

Optimizing Optimistic Concurrency Control
for Tree-Structured, Log-Structured Databases

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

Sudipto Das
Microsoft Research

sudiptod@microsoft.com

Bailu Ding†

Cornell University

blding@cs.cornell.edu

Markus Pilman†
ETH Zurich

mpilman@inf.ethz.ch

ABSTRACT
Scaling-out a database system typically requires partitioning the
database across multiple servers. If applications do not partition
perfectly, then transactions accessing multiple partitions end up
being distributed, which has well-known scalability challenges. To
address them, we describe a high-performance transaction mecha-
nism that uses optimistic concurrency control on a multi-versioned
tree-structured database stored in a shared log. The system scales
out by adding servers, without partitioning the database.

Our solution is modeled on the Hyder architecture, published by
Bernstein, Reid, and Das at CIDR 2011. We present the design and
evaluation of the first full implementation of that architecture. The
core of the system is a log roll-forward algorithm, called meld, that
does optimistic concurrency control. Meld is inherently sequential
and is therefore the main bottleneck. Our main algorithmic contri-
butions are optimizations to meld that significantly increase trans-
action throughput. They use a pipelined design that parallelizes
meld onto multiple threads. The slowest pipeline stage is much
faster than the original meld algorithm, yielding a 3x improvement
of system throughput over the original meld algorithm.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Distributed databases, Transaction processing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Scale-out transaction processing; optimistic concurrency control.

1. INTRODUCTION
Most approaches to scaling out a distributed transaction processing
system beyond a few servers require some degree of database
partitioning. However, not all databases are partitionable such that
most transactions refer to only one partition. For example, if there

is a frequently-accessed many-to-many relationship that is equally
likely to be traversed in both directions, then no partitioning of the
relationship instances will ensure that most transactions are single-
partition. A good example is a friend-status relation of users in a
social network application. If the relation is partitioned by user,
then each user U’s status must appear in the partition of all of U’s
friends. Therefore, when U’s status changes, it must be updated in
many partitions (unless U has at most one friend).

Recently a technique that scales out without partitioning the data-
base was introduced in a system called Hyder. It uses a network-
attached log as the database, which is accessible by all servers [7].
The only point of arbitration between servers is when they append
records to the totally-ordered log that they share. That is why the
system can scale out without partitioning.

In this technique, the database is organized as a tree-structured in-
dex. Each server executes each transaction against a locally-cached
partial-copy of its latest database snapshot (Figure 1, step (1)). The
snapshot is defined by a log position S and hence is immutable. It
is the state produced by all transactions up to S that committed.

Figure 1: System architecture

Each transaction T executes optimistically with no synchronization.
While T executes, it accumulates its updates in an intention record
(Figure 1, step (2)). Conceptually, the intention contains new
versions of the data that T updated and a logical pointer to a log
position that defines the database snapshot that T read. Physically,
an intention is quite different than this and is described later.

† Work performed while employed at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD'15, May 31 - June 04, 2015, Melbourne, VIC, Australia
Copyright 2015 ACM 978-1-4503-2758-9/15/05…$15.00
http://dx.doi.org/10.1145/2723372.2737788

D

B

A C

E

Snapshot of last
committed state

Transaction

Intention

1. read

2. write

Server

Log‐structured database

Each log record is an intention con‐
taining one transaction’s updates

End
of log

Server
Server

A transaction’s input
snapshot is defined by
a log position

S I

When T finishes executing, the system appends T’s intention to the
log (Figure 1, step (3)). In general, other transactions’ intentions are
appended to the log while T was executing. Therefore, there are
usually many intentions in the log that follow the position of T’s
snapshot S and precede T’s intention I, as shown in Figure 1.

Every server runs an algorithm called meld that rolls forward the
log against the latest version of its locally-cached copy of the
database. Meld analyzes each intention for conflicts using an
optimistic concurrency control algorithm. If the intention did not
experience a conflict (with respect to a given isolation level), then
the transaction commits and meld merges the updated values in the
intention into the server’s locally-cached database. If the intention
did experience a conflict, then it is discarded and has no effect.

The complete persistent database is in the log. The database at each
server is only a partial cached copy. All servers have data that was
updated by recently executed transactions, since that data was need-
ed by meld. But different servers also have different data, if they
read data that is not needed for conflict detection at weak isolation
levels and hence is not logged. That data comes from executing
read-only, read-committed, or snapshot-isolated transactions.

If a transaction accesses data not in its server’s cache, then the
server must do a random access to the log to get the data. Therefore,
for good performance, the log should be stored on solid state disks.

To avoid synchronization between servers, meld is designed to be
deterministic. All servers execute the same meld algorithm. Since
the log is shared by all servers, they execute meld on the same
sequence of intentions. Thus, for every intention they all make the
same commit or abort decision, and they apply the committed
intentions to their cached database copies in the same order. In
effect, the system operates as a replicated database where each
server has a cached subset of the database.

A natural implementation of meld processes intentions sequentially
in log order, as in [8]. Since meld is sequential and the sequential
processing speed of today’s processors is not increasing very fast,
meld is obviously a potential bottleneck. Other potential bottle-
necks are the rate at which the log can be written and read, the
network that connects servers to the log, and the abort rate due to
conflicts between transactions. However, in our system, which uses
a state-of-the-art network and servers, meld has been the bottleneck
that limits transaction throughput.

Since queries execute against snapshots, they are not logged or
melded. Hence, they scale out linearly until the log’s read
bandwidth or the network bandwidth is saturated.

One goal of this paper is to speed up meld. One approach is to speed
up the sequential meld algorithm that analyzes intentions one-by-
one to detect conflicts. However, the meld algorithm described in
[8] is already heavily optimized, and we have been unable to
improve it. If speed-ups are possible, we predict they will be small.

The second approach is to parallelize meld, which is the main
subject of this paper. We do it by using other threads to preprocess
intentions in ways that reduce the amount of work required by
meld. The speed of that final meld step is what ultimately
determines transaction throughput.

There are three preprocessing steps. The first is deserialization,
which transforms each intention from its log format into an object
structure. The original meld algorithm in [8] used several deserial-
ization threads to reduce meld’s execution time by up to 45%.

In this paper, we introduce two new preprocessing steps that exe-
cute after deserialization and before final meld. Each step executes
on a deserialized intention I that final meld has not yet processed.
The speed of meld is largely determined by the size of each
intention and the fraction of each intention that meld has to process.
Group meld reduces the former and premeld reduces the latter.

The first optimization, called premeld, does a trial meld of I that
looks for conflicts with committed transactions in the part of the
log that the final meld processing step has already processed. It also
“refreshes” I by replacing stale data in I by committed updates from
that earlier part of the log. This reduces the fraction of I that the
final meld step has to process.

The second optimization, called group meld, combines adjacent
intentions. As we will see, intentions usually have overlapping
information, which collapses into one copy in the grouped
intention. This speeds up final meld, which has to process that
overlapping information only once instead of twice.

Implementing premeld and group meld presents two technical chal-
lenges. First, since every server runs premeld and group meld, they
both need to be deterministic. Otherwise, different servers will end
up in different database states, leading to database corruption.
Second, since the meld algorithm is quite complicated, it is
important to factor out meld’s core behavior that can be used in
premeld, group meld, and final meld, to ensure that all three
algorithms have consistent semantics. We were able to accomplish
this with a relatively small number of modifications of the original
meld algorithm. The resulting algorithm can be abstracted as a
generic operator, which could be used in other contexts.

Figure 2: Pipeline parallelism of meld using four stages

In essence, our use of three preprocessing steps is a pipeline paral-
lelism strategy (see Figure 2). We split the meld task for each inten-
tion into a pipeline of preprocessing stages (labelled ds, pm and
gm), followed by final meld processing (labelled fm). The earlier
stages execute in parallel with final meld processing, on intentions
that the final meld step has not yet reached. For example, in Figure
2, in the first time unit, we see two parallel threads executing the
deserialization (ds) stage on log entries I1 and I2. In the second time
unit, two parallel threads execute the premeld (pm) stage on I1 and
I2, and two parallel threads execute the ds stage on log entries I3
and I4. Next, we see two parallel threads execute ds on log entries

ds pm
gm fm

ds pm

ds pm
gm fm

ds pm

I1

I2

I3

I4

I5

I6

I7

I8

ds pm
gm fm

ds pm

ds pm
gm fm

ds pmL

O

G

T I M E

ds = deserialization (2 threads)
pm = premeld (2 threads)
gm = group meld (1 thread)
fm = final meld (1 thread)

Processing stages

I5 and I6, two threads execute pm on I3 and I4, and one thread exe-
cutes group meld (gm) on the combination of I1 and I2.

To show the benefit of these optimizations, we developed Hyder
II, a distributed implementation of this architecture on a shared net-
work-attached log. The performance measurements reported in this
paper are the first ones for a complete end-to-end implementation
of meld on a cluster of machines connected to a shared persistent
log. By contrast, the implementation described in [8] was entirely
in main memory on one server, and the one in [7] was a simulation.
Moreover, our implementation uses a log based on solid-state disks
(SSDs) [4], rather than the custom hardware proposed in [7].

In our experiments, five premeld threads give a 3x throughput
improvement, and one group meld thread gives a 1.6x improve-
ment. We found little benefit in running both premeld and group
meld, compared to running premeld alone. Therefore, although we
exercised the complete pipeline shown in Figure 2, for the
workloads we tried, if enough processor cores are available to run
several premeld threads, then premeld should be used. Otherwise,
group meld can give a significant speedup with only one core.

In summary the main contributions of this paper are the following:

1. Two new optimizations for optimistic concurrency control
validation of transactions on a multi-versioned tree-structured
index and incorporating them into the meld algorithm.

2. A modified meld algorithm that can be reusable as an operator
for premeld, group meld, and meld itself.

3. A comprehensive performance evaluation of meld in an end-
to-end distributed implementation. We show the new optimi-
zations give a 3x speedup over the best published meld tech-
nique. When executing a mix of 5% read-write and 95% read-
only transactions with serializable isolation, Hyder II scales
almost linearly, reaching peak throughput of 670K transac-
tions per second (tps) for transactions with ten operations.

The paper is organized as follows. As background, Section 2
describes the basic meld algorithm. Sections 3 and 4 present our
new optimizations. Section 5 describes our implementation, and
Section 6 reports on experiments that evaluate its performance.
Section 7 summarizes related work, and Section 8 is the conclusion.
Three appendices expand on certain aspects of the meld algorithm.

2. MELD
The meld algorithm operates on a database organized as a tree-
structured index, such as a binary search tree or B-tree. Since it
operates on main memory structures and is serialized to a sequential
log (rather than written out in fixed-size pages), a binary tree
consumes less storage per record than a B-tree [7]. So we use binary
trees in our examples and in our implementation. Each node has a
key and value, i.e., a payload.

Figure 3: Inserting node A and updating node C

Since a transaction operates on an immutable database snapshot,
updates must use copy-on-write. That is, an update must create a
new version rather than modify data in place. For example, consider
Figure 3. The left side shows a database snapshot. A transaction
inserts a new node A and updates node C, resulting in an intention

shown on the right. The update of C must create a new version C′,
which requires updating B’s pointer to C, which requires creating a
new version B′, and so on up the tree.

Conceptually, the intention I for a transaction T contains T’s
updates. Physically, I defines the entire database state that T
produced. That is, if T executed stand-alone on its input snapshot,
then the resulting database state would be I. Given the use of copy-
on-write, for every node n that T modified, I contains every node
on a path from the root to n, including n itself. For example, in
Figure 3 the transaction’s updates are “insert A” and “update C”.
But its intention, in the right box, defines the state that the
transaction produced, which includes B′ and D′.

If a transaction’s isolation level is serializable, then its intention
also contains the nodes in its readset. Such nodes are annotated to
identify them as having been read but not written.

The meld algorithm operates on an intention I and the last
committed state (or LCS), which is the database state produced by
the last transaction that preceded I in the log and committed (e.g.,
in Figure 4, state S1 produced by intention I1). Its goal is to
determine whether the transaction that generated I, T(I), experi-
enced a conflict. If so, it discards I. If not, then T(I) commits so
meld merges I’s updated nodes into the last committed state. In
effect, meld produces the intention that T(I) would have produced
if it had executed against snapshot I1 instead of I0 (see Figure 4).

Figure 4: Log positions relevant to meld

Every database state S includes metadata that tells how S relates to
the previous database state, Prev(S), from which it was generated.
For an intention I, the metadata tells how I relates to T(I)’s
snapshot. For a state S produced by meld, it tells how S relates to
meld’s input state, e.g., S1 in Figure 4.

The metadata is attached to each node n in a state S. Examples of
that metadata are the following:

 A reference to the node nprev in Prev(S) that has the same key
as n (if nprev exists).

 A flag indicating that n’s payload differs from nprev’s payload,
e.g., because S is an intention and T(S) updated n.

 The identity of the first version of n that produced n’s payload.
 If S is an intention, a flag indicating that T(S) read n.

With the exception of the flag that indicates T(S) read n, the
metadata is redundant, in that it could be computed from the log.
However, it would be quite expensive to do so, leading to an ineffi-
cient meld implementation. Part of the beauty of the meld algorithm
is that it can compute this metadata incrementally and efficiently.

Meld uses this metadata to help it detect conflicts and merge its
input intention and database state. Most details of how it does this
are not important for understanding the optimizations in this paper.
Still, to give the reader a sense of how conflicts are detected, we
sketch a basic version of the meld algorithm in Appendix A.

 D
B

C

E

D
B

C

Update C A

I I0 I1

S0 – state that intention I read (T(I)’s snapshot)
S1 – last committed state to meld with I

S0 S1

Start of log End of log

All transactions in
this range aborted

}

There is one detail of the meld algorithm that is relevant to the
optimizations in this paper, namely, the generation of ephemeral
nodes. To understand ephemeral nodes and how they arise, suppose
meld executes on state S and intention I, and determines that node
n was updated by T(I) and was unchanged by any other transaction
concurrent with T(I). This implies that the subtree under n in I was
unchanged, since if it were then n would have changed too (as in
Figure 3). Therefore, meld can simply replace n in S (denoted nS)
by n in I, which also replaces nS’s subtree by n’s subtree. (This
merging of subtrees is why the algorithm is called “meld.”) If nS is
not the root of S (as is usually the case), then nS’s parent p must be
replaced in S by a new node p′, due to copy-on-write. Notice that
p′ is produced by meld, not by a transaction. Therefore p′ is not
written to an intention that is stored in the log—it only exists in
main memory. In this sense, it is ephemeral. As in Figure 3,
ephemeral nodes are generated for all of the ancestors of p′ too.

An ephemeral node e might be read or overwritten by a later
transaction T. T’s intention will have a node with the same key as e
and that node will refer to e. Since meld is deterministic and every
server will meld T’s intention, all servers must generate e with the
same identity so that T’s intention is interpreted the same way on
every server. As we will see, this complicates premeld.

3. PREMELD
3.1 Premeld Overview
For a given intention I, the intentions in the log between I and the
snapshot that T(I) read are called I’s conflict zone (see Figure 5).
The process of melding I with its input LCS involves combining
I’s updates with parts of the database that were updated by commit-
ted transactions in I’s conflict zone. One way to parallelize meld is
to use a parallel thread to do a preliminary meld of I with a state
that is earlier than its input LCS, such as S1 in Figure 5. This prelim-
inary meld is called premeld. The LCS S1 that it merges with I is
called I’s premeld input and the log region between I’s snapshot
and its premeld input is called I’s premeld conflict zone.

Figure 5: Log Positions Relevant to Premeld

Premeld serves two purposes. First, it checks for conflicts in a
prefix of I’s conflict zone, that is, its premeld conflict zone. If it
discovers a conflict, then final meld can skip processing I, since it
knows that I will abort.

Second, if premeld finds no conflicts, then it produces an updated
intention Im that appears to have executed against I’s premeld input.
Later, final meld will meld Im (instead of I) into I’s input LCS. This
requires less work than melding I, because there is less conflict
checking to do. So the effect is to speed up final meld.

Surprisingly, the premeld algorithm is almost exactly the same as
meld, but with different inputs. We will explain that later. First, let
us look at why the optimization is effective and how it works.

3.2 Premeld Details
Meld’s throughput is a function of the number of nodes it has to
traverse. This depends on the number of nodes in each intention I
with descendants that were changed by committed transactions in
I’s conflict zone.

For example, consider the states in Figure 6, which correspond to
Figure 5. Intention I executed on snapshot S0 and updated leaf E,
producing E. Since T(I) did not read or write node C, C is outside
of I. While T(I) was executing, another transaction T1 updated node
C, producing C. Since T1’s intention was appended to the log
before I and it committed, its updated node C appears in I’s input
LCS. When melding I with its input LCS, an ephemeral node De

 is
generated, which connects to C and E. This generates a new
ephemeral parent for De, and so on up the tree. If this were a tree
with a million nodes, the root-to-leaf path would have 20 nodes, so
19 ephemeral nodes would be generated.

Figure 6: Detailed example of premeld

Suppose that node C was the left child of node A instead of the left
child of node D. In this case, melding I with its input LCS would
generate only one ephemeral node, namely Ae, connecting to C and
B. That is, it would graft I’s subtree rooted at B into the LCS.
Comparing these two cases, we see that in the first case 19 nodes
in I had a descendant that changed in I’s conflict zone, while in the
second case, only one node (i.e., node A) in I has such a descendent.

Now, suppose that the state in Figure 6 that is labelled “I’s input
LCS S3” is instead I’s premeld input, that is, state S1 in Figure 5.
Since premeld performs the same computation as meld, its output
is still S′. However, as we describe in the next section, S′ is inter-
preted as an intention, not as an LCS, and substitutes for I as input
to meld. So final meld will meld S′ into the LCS, which is S3.

To produce S′, premeld paid the cost of generating the ephemeral
nodes on the path from C to the root. When melding S′ into S3, that
work will be repeated only for nodes on that path that have a
descendant that is updated in the post-premeld conflict zone. That
conflict zone is usually much smaller than I’s original conflict zone,
and hence is unlikely to have many updated descendants of nodes
on that root-to-C path. Therefore, few if any nodes on that path will
be traversed during final meld. Thus, as a result of I’s premeld,
which executed on a separate hardware thread in parallel with the
final meld thread, the final meld of S′, which substitutes for I, will
be faster than if it had been had it executed on I’s entire conflict
zone. Since final meld is performed on a separate thread, the
speedup of final meld increases overall transaction throughput.

Premeld is beneficial mostly because I’s post-premeld conflict zone
is much smaller than its premeld conflict zone. This ensures that

 I I0 I2I1

S0 - state that intention I read (I’s snapshot)
S1 – state to minimeld with I (I’s premeld input)
S2 – state when I arrived at the meld log
S3 – state to meld with I (I’s input LCS)

S0 S1 S2 S3

Start of log End of log

I’s premeld conflict zone

I’s conflict zone

Post-premeld
 conflict zone

I3

I’s snapshot S0 Intention I S = Meld(I, S3)

Meld I
into S

A

B

D

EC

I’s input LCS S3

A

B

D

EC

Ae

Be

De

A

B

D

E C

most of the work of meld is done by premeld, rather than final meld.
The post-premeld conflict zone size is governed by the distance in
the log between I and its premeld input. By design, this is kept quite
small. In our experiments, it is just a few hundred transactions. By
contrast, when throughput is ~50K tps, the conflict zone is typically
10K-30K transactions, and the premeld conflict zone is just a few
hundred less. Thus, we see a ratio of 100:1 between the sizes of
premeld and post-premeld conflict zones.

We considered running premeld on an intention I immediately after
T(I) terminated and before I was appended to the log. This would
merge in updates applied by meld at T(I)’s server during T(I)’s
execution. However, since a transaction executes in tens of
microseconds, the benefit would be much smaller than running
premeld after the log append, which takes milliseconds. Running
premeld after the log append makes it useless to also run it before.

3.3 Meld Implements Premeld Semantics
We now explain why meld, with a small modification, implements
the semantics required for premeld. It is based on two observations:
(i) each transaction is represented as a pair of states, and (ii) the
output of meld is a pair of states and hence is a transaction.

First, consider the representation of a transaction. In the database
field, we normally think of a transaction either as a program or as a
sequence of operations on shared data that is generated by an
execution of a program. From a transaction processing standpoint,
it is a little unusual to think of a transaction execution as a pair of
states <Sin, Sout>. However, from a programming language stand-
point, it is a natural representation. In our case, it is how a
transaction’s semantics is physically represented.

The execution of a transaction T generates an intention I, which
represents the database state produced by T executing against its
input snapshot. I includes the identity of the snapshot against which
it executed. That identity is represented as metadata attached to
each node in I. Taken together, that per-node metadata defines an
input database state. Therefore, we can abstract its semantics as
simply <Sin, Sout>, where Sin is its snapshot and Sout is its intention.

Second, to see why meld’s output is a transaction, remember that
its goal is to merge the updates of an intention I with I’s input state
Sin, producing an output state Sout. This is equivalent to saying that
Sout is the result of running T(I) on Sin. In this sense, we can regard
its output as a transaction <Sin, Sout>. In fact, its output is physically
represented that way, since the metadata attached to each node of
Sout describes how it relates to its previous version.

There is one omission in this explanation: readsets. Since meld’s
output is interpreted as a transaction that undergoes an optimistic
concurrency control check, it is not enough to represent each trans-
action by a pair of states, <Sin, Sout>. It must also include its readset,
to enable conflict detection for serializable isolation. An intention
generated by executing a transaction includes this information.
However, an intention generated by meld in [8] does not. This is
correct in [8] because meld’s result is interpreted only as a database
state, not as a transaction. Thus, that output need not retain readset
information for further optimistic concurrency control checks.

However, when we use meld to implement premeld, its output will
be interpreted as a transaction that will be melded at least one more
time by final meld. Therefore, it needs to include readset infor-
mation. Since meld’s output transaction represents the execution of
the same program as the one that produced meld’s input intention,
the output transaction’s readset should remain unchanged. There-
fore, meld should copy the transaction’s readset to its output. This

requires changing only one line of the algorithm in [8]: When meld
determines that a read-only subtree of an intention I is the same as
the corresponding subtree L of the LCS, it should return I’s subtree
as the output, rather L’s subtree, because I’s subtree has the readset
metadata while L’s subtree does not. That is, line 7 of meld in
Appendix C of [8] should read “rtree = itree; return false;” instead
of “rtree = lcstree; return false;”

3.4 Determinism of Premeld
Meld runs independently on all servers that share the log, producing
a sequence of database snapshots. We want the system to behave as
if it has one shared database. Hence, all servers should generate an
identical sequence of snapshots. Thus, meld must be deterministic.

It is not enough that the snapshots on different servers contain the
same set of [key, payload] pairs. They must be physically identical.
To see why, recall that the intention generated by each transaction
may include ephemeral nodes. When the intention is melded, some
of those ephemeral nodes may become part of the database. A later
transaction T may refer to such an ephemeral node, e, in its
intention. For example, T may have read e or updated a node whose
root-to-leaf path refers to e. T’s intention I will be broadcast to all
servers. To meld that intention, other servers may need to follow
I’s reference to e. Therefore, the reference must point to the same
node on all servers. This requires meld to produce physically
identical trees with the same node identities on all servers.

To understand whether trees on all servers will use the same node
identities, consider the two ways that a node identity can be gener-
ated. First, the node can be inserted by a transaction T and stored in
T’s intention. Since the intention is broadcast to all servers, the node
has the same identity at all servers. Second, it can be an ephemeral
node created by meld. Ephemeral node identities are allocated
sequentially in the order they are generated. Therefore, ephemeral
nodes must be generated in the same order on all servers to ensure
they have the same identity on all servers. This property holds if
meld is deterministic, such as the algorithm described in [8]. In this
case meld will produce physically identical trees on all servers.

However, when premeld is used, ephemeral nodes might no longer
be generated in the same order on all servers, for two reasons. First,
for a given intention, premeld might execute against different
database states on different servers. For example, suppose the log
contains a sequence of intentions I1, I2, I3, I4. One server might run
premeld for I4 on the state produced by I1, while another server runs
premeld for I4 on the state produced by I2. These premeld
executions might generate different sequences of ephemeral nodes.
Thus, an ephemeral node with a given identity, e, might contain a
different [key, value] pair at different servers. From then on, their
servers’ database states will diverge, which causes the system to
malfunction. For example, an intention I that was generated at
server Sx and that points to e will later arrive at another server Sy,
where I will point to e, but the content of e is different at the two
servers. A detailed example is in Appendix C.

To solve this problem, we ensure each server runs the same number
of premeld threads, and each premeld thread executes on the same
sequence of [intention, database state] pairs. We do this by means
of index calculations. If there are t premeld threads, then each
intention is assigned to the thread identified by its intention id
modulo t. Each intention is premelded against the state created by
the (t d)th intention that precedes it, where d is a fixed, global
parameter, called the premeld distance. If that state precedes I’s
snapshot, then premeld does nothing. If that state is not yet
available because final meld is slow, then the premeld thread waits

until final meld creates the state. Note that the system must retain
each state until the intention that premelds against it has executed.

The second reason that different ephemeral node identities might
differ on different servers is that premeld executes in parallel with
final meld. If these threads generate ephemeral nodes in different
orders on different servers, then a node may have different identi-
ties on different servers. To avoid this, the final meld thread and
each premeld thread generate thread-local sequence numbers. We
use a two-part identity for each ephemeral node, consisting of the
id of the thread that generated it plus the sequence number of the
ephemeral node in that thread. Combined with the previous tech-
nique of premelding each intention to the same state at all servers,
this ensures premeld generates the same ephemeral node identities
at all servers. Premeld is shown in Algorithm 1 below.

Algorithm 1: PREMELD.

Input: Intention Iv at position v in the log; a sequence of database
states corresponding to log positions: S1 after I1, S2 after I2, etc.; an
integer premeld distance d; an integer number of threads t; and the
most recent database state, Sr

Output: Abort, Iv, or the result of running meld on Iv and Sv-(t d)-1

1. m v – (t d) – 1 // the database version to meld against

2. snap ReadVersion(Iv) // the snapshot on which T(Iv) executed

2. if snap m then
3. return Iv // Sm is older than Ssnap. So there’s no need to meld.

4. else if m r then // Final meld hasn’t produced Sm yet
5. wait for Sm to become available
6. Sout Meld(Iv, Sm)
7. if Sout says T(Iv) experienced a conflict then return Abort
8. else return Sout

To maximize the benefit of meld, we want to minimize the size of
the post-premeld conflict zone. We therefore want a small value of
d. But it should be large enough to give premeld enough time to
finish before final meld is ready for premeld’s output. Otherwise,
final meld will stall, reducing throughput. In our experiments, five
premeld threads with d=10 resulted in the best throughput.

4. GROUP MELD
A second way to speed up meld is to combine a pair of adjacent
intentions in the log into a single intention, called a group
intention. Later, final meld evaluates the group intention as one
intention. This is beneficial because the group intention is generally
smaller than the concatenation of its two input intentions, because
the input intentions contain overlapping sets of nodes. So it takes
less time to meld it. Two overlapping nodes collapse into a single
node in the group intention. Thus, the more nodes the two input
intentions have in common, the smaller the group intention.

For example, Figure 7 shows a database tree comprising six nodes.
Intention I1 updated A′, so it includes B′ and D′, and I2 updated C″,
so it includes B″ and D″. I1 and I2 have overlapping nodes D and
B, each of which collapses to a single node when I1 and I2 are
melded into a group intention I3 (which includes new ancestors D‴
and B‴, due to copy-on-write). Together, I1 and I2 have six nodes,
but the group intention that combines them has only four nodes.

Like premeld, group meld uses the standard meld algorithm, as
modified in Section 3.3 to include readsets. However, group meld
requires special logic in one case: Suppose nodes n1 and n2 in I1 and

I2 (respectively) have the same key (e.g., A′ and A″), and I1 pre-
cedes I2. Suppose n1 is in T(I1)’s readset and n2 is in T(I2)’s readset
or writeset. Then the readset metadata for the melded node n12 must
refer to the maximum of n1’s and n2’s conflict zones. That is, if
T(I1)’s snapshot precedes T(I2)’s snapshot, then n12’s readset must
refer to T(I1)’s snapshot, so that meld checks for conflicting updates
in between the two snapshots. Thus, meld must replace n2 by an
ephemeral node, so it can update n2’s readset metadata. This arises
in the meld algorithm in several spots, which requires special-case
logic for group meld. Note that if T(I2)’s snapshot precedes T(I1)’s,
then no action is needed because n2’s existing metadata dominates.

Figure 7: Combining two intentions into a group intention

The group meld optimization melds every adjacent pair of
intentions, thereby halving the number of intentions in final meld.
Like premeld, it has to be deterministic. A way to ensure this is to
have each group intention be an odd-numbered intention in the log
followed by the next one, which is even. Thus, intentions 1 and 2
form a group intention, then intentions 3 and 4, and so forth.

A disadvantage of group meld is that the group intention commits
if and only if both intentions commit. Thus, it ties the commit/abort
decision of each intention with that of another. This effect, called
fate sharing, could increase the abort rate by up to a factor of two.

Figure 8: I1 and I2 meld into a group intention

However, there is one case where fate sharing does not occur. When
melding two intentions into a group intention, if the first intention
I1 includes an update that conflicts with the second intention I2, then
group meld aborts I2, because I1 is in I2’s conflict zone (see Figure
8). Therefore, I1 becomes the group intention and can still commit.

When premeld and group meld are combined in a pipeline, they can
execute in either order. In our experiments, we ran premeld first,
since it is more likely to find aborted transactions than group meld.
The sooner in the pipeline that aborted transactions are identified,
the better, since it reduces the amount of downstream work.

5. IMPLEMENTATION DETAILS
Our Hyder II implementation runs Hyder’s meld algorithm [8] on
a shared log manager. The core design comprises a cluster of
transaction servers that execute transactions and the meld
algorithm, and log servers that store the database. Our
implementation allows for a single machine to run both a trans-
action server and log server. However, in our experiments, they run
on different machines. The database is an immutable balanced
binary search tree (a red-black tree [17]). As argued in [7], a binary
tree is preferable to a B-tree, because it leads to smaller intentions.

D′

EB′

CA′ F

D″

E B″

C″ A F

D‴

EB‴

C″A′ F

Intention I1 Intention I2 Group intention
from I1 and I2

I2
I1

I2’s conflict zone

Start of log End of log

5.1 Log Service
The log ensures persistence and enforces a total order on transac-
tions. We used CORFU [4] as the log service, due to its good per-
formance and feasibility compared to the custom hardware propos-
ed in [7]. CORFU runs on a set of log servers on the same local area
network as the transaction servers running transactions and meld.
However, the transaction servers see it as a single shared log ser-
vice, not as a set of log servers. Each log entry is a fixed-sized page,
called an intention block. An append operation adds a given block
to the end of the log and returns the position in the log where the
block was stored. Given a log position, a read operation returns the
block stored at that position. To ensure good append and read band-
width, the log is striped across a set of storage units that are directly
attached to the log servers. As we show in the next section, the log
manager is much faster than meld and hence is never a bottleneck.

There are nontrivial error cases when read or append operations fail
or fail to reply at all [4]. As these problems are not unique to Hyder
II and this paper is about optimizing throughput and not fault
tolerance, we regard them as out of scope.

Hyder II stores intentions in intention blocks. Depending on the size
of the intentions, many intentions might fit in one block or an
intention might span many blocks. In the latter case, the blocks of
an intention need not be contiguous; the position of the intention in
the log is identified by the position of its last intention block.

5.2 Transaction Servers
Hyder II is implemented in C#. Our implementation comprises the
multi-versioned index structure storing the database tree, the
transaction executer, and the meld pipeline that rolls forward the
log. Bernstein et al. [8] presented an optimized and detailed design
of the meld algorithm for the in-memory setting. Our meld
implementation uses that algorithm, with the modification
described at the end of Section 3.3. However, we re-implemented
it in C# to efficiently use the new implementation of the database
backed by our network-attached log.

A transaction executor dispatches transactions and processes their
termination. Each transaction T executes on the current last-
committed state (LCS) reported by the final meld thread at the time
T starts. Due to copy-on-write, T’s first write generates a new
intention and all of T’s subsequent writes add to it. After the
transaction finishes executing, the executor serializes the intention
into one or more blocks, appends it to the log, and then broadcasts
it to the other transaction servers. T’s outcome will become known
to T’s executor only after meld on the same server processes the
intention. Until then, T is blocked. However, the executer is non-
blocking and moves on to execute the next transaction while
awaiting the commit decision from meld. The executer stops
processing transactions if the number of transactions awaiting their
outcome exceeds a configurable threshold which is determined
empirically. Ideally, the threshold for the number of concurrent
transactions allowed should be dynamically determined by admis-
sion control logic, which is future work. Such admission control is
essential to avoid thrashing when the offered load exceeds capacity.

An intention tree is serialized into an intention block via a post-
order tree traversal. Post-order ensures that each node points to
children that are either in the log or already serialized. Once the
block fills, serialization continues with a new block. The intention
block containing the root of the database tree is appended last.

Each transaction server has a log reader that transforms the
sequence of intention blocks in the log into an in-memory represen-
tation of the intentions that feeds the meld pipeline. For each inten-
tion block, it spins off a deserialization task, which generates a tree
of objects. A configurable number of threads run the deserialization
tasks. They transform each node pointer in an intention into an
object pointer if the object is in memory. Otherwise, the node
pointer is left as a log position; if dereferenced later, the log position
is used to fetch the corresponding intention block from the log.

The pipeline of premeld, group meld, and final meld processes the
deserialized intentions in log order. Configuration parameters are
used to turn-off premeld and/or group meld, and to control the
number of threads for premeld and group meld.

Meld is inherently sequential and ideally CPU-bound. Any stalls
during meld significantly reduce its throughput. Since meld does
not need synchronization, the only sources of stalls are late-arriving
intentions and cache misses. If meld is ready to process the next
intention I but has not yet received I, it stalls until I is read from
the log. Similarly, if meld accesses a block that is not cached, it
must read the block from the log. The latency to read a log block is
on the order of milliseconds while the latency to meld an intention
is typically tens to a few hundred microseconds. Therefore, it is
important to avoid intention block misses in the final meld thread.
Pipelined parallelism helps mask log access latencies, since
premeld and group meld fetch blocks well before final meld needs
them. To ensure that final meld does not stall on a cache miss,
additional threads can be used to pre-fetch blocks not accessed in
the earlier phases of the meld pipeline.

For optimal meld performance, it is also critical to avoid context
switches. Therefore, meld spins if the next intention is not available
to process. Each premeld, group meld, and final meld thread is also
affinitized to a core to prevent inter-core thread migration.

5.3 Optimizations
Implementing Hyder II in managed code had advantages as well as
challenges. It improved productivity and reduced the time to
complete the first implementation. However, we had to iterate over
the implementation to make its performance competitive with the
optimized native in-memory implementation reported in Bernstein
et al. [8]. A performance comparison with [8] is in Section 6.4.

Our first challenge was memory management and garbage collec-
tion (GC) overhead. Much progress has been made to minimize the
overhead of GC. Even so, we found GC to be detrimental to perfor-
mance. Therefore, each thread in Hyder II, such as the transaction
executer, deserializer, and meld, has its own local memory pool to
reuse objects whenever possible. Pre-allocated thread-local
memory pools significantly reduced GC overhead and stalls.
Careful profiling revealed that GC was also triggered by some lan-
guage constructs, such as lambda expressions and library functions
that do not allow reusing objects, and asynchronous API calls that
automatically generate a callback on call completion. Eliminating
these poor memory users was a tedious and iterative process, but
we were rewarded with significant performance improvement. As
described in Section 2, meld generates ephemeral nodes. Since the
pipelined design has more instances of meld, it can generate more
ephemeral nodes. Therefore, ephemeral nodes must be carefully
managed to avoid unnecessary demand for memory.

The second problem was serialization and deserialization of the
intention blocks and manipulation of byte arrays, which is CPU-
intensive. This needed careful optimization.

The third problem was network errors. After an intention is
appended to the log, it is broadcast to all servers. Our initial imple-
mentation simulated this broadcast over UDP. However, as the
network utilization and contention increased, significant packet
loss resulted in many out-of-order intention deliveries, which
degraded performance. Even though simulating the broadcast using
TCP was more expensive than using UDP, the switch to TCP
resulted in another significant performance boost.

6. EXPERIMENTS
We present an experimental study of our Hyder II implementation.
We start by analyzing the performance of the log service to ensure
it is not a bottleneck. We then evaluate Hyder II for various config-
urations and demonstrate the benefits of the premeld and group
meld optimizations for a variety of workload mixes and isolation
levels. We also compare Hyder II’s throughput with that reported
for Hyder [8] and Tango [5], whose designs are similar to Hyder
II’s. Hyder’s performance studies have been limited to simulations
[7] or a single-node implementation with an in-memory log de-
signed to test the limits of the meld operator [8]. This paper presents
the first detailed experimental evaluation of Hyder’s architecture.

6.1 Experimental Setup and Workload
We ran our experiments on a cluster of twenty servers. Each server
has a two-socket Intel Xeon E5-2650L 1.8 GHz processor (16
physical cores, 32 logical processors, two NUMA nodes), 192 GB
RAM, a commodity Intel SATA SSD, and a dual-port Intel 10 Gbps
network adapter. Servers in the rack are connected through a 64
port 10 Gbps top-of-rack switch to provide a high speed private
network interconnect within the cluster.

The CORFU log service consists of a token server, a sequencer for
log entries, and six disk servers, which store the log on direct-
attached SSDs. The installation has a number of Hyder II
transaction servers, which use CORFU’s client API to append and
read intention blocks. A Hyder II server generates two types of
network traffic: unicast traffic with the log servers for appends and
reads, and broadcast traffic among the transaction servers after an
intention is appended to the log. To avoid interference, each type
of traffic uses a different port of the dual-port network adapter.

We use a workload generator adapted from the Yahoo! Cloud Serv-
ing Benchmark (YCSB), adding support for multi-operation trans-
actions [10]. The workload generator allows us to vary the number
of operations in a transaction, the distribution of reads and writes
within a transaction, the fraction of range vs. point lookups, the
database size, and the distribution from which the keys are selected.

Unless otherwise specified, we use a database with 10M items, each
with a 4 byte key and 1K payload. In most experiments, we vary
the number of transaction servers generating and executing the
workload. Each server has 20 update threads. Each thread allows
up to 80 in-flight transactions, that is, transactions that have been
appended to the log but not yet received a commit decision. This
limit simulates coarse-grained admission control to avoid overload
and thrashing due to high resource contention. Each transaction has
8 reads and 2 writes. The keys read and written are selected
uniformly from the keys in the database. For experiments that vary
one of these default parameters, the number of servers is fixed at 6.

The uniform distribution of reads and writes is adversarial for any
transaction or data partitioning scheme, since a transaction’s
accesses do not naturally cluster. We select this workload to
demonstrate Hyder II’s ability to scale-out without partitioning.

As discussed earlier, Hyder II has four critical resources: log
appends, network bandwidth, meld, and data contention. An update
transaction stresses all of them. So most of our analyses involve a
write-only workload to help us identify resource bottlenecks.

All of our measurements are the average result of three runs. We
do not report the standard deviation, since it is low in all cases
except under heavy contention, a well-known phenomenon. We
observed a standard deviation in the range of 2-5% of the averages.

6.2 Summary of Results
The key takeaways from our experimental results are:

 The optimizations proposed to parallelize meld result in signi-
ficant throughput improvements. Group meld improves
throughput by 1.6x with only one thread. Premeld improves
throughput by 3x with five threads across a variety of
workloads and isolation levels.

 When premeld and group meld are combined in a pipeline,
they do not improve throughput beyond that of premeld.

 For transactions with 8 reads and 2 writes, snapshot isolation
(SI) improves throughput by 3x compared to serializable.
With SI, premeld results in an additional 2x improvement,
while group meld’s improvements are not significant.

 Read-only workloads scale almost linearly. With a workload
of 5% read-write and 95% read-only transactions, we achieve
about 670K transactions per second with ten servers and
serializable isolation executing a non-partitionable workload.

6.3 Performance of the Log Service
This section analyzes the throughput and latency of our shared log
implementation. Our goal is to ensure that log appends are not a
bottleneck that limit Hyder II’s throughput.

The log service uses
six disk servers.
Clients append and
read blocks of data. In
Hyder II, log “clients”
are transaction servers.
The log service has a
pre-configured block
size; we use 8K blocks
for Hyder II and for
these experiments.

Figure 9 plots the
throughput and latency
of appends as we vary
the number of clients
appending to the log
and the number of
concurrent threads per
server. Figure 9(a) and
Figure 9(b) report
results for 20 and 30
threads per server,
respectively. As we
increase the number of concurrent appends, the 95th and 99th
percentile latencies increase, plotted on the right vertical axis. How-
ever, even the 99th percentile latencies are under 10 milliseconds.
The peak throughput is more than 140K appends/sec. In our later
experiments, Hyder II’s transaction load generates at most 110K
append/sec using a log configuration identical to these experiments.
Hence, the log is not a bottleneck.

(a) 20 threads per client

(b) 30 threads per client

 Figure 9: Throughput and latency of
append operations to a shared log.

6.4 Performance of Hyder II
We first analyze Hyder II’s performance using a workload
executing all write transactions with serializable isolation to
compare the benefits of premeld and group meld in isolation and in
combination. Subsequently, we experiment with workloads with
varying fractions of read-only transactions, with different isolation
levels, and varying other workload parameters such as data access
distribution, and transaction size. In all experiments, “throughput”
means the number of committed transactions per second.

6.4.1 Workload with all Write Transactions
A write transaction stresses all the critical resources. Hence, a
workload comprising all write transactions helps identify the
architecture’s performance limits. In this experiment, we use the
default workload parameters described in Section 6.1. Figure 10
reports Hyder II’s throughput in transactions per second (tps) as we
vary the number of servers. The first bar corresponds to Hyder II
with only final meld. The second bar (Hyder II-Grp) corresponds
to Hyder II with group meld applied before final meld. The third
(Hyder II-Pre) corresponds to Hyder II with premeld applied
before final meld. The fourth (Hyder II-Opt) corresponds to
applying both group meld and premeld. For experiments with
premeld, there are 5 premeld threads with a premeld distance of 10.
For experiments with group meld, there is one group meld thread
grouping two intentions into one.

In Figure 10, Hyder II’s peak throughput with no optimizations is
15K tps, which is achieved with 2 transaction servers. By contrast,
peak throughput of Hyder II-Grp is 23.5K tps, Hyder II-Pre is
45.3K tps, and Hyder II-Opt is 44.8K tps. Thus, group meld
improves throughput by 1.6x and premeld improves it by 3x.
However, combining the optimizations does not improve
throughput beyond that of premeld. Therefore, when enough cores
are available to run many premeld threads, premeld should be used
alone. Otherwise, group meld should be used to give a significant
improvement with just one core.

The improvement with premeld is more significant as we increase
the concurrency. For instance, with 10 servers, each with 20 threads
and 80 in-flight transactions, there are up to 16K concurrent trans-
actions, i.e., transactions that started executing but have not yet
been melded. At such high degrees of concurrency, Hyder II-Pre
has 3.5x the throughput of Hyder II.

Figure 10: Throughput (committed transactions/sec) for Hyder
II and the impact of premeld and group meld optimizations.

As concurrency increases beyond six transaction servers, there is
some reduction in throughput of Hyder II-Pre. This is due to more
contention and queuing delays for resources, such as log appends
(see Figure 9) and network broadcast, which increases transaction
processing latency and in turn throttles the executers when they

reach their in-flight-transaction limit. That is, the small reduction
in throughput is primarily due to the “back-pressure” on the
executers due to higher resource contention.

Premeld and group meld help reduce the work done by final meld
by reducing the number of tree nodes that final meld visits. Figure
11 reports the number of nodes visited per transaction by final meld
for each optimization technique. As is evident, group meld reduces
the number of nodes by 2x and premeld reduces them by 8-10x.

Figure 11: Group meld and premeld reduce the number of
nodes visited in the final meld thread.

Premeld merges the intention with a recent LCS, eliminating a large
fraction of the conflict zone that final meld has to process. Most of
the readset and writeset validations that require traversing deep into
the database tree are processed by premeld. Final meld mostly
terminates high up in the tree, merging the updates into the LCS
and creating ephemeral nodes as needed. As a result, even though
the number of nodes is reduced by 8-10x, the throughput
improvement is only in the range of 3-3.5x.

Figure 12: Impact of group meld and premeld on the effective
conflict zone observed by the final meld thread.

Figure 12 reports the number of intention blocks in the conflict zone
observed by final meld. In our configuration, one intention spans
two intention blocks on average. Thus, the number of intentions in
the conflict zone is about half of the intention-block numbers
reported. As the figure shows, premeld shrinks the conflict zone by
40x-500x by melding the intention with an updated LCS very late
in the intention’s conflict zone. However, the conflict zone size is
unchanged by group meld. Its benefit stems from overlapping
nodes and paths in the two intentions—final meld needs to process
only one of these overlapped nodes, which reduces the number of
nodes processed by final meld. Combining premeld and group meld
does not significantly change the number of nodes visited or the
conflict zone length, which explains why the two optimizations
together do not result in any improvement beyond that of premeld.

While both premeld and group meld reduce the work done by the
final meld thread, they perform redundant work in parallel threads.
Figure 13 reports on the total number of tree nodes visited per
transaction by each optimization. The work done in the critical path
of final meld (the pattern-filled bar) decreases with every
optimization, while the work done in parallel threads (solid bars) is
often higher in aggregate than the sequential final meld thread
without any optimizations.

Figure 13: Number of tree nodes visited in different stages of
the meld pipeline. The hatched bar corresponds to final meld.
The solid bars correspond to group meld and premeld.

6.4.2 Comparison with Hyder and Tango
Tango is the system whose architecture is the closest to Hyder II.
In this section, we compare them, along with the in-memory setup
of Hyder [8]. Tango and Hyder reported throughput for a database
of 100K items. To compare them with Hyder II, we repeated the
experiment of Section 6.4.1 for a database of 100K items running a
workload similar to that used in Hyder and Tango. In this
experiment Hyder-II’s peak throughput was ~20K tps (compared to
15K tps in Figure 10). Tango reported throughput of 15-25K tps on
similar hardware [5]. Thus, Hyder II’s performance is comparable
to Tango’s, in spite of its tree index, which is more expensive to
maintain than Tango’s hash index. With the premeld optimization,
Hyder II’s performance is significantly better than Tango’s.

The throughput of Hyder’s in-memory implementation, using a
workload with ~10 operations per transaction was 50-60K tps [8].
The lower throughput of Hyder II’s meld operator can be attributed
to multiple factors. Experiments for in-memory Hyder involved
only one server, and the workload generator limited the conflict
zone length to 256. Hyder II needs to operate at much higher
degrees of concurrency with tens of thousands of concurrent
transactions (as in Figure 12) to mask the latency of serializing and
deserializing intentions, appending to the log, and broadcasting
intentions. Premeld reduces the conflict zone length for final meld
to the same range as the in-memory implementation, which results
in a throughput of 50-60K tps for a 100K item database. Other fac-
tors contributing to Hyder-II’s lower throughput are that Hyder-II’s
experiments use a slower processor and a distributed shared log,
and Hyder II is implemented in C# while Hyder is written in C++.

6.4.3 Workload with Read-Write Transaction Mix
Read-only transactions in Hyder II run on a database snapshot (the
LCS when the transaction starts) and commit locally, without
stressing any of Hyder II’s critical resources. Therefore, read-only
transaction throughput should scale linearly as we increase the
number of servers and the number of read-only transactions. To
demonstrate this, we run an experiment that executes an increasing

number of read-only transactions with a fixed load of write
transactions using the setup of Section 6.4.1.

Both read-only and write transactions execute ten operations; write
transactions have two updates and eight reads, as in Section 6.4.1.
We use separate executers for read-only transactions. This ensures
adding more read-only transactions does not reduce the number of
write transactions admitted to the system. We gradually increase
the number of read-only transaction executors while keeping the
write workload fixed with six dedicated executors per server.

Figure 14: Linear scaling of transaction throughput with a mix
of read-only and read-write transactions.

Figure 14 plots the throughput of write transactions and of read and
write combined (“total”). As we increase the number of servers, the
offered load increases. We vary the number of read-only executers
from 0 to 4, denoted by 0R, 1R, 2R, and 4R in the figure. With 6W-
0R, there are no read-only transactions, re-creating the setup in
Section 6.4.1. For brevity, we only report numbers using premeld.

First consider the lines, which plot total throughput (i.e., of read
and write transactions) on the left vertical axis (labeled total
txns/sec). They correspond to the last four rows of the table. As we
increase the number of read-only executors (from 0R to 4R) and
servers (from 1 to 10), total throughput scales almost linearly. With
10 transaction servers, total throughput for 6W-4R peaks at ~670K.
This linear scalability demonstrates that Hyder II’s architecture
scales out without partitioning.

The bars in the graph plot the throughput of write transactions on
the right vertical axis (labeled write txns/sec). They correspond to
the first four rows of the table. As in Section 6.4.1, write throughput
peaks at 45K tps with 6 servers (6W-0R). For a given number of
servers, as the number of read-only executors increases from 0 to 1
to 2, there is a small decrease in write throughput. This is due to
higher CPU contention since more cores are processing transac-
tions (10 in 6W-4R vs. 6 in 6W-0R), thereby reducing the number
of cores available to broadcast and deserialize intentions.

With four read-only executors, no cores are dedicated to broadcast
and deserialization. Both activities slow down and meld throughput
decreases, causing a corresponding drop in write throughput (the
right bars for 6, 8 and 10 servers). This shows the importance of
reserving enough cores for basic system functions, such as meld,
broadcast, and deserialization.

6.4.4 Snapshot Isolation
In this experiment, we compare Hyder II’s performance when
transactions execute with serializable isolation (SR) versus
snapshot isolation (SI). With SI, meld does not need to validate the
readset, so the readset is not included in the intention. This
considerably reduces the intention sizes and hence the load on
many critical resources, such as the log, network, and meld. In this
experiment, each transaction performs 8 reads and 2 writes.
Therefore, eliminating the readset results in almost a 4x reduction
in intention sizes. This results in about a 2.5x improvement in
throughput, as shown in Figure 15, which plots the result of running
Hyder II with no optimizations. The reduction (3x-4x) in the work
done by meld is also evident from the number of tree nodes visited
by meld, shown by the lines plotted on the right vertical axis.

Figure 15: Serializable (SR) vs. snapshot isolation (SI).

The reason why a 4x reduction in the number of nodes yields only
a 2.5x increase in throughput is that SI eliminates only readset
nodes and reads are cheaper to meld than writes. Reads only require
conflict testing while writes require creating ephemeral nodes.

Figure 16: Impact of the premeld and group meld
optimizations with snapshot isolation.

Figure 17: Only premeld results in a reduction in number of
tree nodes visited by final meld with SI.

In Figure 16 we report the benefits of group meld and premeld for
transactions executing with SI. Hyder II with premeld continues to
demonstrate 2x-3x higher throughput than without the optimiza-
tion. This benefit arises from premeld’s ability to reduce the
number of nodes visited by final meld (see Figure 17). Group
meld’s 10% reduction does not significantly improve performance,
because in SI each intention only has two writes. Therefore, there
are fewer overlapping nodes in two consecutive intentions.

6.4.5 Varying Workload Parameters
Our workload generator is able to vary different parameters, such
as the distribution used to select data items accessed by a
transaction, number of operations per transaction, database size,
and number of read and write operations per transaction. We
evaluated Hyder II’s performance for a variety of these workloads
and observed similar benefits with premeld providing 3x-3.5x
improvement in throughput. We present the results varying the
access distribution here; more results are included in Appendix B.

The goal of this experiment is to evaluate the impact of data access
distribution on the premeld and group meld optimizations. The
workload creates a hotspot where fraction x of data items is
accessed by fraction (1.0 – x) of operations. We vary x from 0.05
to 1.0; x = 1 results in the uniform access distribution used earlier.

Figure 18: Premeld is effective with skewed data accesses.

Figure 19: Number of tree nodes visited as a function of skew.

Figure 18 plots the throughput and Figure 19 plots the number of
tree nodes visited by the final meld. As the skew increases, the
probability of a conflict increases, which would increase the abort
rates. Interestingly, without any optimizations, Hyder II’s
throughput increases with increase in skew. With skew of 0.05, the
abort rate is slightly higher, about 0.14% compared to 0.02% with
uniform. However, with increasing skew, the work done by final
meld decreases, since transactions access similar data, thus
allowing meld to terminate higher in the tree. Since final meld is
the bottleneck, speeding it up results in higher throughput. Notice
that skew has negligible impact on the work done by final meld

when premeld is turned on, and hence negligible effect on
throughput. However, the benefit of premeld still prevails with
Hyder II-Pre’s throughput being 3.5x that of Hyder II.

6.4.6 Analyzing Premeld
Recall that with t premeld threads, an intention is premelded against
the state created by the (t d)th intention that precedes it. Therefore,
for a fixed t, the smaller the value of the premeld distance d, the
smaller the conflict zone length for the final meld thread, which in
turn increases throughput. In this experiment, we evaluate the
impact on d by setting t=5. Figure 20 reports transaction throughput
as a function of premeld distance with five premeld threads, which
empirically validates the expected behavior. Since d=10 results in
best throughput, we used this setting in all our experiments.

Figure 20: Analyzing the behavior of premeld by varying the
premeld distance.

7. RELATED WORK
Hyder II is based on optimistic concurrency control and log-
structured storage. We discuss each in turn, followed by systems
that have some similarity with Hyder II.

Optimistic concurrency control (OCC) was introduced in [19], and
its performance studied in [1][2][16][21][26][30]. It was initially
unpopular due to lower throughput than locking, but has attracted
interest recently as its non-blocking behavior is highly desirable for
parallel hardware. Tashkent uses a centralized OCC validator over
distributed data [11]. A distributed B-tree implementation with
OCC is in [3], but it uses distributed transactions, single-version
data, and simple version ids for conflict detection. OCC for an in-
memory database is described in [20]. Hybrid schemes have also
been proposed to combine the benefits of locking and OCC
[21][26][29]. None of these systems are similar to Hyder II.

Log-structured storage has been widely studied in file systems [3]
[12][24][27] and database systems [5][7][8][15][22][25][28][32]
[33]. It was initially proposed for write-once media [12], and then
used to improve disk I/O performance [27]. It has regained
popularity due to the recent adoption of flash-based storage
[1][5][7][22], which inherently does copy-on-write.

The main performance benefit of log-structured storage is from
batching updates and from using sequential rather than random I/O
[27]. Some implementations batch updates into larger sequential
writes [15][22][33]. Others merge update batches into a hierar-
chical snapshot of the data, such as bLSM [28]. However, none of
these systems supports a server cluster with shared-storage and
ACID transactions, like Hyder II. Tokutek [32] uses a log-
structured multi-versioned index, but with locking, not OCC.

Amoeba [24] is a log-structured distributed file system that uses
OCC. Like Hyder II, it uses copy-on-write for file updates, and uses

OCC to check update conflicts. Unlike Hyder II, it serializes
conflict checks across servers and does not consider replication.

The system closest to Hyder II is Tango [5], which implements a
distributed object store on the CORFU log manager [3]. CORFU
provides the interface of a distributed SSD and takes care of
distributed wear-leveling, data distribution, fault tolerance, and
scalability. Its concurrency control protocol is inspired by Hyder
[7]. But it uses a hashed access method and hence does not require
optimized validation over trees or merging of trees, i.e., meld. Since
it uses hashing, it suffers the usual weakness of failing to handle
range predicates, especially over continuous domains.

OXenstored [14] is another system that uses a similar log-based
strategy for OCC conflict detection. It works over multi-version
tries [13] and does very coarse-grain conflict detection, and hence
has much lower throughput than Hyder II.

Eve [17] uses a similar copy-on-write tree as Hyder II, but a very
different technique for ensuring all replicas reach the same state. It
batches requests that are not conflicting and executes requests with-
in a batch in parallel. Operations that require creating a new tree
node are postponed until the end of the batch to achieve determin-
ism. It uses state machine replication to check if enough replicas
reached the same state. If not, it reruns the batch sequentially.

Calvin [31] is a transaction system that scales out to multiple serv-
ers. As in Hyder II, determinism plays a prominent role in Calvin;
both approaches rely on determinism to avoid synchronization
across servers. Calvin replicates requests to run transactions and
executes them deterministically in a pre-determined order. By con-
trast, Hyder II replicates the result of executing transactions, totally
orders them in a shared log, and then melds them deterministically.

8. CONCLUSION
We presented an optimized version of the optimistic concurrency
control algorithm in [8], for a log-structured, multi-versioned, tree-
structured database. The algorithm, called meld, performs
deterministic roll-forward of the log, analyzing each successive
transaction in the log for conflicts. Our optimized version of meld
uses pipeline parallelism to preprocess the log and thereby speed
up the algorithm by 3x or more. We showed that the system scales
out over multiple servers without partitioning the database.

A follow-on paper by two of the authors [6] leverages an approxi-
mate partitioning of the workload to parallelize meld into multiple
threads, where each thread executes over a different partition of the
transactions. Transactions that span partitions execute on a separate
multi-partition thread, which is synchronized with each of the
single-partition threads with which the transactions might conflict.
To minimize this synchronization, some static analysis of transac-
tions would likely be beneficial, such as that proposed in [9][23].

Acknowledgements
The authors are heavily indebted to Mahesh Balakrishnan for
providing us with the CORFU log service and extending it for our
experimental environment. We also thank Colin Reid and Soner
Terek for input on premeld, the .Net runtime team for help with
tooling and techniques to optimize performance, Ming Wu for help
with the original Hyder implementation, and Andy Pavlo for many
excellent suggestions that helped us improve the paper.

9. REFERENCES
[1] Adya, A., R. Gruber, B. Liskov, U.Maheshwari. Efficient

optimistic concurrency control using loosely synchronized
clocks. SIGMOD 1995, pp. 23-34.

[2] Agrawal, D., A. Bernstein, P. Gupta, S. Sengupta. Distributed
optimistic concurrency control with reduced rollback.
Distributed Computing 2, 1 (1987), pp. 45-59.

[3] Aguilera, M.K., W.M. Golab, and M.A. Shah: A practical
scalable distributed B-tree. PVLDB 1(1): 598-609, 2008.

[4] Balakrishnan, M., D. Malkhi, J.D. Davis, V. Prabhakaran, M.
Wei, T. Wobber: CORFU: A distributed shared log. ACM
Trans. Comput. Syst. 31(4): 10 (2013).

[5] Balakrishnan, M., D. Malkhi, T. Wobber, M. Wu, V.
Prabhakaran, M. Wei, J.D. Davis, S. Rao, T. Zou, A. Zuck:
Tango: distributed data structures over a shared log. SOSP
2013, pp. 325-340

[6] Bernstein, P.A. and S. Das. Scaling optimistic concurrency
control by approximately partitioning the certifier and log.
IEEE Data Eng. Bull 38, 1 (March 2015).

[7] Bernstein, P.A., C.W. Reid, S. Das: Hyder - A transactional
record manager for shared flash. CIDR 2011, pp. 9-20

[8] Bernstein, P.A., C.W. Reid, M. Wu, X. Yuan: Optimistic
concurrency control by melding trees. PVLDB 4(11): 944-955
(2011).

[9] Bernstein, P.A., D.W. Shipman, J.B. Rothnie Jr.: Concurrency
Control in a System for Distributed Databases (SDD-1). ACM
TODS 5(1): 18-51 (1980).

[10] Cooper, B.F, A. Silberstein, E. Tam, R. Ramakrishnan, R.
Sears: Benchmarking cloud serving systems with YCSB.
SoCC 2010, pp. 143-154.

[11] Elnikety, S., S. Dropsho, and F. Pedone. Tashkent: Uniting
durability with transaction ordering for high-performance
scalable database replication. EuroSys 2006, pp. 117-130.

[12] Finlayson, R., and D. Cheriton. Log Files: An extended file
service exploiting write-once storage. SOSP 1987, pp. 139-
148.

[13] Fredkin, E.: Trie memory. CACM, 3(9):490–499, 1960.
[14] Gazagnairem, T. and V. Hanquez: OXenstored—An efficient

hierarchical and transactional database using functional
programming with reference cell comparisons. ICFP 2009, pp.
203-214.

[15] Graefe, G. Write-optimized B-trees. VLDB 2004, pp. 672-
683.

[16] Gruber, R. E. Optimistic concurrency control for nested
distributed transactions, 1989.

[17] Guibas, L.J., and R. Sedgewick: A Dichromatic Framework
for Balanced Trees. FOCS 1978, pp. 8-21.

[18] Kapritsos, M., Y. Wang, V. Quema, A. Clement, L. Alvisi, M.
Dahlin. All about Eve: Execute-verify replication for multi-
core servers. OSDI 2012, pp. 237-250.

[19] Kung, H. T., and J.T. Robinson. On optimistic methods for
concurrency control. ACM TODS 6, 2 (June 1981), 213-226.

[20] Larson, P.-A., S. Blanas, C. Diaconu, C. Freedman, J.M. Patel,
M. Zwilling. High-performance concurrency control
mechanisms for main-memory databases. PVLDB 5, 4 (2011):
298-309.

[21] Lausen, G. Concurrency control in database systems: A step
towards the integration of optimistic methods and locking.
ACM 1982, pp. 64-68.

[22] Lee, S.-W., and B. Moon. Design of flash-based DBMS: An
in-page logging approach. SIGMOD 2007, pp. 55-66.

[23] Mu, S., Y. Cui, Y. Zhang, W. Lloyd, J. Li. Extracting more
concurrency from distributed transactions. OSDI 2014, pp.
479-494.

[24] Mullender, S. J., and A.S. Tanenbaum. A distributed file
service based on optimistic concurrency control. SOSP 1985,
pp. 51-62.

[25] O'Neil, P.E., E. Cheng, D. Gawlick, E.J. O'Neil. The log-
structured merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996):
351-385.

[26] Phatak, S. and B.R. Badrinath, Bounded locking for optimistic
concurrency control. Rutgers Univ., Dept. of Computer
Science, Tech. Report #DCS-TR-380.

[27] Rosenblum, M., and J.K. Ousterhout. The design and
implementation of a log-structured file system. SOSP 1991,
pp. 1-15.

[28] Sears, R., and R. Ramakrishnan. blsm: A general purpose log
structured merge tree. SIGMOD 2012, pp. 217-228.

[29] Sheth, A. P., and M.T. Liu. Integrating locking and optimistic
concurrency control in distributed database systems. ICDCS
1986, pp. 89-99.

[30] Thomasian, A., and E. Rahm. A new distributed optimistic
concurrency control method and a comparison of its perfor-
mance with two-phase locking. ICSCS 1990, pp. 294-301.

[31] Thomson, A., T. Diamond, S-C Weng, K. Ren, P. Shao, D.J.
Abadi: Calvin: fast distributed transactions for partitioned
database systems. SIGMOD 2012, pp. 1-12

[32] Tokutek. http://www.tokutek.com/.
[33] Wu, C.-H., L.-P Chang, T.-W. Kuo. An efficient R-tree

implementation over flash-memory storage systems. GIS
2003, pp. 1724.

APPENDIX
A. SKETCH OF MELD
We present a simplified version of meld, to give the reader a deeper
understanding of the algorithm. However, none of it is required
background for the rest of this paper.

Each node is identified by a version number (abbr. VN), which is
calculated from its log address. Thus, each new version of a node
has a new VN. For example, in Figure 3, D′, B′, and C′, have
different VN’s than D, B, and C, respectively.

Each node also has some metadata that is used by meld to determine
whether the intention that wrote the node experienced a conflict.
The metadata includes an Altered flag, Depends-On flag, source
structure version (SSV), and source content version (SCV). This
is simplified metadata; a complete description is in [8].

For a node n in an intention I, Altered(n) is TRUE if T(I) updated
n’s payload. The flag DependsOn(n) is TRUE if I depends on n’s
payload not having changed during T(I)’s execution, that is, T(I)
read n and ran with repeatable read or serializable isolation level.
Additional metadata is needed for phantom avoidance; see [8].

For a node n in an intention I, SSV(n) is the VN of the node in I’s
snapshot that has the same key value as n. For example, in Figure
3, SSV(C′) = VN(C), SSV(B′) = VN(B), and SSV(D′) = VN(D). If
n is a new node inserted by I, then SSV(n) = null, such as SSV(A)
in Figure 3.

For a node n in an intention I, SCV(n) is the VN of the node that
first generated the payload of SSV(n). If SCV(n) = SSV(n) in I,
then the transaction that produced the node whose VN is SSV(n)
also updated n’s payload. If SCV(n) < SSV(n), then a node in
SCV(n)’s subtree was updated after the transaction that produced
SCV(n)’s payload. This caused a copy-on-write of SCV(n)’s node,

which led directly or indirectly (though subsequent updates to that
subtree) to a node whose VN is SSV(n).

Meld works by a recursive preorder traversal of I, starting at I’s
root and comparing each node n in I with the corresponding node
nL in LCS. There are two cases. In case one, nL has the same key as
n and meld works as follows:

 If n is NULL or outside of I, then return n
 If SSV(n) = VN(nL), then n and its subtree were not changed

after T(I) read them. Therefore, meld can simply replace nL by
n, which also replaces nL’s subtree by n’s subtree. Otherwise,
SSV(n) ≠ VN(nL), so something in n’s subtree changed and we
have to determine if that change implies a conflict.

 If Altered(n) = TRUE and either
(Altered(nL) = TRUE and SCV(n) ≠ VN(nL)) or
(Altered(nL) = FALSE and SCV(n) ≠ SCV(nL)),

then T(I)’s update of n conflicts with a write in its conflict
zone, so I aborts.

 Otherwise, if DependsOn(n) = TRUE and either

(Altered(nL) = TRUE and SCV(n) ≠ VN(nL)) or
(Altered(nL) = FALSE and SCV(n) ≠ SCV(nL)),

then T(I)’s read of n conflicts with a write in its conflict zone,
so I aborts.

 Otherwise, copy n into an ephemeral node ne.
o Set the left child of ne to be the result of melding n’s

and nL’s left children
o Set the right child of ne to be the result of melding

n’s and nL’s right children.

In case two, there is no nL that has the same key as n. This
complicates the recursion and is described in detail in [8].

B. ADDITIONAL EXPERIMENTS
We now present more experiments analyzing Hyder II’s
performance by varying various workload parameters such as the
number of operations per transaction (or transaction size) and the
fraction of update operations in a ten-operation write transaction.
Other workload parameters are set to the default values described
in Section 6.1. The number of transaction servers is set to 6.

As the number of operations per transaction increases, the number
of tree nodes included in an intention increases. This increases the
load on each of Hyder II’s critical resources. In this workload, we
fix the fraction of update operations in a transaction to 0.2, with at
least one update operation in the transaction. Therefore, as the
transaction size increases, the number of update operations in the
transaction also increases. This results in more work for the meld
pipeline, since meld has to create ephemeral nodes for the updated
nodes for parts of the tree that were updated concurrently. Thus, as
the transaction size increases, we expect the transaction throughput
to decrease proportionately, as is observed in Figure 21. The
increase in work done by final meld is evident in Figure 22. How-
ever, premeld continues to be as effective, with a 3x performance
improvement and ~7x reduction in the number of nodes visited. The
other contributor to the cost of final meld, the number of ephemeral
nodes created, shows a similar pattern. With four operations per
transaction, the meld pipeline in Hyder II-Pre creates an average of
23 ephemeral nodes per transaction. With transaction size of 32, it
grows to 171 ephemeral nodes per transaction.

Figure 21: Varying the number of operations in a transaction.
Every transaction has at least one write operation.

Figure 22: Premeld significantly reduces the number of tree
nodes visited by final meld even as we vary the number of
operations in a transaction.

A similar increase in the number of ephemeral nodes created by the
meld pipeline is observed as we increase the number of update
operations in a transaction. In this experiment, we fix the number
of operations per transaction at 10 and vary the fraction of update
operations from 0.1 to 1.0. As the fraction of update operations
decreases, the throughput increases (see Figure 23). Figure 24 plots
the number of ephemeral nodes created by the meld pipeline. It
shows that a higher update fraction results in the creation of more
ephemeral nodes, because updates lead to the creation of ephemeral
ancestor nodes. As expected, premeld and group meld result in
slightly more ephemeral nodes being created.

Figure 23: Impact of varying the fraction of update operations
per transaction on the throughput.

Figure 24: As the number of update operations per transaction
increases, so does the number of ephemeral nodes created.

C. DETERMINISM OF PREMELD WITH
EPHEMERAL NODES
We present an example of an intention that is premelded with dif-
ferent database states at two different servers, leading to an ephem-
eral node identity that has different content at the two servers. The
example is shown in Figure 25.

The initial database state, S0, is shown in row 1. It is a tree whose
root is A with children B and D. The number “0” in parentheses
after each node indicates that it was written by transaction T0 (not
shown), which initialized the database.

The log is shown in row 2. It contains intentions written by a
sequence of transactions T1 … T4, all of which executed against state
S0. A dashed line indicates a pointer to a node (shown in gray)
outside of the transaction’s intention. The number in parentheses
after each node identifies the transaction that wrote it. The
transactions performed the following actions:

 T1 updated the content of B, which generated a new version of
node A due to copy-on-write.

 T2 updated the content of D, which generated a new version of
node A due to copy-on-write.

 T3 inserted node C, which generated new versions of nodes B
and A due to copy-on-write.

 T4 inserted node E, which generated new versions of nodes D
and A due to copy-on-write.

The sequence of states in the third row shows the result of applying
meld to each transaction, in turn. None of the transactions conflict
with each other, so they all commit. Since all transactions ran
against S0, for each transaction after T1 meld produces ephemeral
nodes, denoted by e1 … e5.

In row 4, premeld at server X processes T4 against state S1, produc-
ing T4x. Since it runs on a separate thread, the ephemeral node that
it generates has a compound identifier [1,1], comprised of its
premeld thread id followed by a sequence number. The final meld
thread melds T1, T2, and T3 as before. However, instead of melding
T4, it melds the result of premeld, T4x, producing S4x. Notice that
meld recognizes that B(e2) is the immediate successor of state B(1)
and therefore retains it in the meld result. However, since it merges
the subtree B(e2) in S3 with the updated D subtree that melds D(2)
in S3 and D(4) in T4x, it produces a new ephemeral root, A(e4).

In row 5, at a different server Y, premeld processes T4 against state
S2, unlike X which processed premeld against S1. It produces T4y.

Like at server X, server Y’s final meld thread melds T1, T2, and T3
and then melds the result of premeld, T4y, producing S4y.

Notice that servers X and Y both generate a node identified by e1,1.
However, they are entirely different nodes. Suppose a transaction
executes at server Y and produces an intention that references node
D(e1,1). When that intention is melded at server X, the reference
will be incorrectly interpreted as pointing to the root A(e1,1), which
is the wrong node and is from an earlier state. From this point on,
the system at node X will go haywire.

Figure 25: Running premeld against different database states

 A(1)

B(1) D(0)

 A(1)

B(1) D(0)

 A(2)

B(0) D(2)

 A(3)

B(3) D(0)

 C(3)

 A(4)

B(0) D(4)

 E(4)

T1 T2 T3 T4

 A(e1)

B(1) D(2)

S2=meld(T2, S1)

 A(e3)

B(e2) D(2)

 C(3)

S3=meld(T3, S2)

 A(e5)

B(e2) D(e4)

 C(3) E(4)

S4=meld(T4, S3)

 A(e1,1)

B(1) D(4)

 E(4)

T4x=premeld(T4, S1)

 A(e4)

B(e2) D(e3)

 C(3) E(4)

S4x=meld(T4x, S3)

 A(e1,2)

B(1) D(e1,1)

 E(4)

T4y=premeld(T4, S2)

 A(e4)

B(e2) D(e1,1)

 C(3) E(4)

S4y=meld(T4y, S3)

 A(0)

B(0) D(0)

S0

S1=meld(T1, S0)

