCs. The Internet Journal
of Medical Education, 1, 2011.

 12. Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated
feedback generation for introductory programming assignments. In Pro-
ceedings of PLDI, pp. 15–26, 2013.

 13. Nikolai Tillmann, Jonathan De Halleux, Tao Xie, Sumit Gulwani, and Judith
Bishop. Teaching and learning programming and software engineering via
interactive gaming. In Proceedings of ICSE, Software Engineering Education
(SEE), pp. 1117–1126, 2013.

AQ 8
AQ 9

AQ 10

AQ 11

K22498_C005.indd 130 01/21/15 12:03 PM

educational software engineering ◾ 131

 14. Tom Murray. Authoring intelligent tutoring systems: An analysis of the
state of the art. International Journal of Artificial Intelligence in Education,
1(10):98–129, 1999.

 15. Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: Detection of
software plagiarism by program dependence graph analysis. In Proceedings
of KDD, pp. 872–881, 2006.

 16. Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algo-
rithms for document fingerprinting. In Proceedings of SIGMOD, pp. 76–85, 2003.

 17. Andrei Papancea, Jaime Spacco, and David Hovemeyer. An open platform for
managing short programming exercises. In Proceedings of ICER, pp. 47–52,
2013.

 18. Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx.
CodeWrite: Supporting student-driven practice of Java. In Proceedings of
SIGCSE, pp. 471–476, 2011.

 19. Qianxiang Wang, Wenxin Li, and Tao Xie. Educational programming systems
for learning at scale. In Proceedings of Learning at Scale, pp. 177–178, 2014.

 20. Judith Bishop, Jonathan de Halleux, Nikolai Tillmann, Nigel Horspool,
Don Syme, and Tao Xie. Browser-based software for technology transfer. In
Proceedings of SAICSIT, Industry Oriented Paper, pp. 338–340, 2011.

 21. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed auto-
mated random testing. In Proceedings of PLDI, pp. 213–223, 2005.

 22. Nikolai Tillmann and Jonathan de Halleux. Pex—White box test generation
for .NET. In Proceedings of TAP, pp. 134–153, 2008.

 23. Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Fitness-
guided path exploration in dynamic symbolic execution. In Proceedings of
DSN, pp. 359–368, 2009.

 24. Kunal Taneja and Tao Xie. DiffGen: Automated regression unit-test genera-
tion. In Proceedings of ASE, pp. 407–410, 2008.

 25. Tao Xie, Jonathan de Halleux, Nikolai Tillmann, and Wolfram Schulte. Teaching
and training developer-testing techniques and tool support. In Proceedings of
SPLASH, Educators’ and Trainers’ Symposium, pp. 175–182, 2010.

 26. Lori A. Clarke. A system to generate test data and symbolically execute
 programs. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

 27. James C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, 1976.

 28. Nikolai Tillmann, Judith Bishop, Nigel Horspool, Daniel Perelman, and Tao
Xie. Code Hunt—Searching for secret code for fun. In Proceedings of SBST,
2014.

 29. Nikolai Tillmann, Jonathan de Halleux, Tao Xie, and Judith Bishop. Code
Hunt: Gamifying teaching and learning of computer science at scale. In
Proceedings of Learning at Scale, pp. 221–222, 2014.

 30. James Paul Gee. What Video Games Have to Teach Us about Learning and
Literacy? Palgrave Macmillan, New York, 2007.

 31. Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Educational software
engineering: Where software engineering, education, and gaming meet. In
Proceedings of GAS, pp. 36–39, 2013.

K22498_C005.indd 131 01/21/15 12:03 PM

Author Query Sheet

Chapter No: 5

Query No. Queries Response
AQ 1 The URLs in the “Notes” section have been

moved to the text.
AQ 2 Should “bottom Save and Submit Code” be

“Save and Submit Code at the lower half of the
interface”? Readers would find helpful screen
shots of all interfaces and tools discussed;
please consider providing.

AQ 3 “under solving by a player” not clear.
AQ 4 “in order to determine (1) whether code

submitted by a student is correct to check the
code’s correctnessthe game progress of the
player and to compute customized feedback”
has been changed to “in order to (1) determine
whether the code submitted by a student is
correct, (2) check the code’s correctness and
game progress of the player, and (3) compute
customized feedback”; please confirm.

AQ 5 I deleted color references to Figure 5.1 as
the figure is to be typeset grayscale. Please
confirm.

AQ 6 The text is cut at the bottom of Figure 5.2.
Please check.

AQ 7 Please confirm if the caption of Figure 5.3 can
be changed as “Example screenshot of the Live
Feed”.

AQ 8 The section head Bibliography is changed to
References, since all references are cited in
text. Please confirm.

AQ 9 References are renumbered sequentially based
on order of occurrence in citations. Please
confirm.

K22498_C005.indd 132 01/21/15 12:03 PM

AQ 10 Please provide location of proceedings for
references 1, 2, 3, 5, 6, 7, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 28, 29, 31.

AQ 11 Please provide page range for reference 11.

K22498_C005.indd 133 01/21/15 12:03 PM

