QuickSAN: A Storage Area Network for Fast, Distributed,
Solid State Disks

Adrian M. Caulfield

Steven Swanson

Computer Science and Engineering Department
University of California, San Diego

{acaulfie,swanson}@cs.ucsd.edu

ABSTRACT

Solid State Disks (SSDs) based on flash and other non-volatile
memory technologies reduce storage latencies from 10s of mil-
liseconds to 10s or 100s of microseconds, transforming previously
inconsequential storage overheads into performance bottlenecks.
This problem is especially acute in storage area network (SAN)
environments where complex hardware and software layers (dis-
tributed file systems, block severs, network stacks, etc.) lie between
applications and remote data. These layers can add hundreds of
microseconds to requests, obscuring the performance of both flash
memory and faster, emerging non-volatile memory technologies.
We describe QuickSAN, a SAN prototype that eliminates most
software overheads and significantly reduces hardware overheads
in SANs. QuickSAN integrates a network adapter into SSDs, so
the SSDs can communicate directly with one another to service
storage accesses as quickly as possible. QuickSAN can also give
applications direct access to both local and remote data without op-
erating system intervention, further reducing software costs. Our
evaluation of QuickSAN demonstrates remote access latencies of
20 us for 4 KB requests, bandwidth improvements of as much as
163 x for small accesses compared with an equivalent iSCSI imple-
mentation, and 2.3-3.0x application level speedup for distributed
sorting. We also show that QuickSAN improves energy efficiency
by up to 96% and that QuickSAN’s networking connectivity allows
for improved cluster-level energy efficiency under varying load.

1. INTRODUCTION

Modern storage systems rely on complex software and intercon-
nects to provide scalable, reliable access to large amounts of data
across multiple machines. In conventional, disk-based storage sys-
tems the overheads from file systems, remote block device proto-
cols (e.g., iSCSI and Fibre Channel), and network stacks are tiny
compared to the storage media access time, so software overheads
do not limit scalability or performance.

The emergence of non-volatile, solid-state memories (e.g.,
NAND flash, phase change memory, and spin-torque MRAM)
changes this landscape completely by dramatically improving stor-
age media performance. As a result, software shifts from being the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA ’13 Tel-Aviv, Israel

Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

least important component in overall storage system performance
to being a critical bottleneck.

The software costs in scalable storage systems arise because, un-
til recently, designers could freely compose existing system com-
ponents to implement new and useful storage system features. For
instance, the software stack running on a typical, commodity stor-
age area network (SAN) will include a file system (e.g., GFS [29]),
alogical volume manager (e.g., LVM), remote block transport layer
client (e.g., the iSCSI initiator), the client side TCP/IP network
stack, the server network stack, the remote block device server
(e.g., the iSCSI target), and the block device driver. The combi-
nation of these layers (in addition to the other operating system
overheads) adds 288 us of latency to a 4 kB read. Hardware ac-
celerated solutions (e.g., Fibre Channel) eliminate some of these
costs, but still add over 90 s per access.

Software latencies of hundreds of microseconds are inconse-
quential for disk accesses (with a hardware latency measured in
many milliseconds), but modern NAND flash-based solid state
disks (SSDs) measure latencies in the 10s of microseconds and fu-
ture PCM- or STTM-based devices [4, 32] will deliver <10 us la-
tencies. At those speeds, conventional software and block transport
latencies will cripple performance.

This paper describes a new SAN architecture called QuickSAN.
QuickSAN re-examines the hardware and software structure of dis-
tributed storage systems to minimize software overheads and let the
performance of the underlying storage technology shine through.

QuickSAN improves SAN performance in two ways. First, it
provides a very low-latency, hardware-accelerated block transport
mechanism (based on 10 Gbit ethernet) and integrates it directly
into an SSD. Second, it extends a recently proposed OS bypass
mechanism [5] to allow an application to access remote data with-
out (in most cases) any intervention from the operating system
while still enforcing file system protections.

We examine two different structures for QuickSAN. Centralized
QuickSAN systems mirror conventional SAN topologies that use
a centralized data storage server. Distributed QuickSAN enables
distributed storage by placing one slice of a globally shared storage
space in each client node. As a result, each node has very fast
access to its local slice, and retains fast, direct access to the slices
at the other nodes as well. In both architectures, clients see storage
as a single, shared storage device and access data via a shared-disk
file system and the network.

We evaluate QuickSAN using GFS2 [12] and show that it re-
duces software and block transfer overheads by 94%, reduces over-
all latency by 93% and improves bandwidth by 14.7x for 4 KB
requests. We also show that leveraging the fast access to local stor-
age that distributed QuickSAN systems provide can improve per-
formance by up to 3.0x for distributed sorting, the key bottleneck

Existing interfaces

QuickSAN

Component Latency R/W (us) Latency R/W (us)
iSCSI | Fibre Channel Kernel Direct
OS Entry/Exit & Block IO 40/34 3.8/34 1 03/03
GFS2 0.1/1.5 14/23 n/a
Block transport 284.0/207.7 | 86.0/85.9 17.0/16.9 | 17.0/16.9
4 kB non-media total 288.1/212.6 | 90.1/90.8 22.2/22.6 | 17.2/17.1

Table 1: Software and block transport latencies Software stack and block transport latencies add overhead to storage accesses.
Software-based SAN interfaces like iSCSI takes 100s of microseconds. Fibre Channel reduces this costs, but the additional latency
is still high compared to the raw performance of fast non-volatile memories. The Fibre Channel numbers are estimates based on [1]

and measurements of QuickSAN.

in MapReduce systems. We also measure QuickSAN’s scalability,
its impact on energy efficiency, and the impact of adding mirroring
to improve reliability. Finally, we show how distributed QuickSAN
can improve cluster-level efficiency under varying load.

The remainder of this paper is organized as follows. Section 2
describes existing SAN-based storage architectures and quantifies
the software latencies they incur. Section 3 describes QuickSAN’s
architecture and implementation in detail. Section 4 places Quick-
SAN in the context of previous efforts. Section 5 evaluates both
centralized and distributed QuickSAN to compare their perfor-
mance on a range of storage workloads. Section 6 presents our
conclusions.

2. MOTIVATION

Non-volatile memories that offer order of magnitude increases
in performance require us to reshape the architecture of storage
area networks (SANs). SAN-based storage systems suffer from
two sources of overhead that can obscure the performance of the
underlying storage. The first is the cost of the device-independent
layers of the software stack (e.g., the file system), and the second is
the block transport cost, the combination of software and intercon-
nect latency required to access remote storage. These costs range
from 10s to 100s of microseconds in modern systems.

As non-volatile memories become more prevalent, the cost of
these two components grows relative to the cost of the underlying
storage. For disks, with latencies typically between 7 and 15 ms,
the costs of these layers is almost irrelevant. Flash-based SSDs,
however, have access times under 100 ps and SSDs based on more
advanced memories will have <10 ps latencies. In these systems,
the cost of conventional storage software and block transport will
completely dominate storage costs.

This section describes the sources of these overheads in more de-
tail and places them in context of state-of-the-art solid-state storage
devices.

2.1 Storage overheads

Figure 1 shows the architecture of two typical SAN-based
shared-disk remote storage systems. Both run under Linux and
GFS2 [12], a distributed, shared-disk file system. In Figure 1(a)
a software implementation of the iSCSI protocol provides block
transport. An iSCSI target (i.e., server) exports a block-based in-
terface to a local storage system. Multiple iSCSI client initiators
(i.e., clients) connect to the target, providing a local interface to the
remote device.

Fibre Channel, Figure 1(b), provides block transport by replac-
ing the software below the block interface with a specialized SAN
card that communicates with Fibre Channel storage devices. Fibre
Channel devices can be as simple as a hard drive or as complex
as a multi-petabyte, multi-tenancy storage system, but in this work

we focus on performance-optimized storage devices (e.g., the Flash
Memory Arrays [30] from Violin Memory).

The values in Table 1 measure the OS and block transport la-
tency for a 4 kB request from the applications perspective for iSCSI
and Fibre Channel. The first three rows are the generic OS storage
stack. The fourth row measures the minimum latency for a remote
storage access starting at the block interface boundary in Figure 1,
and excluding the cost of the actual storage device. These latencies
seem small compared to the 7-11 ms required for the disk access,
but next-generation SSDs fundamentally alter this balance.

2.2 The Impact of Fast SSDs

Fast non-volatile memories are already influencing the design of
storage devices in the industry. As faster memories become avail-
able the cost of software and hardware overheads on storage ac-
cesses will become more pronounced.

Commercially available NAND flash-based SSDs offer access
latencies of tens of microseconds, and research prototypes targeting
more advanced memory technologies have demonstrated latencies
as low as 4-5 us [5].

Violin Memory’s latest 6000 Series Flash Memory Arrays [30]
can perform read accesses in 80-100 us and writes in 20 us with
aggressive buffering. FusionlO’s latest ioDrives [10] do even bet-
ter: 68 us for reads and 15 pus for writes, according to their data
sheets. Similar drives from Intel [17] report 65 us for reads and
writes.

At least two groups [4, 5, 32] have built prototype SSDs that use
DRAM to emulate next-generation memories like phase-change
memories, spin-torque MRAMSs, and the memristor. These devices
can achieve raw hardware latencies of between 4 and 5 us [5, 32].

Figure 2 illustrates the shift in balance between the cost of un-
derlying storage and the cost of software and the block transport
layers. For a disk-based SAN, these overheads represent between
1.2 and 3.8% of total latency. For flash-based SSDs the percentage
climbs as high as 59.6%, and for more advanced memories soft-
ware overheads will account for 98.6-99.5% of latency.

Existing software stacks and block transport layers do not pro-
vide the low-latency access that fast SSDs require to realize their
full potential. The next section describes our design for QuickSAN
that removes most of those costs to expose the full performance of
SSDs to software.

3. QuickSAN

This section describes the hardware and software components of
QuickSAN. The QuickSAN hardware adds a high-speed network
interface to a PCle-attached SSD, so SSDs can communicate di-
rectly with one another and retrieve remote data to satisfy local 10
requests. The QuickSAN software components leverage this ca-
pability (along with existing shared-disk file systems) to eliminate
most of the software costs described in the previous section.

Userspace [_Applications | Userspace L Applications | -
| iSCSI Target | [GFS2 | block interface | GFS2 |
Block I/0 Stack Block /0 Stack 14_/ boundary ™\ [Block /O Stack |
: NetStack | [iSCSIInitiator] [FCDriver |
PCle Driver [NetStack | x
0S F € oac 05s
HW v v v HW 2
[PCleBlockDev || NIC [| NIC | [FCBlockdev || FCAdapter |
| Ethernet | | Fibre Channel |
(a) (b)

Figure 1: Existing SAN architectures Existing SAN systems use software-based architectures like software iSCSI (a) or specialized
hardware solutions like Fibre Channel (b). Both hide ample complexity behind the block device interface they present to the rest of
the system. That complexity and the software that sits above it in OS both add significant overheads to storage access.

. Software
Storage Media
S| Block Transport

iISCSI PCM

o T
s 2
= 2]

Fibre Chan. Flash
QuickSAN PCM

Figure 2: Shifting bottlenecks As storage shifts from disks to
solid-state media, software and block transport account for a
growing portion of overall latency. This shift requires us to
rethink conventional SAN architectures.

3.1 QuickSAN Overview

We explore two different architectures for QuickSAN storage
systems. The first resembles a conventional SAN storage system
based on Fibre Channel or iSCSI. A central server (at left in Fig-
ure 3) exports a shared block storage device, and client machines
access that device via the network. We refer to this as the central-
ized architecture.

The second, distributed, architecture replaces the central server
with a distributed set of SSDs, one at each client (Figure 3, right).
The distributed SSDs combine to expose a single, shared block de-
vice that any of the clients can access via the network.

To explore ways of reducing software overheads in these two
architectures, we have implemented two hardware devices: A cus-
tomized network interface card (the QuickSAN NIC) and a custom
SSD (the QuickSAN SSD) that integrates both solid state storage
and QuickSAN NIC functionality. In some of our experiments we
also disable the network interface on the QuickSAN SSD, turning
it into a normal SSD.

The QuickSAN NIC is similar to a Fibre Channel card: It exports

a block device interface and forwards read and write requests over
a network to a remote storage device (in our case, a QuickSAN
SSD). The QuickSAN SSD responds to remote requests without
communicating with the operating system, so it resembles a Fibre
Channel client and target device.

The QuickSAN SSD also exports a block device interface to
the host system. The interface’s block address space includes the
SSD’s local storage and the storage on the other QuickSAN SSDs it
is configured to communicate with. The QuickSAN SSD services
accesses to local storage directly and forwards requests to external
storage to the appropriate QuickSAN SSD.

This organization allows QuickSAN SSDs to communicate in a
peer-to-peer fashion, with each SSD seeing the same global storage
address space. This mode of operation is not possible with conven-
tional SAN hardware.

QuickSAN further reduces software latency by applying the OS-
bypass techniques described in [5]. These techniques allow ap-
plications to bypass the system call and file system overheads for
common-case read and write operations while still enforcing file
system protections.

The following subsections describe the implementation of the
QuickSAN SSD and NIC in detail, and then review the OS bypass
mechanism and its implications for file system semantics.

3.2 The QuickSAN SSD and NIC

The QuickSAN NIC and the QuickSAN SSD share many aspects
of their design and functionality. Below, we describe the common
elements of both designs and then the SSD- and NIC-specific hard-
ware. Then we discuss the hardware platform we used to imple-
ment them both.

Common elements The left half of Figure 4 contains the common
elements of the SSD and NIC designs. These implement a storage-
like interface that the host system can access. It supports read and
write operations from/to arbitrary locations and of arbitrary sizes
(i.e., accesses do not need to be aligned or block-sized) in 64 bit
address space.

The hardware includes the host-facing PIO and DMA interfaces,
the request queues, the request scoreboard, and internal buffers.
These components are responsible for accepting 10 requests, exe-
cuting them, and notifying the host when they are complete. Com-
munication with the host occurs over a PCle 1.1x8 interface, which

Applications | |

Applications |

[QuickSAN Driver |
F N

GFS2 | |

[Block 1/0 Stack] |

Block I/O |

[QuickSAN Driver|

[QuickSAN Drv|

Userspace
I GFS2 |
[Block 1/O Stack |
[QuickSAN Driver]|

OS

HW

QuickSAN SSD

[QUICKSAN NIC_|

A\ 4 A 4

Ethernet |

Figure 3: QuickSAN configurations QuickSAN supports multiple storage topologies and two software interfaces. At left, a single
machine hosts multiple QuickSAN SSDs, acting a central block server. The center machine hosts a QuickSAN NIC that provides
access to remote SSDs. The machine at right hosts a single SSD and is poised to access its local (for maximum performance) or

remote data via the userspace interface.

runs at 2 GB/s, full-duplex. This section also includes the virtual-
ization and permission enforcement hardware described below (and
in detail in [5]).

Data storage The storage-related portions of the design are
shown in the top-right of Figure 4. The SSD contains eight
high-performance, low-latency non-volatile memory controllers at-
tached to an internal ring network. The SSD’s local storage address
space is striped across these controllers with a stripe size of 8 kB.

In this work, the SSD uses emulated phase change memory, with
the latencies from [19] — 48 ns and 150 ns for array reads and
writes, respectively. The array uses start-gap wear leveling [23]
to distribute wear across the phase change memory and maximize
lifetime.

The network interface QuickSAN’s network interface commu-
nicates over a standard 10 Gbit CX4 ethernet port, providing con-
nectivity to other QuickSAN devices on the same network. The
network interfaces plays two roles: It is a source of requests, like
the PCle link from the host, and it is also a target for data transfers,
like the memory controllers.

The link allows QuickSAN to service remote requests without
operating system interaction on the remote node and even allows
access to storage on a remote node when that node’s CPU is pow-
ered off (assuming the SSD has an independent power supply).

QuickSAN requires a lossless interconnect. To ensure reliable
delivery of network packets, QuickSAN uses ethernet but employs
flow control as specified in the IEEE 802.3x standard. Fibre Chan-
nel over ethernet (FCoE) uses the same standards to provide re-
liable delivery. Ethernet flow control can interact poorly with
TCP/IP’s own flow control and is usually disabled on data net-
works, but a more recent standard, 802.1gbb, extends flow control
to cover multiple classes of traffic and alleviates these concerns. It
is part of the “data center bridging” standard pushing for converged
storage and data networks in data centers [7].

Ethernet flow control provides the necessary reliability guaran-
tees that QuickSAN needs, but it runs the risk of introducing dead-
lock into the network if insufficient buffering is available. For ex-
ample, deadlock can occur if an SSD must pause incoming traffic
due to insufficient buffer space, but it also requires an incoming re-
sponse from the network before it can clear enough buffer space to

unpause the link.

We have carefully designed QuickSAN’s network interface to
ensure that it always handles incoming traffic without needing to
send an immediate response on the network, thus breaking the
conditions necessary for deadlock. We guarantee sufficient buffer
space for (or can handle without buffering) all incoming small
(non-payload bearing) incoming messages. Read requests allocate
buffers at the source before sending the request, and a dedicated
buffer is available for incoming write requests, which QuickSAN
clears without needing to send an outgoing packet.

Userspace access The host-facing interface of the QuickSAN
SSD and NIC includes support for virtualization and permissions
enforcement, similar to the mechanisms presented in [5]. These
mechanisms allow applications to issue read and write requests di-
rectly to the hardware without operating system intervention while
preserving file system permissions. This eliminates, for most oper-
ations, the overheads related to those software layers.

The virtualization support exposes multiple, virtual hardware in-
terfaces to the NIC or SSD, and the operating system assigns one
virtual interface to each process. This enables the process to is-
sue and complete 1O operations. A user space library interposes on
file operations to provide an almost (see below) POSIX-compliant
interface to the device.

The permissions mechanism associates a permissions table with
each virtual interface. The hardware checks each request that ar-
rives via the PCle interface against the permission table for the ap-
propriate interface. If the interface does not have permission to per-
form the access, the hardware notifies the process that the request
has failed.

The operating system populates the permission table on behalf
of the process by consulting the file system to retrieve file layout
and permission information.

Permission checks in QuickSAN occur at the source NIC or SSD
rather than at the destination. This represents a trade off between
scalability and security. If permission checks happened at the desti-
nation, the destination SSD would need to store permission records
for all remote requestors and would need to be aware of remote
virtual interfaces. Checking permissions at the source allows the
number of system wide permission entries and virtual interfaces to

| Storage
J 8 GB 8GB|| 8GB

A A O+ O»1+O»

8GB|[8GB|[8GB || 8GB

I 8GB

| OO0 O
| | Ring Ctrl |<—>< Ring (4 GB/s))
! FO»-

[

1

I _>| l_>
! Network Net Rx FIFO Ethernet

()]
Sol|l g Request
PIO g[8 e 'Queue—L
c e v
7y Score- |
Status Registers | board |
Transfer [€7 =3
Buffers
DMA
DMA <
Control

| Control Net Tx FIFO_|J«—|

| Network

Figure 4: QuickSAN’s internal architecture The QuickSAN NIC and SSD both expose a virtualized, storage interface to the host
system via PCle (at left). The network interface attaches to a 10 Gbit network port (bottom-right), while the QuickSAN SSD adds
64 GB of non-volatile storage (top-left). The device services requests that arrive via either the network or host interface and forwards

requests for remote storage over the network.

scale with the number of clients. A consequence is that QuickSAN
SSDs trust external requests, an acceptable trade-off in most clus-
tered environments.

Since the userspace interface provides direct access to storage,
it can lead to violations of the atomicity guarantees that POSIX
requires. For local storage devices hardware support for atomic
writes [8] can restore atomicity. For distributed storage systems,
however, achieving atomicity requires expensive distributed lock-
ing protocols, and implementing these protocols in hardware seems
unwieldly.

Rather than provide atomicity in hardware, we make the observa-
tion that most applications that require strong consistency guaran-
tees and actively share files (e.g., databases) rely on higher-level,
application-specific locking primitives. Therefore, we relax the
atomicity constraint for accesses through the userspace interface.
If applications require the stronger guarantees, they can perform
accesses via the file system and rely on it to provide atomicity guar-
antees. The userspace library automatically uses the file system for
append operations since they must be atomic.

Implementation ~ We implemented QuickSAN on the BEE3 pro-
totyping platform [2]. The BEE3 provides four FPGAs which each
host 16 GB of DDR2 DRAM, two 10 Gbit ethernet ports, and one
PCle interface. We use one of the ethernet ports and the PCle
link on one FPGA for external connectivity. The design runs at
250 MHz.

To emulate the performance of phase change memory using
DRAM, we used a modified DRAM controller that allows us to
set the read and write latency to the values given earlier.

3.3 QuickSAN software

Aside from the userspace libray described above, most of the
software that QuickSAN requires is already commonly available
on clustered systems.

QuickSAN’s globally accessible storage address space can play
host to conventional, shared-disk file systems. We have success-
fully run both GFS2 [12] and OCSF2 [21] on both the distributed
and local QuickSAN configurations. We expect it would work with

most other shared-disk file systems as well. Using the userspace in-
terface requires that the kernel be able to query the file system for
file layout information (e.g., via the fiemap ioctl), but this support
is common across many file systems.

In a production system, a configuration utility would set con-
trol registers in each QuickSAN device to describe how the global
storage address space maps across the QuickSAN devices. The
hardware uses this table to route requests to remote devices. This
software corresponds to a logical volume management interface in
a conventional storage system.

4. RELATED WORK

Systems and protocols that provide remote access to storage fall
into several categories. Network-attached storage (NAS) systems
provide file system-like interfaces (e.g., NFS and SMB) over the
networks. These systems centralize metadata management, avoid-
ing the need for distributed locking, but their centralized structure
limits scalability.

QuickSAN most closely resembles existing SAN protocols like
Fibre Channel and iSCSI. Hardware accelerators for both of these
interfaces are commonly available, but iSCSI cards are particu-
larly complex because they typically also include a TCP offload
engine. Fibre Channel traditionally runs over a specialized inter-
connect, but new standards for Converged Enhanced Ethernet [7]
(CEE) allow for Fibre Channel over lossless Ethernet (FCoE) as
well. QuickSAN uses this interconnect technology. ATA over Eth-
ernet (AoE) [16] is a simple SAN protocol designed specifically for
SATA devices and smaller systems.

Systems typically combine SAN storage with a distributed,
shared-disk file system that runs across multiple machines and pro-
vides a single consistent file system view of stored data. Shared-
disk file systems allow concurrent access to a shared block-based
storage system by coordinating which servers are allowed to access
particular ranges of blocks. Examples include the Global File Sys-
tem (GFS2) [29], General Parallel File System [26], Oracle Cluster
File System [21], Clustered XFS [27], and VxXFS [31].

Parallel file systems (e.g., Google FS [13], Hadoop Distributed
File System [28], Lustre [18], and Parallel NFS [15]) also run
across multiple nodes, but they spread data across the nodes as well.
This gives applications running at a particular node faster access to
local storage.

Although QuickSAN uses existing shared-disk file systems,
it actually straddles the shared-disk and parallel file system
paradigms depending on the configuration. On one hand, the net-
worked QuickSAN SSDs nodes appear as a single, distributed stor-
age device that fits into the shared disk paradigm. On the other,
each host will have a local QuickSAN SSD, similar to the local
storage in a parallel file system. In both cases, QuickSAN can
eliminate the software overhead associated with accessing remote
storage.

Parallel NFS (pNFS) [15] is a potential target for QuickSAN,
since it allows clients to bypass the central server for data accesses.
This is a natural match for QuickSAN direct access capabilities.

QuickSAN also borrows some ideas from remote DMA
(RDMA) systems. RDMA allows one machine to copy the con-
tents of another machine’s main memory directly over the network
using a network protocol that supports RDMA (e.g., Infiniband).
Previous work leveraged RDMA to reduce processor and memory
IO load and improve performance in network file systems [3, 33].
RamCloud [22] utilizes RDMA to reduce remote access to DRAM
used as storage. QuickSAN extends the notion of RDMA to storage
and realizes many of the same benefits, especially in configurations
that can utilize its userspace interface.

QuickSAN’s direct-access capabilities are similar to those pro-
vided by Network Attached Secure Disks (NASD) [14]. NASD
integrated SAN-like capabilities into storage devices directly ex-
posed them over the network. QuickSAN extends this notion by
also providing fast access to the local host to fully leverage the per-
formance of solid state storage.

Alternate approaches to tackling large-scale data problems have
also been proposed. Active Storage Fabrics [9], proposes combin-
ing fast storage and compute resources at each node. Processing
accelerators can then run locally within the node. QuickSAN also
allows applications to take advantage of data locality, but the archi-
tecture focuses on providing low-latency access to all of the data
distributed throughout the network.

S. RESULTS

This section evaluates QuickSAN’s latency, bandwidth, and scal-
ability along with other aspects of its performance. We measure the
cost of mirroring in QuickSAN to improve reliability, and evaluate
its ability to improve the energy efficiency of storage systems. Fi-
nally, we measure the benefits that distributed QuickSAN config-
urations can provide for sorting, a key bottleneck in MapReduce
workloads. First, however, we describe the three QuickSAN con-
figurations we evaluated.

5.1 Configurations

We compare performance across both centralized and distributed
SAN architectures using three different software stacks.

For the centralized topology, we attached four QuickSAN SSDs
to a single host machine and expose them as a single storage device.
Four clients share the resulting storage device. In the distributed
case, we attach one QuickSAN SSD to each of four machines to
provide a single, distributed storage device. In both cases, four
clients access the device. In the distributed case, the clients also
host data.

Local Remote
Read | Write || Read | Write

iSCSI 923 | 111.7 || 296.7 | 236.5
QuickSAN-OS || 15.8 17.5 27.0 28.6
QuickSAN-D 8.3 9.7 19.5 20.7

Table 2: QuickSAN latency Request latencies for 4 KB transfer
to each of the configurations to either local or remote storage.
The distributed configurations have a mix of local and remote
accesses, while the centralized configurations are all remote.

We run three different software stacks on each of these configu-
rations.

iSCSI This software stack treats the QuickSAN SSD as a generic
block device and implements all SAN functions in software. In
the centralized case, Linux’s clustered Logical Volume Manager
(cLVM) combines the four local devices into a single logical device
and exposes it as an iSCSI target. In the distributed case, each ma-
chine exports its local SSD as an iSCSI target, and cLVM combines
them into a globally shared device. Client machines use iSCSI to
access the device, and issue requests via system calls.

QuickSAN-OS The local QuickSAN device at each client (a NIC
in the centralized case and an SSD in the distributed case) exposes
the shared storage device as a local block device. Applications ac-
cess the device through the normal system call interface.

QuickSAN-D The hardware configuration is the same as
QuickSAN-OS, but applications use the userspace interface to ac-
cess storage.

Our test machines are dual-socket Intel Xeon E5520-equipped
servers running at 2.27 GHz. The systems run CentOS 5.8 with
kernel version 2.6.18. The network switch in all experiments is a
Forcel0 S2410 CX4 10 GBit Ethernet Switch. In experiments that
include a file system, we use GFS2 [12].

5.2 Latency

Reducing access latency is a primary goal of QuickSAN, and
Table 2 contains the latency measurements for all of our config-
urations. The measurements use a single thread issuing requests
serially and report average latency.

Replacing iSCSI with QuickSAN-OS reduces remote write la-
tency by 92% — from 296 ps to 27 us. Savings for reads are similar.
QuickSAN-D reduces latency by an additional 2%. Based on the
Fibre Channel latencies in Table 1, we expect that the saving for
QuickSAN compared to a Fibre Channel-attached QuickSAN-like
SSD would be smaller — between 75 and 81%.

5.3 Bandwidth

Figure 5 compares the sustained, mean per-host bandwidth
for all six configurations for random accesses of size ranging
from 512 bytes to 256 kB. Comparing the distributed configura-
tions, QuickSAN-D outperforms the iSCSI baseline by 72.7 x and
164.4x for small 512 B reads and writes, respectively. On larger
256 kB accesses, QuickSAN-D’s advantage shrinks to 4.6x for
reads and 4.4 for writes.

For QuickSAN, the distributed architecture outperforms the cen-
tralized architecture by 100 MB/s per node for 4 kB requests and
maintains a 25 MB/s performance advantage across all request
sizes for both kernel and userspace interfaces. Userspace write per-
formance follows a similar trend with a 110 MB/s gain at 4 kB and
at least a 45 MB/s gain for other sizes.

)

o 1000 -
< 900
L 800
S 700
% 600
£ 500
‘S 400
T 300
& 200
= 100
S o
=

— * QSAN-D-Cent
QSAN-D-Dist

QSAN-OS-Cent
QSAN-OS-Dist
= - iSCSI-Cent

— iSCSI-Dist

s

Ral

_Write

3

o
.
.

- - -

_50% Read, 50% Write

128
Random Request Size (KB)

0.5 2 8

Figure 5: QuickSAN bandwidth Eliminating software and block transport overheads improves bandwidth performance for all con-
figurations. QuickSAN-D’s userspace interface delivers especially large gains for small accesses and writes.

Aggregate Bandwidth (GB/s)

_Read

=== Combined
— Local
Network

Write

50% Read, 50% Write

Node Count

Figure 6: QuickSAN bandwidth scaling For random requests spread across the shared storage address space, aggregate bandwidth
improves as more nodes are added. Local bandwidth scales more slowly since a smaller fraction of accesses go to local storage as the
number of nodes grows.

)

o 1000 -
= 900
L 800
S 700
£ 600
=

£ 500
‘S 400
S 300
& 200
c 100
S o
=

Read _Write _50% Read, 50% Write
10T T e, . .
i Vs . _/\—’/ _/¥—
] #'= = QuickSAN-D-Rep] -7 I
/ — QuickSAN-D e e e

1 /' """ Qu|ckSAN—OS—Rep __________________ T —"_: """"""""""""""""""""""""""""""""
. ** QUickSAN-OS N JTT S ————— — ety

T T T T T T T T 1 —-MI T T T T T T T 1 T T T T T T T T 1
0.5 2 8 32 128 0.5 2 8 32 128 0.5 2 8 32 128

Random Request Size (KB)

Figure 7: The impact of replication on bandwidth Mirroring in QuickSAN improves bandwidth for read operations because two SSDs
can service any given request and, in some cases, the extra copy will be located on the faster, local SSD. Write performance drops
because of the extra update operations mirroring requires.

Write performance through the kernel is much lower due to the
distributed file system overheads. Some of that cost goes towards
enforcing atomicity guarantees. The performance advantage for the
distributed configuration stems from having fast access to a portion
of the data and from better aggregate network bandwidth to storage.

Interestingly, for a 50/50 mix of reads and writes under
QuickSAN-D, the centralized architecture outperforms the dis-
tributed architecture by between 90 and 180 MB/s (17-25%) per
node across all request sizes. This anomaly occurs because local
and remote accesses compete for a common set of buffers in the
QuickSAN SSD. This limits the SSD’s ability to hide the latency of
remote accesses. In the centralized case, the QuickSAN NICs ded-
icate all their buffer space to remote accesses, hiding more latency,
and improving performance. The read/write workloads exacerbates
this problem for the distributed configuration because the local host
can utilize the full-duplex PCle link, putting more pressure on local
buffers than in write- or read-only cases. The random access nature
of the workload also minimizes the benefits of having fast access
to local storage, a key benefit of the distributed organization.

The data show peak performance at 4 kB for most configura-
tions. This is the result of a favorable interactions between the
available buffer space and network flow control requirements for
transfer 4 kB and smaller. As requests get larger, they require more
time to move into and out of the transfer buffers causing some con-
tention. 4 kB appears to be the ideal request size for balancing
performance buffer access between the network and the internal
storage.

5.4 Scaling

QuickSAN is built to scale to large clusters of nodes. To eval-
uate its scalability we ran our 4 kB, random access benchmark on
between one and sixteen nodes. There are two competing trends
at work: As the number of nodes increases, the available aggre-
gate network bandwidth increases. At the same time, the fraction
of the random accesses that target a nodes local storage drops. For
this study we change the QuickSAN architecture slightly to include
only 16 GB of storage per node, resulting in slightly decreased per-
node memory bandwidth.

Figure 6 illustrates both trends and plots aggregate local and re-
mote bandwidth across the nodes as well as total bandwidth. Ag-
gregate local bandwidth scales poorly for small node counts as
more requests target remote storage. Overall, bandwidth scales
well for the mixed read/write workload: Quadrupling node count
from two to eight increase total bandwidth by 2.0x and network
bandwidth by 3.2 x. Moving from two to eight nodes increases to-
tal bandwidth by 2.5x and network bandwidth by 4.5x. Writes
experience similar improvements, two to sixteen node scaling in-
creases total bandwidth by 3.3 x and network bandwidth by 5.9x.
For reads, total and network bandwidth scale well from two to eight
nodes (2.5x and 2.8Xx, respectively), but the buffer contention
mentioned above negatively impacts bandwidth. Additional buffers
would remedy this problem. Network bandwidth continues to scale
well for reads with two to sixteen node scaling producing a 4.4 x
increase.

Latency scaling is also an important consideration. As node
counts grow, so must the number of network hops required to reach
remote data. The minimum one-way latency for our network is
1 ps which includes the delay from two network interface cards,
two network links, and the switch. Our measurements show that
additional hops add 450 ns of latency each way in the best case.

5.5 Replication
SAN devices (and all high-end storage systems) provide data in-

QuickSAN QuickSAN , QuickSAN . QuickSAN
SsDO + SSD1 : SSD2 ! SSD3
Input/ " Input/ " Input/ " Input/

Output ' Output

' Output ' Output

Figure 8: Sorting on QuickSAN Our sorting algorithm uses a
partition stage followed by parallel, local sorts. The input and
output stages utilize the fast access to local storage the Quick-
SAN provides, while the partitioning stage leverages SSD-to-
SSD communicatio.

tegrity protection in the form of simple mirroring or more complex
RAID- or erasure code-based mechanisms. We have implemented
mirroring in QuickSAN to improve data integrity and availability.
‘When mirroring is enabled, QuickSAN allocates half of the storage
capacity on each QuickSAN SSD as a mirror of the primary portion
of another SSD. QuickSAN transparently issues two write requests
for each write. QuickSAN can also select from any replicas to ser-
vice remote read requests using a round-robin scheme, although it
always selects a local replica, if one is available. With this scheme,
QuickSAN can tolerate the failure of any one SSD.

Mirroring increases write latency by 1.7 us for 512 B accesses
and 7.7 us for 4 KB accesses in both QuickSAN-D and QuickSAN-
OS. The maximum latency impact for QuickSAN is 1.6 x. Figure 7
measures the impact of mirroring on bandwidth. Sustained write
bandwidth through the kernel interface drops by 23% for 4 kB re-
quests with a maximum overhead of 35% on large transfers. The
userspace interface, which has lower overheads and higher through-
put, experiences bandwidth reductions of between 49 and 52%
across all request sizes, but write bandwidth for 512 B requests
is still 9.5 xbetter than QuickSAN-OS without replication.

Replication improves read bandwidth significantly, since it
spreads load more evenly across the SSDs and increases the likeli-
hood that a copy of the data is available on the local SSD. For 4 KB
accesses, performance rises by 48% for QuickSAN-D and 26% for
QuickSAN-OS. Adding support for QuickSAN to route requests
based on target SSD contention would improve performance fur-
ther.

5.6 Sorting on QuickSAN

Our distributed QuickSAN organization provides non-uniform
access latency depending on whether an access targets data on the
local SSD or aremote SSD. By leveraging information about where
data resides, distributed applications should be able to realize sig-
nificant performance gains. Many parallel file systems support this
kind of optimization.

To explore this possibility in QuickSAN, we implemented a dis-
tributed external sort on QuickSAN. Distributed sort is an impor-

900 —

800 -
% 700 - E Sort-—-Centrallzed.
c Partition—-Centralized
8 600 Sort-Distributed
9 500 Partition—Distributed
> 400 —
S
@ 300
3 200 -
100
0
iISCSI QSAN QSAN
oS Direct

Figure 9: Sorting on QuickSAN Removing iSCSI’s software
overheads improves performance as does exploiting fast access
to local storage that a distributed organization affords.

tant benchmark in part because MapReduce implementations rely
on it to partition the results of the map stage. Our implementation
uses the same approach as TritonSort [25], and other work [24] de-
scribes how to implement a fast MapReduce on top of an efficient,
distributed sorting algorithm.

Our sort implementation operates on a single 102.4 GB file filled
with key-value pairs comprised of 10-byte keys and 90-byte values.
The file is partitioned across the eight QuickSAN SSDs in the sys-
tem. A second, temporary file is also partitioned across the SSDs.

Figure 8 illustrates the algorithm. In the first stage, each node
reads the values in the local slice the input file (a) and writes each
of them to the portion of the temporary file that is local to the node
on which that value will eventually reside (b). During the second
stage, each node reads its local data into memory, sorts it, and
writes the result back to the input file (c), yielding a completely
sorted file. We apply several optimizations described in [25], in-
cluding buffering writes to the temporary file to minimize the num-
ber of writes and using multiple, smaller partitions in the interme-
diate file (c) to allow the final sort to run in memory.

Figure 9 displays the average runtime of the partition and sort
stages of our sorting implementation. The data show the benefits of
the distributed storage topology and the gains that QuickSAN pro-
vides by eliminating software and block transport overheads. For
distributed QuickSAN, the userspace driver improves performance
1.3x compared to the OS interface and 2.9 X compared to iSCSI.
Although the distributed organization improves performance for all
three interfaces, QuickSAN-D sees the largest boost — 2.14 X ver-
sus 1.96x for iSCSI and 1.73 x for the QuickSAN-OS interface.

5.7 Energy efficiency

Since software runs on power-hungry processors, eliminating
software costs for 10 requests can significantly reduce the energy
that each 10 operation requires. Figure 10 plots the Joules per
4 kB IOP across the three distributed storage configurations. To
collect the numbers, we measured server power at the power sup-
ply. We assume a QuickSAN SSD implemented as a product would
consume 24 W (the maximum power consumed by a FusionlO io-
Drive [11]), and, conservatively, that power does not vary with load.
The network switch’s 150 W contribution does not vary signifi-
cantly with load. The trends for the centralized configurations are

700
650 —
600 —
550 —
500 —
450
400 —
350
300
250 —
200 —
150
100 == QuickSAN-Cent

50 — — QuickSAN-Dist
""" ISCSI
0 T T T \

0 400 800 1200 1600

Trans/Sec (Thousands)

Aggregate Watts

Figure 11: Application-level efficiency QuickSAN’s ability to ac-
cess remote data without host intervention allows for more ef-
ficient server consolidation. QuickSAN provides better overall
efficiency with any number of servers.

similar.

The graph illustrates the high cost of software-only implemen-
tations like iSCSI. The iSCSI configurations consume between 6.2
and 12.7x more energy per IOP than the QuickSAN-OS and be-
tween 13.2 and 27.4 X more than QuickSAN-D.

The data for writes and the mixed read/write workload also
demonstrates the energy cost of strong consistency guarantees.
For writes, accessing storage through the file system increases
(QuickSAN-OS) energy costs by 4 x relative to QuickSAN-D.

5.8 Workload consolidation

An advantage of centralized SANs over distributed storage sys-
tems that spread data across many hosts is that shutting down hosts
to save power does not make any data unreachable. Distributed
storage systems, however, provide fast access to local data, improv-
ing performance.

The QuickSAN SSD’s ability to service requests from remote
nodes, even if their host machine is powered down can achieve the
best of both worlds: Fast local access when the cluster is under
heavy load and global data visibility to support migration.

To explore this application space, we use four servers running
a persistent key-value store (MemCacheDB [6]). During normal,
fully-loaded operation each server runs a single instance of the
MemCacheDB. We use four machines running memslap [20] to
drive the key-value stores on the four machine under test.

As system load drops, we can migrate the key-value store to an-
other server. On their new host, they can access the same data and
transparently resume operation. We assume that a front-end steer-
ing mechanism redirects traffic as necessary using DNS. We can
perform the same migration in both the centralized QuickSAN and
centralized iSCSI configurations.

We measure the performance and power consumption of the sys-
tem under three different configurations: centralized iSCSI, cen-
tralized QuickSAN, and distributed QuickSAN.

Figure 11 plots performance versus total power consumption for
each system. The data show that the distributed QuickSAN reduces
the energy cost of each request by 58 and 42% relative to the iSCSI

_Read _Write

0.06
0.05 — -
0.04 -
0.03 —

0.02 —

Joules/IOP

0.01 -

0.00 — -

iscsl
QuickSAN-0OS
QuickSAN-D
iSCsI

_50% Read, 50% Write

QuickSAN-D
iSCSI
QuickSAN-D

QuickSAN-0OS
QuickSAN-OS

Figure 10: QuickSAN energy efficiency Depending on the software stack and block transport mechanism, the energy cost of storage
access varies. Removing the high software overheads of iSCSI account for most of the gains, but the userspace interface saves 76 %

of energy for writes compared to the kernel version.

and centralized QuickSAN implementations, respectively.

6. CONCLUSION

We have described QuickSAN a new SAN architecture designed
for solid state memories. QuickSAN integrates network function-
ality into a high-performance SSD to allow access to remote data
without operating system intervention. QuickSAN reduces soft-
ware and block transport overheads by between 82 and 95% com-
pared it Fibre Channel and iSCSI-based SAN implementations and
can improve bandwidth for small requests by up to 167 x. We also
demonstrated that QuickSAN can improve energy efficiency by
58% compared to a iISCSI-based SAN. QuickSAN illustrates the
ongoing need to redesign computer system architectures to make
the best use of fast non-volatile memories.

Acknowledgements

‘We would like to thank the ISCA program committee for their use-
ful feedback, Maxim Adelman for our useful discussion about Fi-
bre Channel performance, and Xilinx for their generous hardware
donations. This work was supported, in part, by a Google Faculty
Research Award.

7. REFERENCES

[1] M. Adelman. Principle Engineer, Violin Memory. Personal
communication.

[2] http://www.beecube.com/platform.html.

[3] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, and
0. Asad. Nfs over rdma. In Proceedings of the ACM
SIGCOMM workshop on Network-1/0 convergence:
experience, lessons, implications, NICELI 03, pages
196-208, New York, NY, USA, 2003. ACM.

[4] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta,
and S. Swanson. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In
Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO °43,
pages 385-395, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] A. M. Caulfield, T. 1. Mollov, L. Eisner, A. De, J. Coburn,
and S. Swanson. Providing Safe, User Space Access to Fast,
Solid State Disks. In Proceeding of the 17th international
conference on Architectural support for programming
languages and operating systems, New York, NY, USA,
March 2012. ACM.

[6] S. Chu. Memcachedb. http://memcachedb.org/.

[7] Cisco. Lossless 10 gigabit ethernet: The unifying

infrastructure for san and lan consolidation, 2009.

J. Coburn, T. Bunker, R. K. Gupta, and S. Swanson. From

ARIES to MARS: Reengineering Transaction Management

for Next-Generation, Solid-State Drives. Technical Report

CS2012-0981, Department of Computer Science &

Engineering, University of California, San Diego, June 2012.

http://csetechrep.ucsd.edu/Dienst/U1/2.0/Describe/ncstrl.

ucsd_cse/CS2012-0981.

[9] B. G. Fitch, A. Rayshubskiy, M. C. Pitman, T. J. C. Ward,
and R. S. Germain. Using the Active Storage Fabrics Model
to Address Petascale Storage Challenges. In Proceedings of
the 4th Annual Workshop on Petascale Data Storage, PDSW
’09, pages 47-54, New York, NY, USA, 2009. ACM.

[10] http://www.fusionio.com/.

[11] iodrive2 data sheet.

http://www.fusionio.com/data-sheets/iodrive2/.
[12] http://sourceware.org/cluster/gfs/.
[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29-43, 2003.

[14] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and
J. Zelenka. A cost-effective, high-bandwidth storage
architecture. In Proceedings of the eighth international
conference on Architectural support for programming
languages and operating systems, ASPLOS-VIII, pages
92-103, New York, NY, USA, 1998. ACM.

[15] D. Hildebrand and P. Honeyman. Exporting Storage Systems
in a Scalable Manner with pNFS. In Symposium on Mass
Storage Systems, pages 18-27, 2005.

[8

—

[16]
(17]
(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

S. Hopkins and B. Coile. Aoe (ata over ethernet), 2009.
http://support.coraid.com/documents/AoEr1 1.txt.
http://www.intel.com/content/www/us/en/solid-state-
drives/ssd-910-series-specification.html.

P. Koutoupis. The lustre distributed filesystem. Linux J.,
2011(210), Oct. 2011.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable dram alternative. In
ISCA °09: Proceedings of the 36th annual international
symposium on Computer architecture, pages 2—13, New
York, NY, USA, 2009. ACM.

Memcached. http://memcached.org/.
https://oss.oracle.com/projects/ocfs2/.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in ramcloud. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP °11, pages 29-41, New
York, NY, USA, 2011. ACM.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and security of
pcm-based main memory with start-gap wear leveling. In
MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
14-23, New York, NY, USA, 2009. ACM.

A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor,
and A. Vahdat. Themis: an i/o-efficient mapreduce. In
Proceedings of the Third ACM Symposium on Cloud
Computing, SOCC 12, pages 13:1-13:14, New York, NY,
USA, 2012. ACM.

A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha,

[26]

[27]

(28]

[29]

(30]

(31]
(32]

[33]

R. N. Mysore, A. Pucher, and A. Vahdat. Tritonsort: a
balanced large-scale sorting system. In Proceedings of the
8th USENIX conference on Networked systems design and
implementation, NSDI'11, pages 3-3, Berkeley, CA, USA,
2011. USENIX Association.

F. B. Schmuck and R. L. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In USENIX
Conference on File and Storage Technologies, pages
231-244, 2002.

Cxfs.
http://www.sgi.com/products/storage/software/cxfs.html.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In Symposium on Mass
Storage Systems, 2010.

S. R. Soltis, G. M. Erickson, K. W. Preslan, M. T. O’Keefe,
and T. M. Ruwart. The Global File System: A File System
for Shared Disk Storage. IEEE Transactions on Parallel and
Distributed Systems, 1997.

Violin memory 6000 series flash memory arrays.
http://www.violin-memory.com/products/6000-flash-
memory-array/.
http://www.symantec.com/cluster-file-system.

J. Yang, D. B. Minturn, and F. Hady. When poll is better than
interrupt. In in proceedings of the 10th USENIX Conference
on File and Storage Technologies, February 2012.

W. Yu, S. Liang, and D. K. Panda. High performance support
of parallel virtual file system (pvfs2) over quadrics. In
Proceedings of the 19th annual international conference on
Supercomputing, ICS 05, pages 323-331, New York, NY,
USA, 2005. ACM.

