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ABSTRACT 
Scaling-out a database system typically requires partitioning the 
database across multiple servers. If applications do not partition 
perfectly, then transactions accessing multiple partitions end up 
being distributed, which has well-known scalability challenges. To 
address them, we describe a high-performance transaction mecha-
nism that uses optimistic concurrency control on a multi-versioned 
tree-structured database stored in a shared log. The system scales 
out by adding servers, without partitioning the database.  

Our solution is modeled on the Hyder architecture, published by 
Bernstein, Reid, and Das at CIDR 2011. We present the design and 
evaluation of the first full implementation of that architecture. The 
core of the system is a log roll-forward algorithm, called meld, that 
does optimistic concurrency control. Meld is inherently sequential 
and is therefore the main bottleneck. Our main algorithmic contri-
butions are optimizations to meld that significantly increase trans-
action throughput. They use a pipelined design that parallelizes 
meld onto multiple threads. The slowest pipeline stage is much 
faster than the original meld algorithm, yielding a 3x improvement 
of system throughput over the original meld algorithm. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems—Concurrency, 
Distributed databases, Transaction processing 

General Terms 
Algorithms, Design, Experimentation, Performance 

Keywords 
Scale-out transaction processing; optimistic concurrency control. 

1. INTRODUCTION 
Most approaches to scaling out a distributed transaction processing 
system beyond a few servers require some degree of database 
partitioning. However, not all databases are partitionable such that 
most transactions refer to only one partition. For example, if there 

is a frequently-accessed many-to-many relationship that is equally 
likely to be traversed in both directions, then no partitioning of the 
relationship instances will ensure that most transactions are single-
partition. A good example is a friend-status relation of users in a 
social network application. If the relation is partitioned by user, 
then each user U’s status must appear in the partition of all of U’s 
friends. Therefore, when U’s status changes, it must be updated in 
many partitions (unless U has at most one friend). 

Recently a technique that scales out without partitioning the data-
base was introduced in a system called Hyder. It uses a network-
attached log as the database, which is accessible by all servers [7]. 
The only point of arbitration between servers is when they append 
records to the totally-ordered log that they share. That is why the 
system can scale out without partitioning. 

In this technique, the database is organized as a tree-structured in-
dex. Each server executes each transaction against a locally-cached 
partial-copy of its latest database snapshot (Figure 1, step (1)). The 
snapshot is defined by a log position S and hence is immutable. It 
is the state produced by all transactions up to S that committed.  

 
Figure 1: System architecture 

Each transaction T executes optimistically with no synchronization. 
While T executes, it accumulates its updates in an intention record 
(Figure 1, step (2)). Conceptually, the intention contains new 
versions of the data that T updated and a logical pointer to a log 
position that defines the database snapshot that T read. Physically, 
an intention is quite different than this and is described later.  
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When T finishes executing, the system appends T’s intention to the 
log (Figure 1, step (3)). In general, other transactions’ intentions are 
appended to the log while T was executing. Therefore, there are 
usually many intentions in the log that follow the position of T’s 
snapshot S and precede T’s intention I, as shown in Figure 1. 

Every server runs an algorithm called meld that rolls forward the 
log against the latest version of its locally-cached copy of the 
database. Meld analyzes each intention for conflicts using an 
optimistic concurrency control algorithm. If the intention did not 
experience a conflict (with respect to a given isolation level), then 
the transaction commits and meld merges the updated values in the 
intention into the server’s locally-cached database. If the intention 
did experience a conflict, then it is discarded and has no effect.  

The complete persistent database is in the log. The database at each 
server is only a partial cached copy. All servers have data that was 
updated by recently executed transactions, since that data was need-
ed by meld. But different servers also have different data, if they 
read data that is not needed for conflict detection at weak isolation 
levels and hence is not logged. That data comes from executing 
read-only, read-committed, or snapshot-isolated transactions.  

If a transaction accesses data not in its server’s cache, then the 
server must do a random access to the log to get the data. Therefore, 
for good performance, the log should be stored on solid state disks. 

To avoid synchronization between servers, meld is designed to be 
deterministic. All servers execute the same meld algorithm. Since 
the log is shared by all servers, they execute meld on the same 
sequence of intentions. Thus, for every intention they all make the 
same commit or abort decision, and they apply the committed 
intentions to their cached database copies in the same order. In 
effect, the system operates as a replicated database where each 
server has a cached subset of the database. 

A natural implementation of meld processes intentions sequentially 
in log order, as in [8]. Since meld is sequential and the sequential 
processing speed of today’s processors is not increasing very fast, 
meld is obviously a potential bottleneck. Other potential bottle-
necks are the rate at which the log can be written and read, the 
network that connects servers to the log, and the abort rate due to 
conflicts between transactions. However, in our system, which uses 
a state-of-the-art network and servers, meld has been the bottleneck 
that limits transaction throughput.  

Since queries execute against snapshots, they are not logged or 
melded. Hence, they scale out linearly until the log’s read 
bandwidth or the network bandwidth is saturated. 

One goal of this paper is to speed up meld. One approach is to speed 
up the sequential meld algorithm that analyzes intentions one-by-
one to detect conflicts. However, the meld algorithm described in 
[8] is already heavily optimized, and we have been unable to 
improve it. If speed-ups are possible, we predict they will be small. 

The second approach is to parallelize meld, which is the main 
subject of this paper. We do it by using other threads to preprocess 
intentions in ways that reduce the amount of work required by 
meld. The speed of that final meld step is what ultimately 
determines transaction throughput.  

There are three preprocessing steps. The first is deserialization, 
which transforms each intention from its log format into an object 
structure. The original meld algorithm in [8] used several deserial-
ization threads to reduce meld’s execution time by up to 45%.  

In this paper, we introduce two new preprocessing steps that exe-
cute after deserialization and before final meld.  Each step executes 
on a deserialized intention I that final meld has not yet processed. 
The speed of meld is largely determined by the size of each 
intention and the fraction of each intention that meld has to process. 
Group meld reduces the former and premeld reduces the latter.  

The first optimization, called premeld, does a trial meld of I that 
looks for conflicts with committed transactions in the part of the 
log that the final meld processing step has already processed. It also 
“refreshes” I by replacing stale data in I by committed updates from 
that earlier part of the log. This reduces the fraction of I that the 
final meld step has to process.  

The second optimization, called group meld, combines adjacent 
intentions. As we will see, intentions usually have overlapping 
information, which collapses into one copy in the grouped 
intention. This speeds up final meld, which has to process that 
overlapping information only once instead of twice. 

Implementing premeld and group meld presents two technical chal-
lenges. First, since every server runs premeld and group meld, they 
both need to be deterministic. Otherwise, different servers will end 
up in different database states, leading to database corruption. 
Second, since the meld algorithm is quite complicated, it is 
important to factor out meld’s core behavior that can be used in 
premeld, group meld, and final meld, to ensure that all three 
algorithms have consistent semantics. We were able to accomplish 
this with a relatively small number of modifications of the original 
meld algorithm. The resulting algorithm can be abstracted as a 
generic operator, which could be used in other contexts. 

 
Figure 2: Pipeline parallelism of meld using four stages 

In essence, our use of three preprocessing steps is a pipeline paral-
lelism strategy (see Figure 2). We split the meld task for each inten-
tion into a pipeline of preprocessing stages (labelled ds, pm and 
gm), followed by final meld processing (labelled fm). The earlier 
stages execute in parallel with final meld processing, on intentions 
that the final meld step has not yet reached. For example, in Figure 
2, in the first time unit, we see two parallel threads executing the 
deserialization (ds) stage on log entries I1 and I2. In the second time 
unit, two parallel threads execute the premeld (pm) stage on I1 and 
I2, and two parallel threads execute the ds stage on log entries I3 
and I4. Next, we see two parallel threads execute ds on log entries 
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I5 and I6, two threads execute pm on I3 and I4, and one thread exe-
cutes group meld (gm) on the combination of I1 and I2. 

To show the benefit of these optimizations, we developed Hyder 
II, a distributed implementation of this architecture on a shared net-
work-attached log.  The performance measurements reported in this 
paper are the first ones for a complete end-to-end implementation 
of meld on a cluster of machines connected to a shared persistent 
log. By contrast, the implementation described in [8] was entirely 
in main memory on one server, and the one in [7] was a simulation. 
Moreover, our implementation uses a log based on solid-state disks 
(SSDs) [4], rather than the custom hardware proposed in [7]. 

In our experiments, five premeld threads give a 3x throughput 
improvement, and one group meld thread gives a 1.6x improve-
ment. We found little benefit in running both premeld and group 
meld, compared to running premeld alone. Therefore, although we 
exercised the complete pipeline shown in Figure 2, for the 
workloads we tried, if enough processor cores are available to run 
several premeld threads, then premeld should be used. Otherwise, 
group meld can give a significant speedup with only one core. 

In summary the main contributions of this paper are the following: 

1. Two new optimizations for optimistic concurrency control 
validation of transactions on a multi-versioned tree-structured 
index and incorporating them into the meld algorithm. 

2. A modified meld algorithm that can be reusable as an operator 
for premeld, group meld, and meld itself. 

3. A comprehensive performance evaluation of meld in an end-
to-end distributed implementation. We show the new optimi-
zations give a 3x speedup over the best published meld tech-
nique. When executing a mix of 5% read-write and 95% read-
only transactions with serializable isolation, Hyder II scales 
almost linearly, reaching peak throughput of 670K transac-
tions per second (tps) for transactions with ten operations. 

The paper is organized as follows. As background, Section 2 
describes the basic meld algorithm. Sections 3 and 4 present our 
new optimizations. Section 5 describes our implementation, and 
Section 6 reports on experiments that evaluate its performance. 
Section 7 summarizes related work, and Section 8 is the conclusion. 
Three appendices expand on certain aspects of the meld algorithm. 

2. MELD 
The meld algorithm operates on a database organized as a tree-
structured index, such as a binary search tree or B-tree. Since it 
operates on main memory structures and is serialized to a sequential 
log (rather than written out in fixed-size pages), a binary tree 
consumes less storage per record than a B-tree [7]. So we use binary 
trees in our examples and in our implementation. Each node has a 
key and value, i.e., a payload. 

 
Figure 3: Inserting node A and updating node C  

Since a transaction operates on an immutable database snapshot, 
updates must use copy-on-write. That is, an update must create a 
new version rather than modify data in place. For example, consider 
Figure 3. The left side shows a database snapshot. A transaction 
inserts a new node A and updates node C, resulting in an intention 

shown on the right. The update of C must create a new version C′, 
which requires updating B’s pointer to C, which requires creating a 
new version B′, and so on up the tree. 

Conceptually, the intention I for a transaction T contains T’s 
updates. Physically, I defines the entire database state that T 
produced. That is, if T executed stand-alone on its input snapshot, 
then the resulting database state would be I. Given the use of copy-
on-write, for every node n that T modified, I contains every node 
on a path from the root to n, including n itself. For example, in 
Figure 3 the transaction’s updates are “insert A” and “update C”. 
But its intention, in the right box, defines the state that the 
transaction produced, which includes B′ and D′. 

If a transaction’s isolation level is serializable, then its intention 
also contains the nodes in its readset. Such nodes are annotated to 
identify them as having been read but not written.  

The meld algorithm operates on an intention I and the last 
committed state (or LCS), which is the database state produced by 
the last transaction that preceded I in the log and committed (e.g., 
in Figure 4, state S1 produced by intention I1). Its goal is to 
determine whether the transaction that generated I, T(I), experi-
enced a conflict. If so, it discards I. If not, then T(I) commits so 
meld merges I’s updated nodes into the last committed state. In 
effect, meld produces the intention that T(I) would have produced 
if it had executed against snapshot I1 instead of I0 (see Figure 4). 

 
Figure 4: Log positions relevant to meld 

Every database state S includes metadata that tells how S relates to 
the previous database state, Prev(S), from which it was generated. 
For an intention I, the metadata tells how I relates to T(I)’s 
snapshot. For a state S produced by meld, it tells how S relates to 
meld’s input state, e.g., S1 in Figure 4. 

The metadata is attached to each node n in a state S. Examples of 
that metadata are the following: 

 A reference to the node nprev in Prev(S) that has the same key 
as n (if nprev exists). 

 A flag indicating that n’s payload differs from nprev’s payload, 
e.g., because S is an intention and T(S) updated n. 

 The identity of the first version of n that produced n’s payload. 
 If S is an intention, a flag indicating that T(S) read n. 

With the exception of the flag that indicates T(S) read n, the 
metadata is redundant, in that it could be computed from the log. 
However, it would be quite expensive to do so, leading to an ineffi-
cient meld implementation. Part of the beauty of the meld algorithm 
is that it can compute this metadata incrementally and efficiently. 

Meld uses this metadata to help it detect conflicts and merge its 
input intention and database state. Most details of how it does this 
are not important for understanding the optimizations in this paper. 
Still, to give the reader a sense of how conflicts are detected, we 
sketch a basic version of the meld algorithm in Appendix A. 
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There is one detail of the meld algorithm that is relevant to the 
optimizations in this paper, namely, the generation of ephemeral 
nodes. To understand ephemeral nodes and how they arise, suppose 
meld executes on state S and intention I, and determines that node 
n was updated by T(I) and was unchanged by any other transaction 
concurrent with T(I). This implies that the subtree under n in I was 
unchanged, since if it were then n would have changed too (as in 
Figure 3). Therefore, meld can simply replace n in S (denoted nS) 
by n in I, which also replaces nS’s subtree by n’s subtree. (This 
merging of subtrees is why the algorithm is called “meld.”) If nS is 
not the root of S (as is usually the case), then nS’s parent p must be 
replaced in S by a new node p′, due to copy-on-write. Notice that 
p′ is produced by meld, not by a transaction. Therefore p′ is not 
written to an intention that is stored in the log—it only exists in 
main memory. In this sense, it is ephemeral. As in Figure 3, 
ephemeral nodes are generated for all of the ancestors of p′ too. 

An ephemeral node e might be read or overwritten by a later 
transaction T. T’s intention will have a node with the same key as e 
and that node will refer to e. Since meld is deterministic and every 
server will meld T’s intention, all servers must generate e with the 
same identity so that T’s intention is interpreted the same way on 
every server. As we will see, this complicates premeld. 

3. PREMELD 
3.1 Premeld Overview 
For a given intention I, the intentions in the log between I and the 
snapshot that T(I) read are called I’s conflict zone (see Figure 5). 
The process of melding I with its input LCS involves combining 
I’s updates with parts of the database that were updated by commit-
ted transactions in I’s conflict zone. One way to parallelize meld is 
to use a parallel thread to do a preliminary meld of I with a state 
that is earlier than its input LCS, such as S1 in Figure 5. This prelim-
inary meld is called premeld. The LCS S1 that it merges with I is 
called I’s premeld input and the log region between I’s snapshot 
and its premeld input is called I’s premeld conflict zone.  

 
Figure 5: Log Positions Relevant to Premeld 

Premeld serves two purposes. First, it checks for conflicts in a 
prefix of I’s conflict zone, that is, its premeld conflict zone. If it 
discovers a conflict, then final meld can skip processing I, since it 
knows that I will abort.  

Second, if premeld finds no conflicts, then it produces an updated 
intention Im that appears to have executed against I’s premeld input. 
Later, final meld will meld Im (instead of I) into I’s input LCS. This 
requires less work than melding I, because there is less conflict 
checking to do. So the effect is to speed up final meld. 

Surprisingly, the premeld algorithm is almost exactly the same as 
meld, but with different inputs. We will explain that later. First, let 
us look at why the optimization is effective and how it works. 

3.2 Premeld Details 
Meld’s throughput is a function of the number of nodes it has to 
traverse. This depends on the number of nodes in each intention I 
with descendants that were changed by committed transactions in 
I’s conflict zone.  

For example, consider the states in Figure 6, which correspond to 
Figure 5. Intention I executed on snapshot S0 and updated leaf E, 
producing E. Since T(I) did not read or write node C, C is outside 
of I. While T(I) was executing, another transaction T1 updated node 
C, producing C. Since T1’s intention was appended to the log 
before I and it committed, its updated node C appears in I’s input 
LCS. When melding I with its input LCS, an ephemeral node De

 is 
generated, which connects to C and E. This generates a new 
ephemeral parent for De, and so on up the tree. If this were a tree 
with a million nodes, the root-to-leaf path would have 20 nodes, so 
19 ephemeral nodes would be generated.  

 
Figure 6: Detailed example of premeld 

Suppose that node C was the left child of node A instead of the left 
child of node D. In this case, melding I with its input LCS would 
generate only one ephemeral node, namely Ae, connecting to C and 
B. That is, it would graft I’s subtree rooted at B into the LCS. 
Comparing these two cases, we see that in the first case 19 nodes 
in I had a descendant that changed in I’s conflict zone, while in the 
second case, only one node (i.e., node A) in I has such a descendent. 

Now, suppose that the state in Figure 6 that is labelled “I’s input 
LCS S3” is instead I’s premeld input, that is, state S1 in Figure 5. 
Since premeld performs the same computation as meld, its output 
is still S′. However, as we describe in the next section, S′ is inter-
preted as an intention, not as an LCS, and substitutes for I as input 
to meld. So final meld will meld S′ into the LCS, which is S3. 

To produce S′, premeld paid the cost of generating the ephemeral 
nodes on the path from C to the root. When melding S′ into S3, that 
work will be repeated only for nodes on that path that have a 
descendant that is updated in the post-premeld conflict zone. That 
conflict zone is usually much smaller than I’s original conflict zone, 
and hence is unlikely to have many updated descendants of nodes 
on that root-to-C path. Therefore, few if any nodes on that path will 
be traversed during final meld. Thus, as a result of I’s premeld, 
which executed on a separate hardware thread in parallel with the 
final meld thread, the final meld of S′, which substitutes for I, will 
be faster than if it had been had it executed on I’s entire conflict 
zone. Since final meld is performed on a separate thread, the 
speedup of final meld increases overall transaction throughput. 

Premeld is beneficial mostly because I’s post-premeld conflict zone 
is much smaller than its premeld conflict zone. This ensures that 
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most of the work of meld is done by premeld, rather than final meld. 
The post-premeld conflict zone size is governed by the distance in 
the log between I and its premeld input. By design, this is kept quite 
small. In our experiments, it is just a few hundred transactions. By 
contrast, when throughput is ~50K tps, the conflict zone is typically 
10K-30K transactions, and the premeld conflict zone is just a few 
hundred less. Thus, we see a ratio of 100:1 between the sizes of 
premeld and post-premeld conflict zones. 

We considered running premeld on an intention I immediately after 
T(I) terminated and before I was appended to the log. This would 
merge in updates applied by meld at T(I)’s server during T(I)’s 
execution. However, since a transaction executes in tens of 
microseconds, the benefit would be much smaller than running 
premeld after the log append, which takes milliseconds. Running 
premeld after the log append makes it useless to also run it before. 

3.3 Meld Implements Premeld Semantics 
We now explain why meld, with a small modification, implements 
the semantics required for premeld. It is based on two observations: 
(i) each transaction is represented as a pair of states, and (ii) the 
output of meld is a pair of states and hence is a transaction.  

First, consider the representation of a transaction. In the database 
field, we normally think of a transaction either as a program or as a 
sequence of operations on shared data that is generated by an 
execution of a program. From a transaction processing standpoint, 
it is a little unusual to think of a transaction execution as a pair of 
states <Sin, Sout>. However, from a programming language stand-
point, it is a natural representation. In our case, it is how a 
transaction’s semantics is physically represented.  

The execution of a transaction T generates an intention I, which 
represents the database state produced by T executing against its 
input snapshot. I includes the identity of the snapshot against which 
it executed. That identity is represented as metadata attached to 
each node in I. Taken together, that per-node metadata defines an 
input database state. Therefore, we can abstract its semantics as 
simply <Sin, Sout>, where Sin is its snapshot and Sout is its intention. 

Second, to see why meld’s output is a transaction, remember that 
its goal is to merge the updates of an intention I with I’s input state 
Sin, producing an output state Sout. This is equivalent to saying that 
Sout is the result of running T(I) on Sin. In this sense, we can regard 
its output as a transaction <Sin, Sout>. In fact, its output is physically 
represented that way, since the metadata attached to each node of 
Sout describes how it relates to its previous version.  

There is one omission in this explanation: readsets. Since meld’s 
output is interpreted as a transaction that undergoes an optimistic 
concurrency control check, it is not enough to represent each trans-
action by a pair of states, <Sin, Sout>. It must also include its readset, 
to enable conflict detection for serializable isolation. An intention 
generated by executing a transaction includes this information. 
However, an intention generated by meld in [8] does not. This is 
correct in [8] because meld’s result is interpreted only as a database 
state, not as a transaction. Thus, that output need not retain readset 
information for further optimistic concurrency control checks. 

However, when we use meld to implement premeld, its output will 
be interpreted as a transaction that will be melded at least one more 
time by final meld. Therefore, it needs to include readset infor-
mation. Since meld’s output transaction represents the execution of 
the same program as the one that produced meld’s input intention, 
the output transaction’s readset should remain unchanged. There-
fore, meld should copy the transaction’s readset to its output. This 

requires changing only one line of the algorithm in [8]: When meld 
determines that a read-only subtree of an intention I is the same as 
the corresponding subtree L of the LCS, it should return I’s subtree 
as the output, rather L’s subtree, because I’s subtree has the readset 
metadata while L’s subtree does not. That is, line 7 of meld in 
Appendix C of [8] should read “rtree = itree; return false;” instead 
of “rtree = lcstree; return false;” 

3.4 Determinism of Premeld 
Meld runs independently on all servers that share the log, producing 
a sequence of database snapshots. We want the system to behave as 
if it has one shared database. Hence, all servers should generate an 
identical sequence of snapshots. Thus, meld must be deterministic. 

It is not enough that the snapshots on different servers contain the 
same set of [key, payload] pairs. They must be physically identical. 
To see why, recall that the intention generated by each transaction 
may include ephemeral nodes. When the intention is melded, some 
of those ephemeral nodes may become part of the database. A later 
transaction T may refer to such an ephemeral node, e, in its 
intention. For example, T may have read e or updated a node whose 
root-to-leaf path refers to e. T’s intention I will be broadcast to all 
servers. To meld that intention, other servers may need to follow 
I’s reference to e. Therefore, the reference must point to the same 
node on all servers. This requires meld to produce physically 
identical trees with the same node identities on all servers. 

To understand whether trees on all servers will use the same node 
identities, consider the two ways that a node identity can be gener-
ated. First, the node can be inserted by a transaction T and stored in 
T’s intention. Since the intention is broadcast to all servers, the node 
has the same identity at all servers. Second, it can be an ephemeral 
node created by meld. Ephemeral node identities are allocated 
sequentially in the order they are generated. Therefore, ephemeral 
nodes must be generated in the same order on all servers to ensure 
they have the same identity on all servers. This property holds if 
meld is deterministic, such as the algorithm described in [8]. In this 
case meld will produce physically identical trees on all servers. 

However, when premeld is used, ephemeral nodes might no longer 
be generated in the same order on all servers, for two reasons. First, 
for a given intention, premeld might execute against different 
database states on different servers. For example, suppose the log 
contains a sequence of intentions I1, I2, I3, I4. One server might run 
premeld for I4 on the state produced by I1, while another server runs 
premeld for I4 on the state produced by I2. These premeld 
executions might generate different sequences of ephemeral nodes. 
Thus, an ephemeral node with a given identity, e, might contain a 
different [key, value] pair at different servers. From then on, their 
servers’ database states will diverge, which causes the system to 
malfunction. For example, an intention I that was generated at 
server Sx and that points to e will later arrive at another server Sy, 
where I will point to e, but the content of e is different at the two 
servers. A detailed example is in Appendix C. 

To solve this problem, we ensure each server runs the same number 
of premeld threads, and each premeld thread executes on the same 
sequence of [intention, database state] pairs. We do this by means 
of index calculations. If there are t premeld threads, then each 
intention is assigned to the thread identified by its intention id 
modulo t. Each intention is premelded against the state created by 
the (t  d)th intention that precedes it, where d is a fixed, global 
parameter, called the premeld distance. If that state precedes I’s 
snapshot, then premeld does nothing. If that state is not yet 
available because final meld is slow, then the premeld thread waits 



 

until final meld creates the state. Note that the system must retain 
each state until the intention that premelds against it has executed.  

The second reason that different ephemeral node identities might 
differ on different servers is that premeld executes in parallel with 
final meld. If these threads generate ephemeral nodes in different 
orders on different servers, then a node may have different identi-
ties on different servers. To avoid this, the final meld thread and 
each premeld thread generate thread-local sequence numbers. We 
use a two-part identity for each ephemeral node, consisting of the 
id of the thread that generated it plus the sequence number of the 
ephemeral node in that thread. Combined with the previous tech-
nique of premelding each intention to the same state at all servers, 
this ensures premeld generates the same ephemeral node identities 
at all servers. Premeld is shown in Algorithm 1 below. 

Algorithm 1: PREMELD.  

Input: Intention Iv at position v in the log; a sequence of database 
states corresponding to log positions: S1 after I1, S2 after I2, etc.; an 
integer premeld distance d; an integer number of threads t; and the 
most recent database state, Sr 

Output: Abort, Iv, or the result of running meld on Iv and Sv-(t  d)-1 

1. m  v – (t  d) – 1 // the database version to meld against 

2. snap  ReadVersion(Iv) // the snapshot on which T(Iv) executed 

2. if snap  m then 
3.      return Iv // Sm is older than Ssnap. So there’s no need to meld.  

4.  else if m  r then // Final meld hasn’t produced Sm yet 
5.         wait for Sm to become available  
6. Sout  Meld(Iv, Sm) 
7. if Sout says T(Iv) experienced a conflict then return Abort  
8. else return Sout 

To maximize the benefit of meld, we want to minimize the size of 
the post-premeld conflict zone. We therefore want a small value of 
d. But it should be large enough to give premeld enough time to 
finish before final meld is ready for premeld’s output. Otherwise, 
final meld will stall, reducing throughput. In our experiments, five 
premeld threads with d=10 resulted in the best throughput. 

4. GROUP MELD 
A second way to speed up meld is to combine a pair of adjacent 
intentions in the log into a single intention, called a group 
intention. Later, final meld evaluates the group intention as one 
intention. This is beneficial because the group intention is generally 
smaller than the concatenation of its two input intentions, because 
the input intentions contain overlapping sets of nodes. So it takes 
less time to meld it.  Two overlapping nodes collapse into a single 
node in the group intention. Thus, the more nodes the two input 
intentions have in common, the smaller the group intention. 

For example, Figure 7 shows a database tree comprising six nodes. 
Intention I1 updated A′, so it includes B′ and D′, and I2 updated C″, 
so it includes B″ and D″. I1 and I2 have overlapping nodes D and 
B, each of which collapses to a single node when I1 and I2 are 
melded into a group intention I3 (which includes new ancestors D‴ 
and B‴, due to copy-on-write). Together, I1 and I2 have six nodes, 
but the group intention that combines them has only four nodes.  

Like premeld, group meld uses the standard meld algorithm, as 
modified in Section 3.3 to include readsets. However, group meld 
requires special logic in one case: Suppose nodes n1 and n2 in I1 and 

I2 (respectively) have the same key (e.g., A′ and A″), and I1 pre-
cedes I2. Suppose n1 is in T(I1)’s readset and n2 is in T(I2)’s readset 
or writeset. Then the readset metadata for the melded node n12 must 
refer to the maximum of n1’s and n2’s conflict zones. That is, if 
T(I1)’s snapshot precedes T(I2)’s snapshot, then n12’s readset must 
refer to T(I1)’s snapshot, so that meld checks for conflicting updates 
in between the two snapshots. Thus, meld must replace n2 by an 
ephemeral node, so it can update n2’s readset metadata. This arises 
in the meld algorithm in several spots, which requires special-case 
logic for group meld. Note that if T(I2)’s snapshot precedes T(I1)’s, 
then no action is needed because n2’s existing metadata dominates. 

 
Figure 7: Combining two intentions into a group intention 

The group meld optimization melds every adjacent pair of 
intentions, thereby halving the number of intentions in final meld. 
Like premeld, it has to be deterministic. A way to ensure this is to 
have each group intention be an odd-numbered intention in the log 
followed by the next one, which is even. Thus, intentions 1 and 2 
form a group intention, then intentions 3 and 4, and so forth.  

A disadvantage of group meld is that the group intention commits 
if and only if both intentions commit. Thus, it ties the commit/abort 
decision of each intention with that of another. This effect, called 
fate sharing, could increase the abort rate by up to a factor of two. 

 
Figure 8: I1 and I2 meld into a group intention 

However, there is one case where fate sharing does not occur. When 
melding two intentions into a group intention, if the first intention 
I1 includes an update that conflicts with the second intention I2, then 
group meld aborts I2, because I1 is in I2’s conflict zone (see Figure 
8). Therefore, I1 becomes the group intention and can still commit. 

When premeld and group meld are combined in a pipeline, they can 
execute in either order. In our experiments, we ran premeld first, 
since it is more likely to find aborted transactions than group meld. 
The sooner in the pipeline that aborted transactions are identified, 
the better, since it reduces the amount of downstream work. 

5. IMPLEMENTATION DETAILS 
Our Hyder II implementation runs Hyder’s meld algorithm [8] on 
a shared log manager. The core design comprises a cluster of 
transaction servers that execute transactions and the meld 
algorithm, and log servers that store the database. Our 
implementation allows for a single machine to run both a trans-
action server and log server. However, in our experiments, they run 
on different machines. The database is an immutable balanced 
binary search tree (a red-black tree [17]). As argued in [7], a binary 
tree is preferable to a B-tree, because it leads to smaller intentions.  
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5.1 Log Service 
The log ensures persistence and enforces a total order on transac-
tions. We used CORFU [4] as the log service, due to its good per-
formance and feasibility compared to the custom hardware propos-
ed in [7]. CORFU runs on a set of log servers on the same local area 
network as the transaction servers running transactions and meld. 
However, the transaction servers see it as a single shared log ser-
vice, not as a set of log servers. Each log entry is a fixed-sized page, 
called an intention block. An append operation adds a given block 
to the end of the log and returns the position in the log where the 
block was stored. Given a log position, a read operation returns the 
block stored at that position. To ensure good append and read band-
width, the log is striped across a set of storage units that are directly 
attached to the log servers. As we show in the next section, the log 
manager is much faster than meld and hence is never a bottleneck.  

There are nontrivial error cases when read or append operations fail 
or fail to reply at all [4]. As these problems are not unique to Hyder 
II and this paper is about optimizing throughput and not fault 
tolerance, we regard them as out of scope. 

Hyder II stores intentions in intention blocks. Depending on the size 
of the intentions, many intentions might fit in one block or an 
intention might span many blocks. In the latter case, the blocks of 
an intention need not be contiguous; the position of the intention in 
the log is identified by the position of its last intention block.  

5.2 Transaction Servers 
Hyder II is implemented in C#. Our implementation comprises the 
multi-versioned index structure storing the database tree, the 
transaction executer, and the meld pipeline that rolls forward the 
log. Bernstein et al. [8] presented an optimized and detailed design 
of the meld algorithm for the in-memory setting. Our meld 
implementation uses that algorithm, with the modification 
described at the end of Section 3.3. However, we re-implemented 
it in C# to efficiently use the new implementation of the database 
backed by our network-attached log. 

A transaction executor dispatches transactions and processes their 
termination. Each transaction T executes on the current last-
committed state (LCS) reported by the final meld thread at the time 
T starts. Due to copy-on-write, T’s first write generates a new 
intention and all of T’s subsequent writes add to it. After the 
transaction finishes executing, the executor serializes the intention 
into one or more blocks, appends it to the log, and then broadcasts 
it to the other transaction servers. T’s outcome will become known 
to T’s executor only after meld on the same server processes the 
intention. Until then, T is blocked. However, the executer is non-
blocking and moves on to execute the next transaction while 
awaiting the commit decision from meld. The executer stops 
processing transactions if the number of transactions awaiting their 
outcome exceeds a configurable threshold which is determined 
empirically. Ideally, the threshold for the number of concurrent 
transactions allowed should be dynamically determined by admis-
sion control logic, which is future work. Such admission control is 
essential to avoid thrashing when the offered load exceeds capacity. 

An intention tree is serialized into an intention block via a post-
order tree traversal. Post-order ensures that each node points to 
children that are either in the log or already serialized. Once the 
block fills, serialization continues with a new block. The intention 
block containing the root of the database tree is appended last. 

 

Each transaction server has a log reader that transforms the 
sequence of intention blocks in the log into an in-memory represen-
tation of the intentions that feeds the meld pipeline. For each inten-
tion block, it spins off a deserialization task, which generates a tree 
of objects. A configurable number of threads run the deserialization 
tasks. They transform each node pointer in an intention into an 
object pointer if the object is in memory. Otherwise, the node 
pointer is left as a log position; if dereferenced later, the log position 
is used to fetch the corresponding intention block from the log.  

The pipeline of premeld, group meld, and final meld processes the 
deserialized intentions in log order. Configuration parameters are 
used to turn-off premeld and/or group meld, and to control the 
number of threads for premeld and group meld. 

Meld is inherently sequential and ideally CPU-bound. Any stalls 
during meld significantly reduce its throughput. Since meld does 
not need synchronization, the only sources of stalls are late-arriving 
intentions and cache misses. If meld is ready to process the next 
intention I but has not yet received I, it stalls until I is read from 
the log. Similarly, if meld accesses a block that is not cached, it 
must read the block from the log. The latency to read a log block is 
on the order of milliseconds while the latency to meld an intention 
is typically tens to a few hundred microseconds. Therefore, it is 
important to avoid intention block misses in the final meld thread. 
Pipelined parallelism helps mask log access latencies, since 
premeld and group meld fetch blocks well before final meld needs 
them. To ensure that final meld does not stall on a cache miss, 
additional threads can be used to pre-fetch blocks not accessed in 
the earlier phases of the meld pipeline. 

For optimal meld performance, it is also critical to avoid context 
switches. Therefore, meld spins if the next intention is not available 
to process. Each premeld, group meld, and final meld thread is also 
affinitized to a core to prevent inter-core thread migration.  

5.3 Optimizations 
Implementing Hyder II in managed code had advantages as well as 
challenges. It improved productivity and reduced the time to 
complete the first implementation. However, we had to iterate over 
the implementation to make its performance competitive with the 
optimized native in-memory implementation reported in Bernstein 
et al. [8]. A performance comparison with [8] is in Section 6.4.  

Our first challenge was memory management and garbage collec-
tion (GC) overhead. Much progress has been made to minimize the 
overhead of GC. Even so, we found GC to be detrimental to perfor-
mance. Therefore, each thread in Hyder II, such as the transaction 
executer, deserializer, and meld, has its own local memory pool to 
reuse objects whenever possible. Pre-allocated thread-local 
memory pools significantly reduced GC overhead and stalls. 
Careful profiling revealed that GC was also triggered by some lan-
guage constructs, such as lambda expressions and library functions 
that do not allow reusing objects, and asynchronous API calls that 
automatically generate a callback on call completion. Eliminating 
these poor memory users was a tedious and iterative process, but 
we were rewarded with significant performance improvement. As 
described in Section 2, meld generates ephemeral nodes. Since the 
pipelined design has more instances of meld, it can generate more 
ephemeral nodes. Therefore, ephemeral nodes must be carefully 
managed to avoid unnecessary demand for memory. 

The second problem was serialization and deserialization of the 
intention blocks and manipulation of byte arrays, which is CPU-
intensive. This needed careful optimization. 



 

The third problem was network errors. After an intention is 
appended to the log, it is broadcast to all servers. Our initial imple-
mentation simulated this broadcast over UDP. However, as the 
network utilization and contention increased, significant packet 
loss resulted in many out-of-order intention deliveries, which 
degraded performance. Even though simulating the broadcast using 
TCP was more expensive than using UDP, the switch to TCP 
resulted in another significant performance boost. 

6. EXPERIMENTS 
We present an experimental study of our Hyder II implementation. 
We start by analyzing the performance of the log service to ensure 
it is not a bottleneck. We then evaluate Hyder II for various config-
urations and demonstrate the benefits of the premeld and group 
meld optimizations for a variety of workload mixes and isolation 
levels. We also compare Hyder II’s throughput with that reported 
for Hyder [8] and Tango [5], whose designs are similar to Hyder 
II’s. Hyder’s performance studies have been limited to simulations 
[7] or a single-node implementation with an in-memory log de-
signed to test the limits of the meld operator [8]. This paper presents 
the first detailed experimental evaluation of Hyder’s architecture.  

6.1 Experimental Setup and Workload 
We ran our experiments on a cluster of twenty servers. Each server 
has a two-socket Intel Xeon E5-2650L 1.8 GHz processor (16 
physical cores, 32 logical processors, two NUMA nodes), 192 GB 
RAM, a commodity Intel SATA SSD, and a dual-port Intel 10 Gbps 
network adapter. Servers in the rack are connected through a 64 
port 10 Gbps top-of-rack switch to provide a high speed private 
network interconnect within the cluster. 

The CORFU log service consists of a token server, a sequencer for 
log entries, and six disk servers, which store the log on direct-
attached SSDs. The installation has a number of Hyder II 
transaction servers, which use CORFU’s client API to append and 
read intention blocks. A Hyder II server generates two types of 
network traffic: unicast traffic with the log servers for appends and 
reads, and broadcast traffic among the transaction servers after an 
intention is appended to the log. To avoid interference, each type 
of traffic uses a different port of the dual-port network adapter. 

We use a workload generator adapted from the Yahoo! Cloud Serv-
ing Benchmark (YCSB), adding support for multi-operation trans-
actions [10]. The workload generator allows us to vary the number 
of operations in a transaction, the distribution of reads and writes 
within a transaction, the fraction of range vs. point lookups, the 
database size, and the distribution from which the keys are selected. 

Unless otherwise specified, we use a database with 10M items, each 
with a 4 byte key and 1K payload. In most experiments, we vary 
the number of transaction servers generating and executing the 
workload. Each server has 20 update threads. Each thread allows 
up to 80 in-flight transactions, that is, transactions that have been 
appended to the log but not yet received a commit decision. This 
limit simulates coarse-grained admission control to avoid overload 
and thrashing due to high resource contention. Each transaction has 
8 reads and 2 writes. The keys read and written are selected 
uniformly from the keys in the database. For experiments that vary 
one of these default parameters, the number of servers is fixed at 6. 

The uniform distribution of reads and writes is adversarial for any 
transaction or data partitioning scheme, since a transaction’s 
accesses do not naturally cluster. We select this workload to 
demonstrate Hyder II’s ability to scale-out without partitioning. 

As discussed earlier, Hyder II has four critical resources: log 
appends, network bandwidth, meld, and data contention. An update 
transaction stresses all of them. So most of our analyses involve a 
write-only workload to help us identify resource bottlenecks.  

All of our measurements are the average result of three runs. We 
do not report the standard deviation, since it is low in all cases 
except under heavy contention, a well-known phenomenon. We 
observed a standard deviation in the range of 2-5% of the averages. 

6.2 Summary of Results 
The key takeaways from our experimental results are: 

 The optimizations proposed to parallelize meld result in signi-
ficant throughput improvements. Group meld improves 
throughput by 1.6x with only one thread. Premeld improves 
throughput by 3x with five threads across a variety of 
workloads and isolation levels. 

 When premeld and group meld are combined in a pipeline, 
they do not improve throughput beyond that of premeld. 

 For transactions with 8 reads and 2 writes, snapshot isolation 
(SI) improves throughput by 3x compared to serializable. 
With SI, premeld results in an additional 2x improvement, 
while group meld’s improvements are not significant. 

 Read-only workloads scale almost linearly. With a workload 
of 5% read-write and 95% read-only transactions, we achieve 
about 670K transactions per second with ten servers and 
serializable isolation executing a non-partitionable workload. 

6.3 Performance of the Log Service 
This section analyzes the throughput and latency of our shared log 
implementation. Our goal is to ensure that log appends are not a 
bottleneck that limit Hyder II’s throughput.  

The log service uses 
six disk servers. 
Clients append and 
read blocks of data. In 
Hyder II, log “clients” 
are transaction servers.  
The log service has a 
pre-configured block 
size; we use 8K blocks 
for Hyder II and for 
these experiments. 

Figure 9 plots the 
throughput and latency 
of appends as we vary 
the number of clients 
appending to the log 
and the number of 
concurrent threads per 
server. Figure 9(a) and 
Figure 9(b) report 
results for 20 and 30 
threads per server, 
respectively. As we 
increase the number of concurrent appends, the 95th and 99th 
percentile latencies increase, plotted on the right vertical axis. How-
ever, even the 99th percentile latencies are under 10 milliseconds. 
The peak throughput is more than 140K appends/sec. In our later 
experiments, Hyder II’s transaction load generates at most 110K 
append/sec using a log configuration identical to these experiments. 
Hence, the log is not a bottleneck. 

(a) 20 threads per client 

(b) 30 threads per client  

 Figure 9: Throughput and latency of 
append operations to a shared log. 



 

6.4 Performance of Hyder II 
We first analyze Hyder II’s performance using a workload 
executing all write transactions with serializable isolation to 
compare the benefits of premeld and group meld in isolation and in 
combination. Subsequently, we experiment with workloads with 
varying fractions of read-only transactions, with different isolation 
levels, and varying other workload parameters such as data access 
distribution, and transaction size. In all experiments, “throughput” 
means the number of committed transactions per second. 

6.4.1 Workload with all Write Transactions 
A write transaction stresses all the critical resources. Hence, a 
workload comprising all write transactions helps identify the 
architecture’s performance limits. In this experiment, we use the 
default workload parameters described in Section 6.1. Figure 10 
reports Hyder II’s throughput in transactions per second (tps) as we 
vary the number of servers. The first bar corresponds to Hyder II 
with only final meld. The second bar (Hyder II-Grp) corresponds 
to Hyder II with group meld applied before final meld. The third 
(Hyder II-Pre) corresponds to Hyder II with premeld applied 
before final meld. The fourth (Hyder II-Opt) corresponds to 
applying both group meld and premeld. For experiments with 
premeld, there are 5 premeld threads with a premeld distance of 10. 
For experiments with group meld, there is one group meld thread 
grouping two intentions into one.  

In Figure 10, Hyder II’s peak throughput with no optimizations is 
15K tps, which is achieved with 2 transaction servers. By contrast, 
peak throughput of Hyder II-Grp is 23.5K tps, Hyder II-Pre is 
45.3K tps, and Hyder II-Opt is 44.8K tps. Thus, group meld 
improves throughput by 1.6x and premeld improves it by 3x. 
However, combining the optimizations does not improve 
throughput beyond that of premeld. Therefore, when enough cores 
are available to run many premeld threads, premeld should be used 
alone.  Otherwise, group meld should be used to give a significant 
improvement with just one core. 

The improvement with premeld is more significant as we increase 
the concurrency. For instance, with 10 servers, each with 20 threads 
and 80 in-flight transactions, there are up to 16K concurrent trans-
actions, i.e., transactions that started executing but have not yet 
been melded. At such high degrees of concurrency, Hyder II-Pre 
has 3.5x the throughput of Hyder II.  

 
Figure 10: Throughput (committed transactions/sec) for Hyder 
II and the impact of premeld and group meld optimizations. 

As concurrency increases beyond six transaction servers, there is 
some reduction in throughput of Hyder II-Pre. This is due to more 
contention and queuing delays for resources, such as log appends 
(see Figure 9) and network broadcast, which increases transaction 
processing latency and in turn throttles the executers when they 

reach their in-flight-transaction limit. That is, the small reduction 
in throughput is primarily due to the “back-pressure” on the 
executers due to higher resource contention. 

Premeld and group meld help reduce the work done by final meld 
by reducing the number of tree nodes that final meld visits. Figure 
11 reports the number of nodes visited per transaction by final meld 
for each optimization technique. As is evident, group meld reduces 
the number of nodes by 2x and premeld reduces them by 8-10x.  

 
Figure 11: Group meld and premeld reduce the number of 
nodes visited in the final meld thread. 

Premeld merges the intention with a recent LCS, eliminating a large 
fraction of the conflict zone that final meld has to process. Most of 
the readset and writeset validations that require traversing deep into 
the database tree are processed by premeld. Final meld mostly 
terminates high up in the tree, merging the updates into the LCS 
and creating ephemeral nodes as needed. As a result, even though 
the number of nodes is reduced by 8-10x, the throughput 
improvement is only in the range of 3-3.5x. 

 
Figure 12: Impact of group meld and premeld on the effective 
conflict zone observed by the final meld thread. 

Figure 12 reports the number of intention blocks in the conflict zone 
observed by final meld. In our configuration, one intention spans 
two intention blocks on average. Thus, the number of intentions in 
the conflict zone is about half of the intention-block numbers 
reported. As the figure shows, premeld shrinks the conflict zone by 
40x-500x by melding the intention with an updated LCS very late 
in the intention’s conflict zone. However, the conflict zone size is 
unchanged by group meld. Its benefit stems from overlapping 
nodes and paths in the two intentions—final meld needs to process 
only one of these overlapped nodes, which reduces the number of 
nodes processed by final meld. Combining premeld and group meld 
does not significantly change the number of nodes visited or the 
conflict zone length, which explains why the two optimizations 
together do not result in any improvement beyond that of premeld. 



 

While both premeld and group meld reduce the work done by the 
final meld thread, they perform redundant work in parallel threads. 
Figure 13 reports on the total number of tree nodes visited per 
transaction by each optimization. The work done in the critical path 
of final meld (the pattern-filled bar) decreases with every 
optimization, while the work done in parallel threads (solid bars) is 
often higher in aggregate than the sequential final meld thread 
without any optimizations. 

 
Figure 13: Number of tree nodes visited in different stages of 
the meld pipeline. The hatched bar corresponds to final meld. 
The solid bars correspond to group meld and premeld.  

6.4.2 Comparison with Hyder and Tango 
Tango is the system whose architecture is the closest to Hyder II. 
In this section, we compare them, along with the in-memory setup 
of Hyder [8]. Tango and Hyder reported throughput for a database 
of 100K items. To compare them with Hyder II, we repeated the 
experiment of Section 6.4.1 for a database of 100K items running a 
workload similar to that used in Hyder and Tango. In this 
experiment Hyder-II’s peak throughput was ~20K tps (compared to 
15K tps in Figure 10). Tango reported throughput of 15-25K tps on 
similar hardware [5]. Thus, Hyder II’s performance is comparable 
to Tango’s, in spite of its tree index, which is more expensive to 
maintain than Tango’s hash index. With the premeld optimization, 
Hyder II’s performance is significantly better than Tango’s.  

The throughput of Hyder’s in-memory implementation, using a 
workload with ~10 operations per transaction was 50-60K tps [8]. 
The lower throughput of Hyder II’s meld operator can be attributed 
to multiple factors. Experiments for in-memory Hyder involved 
only one server, and the workload generator limited the conflict 
zone length to 256. Hyder II needs to operate at much higher 
degrees of concurrency with tens of thousands of concurrent 
transactions (as in Figure 12) to mask the latency of serializing and 
deserializing intentions, appending to the log, and broadcasting 
intentions. Premeld reduces the conflict zone length for final meld 
to the same range as the in-memory implementation, which results 
in a throughput of 50-60K tps for a 100K item database. Other fac-
tors contributing to Hyder-II’s lower throughput are that Hyder-II’s 
experiments use a slower processor and a distributed shared log, 
and Hyder II is implemented in C# while Hyder is written in C++. 

6.4.3 Workload with Read-Write Transaction Mix 
Read-only transactions in Hyder II run on a database snapshot (the 
LCS when the transaction starts) and commit locally, without 
stressing any of Hyder II’s critical resources. Therefore, read-only 
transaction throughput should scale linearly as we increase the 
number of servers and the number of read-only transactions. To 
demonstrate this, we run an experiment that executes an increasing 

number of read-only transactions with a fixed load of write 
transactions using the setup of Section 6.4.1. 

Both read-only and write transactions execute ten operations; write 
transactions have two updates and eight reads, as in Section 6.4.1. 
We use separate executers for read-only transactions. This ensures 
adding more read-only transactions does not reduce the number of 
write transactions admitted to the system. We gradually increase 
the number of read-only transaction executors while keeping the 
write workload fixed with six dedicated executors per server. 

 
Figure 14: Linear scaling of transaction throughput with a mix 
of read-only and read-write transactions. 

Figure 14 plots the throughput of write transactions and of read and 
write combined (“total”). As we increase the number of servers, the 
offered load increases. We vary the number of read-only executers 
from 0 to 4, denoted by 0R, 1R, 2R, and 4R in the figure. With 6W-
0R, there are no read-only transactions, re-creating the setup in 
Section 6.4.1. For brevity, we only report numbers using premeld.  

First consider the lines, which plot total throughput (i.e., of read 
and write transactions) on the left vertical axis (labeled total 
txns/sec). They correspond to the last four rows of the table. As we 
increase the number of read-only executors (from 0R to 4R) and 
servers (from 1 to 10), total throughput scales almost linearly. With 
10 transaction servers, total throughput for 6W-4R peaks at ~670K. 
This linear scalability demonstrates that Hyder II’s architecture 
scales out without partitioning.  

The bars in the graph plot the throughput of write transactions on 
the right vertical axis (labeled write txns/sec). They correspond to 
the first four rows of the table. As in Section 6.4.1, write throughput 
peaks at 45K tps with 6 servers (6W-0R). For a given number of 
servers, as the number of read-only executors increases from 0 to 1 
to 2, there is a small decrease in write throughput. This is due to 
higher CPU contention since more cores are processing transac-
tions (10 in 6W-4R vs. 6 in 6W-0R), thereby reducing the number 
of cores available to broadcast and deserialize intentions.  

With four read-only executors, no cores are dedicated to broadcast 
and deserialization. Both activities slow down and meld throughput 
decreases, causing a corresponding drop in write throughput (the 
right bars for 6, 8 and 10 servers). This shows the importance of 
reserving enough cores for basic system functions, such as meld, 
broadcast, and deserialization.   



 

6.4.4 Snapshot Isolation 
In this experiment, we compare Hyder II’s performance when 
transactions execute with serializable isolation (SR) versus 
snapshot isolation (SI). With SI, meld does not need to validate the 
readset, so the readset is not included in the intention. This 
considerably reduces the intention sizes and hence the load on 
many critical resources, such as the log, network, and meld. In this 
experiment, each transaction performs 8 reads and 2 writes. 
Therefore, eliminating the readset results in almost a 4x reduction 
in intention sizes. This results in about a 2.5x improvement in 
throughput, as shown in Figure 15, which plots the result of running 
Hyder II with no optimizations. The reduction (3x-4x) in the work 
done by meld is also evident from the number of tree nodes visited 
by meld, shown by the lines plotted on the right vertical axis. 

 
Figure 15: Serializable (SR) vs. snapshot isolation (SI). 

The reason why a 4x reduction in the number of nodes yields only 
a 2.5x increase in throughput is that SI eliminates only readset 
nodes and reads are cheaper to meld than writes. Reads only require 
conflict testing while writes require creating ephemeral nodes.  

 
Figure 16: Impact of the premeld and group meld 
optimizations with snapshot isolation. 

 
Figure 17: Only premeld results in a reduction in number of 
tree nodes visited by final meld with SI. 

In Figure 16 we report the benefits of group meld and premeld for 
transactions executing with SI. Hyder II with premeld continues to 
demonstrate 2x-3x higher throughput than without the optimiza-
tion. This benefit arises from premeld’s ability to reduce the 
number of nodes visited by final meld (see Figure 17). Group 
meld’s 10% reduction does not significantly improve performance, 
because in SI each intention only has two writes. Therefore, there 
are fewer overlapping nodes in two consecutive intentions.  

6.4.5 Varying Workload Parameters 
Our workload generator is able to vary different parameters, such 
as the distribution used to select data items accessed by a 
transaction, number of operations per transaction, database size, 
and number of read and write operations per transaction. We 
evaluated Hyder II’s performance for a variety of these workloads 
and observed similar benefits with premeld providing 3x-3.5x 
improvement in throughput. We present the results varying the 
access distribution here; more results are included in Appendix B.  

The goal of this experiment is to evaluate the impact of data access 
distribution on the premeld and group meld optimizations. The 
workload creates a hotspot where fraction x of data items is 
accessed by fraction (1.0 – x) of operations. We vary x from 0.05 
to 1.0; x = 1 results in the uniform access distribution used earlier. 

 
Figure 18: Premeld is effective with skewed data accesses. 

 
Figure 19: Number of tree nodes visited as a function of skew. 

Figure 18 plots the throughput and Figure 19 plots the number of 
tree nodes visited by the final meld. As the skew increases, the 
probability of a conflict increases, which would increase the abort 
rates. Interestingly, without any optimizations, Hyder II’s 
throughput increases with increase in skew. With skew of 0.05, the 
abort rate is slightly higher, about 0.14% compared to 0.02% with 
uniform. However, with increasing skew, the work done by final 
meld decreases, since transactions access similar data, thus 
allowing meld to terminate higher in the tree. Since final meld is 
the bottleneck, speeding it up results in higher throughput. Notice 
that skew has negligible impact on the work done by final meld 



 

when premeld is turned on, and hence negligible effect on 
throughput. However, the benefit of premeld still prevails with 
Hyder II-Pre’s throughput being 3.5x that of Hyder II. 

6.4.6 Analyzing Premeld 
Recall that with t premeld threads, an intention is premelded against 
the state created by the (t  d)th intention that precedes it. Therefore, 
for a fixed t, the smaller the value of the premeld distance d, the 
smaller the conflict zone length for the final meld thread, which in 
turn increases throughput. In this experiment, we evaluate the 
impact on d by setting t=5. Figure 20 reports transaction throughput 
as a function of premeld distance with five premeld threads, which 
empirically validates the expected behavior. Since d=10 results in 
best throughput, we used this setting in all our experiments.  

 
Figure 20: Analyzing the behavior of premeld by varying the 
premeld distance. 

7. RELATED WORK 
Hyder II is based on optimistic concurrency control and log-
structured storage. We discuss each in turn, followed by systems 
that have some similarity with Hyder II. 

Optimistic concurrency control (OCC) was introduced in [19], and 
its performance studied in [1][2][16][21][26][30]. It was initially 
unpopular due to lower throughput than locking, but has attracted 
interest recently as its non-blocking behavior is highly desirable for 
parallel hardware. Tashkent uses a centralized OCC validator over 
distributed data [11]. A distributed B-tree implementation with 
OCC is in [3], but it uses distributed transactions, single-version 
data, and simple version ids for conflict detection. OCC for an in-
memory database is described in [20]. Hybrid schemes have also 
been proposed to combine the benefits of locking and OCC 
[21][26][29]. None of these systems are similar to Hyder II. 

Log-structured storage has been widely studied in file systems [3] 
[12][24][27] and database systems [5][7][8][15][22][25][28][32] 
[33]. It was initially proposed for write-once media [12], and then 
used to improve disk I/O performance [27]. It has regained 
popularity due to the recent adoption of flash-based storage 
[1][5][7][22], which inherently does copy-on-write. 

The main performance benefit of log-structured storage is from 
batching updates and from using sequential rather than random I/O 
[27]. Some implementations batch updates into larger sequential 
writes [15][22][33]. Others merge update batches into a hierar-
chical snapshot of the data, such as bLSM [28]. However, none of 
these systems supports a server cluster with shared-storage and 
ACID transactions, like Hyder II. Tokutek [32] uses a log-
structured multi-versioned index, but with locking, not OCC. 

Amoeba [24] is a log-structured distributed file system that uses 
OCC. Like Hyder II, it uses copy-on-write for file updates, and uses 

OCC to check update conflicts. Unlike Hyder II, it serializes 
conflict checks across servers and does not consider replication. 

The system closest to Hyder II is Tango [5], which implements a 
distributed object store on the CORFU log manager [3]. CORFU 
provides the interface of a distributed SSD and takes care of 
distributed wear-leveling, data distribution, fault tolerance, and 
scalability. Its concurrency control protocol is inspired by Hyder 
[7]. But it uses a hashed access method and hence does not require 
optimized validation over trees or merging of trees, i.e., meld. Since 
it uses hashing, it suffers the usual weakness of failing to handle 
range predicates, especially over continuous domains. 

OXenstored [14] is another system that uses a similar log-based 
strategy for OCC conflict detection. It works over multi-version 
tries [13] and does very coarse-grain conflict detection, and hence 
has much lower throughput than Hyder II. 

Eve [17] uses a similar copy-on-write tree as Hyder II, but a very 
different technique for ensuring all replicas reach the same state. It 
batches requests that are not conflicting and executes requests with-
in a batch in parallel. Operations that require creating a new tree 
node are postponed until the end of the batch to achieve determin-
ism. It uses state machine replication to check if enough replicas 
reached the same state. If not, it reruns the batch sequentially. 

Calvin [31] is a transaction system that scales out to multiple serv-
ers. As in Hyder II, determinism plays a prominent role in Calvin; 
both approaches rely on determinism to avoid synchronization 
across servers. Calvin replicates requests to run transactions and 
executes them deterministically in a pre-determined order. By con-
trast, Hyder II replicates the result of executing transactions, totally 
orders them in a shared log, and then melds them deterministically.  

8. CONCLUSION 
We presented an optimized version of the optimistic concurrency 
control algorithm in [8], for a log-structured, multi-versioned, tree-
structured database. The algorithm, called meld, performs 
deterministic roll-forward of the log, analyzing each successive 
transaction in the log for conflicts. Our optimized version of meld 
uses pipeline parallelism to preprocess the log and thereby speed 
up the algorithm by 3x or more. We showed that the system scales 
out over multiple servers without partitioning the database.  

A follow-on paper by two of the authors [6] leverages an approxi-
mate partitioning of the workload to parallelize meld into multiple 
threads, where each thread executes over a different partition of the 
transactions. Transactions that span partitions execute on a separate 
multi-partition thread, which is synchronized with each of the 
single-partition threads with which the transactions might conflict. 
To minimize this synchronization, some static analysis of transac-
tions would likely be beneficial, such as that proposed in [9][23].  
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APPENDIX 
A. SKETCH OF MELD 
We present a simplified version of meld, to give the reader a deeper 
understanding of the algorithm. However, none of it is required 
background for the rest of this paper. 

Each node is identified by a version number (abbr. VN), which is 
calculated from its log address. Thus, each new version of a node 
has a new VN. For example, in Figure 3, D′, B′, and C′, have 
different VN’s than D, B, and C, respectively.  

Each node also has some metadata that is used by meld to determine 
whether the intention that wrote the node experienced a conflict. 
The metadata includes an Altered flag, Depends-On flag, source 
structure version (SSV), and source content version (SCV). This 
is simplified metadata; a complete description is in [8]. 

For a node n in an intention I, Altered(n) is TRUE if T(I) updated 
n’s payload. The flag DependsOn(n) is TRUE if I depends on n’s 
payload not having changed during T(I)’s execution, that is, T(I) 
read n and ran with repeatable read or serializable isolation level. 
Additional metadata is needed for phantom avoidance; see [8]. 

For a node n in an intention I, SSV(n) is the VN of the node in I’s 
snapshot that has the same key value as n. For example, in Figure 
3, SSV(C′) = VN(C), SSV(B′) = VN(B), and SSV(D′) = VN(D). If 
n is a new node inserted by I, then SSV(n) = null, such as SSV(A) 
in Figure 3. 

For a node n in an intention I, SCV(n) is the VN of the node that 
first generated the payload of SSV(n). If SCV(n) = SSV(n) in I, 
then the transaction that produced the node whose VN is SSV(n) 
also updated n’s payload. If SCV(n) < SSV(n), then a node in 
SCV(n)’s subtree was updated after the transaction that produced 
SCV(n)’s payload. This caused a copy-on-write of SCV(n)’s node, 



 

which led directly or indirectly (though subsequent updates to that 
subtree) to a node whose VN is SSV(n). 

Meld works by a recursive preorder traversal of I, starting at I’s 
root and comparing each node n in I with the corresponding node 
nL in LCS. There are two cases. In case one, nL has the same key as 
n and meld works as follows: 

 If n is NULL or outside of I, then return n 
 If SSV(n) = VN(nL), then n and its subtree were not changed 

after T(I) read them. Therefore, meld can simply replace nL by 
n, which also replaces nL’s subtree by n’s subtree. Otherwise, 
SSV(n) ≠ VN(nL), so something in n’s subtree changed and we 
have to determine if that change implies a conflict. 

 If Altered(n) = TRUE and either  
(Altered(nL) = TRUE   and SCV(n) ≠ VN(nL))    or 
(Altered(nL) = FALSE and SCV(n) ≠ SCV(nL)),  

then T(I)’s update of n conflicts with a write in its conflict 
zone, so I aborts.  

 Otherwise, if DependsOn(n) = TRUE and either  

(Altered(nL) = TRUE and SCV(n) ≠ VN(nL))       or  
(Altered(nL) = FALSE and SCV(n) ≠ SCV(nL)), 

then T(I)’s read of n conflicts with a write in its conflict zone, 
so I aborts.  

 Otherwise, copy n into an ephemeral node ne.  
o Set the left child of ne to be the result of melding n’s 

and nL’s left children 
o Set the right child of ne to be the result of melding 

n’s and nL’s right children.  

In case two, there is no nL that has the same key as n. This 
complicates the recursion and is described in detail in [8].  

B. ADDITIONAL EXPERIMENTS 
We now present more experiments analyzing Hyder II’s 
performance by varying various workload parameters such as the 
number of operations per transaction (or transaction size) and the 
fraction of update operations in a ten-operation write transaction. 
Other workload parameters are set to the default values described 
in Section 6.1. The number of transaction servers is set to 6. 

As the number of operations per transaction increases, the number 
of tree nodes included in an intention increases. This increases the 
load on each of Hyder II’s critical resources. In this workload, we 
fix the fraction of update operations in a transaction to 0.2, with at 
least one update operation in the transaction. Therefore, as the 
transaction size increases, the number of update operations in the 
transaction also increases. This results in more work for the meld 
pipeline, since meld has to create ephemeral nodes for the updated 
nodes for parts of the tree that were updated concurrently. Thus, as 
the transaction size increases, we expect the transaction throughput 
to decrease proportionately, as is observed in Figure 21. The 
increase in work done by final meld is evident in Figure 22. How-
ever, premeld continues to be as effective, with a 3x performance 
improvement and ~7x reduction in the number of nodes visited. The 
other contributor to the cost of final meld, the number of ephemeral 
nodes created, shows a similar pattern. With four operations per 
transaction, the meld pipeline in Hyder II-Pre creates an average of 
23 ephemeral nodes per transaction. With transaction size of 32, it 
grows to 171 ephemeral nodes per transaction. 

 
Figure 21: Varying the number of operations in a transaction. 
Every transaction has at least one write operation. 

 
Figure 22: Premeld significantly reduces the number of tree 
nodes visited by final meld even as we vary the number of 
operations in a transaction. 

A similar increase in the number of ephemeral nodes created by the 
meld pipeline is observed as we increase the number of update 
operations in a transaction. In this experiment, we fix the number 
of operations per transaction at 10 and vary the fraction of update 
operations from 0.1 to 1.0. As the fraction of update operations 
decreases, the throughput increases (see Figure 23). Figure 24 plots 
the number of ephemeral nodes created by the meld pipeline. It 
shows that a higher update fraction results in the creation of more 
ephemeral nodes, because updates lead to the creation of ephemeral 
ancestor nodes. As expected, premeld and group meld result in 
slightly more ephemeral nodes being created.   

 
Figure 23: Impact of varying the fraction of update operations 
per transaction on the throughput. 



 

 
Figure 24: As the number of update operations per transaction 
increases, so does the number of ephemeral nodes created. 

C. DETERMINISM OF PREMELD WITH 
EPHEMERAL NODES 
We present an example of an intention that is premelded with dif-
ferent database states at two different servers, leading to an ephem-
eral node identity that has different content at the two servers. The 
example is shown in Figure 25. 

The initial database state, S0, is shown in row 1. It is a tree whose 
root is A with children B and D. The number “0” in parentheses 
after each node indicates that it was written by transaction T0 (not 
shown), which initialized the database. 

The log is shown in row 2. It contains intentions written by a 
sequence of transactions T1 … T4, all of which executed against state 
S0. A dashed line indicates a pointer to a node (shown in gray) 
outside of the transaction’s intention. The number in parentheses 
after each node identifies the transaction that wrote it. The 
transactions performed the following actions: 

 T1 updated the content of B, which generated a new version of 
node A due to copy-on-write. 

 T2 updated the content of D, which generated a new version of 
node A due to copy-on-write. 

 T3 inserted node C, which generated new versions of nodes B 
and A due to copy-on-write. 

 T4 inserted node E, which generated new versions of nodes D 
and A due to copy-on-write. 

The sequence of states in the third row shows the result of applying 
meld to each transaction, in turn. None of the transactions conflict 
with each other, so they all commit. Since all transactions ran 
against S0, for each transaction after T1 meld produces ephemeral 
nodes, denoted by e1 … e5. 

In row 4, premeld at server X processes T4 against state S1, produc-
ing T4x. Since it runs on a separate thread, the ephemeral node that 
it generates has a compound identifier [1,1], comprised of its 
premeld thread id followed by a sequence number. The final meld 
thread melds T1, T2, and T3 as before. However, instead of melding 
T4, it melds the result of premeld, T4x, producing S4x. Notice that 
meld recognizes that B(e2) is the immediate successor of state B(1) 
and therefore retains it in the meld result. However, since it merges 
the subtree B(e2) in S3 with the updated D subtree that melds D(2) 
in S3 and D(4) in T4x, it produces a new ephemeral root, A(e4). 

In row 5, at a different server Y, premeld processes T4 against state 
S2, unlike X which processed premeld against S1. It produces T4y. 

Like at server X, server Y’s final meld thread melds T1, T2, and T3 
and then melds the result of premeld, T4y, producing S4y. 

Notice that servers X and Y both generate a node identified by e1,1. 
However, they are entirely different nodes. Suppose a transaction 
executes at server Y and produces an intention that references node 
D(e1,1). When that intention is melded at server X, the reference 
will be incorrectly interpreted as pointing to the root A(e1,1), which 
is the wrong node and is from an earlier state. From this point on, 
the system at node X will go haywire. 

 
Figure 25: Running premeld against different database states 
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