
Supplementary material

March 11, 2009

1 The translation to parts

Recall from the main paper that the target semantic objects of the translation
we wish to define on programs are pairs (∆,Θ) of device templates ∆ (U∗,
i.e. sets of lists over variables and names, and sets Θ (CS of context-sensitive
substitutions. The target semantic objects of modules are partial functions f
of the form f(Ã) = (∆,Θ) mapping actual parameters to the target semantic
object of the module. Module definitions are then recorded in environments
which are partial finite functions Γ of the form Γ(p) = f . We denote by Γ{p′ 7→
f ′} the update of Γ with a new binding to p′, defined in the standard way.

The substitution of formal parameters ũ for actual parameters Ã in program
P is written P [Ã/ũ] and is defined inductively on programs along standard lines,
except that the evident multiset interpretation is assumed so that nested mul-
tisets are flattened to a single multiset following the substitution. For example,
the substitution [{s2a, s2b}/s2] applied to the complex species {s1, s2, s2} re-
sults in {s1, s2a, s2b, s2a, s2b} rather than {s1, {s2a, s2b}, {s2a, s2b}}. In the
corresponding concrete syntax, the substitution [s2a-s2b/s2] applied to the
complex species s1-s2-s2 is written s1-s2a-s2b-s2a-s2b.

We assume a denotational function of the form JKKθ = b for evaluating
numerical constraints K, relative to a given substitution θ, to a boolean value
b ∈ true/false. The full denotational semantics of GEC is then given by a
partial function of the form JP KΓ = (∆,Θ), which maps a program P to a set
∆ of device templates and a set Θ of substitutions. It is defined inductively on
programs as follows.

1. Ju : t(Qt)KΓ
∆= ({(u)},Θ) where

Θ ∆= {(θi, ρi, σi,FS(Qi) \ σi) |
uθi : t(Qi) ∈ Kb, Q

tθi ⊆ Qi,
Dom(θi) = FV(u : t(Qt)),
ρi = Doms(θi), σi = FS(Qtθi)}.

2. J0KΓ
∆= (∅, (∅, ∅, ∅, ∅)).

3. Jp(ũ) {P1} ; P2KΓ
∆= JP2KΓ{p7→f} where

f(Ã) ∆= JP1{Ã/ũ}KΓ.

4. Jp(Ã)KΓ
∆= f(Ã) where f

∆= Γ(p).

1

5. JP | CKΓ
∆= (∆,Θ1 6 Θ2) where

(∆,Θ1)
∆= JP KΓ and Θ2 = JCK.

6. JP1 ‖ P2KΓ
∆= (∆1 ∪∆2,Θ1 6 Θ2) where

(∆1,Θ1)
∆= JP1KΓ and (∆2,Θ2) = JP2KΓ.

7. JP1 ; P2KΓ
∆= ({δ1i

δ2j
}I×J ,Θ1 6 Θ2) where

({δ1i}I ,Θ1)
∆= JP1KΓ and ({δ2j}J ,Θ2) = JP2KΓ.

8. Jc[P]KΓ
∆= (∆, {(θ, ∅, ∅, ∅) | (θ, ρ, σ, τ) ∈ Θ}) where

(∆,Θ) ∆= JP KΓ.

9. Jnew x.P KΓ
∆= JP [x′/x]KΓ for some fresh x′.

10. JRK ∆= {(θi,Doms(θi),FS(Rθi), ∅) |
Rθi ∈ Kr,Dom(θi) = FV(R)}.

11. JT K ∆= {(θi,Doms(θi),FS(Tθi), ∅) |
T ↓θi ∈ Kr,Dom(θi) = FV(T)}.

12. JKK ∆= {(θi,Doms(θi),FS(Tθi), ∅) |
JKKθi

= true,Dom(θi) = FV(K)}.

13. JC1 | C2K
∆= (Θ1 6 Θ2) where

Θ1
∆= JC1K and Θ2 = JC2K.

2 The translation to reactions

The main paper outlines how specific part types can be translated to reactions,
and how the rates of these reactions can be determined by examining the asso-
ciated rate information in the parts database. While this process is simple in
principle, it is complicated by modularity and the necessity to give a composi-
tional definition. We illustrate this with the following small example:

prom<con(RT)>; rbs<rate(R)>; pcr<codes(p, RD)>

Each of the parts is translated to a corresponding set of reactions, as shown
in Table 1. The actual species used in the reactions will often depend on the
context in which the parts are placed. Thus, the reactions can take some species
as inputs from neighbouring parts, and produce other species as outputs for
these parts. As a result, the reactions generated from each part are associated
with corresponding input and output species, as shown in the table. The parts
are composed from left to right, and the species names in the corresponding
reactions are resolved during the composition.

1. Evaluating the promoter gives rise to reactions g ->{RT} m and m ->{rdm},
where g and m are unique species names for the gene and the resulting
mRNA, respectively. The rate rdm used for mRNA degradation is as-
sumed to be defined globally and may be adjusted manually for individual
cases if necessary. The mRNA can be used by neighbouring parts in the
sequence.

2

Table 1: Translation from part sequences to reactions for a simple GEC program.
The table also shows the inputs and outputs associated to the reactions. A
globally defined mRNA degradation rate rdm is assumed.

Part Sequence Input Output Reactions
1 prom<con(RT)> m g ->{RT} g + m

m ->{rdm}
2 rbs<rate(R)> m’, p’ m’ ->{R} m’ + p’
3 pcr<codes(p, RD)> p p ->{RD}
4 prom<con(RT)>; p’ g ->{RT} g + m

rbs<rate(R)> m ->{R} m + p’
5 prom<con(RT)>; g ->{RT} g + m

rbs<rate(R)>; m ->{R} m + p
pcr<codes(p, RD)> p ->{RD}

2. Evaluating the ribosome binding site gives rise to a reaction of the form
m’ ->{RT} p’ where m’ and p’ are species names for the mRNA and
the resulting protein, respectively. However, since neither m’ nor p’ are
known until the ribosome binding site is placed between two parts, the
reaction is effectively a function of m’ and p’. The mRNA m’ is obtained
from a preceding promoter region, while the protein p’ is obtained from
a subsequent protein coding region.

3. Evaluating the protein coding region immediately gives rise to a degra-
dation reaction. The evaluation also provides the species name p for the
protein, which can be used by neighbouring parts.

4. The left-most sequential composition can now be evaluated by using the
mRNA m obtained from the promoter as an input to the ribosome binding
site. The composition gives rise to two reactions for the gene and mRNA,
respectively. However, the protein p’ produced by the gene is still not
known, and constitutes an input to the reactions.

5. The right-most sequential composition can now be evaluated by using
the protein p obtained from the protein coding region as an input to the
sequence of promoter and ribosome binding site. This gives rise to three
reactions for the gene, mRNA and protein, respectively. Now all three
species names have been resolved by the composition of the parts and
their corresponding reactions.

The translation is complicated further in the presence of compartments and
transport, since degradation reactions may need to be placed in multiple com-
partments that do not necessarily express the given protein. To address this,
the translation function returns separately an LBS program and a set of de-
duced degradation reactions. After translation, these degradation reactions can
be placed in the relevant compartments and composed with the LBS program.

Simulation of GEC models is achieved through a translation to models in
a subset of LBS. For our purpose, we define an LBS model L to consist of

3

reactions and transport reactions in parallel, taking place inside some hierarchy
of compartments. Formally:

L ::= R
... T

... 0
... L1|L2

... c[L]

Given a set L of LBS models, we let (par L) denote their parallel composition;
this operator is commutative, so the order is insignificant. With the above
motivation in mind, the translation function takes the following form:

JP KΓ = (L,D,M,Pr, F,G, H)

where

• L is an LBS program.

• D is a set of degradation reactions.

• M ⊂ U is a set of mRNA names.

• Pr ⊂ U is a set of protein names.

• F is a function of the form f(m, p) = R mapping pairs (m, p) ∈ U × U of
mRNA and protein names to a reaction.

• G is a function of the form g(m) = R mapping an mRNA species name
m ∈ U to a reaction.

• H is a function of the form h(p) = R mapping a protein name p ∈ U to a
reaction.

The translation is defined inductively on GEC programs as follows, where
we again assume a global mRNA degradation rate rdm.

1. Ju : prom(Q)KΓ
∆= (par{reacs(q) | q ∈ Q} | m →rdm, {m}, ∅, ∅, ∅, ∅, ∅)

where

• reacs(con(rt)) ∆= g →rt g + m.

• reacs(pos(S, rb, rub, rtb)) ∆= g + S →rb g-S | g-S →rub g + S |
g-S →rtb g-S + m.

• reacs(neg(S, rb, rub, rtb)) ∆= g + S →rb g-S | g-S →rub g + S |
g-S →rtb g-S + m.

with g and m fresh.

2. Ju : rbs({rate(r)})KΓ
∆= (0, ∅, ∅, ∅, {f}, ∅, ∅) where

f(m, p) ∆= m →r p.

3. Ju : pcr({codes(p, r)})KΓ
∆= (0, {p →r}, ∅, {p}, ∅, ∅, ∅).

4. Ju : terKΓ
∆= (0, ∅, ∅, ∅, ∅, ∅, ∅).

5. J0KΓ
∆= (0, ∅, ∅, ∅, ∅, ∅, ∅).

4

6. Jp(ũ) {P1} ; P2KΓ
∆= JP2KΓ{p7→f} where

f(Ã) ∆= JP1{Ã/ũ}K.

7. Jp(Ã)KΓ
∆= f(Ã) where f

∆= Γ(p).

8. JP | CKΓ
∆= (L1 | L2, D,M,Pr, F,G,H) where

(L1, D,M,Pr, F,G,H) ∆= JP KΓ and
L2

∆= JCK.

9. JP1 ‖ P2KΓ
∆= (L1 | L2, D1 ∪ D2,M1 ∪ M2, P r1 ∪ Pr2, F1 ∪ F2, G1 ∪

G2,H1 ∪H2) where
(L1, D1,M1, P r1, F1, G1,H1)

∆= JP1KΓ and
(L2, D2,M2, P r2, F2, G2,H2)

∆= JP2KΓ.

10. JP1 ; P2KΓ
∆= (L1 | L2 | L,D1 ∪D2,M, Pr, F ′

1 ∪ F ′
2, G,H) where

(L1, D1,M1, P r1, F1, G1,H1)
∆= JP1KΓ,

(L2, D2,M2, P r2, F2, G2,H2)
∆= JP2KΓ,

L
∆= par{g(m) | g ∈ G2,m ∈ M1} ∪ par{h(p) | h ∈ H1, p ∈ Pr2},

M
∆=

{
M1 if M2 = ∅
M2 otherwise

Pr
∆=

{
Pr2 if Pr1 = ∅
Pr1 otherwise

(F ′
1,H

′
1)

∆=

{
(F1,H1) if Pr2 = ∅
(∅, ∅) otherwise

(F ′
2, G

′
2)

∆=

{
(F2, G2) if M1 = ∅
(∅, ∅) otherwise

G
∆= {g | g(m) ∆= f(m, p), f ∈ F1, p ∈ Pr2} ∪G1 ∪G′

2,
H

∆= {h | h(p) ∆= f(m, p), f ∈ F2,m ∈ M1} ∪H2 ∪H ′
1.

11. Jc[P]KΓ
∆= (c[L], D, M, Pr, F,G,H) where

(L,D,M,Pr, F,G, H) ∆= JP1KΓ.

12. Jnew x.P KΓ
∆= JP [x′/x]KΓ for some fresh x′.

13. JRK ∆= R.

14. JT K ∆= T .

15. JKK ∆= 0.

16. JC1 | C2K
∆= JC1K | JC2K.

Note that the resulting LBS program may generally contain variables, and
that each substitution arising from the translation to parts can be applied to
the LBS program in order to obtain an LBS program for each device.

5

3 The compilation process by example

This section illustrates the compilation process for the repressilator and predator-
prey models through examples.

3.1 The repressilator

Compilation of a GEC program yields three structures: A device template, an
LBS program, and a set of substitutions. We consider each in turn for the basic
repressilator program shown in the main paper.

module tl(o) { rbs; pcr<prot(o)>; ter };
module gateNeg(i, o) { prom<neg(i)>; tl(o) };
gateNeg(C, A); gateNeg(A, B); gateNeg(B, C)

The device template is computed as defined by the translation to parts.
Conceptually, however, one can think of the device template as being com-
puted by in-lining module invocations, introducing fresh variables where part
identifiers have been omitted, and disregarding everything but the part iden-
tifiers/variables and their sequential/parallel compositions. The in-lining and
introduction of variables yields the following “intermediate” program for the
repressilator:

_X75:prom<neg(C)>; _X81:rbs; _X86:pcr<codes(A)>; _X90:ter;
_X101:prom<neg(A)>; _X107:rbs; _X112:pcr<codes(B)>; _X116:ter;
_X49:prom<neg(B)>; _X55:rbs; _X60:pcr<codes(C)>; _X64:ter

Disregarding everything but the part variables then results in the following
device template, consisting of a single list with 12 parts (four for each gate):

[_X101,_X107,_X112,_X116,_X49,_X55,_X60,_X64,_X75,_X81,_X86,_X90]

If the GEC program had included parallel compositions as in the predator-prey
example, the device template would essentially consists of a list for each parallel
program.

The second structure resulting from compilation is an LBS program repre-
senting a general set of reactions. It is computed from the translation defined
formally in the previous section:

initpop g51 1 |
mrna52 ->{0.001} |
g51 ->{_X47} g51 + mrna52 |
g51 + C ->{_X44} g51-C |
g51-C ->{_X45} g51 + C |
g51-C ->{_X46} g51-C + mrna52 |
mrna52 ->{_X54} mrna52 + A |

initpop g77 1 |
mrna78 ->{0.001} |
g77 ->{_X73} g77 + mrna78 |
g77 + A ->{_X70} g77-A |
g77-A ->{_X71} g77 + A |

6

g77-A ->{_X72} g77-A + mrna78 |
mrna78 ->{_X80} mrna78 + B |

initpop g103 1 |
mrna104 ->{0.001} |
g103 ->{_X99} g103 + mrna104 |
g103 + B ->{_X96} g103-B |
g103-B ->{_X97} g103 + B |
g103-B ->{_X98} g103-B + mrna104 |
mrna104 ->{_X106} mrna104 + C |

A ->{_X57} |
B ->{_X83} |
C ->{_X109}

The initpop expression featuring in the LBS program introduces initial popula-
tions of 1 for the three genes (this aspect is omitted from the formal definition of
the translation to reactions). Recall that e.g. the property neg(A) is a derived
form and is here replaced automatically by neg(A, X70, X71, X72) before
computing reactions; hence the use of these variables in the LBS program. Note
also that reactions for constitutive expression of genes are included in the LBS
program even though the con property of promoters is omitted in the GEC
program; con properties are automatically inserted by the compiler if absent.

The third and final structure resulting from the compilation is a set of sub-
stitutions that can be applied to the device template and the LBS program to
obtain a final set of devices. In practice, these substitutions are obtained by
generating and solving a Prolog goal according to the principles set forth in the
formal definition of the translation to parts. The generated Prolog goal for the
repressilator example is shown in the following.

_X1=[],
prom(_X49,con([_X47])),prom(_X49,neg([C],[_X44],[_X45],[_X46])),
exclusiveNames(prom,
_X49,[[C]],_X50),
rbs(_X55,rate([_X54])),exclusiveNames(rbs, _X55,[],_X56),
pcr(_X60,codes([A],[_X57])),exclusiveNames(pcr, _X60,[[A]],_X61),
ter(_X64,_),exclusiveNames(ter, _X64,[],_X65),
noDuplicates([A]),
namesDisjoint([[A]], _X61, [], _X65),union(_X61,_X65,_X66),
namesDisjoint([], _X56, [[A]], _X66),union(_X56,_X66,_X67),
noDuplicates([A,C]),
namesDisjoint([[C]], _X50, [[A]], _X67),union(_X50,_X67,_X68),

prom(_X75,con([_X73])),prom(_X75,neg([A],[_X70],[_X71],[_X72])),
exclusiveNames(prom, _X75,[[A]],_X76),
rbs(_X81,rate([_X80])),
exclusiveNames(rbs, _X81,[],_X82),
pcr(_X86,codes([B],[_X83])),
exclusiveNames(pcr, _X86,[[B]],_X87),ter(_X90,_),
exclusiveNames(ter, _X90,[],_X91),
noDuplicates([B]),

7

namesDisjoint([[B]], _X87, [], _X91),union(_X87,_X91,_X92),
namesDisjoint([], _X82, [[B]], _X92),union(_X82,_X92,_X93),
noDuplicates([A,B]),
namesDisjoint([[A]], _X76, [[B]], _X93),union(_X76,_X93,_X94),

prom(_X101,con([_X99])),prom(_X101,neg([B],[_X96],[_X97],[_X98])),
exclusiveNames(prom, _X101,[[B]],_X102),
rbs(_X107,rate([_X106])),exclusiveNames(rbs, _X107,[],_X108),
pcr(_X112,codes([C],[_X109])),exclusiveNames(pcr, _X112,[[C]],_X113),
ter(_X116,_),exclusiveNames(ter, _X116,[],_X117),
noDuplicates([C]),
namesDisjoint([[C]], _X113, [], _X117),union(_X113,_X117,_X118),
namesDisjoint([], _X108, [[C]], _X118),union(_X108,_X118,_X119),
noDuplicates([B,C]),
namesDisjoint([[B]], _X102, [[C]], _X119),union(_X102,_X119,_X120),
noDuplicates([A,B,C]),
namesDisjoint([[A],[B]], _X94, [[B],[C]],_X120),union(_X94,_X120,_X122),
namesDisjoint([[A],[C]], _X68, [[A],[B],[C]],_X122),union(_X68,_X122,_X123),
namesDisjoint([], _X1, [[A],[B],[C]], _X123),union(_X1,_X123,_X124).

In outline, the Prolog database contains predicates prom(ID, P), rbs(ID, P),
pcr(ID, P) and ter(ID, P) for representing each property P of a part with
name ID. If a part has no properties, as is the case for the single ter part,
it is represented by a single clause with a distinguished “don’t care” property.
The union predicate is standard, and the remaining three predicates used in
the above code are defined informally as follows:

• The exclusiveNames(T, ID, Names, ExNames) predicate holds true if
ExNames is a list of exclusive names for the part identified by the type
T and name ID, where Names are the names mentioned explicitly in the
properties of the part. This is used for implementing the first case of the
semantics defined in the main paper.

• The namesDisjoint(N1, EN1, N2, EN2) predicate is used to enforce cross-
talk avoidance in parallel and sequential compositions. It holds true if N1,
representing the names occurring on the left hand side of a composition
operator, is disjoint from EN2, representing the exclusive names of the
program occurring on the right hand side of a composition operator, and
visa-verse for EN1 and N2.

• The noDuplicates(L) predicate is used to enforce injectivity over species
names of the resulting substitutions. It holds true if there are no duplicates
in the list L.

Executing the Prolog goal yields 24 solutions. One of these is given by the
following pairs:

(_X101,r0040), (_X107,b0034), (_X112,c0080), (_X116,b0015),
(_X49,i0500), (_X55,b0034), (_X60,c0051), (_X64,b0015),
(_X75,r0051), (_X81,b0034), (_X86,c0040), (_X90,b0015),

(A,clR),(B,tetR),(C,araC),

8

(_X106,0.1), (_X109,0.001), (_X44,1),
(_X45,1e-6), (_X46,0.00005), (_X47,0.1),
(_X54,0.1), (_X57,0.001), (_X70,1),
(_X71,0.5), (_X72,0.00005), (_X73,0.12),
(_X80,0.1), (_X83,0.001), (_X96,1),
(_X97,0.5), (_X98,0.00005), (_X99,0.09)

Applying this solution to the device template yields a concrete device:

[r0040, b0034, c0080, b0015, i0500, b0034, c0051, b0015,
r0051, b0034, c0040, b0015]

and a concrete LBS program:

rate RMRNADeg = 0.001;

initpop g51 1 |
mrna52 ->{RMRNADeg} |
g51 ->{0.1} g51 + mrna52 |
g51 + araC ->{1} g51-araC |
g51-araC ->{1e-6} g51 + araC |
g51-araC ->{0.00005} g51-araC + mrna52 |
mrna52 ->{0.1} mrna52 + clR |

initpop g77 1 |
mrna78 ->{RMRNADeg} |
g77 ->{0.12} g77 + mrna78 |
g77 + clR ->{1} g77-clR |
g77-clR ->{0.5} g77 + clR |
g77-clR ->{0.00005} g77-clR + mrna78 |
mrna78 ->{0.1} mrna78 + tetR |

initpop g103 1 |
mrna104 ->{RMRNADeg} |
g103 ->{0.09} g103 + mrna104 |
g103 + tetR ->{1} g103-tetR |
g103-tetR ->{0.5} g103 + tetR |
g103-tetR ->{0.00005} g103-tetR + mrna104 |
mrna104 ->{0.1} mrna104 + araC |

araC ->{0.001} |
clR ->{0.001} |
tetR ->{0.001}

4 The predator-prey system

As for the repressilator, the compilation of the predator-prey program results in
a set of device templates, an LBS program and a set of substitutions obtained
by executing a Prolog goal. Here we list only the generated Prolog goal together
with a specific instance of the LBS program.

9

_X1=[],
prom(r0051,con([_X44])), exclusiveNames(prom, r0051,[],_X46),
rbs(_X51,rate([_X50])),exclusiveNames(rbs, _X51,[],_X52),
pcr(_X56,codes([Q2b],[_X53])),exclusiveNames(pcr, _X56,[[Q2b]],_X57),
rbs(_X60,rate([_X59])),exclusiveNames(rbs, _X60,[],_X61),
pcr(_X65,codes([Q1a],[_X62])),exclusiveNames(pcr, _X65,[[Q1a]],_X66),
ter(_X69,_),exclusiveNames(ter, _X69,[],_X70),
noDuplicates([Q1a]),
namesDisjoint([[Q1a]], _X66, [], _X70),union(_X66,_X70,_X71),
namesDisjoint([], _X61, [[Q1a]], _X71),union(_X61,_X71,_X72),
noDuplicates([Q1a,Q2b]),
namesDisjoint([[Q2b]], _X57, [[Q1a]], _X72),union(_X57,_X72,_X73),
namesDisjoint([], _X52, [[Q2b],[Q1a]], _X73),union(_X52,_X73,_X74),
namesDisjoint([], _X46, [[Q2b],[Q1a]], _X74),union(_X46,_X74,_X75),
reac([[Q1a]],[],[[H1]], [_X78]),
noDuplicates([]),
namesDisjoint([], _X1, [], _X1),union(_X1,_X1,_X79),
noDuplicates([H1,Q1a]),
namesDisjoint([[Q1a],[H1]], _X1, [], _X79),union(_X1,_X79,_X80),
noDuplicates([H1,Q1a,Q2b]),
namesDisjoint([[Q2b],[Q1a]], _X75, [[Q1a],[H1]], _X80),union(_X75,_X80,_X81),
reac([],[[Q2b],[H2]],[[Q2b,H2]], [_X82]),
reac([],[[Q2b,H2]],[[Q2b],[H2]], [_X83]),
noDuplicates([H2,Q2b]),
namesDisjoint([[Q2b],[H2],[Q2b,H2]], _X1, [[Q2b,H2],[Q2b],[H2]], _X1),
union(_X1,_X1,_X84),
prom(_X90,con([_X88])),prom(_X90,pos([Q2b,H2],[_X85],[_X86],[_X87])),
exclusiveNames(prom, _X90,[[Q2b,H2]],_X91),
rbs(_X96,rate([_X95])),exclusiveNames(rbs, _X96,[],_X97),
pcr(_X101,codes([A],[_X98])),exclusiveNames(pcr, _X101,[[A]],_X102),
ter(_X105,_),exclusiveNames(ter, _X105,[],_X106),
noDuplicates([A]),
namesDisjoint([[A]], _X102, [], _X106),union(_X102,_X106,_X107),
namesDisjoint([], _X97, [[A]], _X107),union(_X97,_X107,_X108),
noDuplicates([A,H2,Q2b]),
namesDisjoint([[Q2b,H2]], _X91, [[A]], _X108),union(_X91,_X108,_X109),
namesDisjoint([[Q2b],[H2],[Q2b,H2]], _X84, [[Q2b,H2],[A]], _X109),
union(_X84,_X109,_X111),
prom(r0051,con([_X112])),exclusiveNames(prom, r0051,[],_X114),
rbs(_X119,rate([_X118])),exclusiveNames(rbs, _X119,[],_X120),
pcr(_X124,codes([ccdB],[_X121])),exclusiveNames(pcr, _X124,[[ccdB]],_X125),
ter(_X128,_),exclusiveNames(ter, _X128,[],_X129),
noDuplicates([ccdB]),
namesDisjoint([[ccdB]], _X125, [], _X129),union(_X125,_X129,_X130),
namesDisjoint([], _X120, [[ccdB]], _X130),union(_X120,_X130,_X131),
namesDisjoint([], _X114, [[ccdB]], _X131),union(_X114,_X131,_X132),
reac([],[[A],[ccdB]],[[A]], [_X134]),
noDuplicates([A,ccdB]),
namesDisjoint([[A],[ccdB],[A]], _X1, [], _X1),union(_X1,_X1,_X135),
namesDisjoint([[ccdB]], _X132, [[A],[ccdB],[A]], _X135),union(_X132,_X135,_X136),

10

noDuplicates([A,H2,Q2b,ccdB]),
namesDisjoint([[Q2b],[H2],[Q2b,H2],[A]], _X111, [[ccdB],[A]], _X136),
union(_X111,_X136,_X137),
noDuplicates([A,H1,H2,Q1a,Q2b,ccdB]),
namesDisjoint([[Q2b],[Q1a],[H1]], _X81, [[Q2b],[H2],[Q2b,H2],[A],[ccdB]], _X137),
union(_X81,_X137,_X138),_X139=[],
prom(_X145,con([_X143])),prom(_X145,pos([H1,Q1b],[_X140],[_X141],[_X142])),
exclusiveNames(prom, _X145,[[H1,Q1b]],_X146),
rbs(_X151,rate([_X150])),exclusiveNames(rbs, _X151,[],_X152),
pcr(_X156,codes([ccdB],[_X153])),exclusiveNames(pcr, _X156,[[ccdB]],_X157),
ter(_X160,_),exclusiveNames(ter, _X160,[],_X161),
namesDisjoint([[ccdB]], _X157, [], _X161),union(_X157,_X161,_X162),
namesDisjoint([], _X152, [[ccdB]], _X162),union(_X152,_X162,_X163),
noDuplicates([H1,Q1b,ccdB]),
namesDisjoint([[H1,Q1b]], _X146, [[ccdB]], _X163),union(_X146,_X163,_X164),
reac([],[[H1],[Q1b]],[[H1,Q1b]], [_X166]),
reac([],[[H1,Q1b]],[[H1],[Q1b]], [_X167]),
noDuplicates([H1,Q1b]),
namesDisjoint([[H1],[Q1b],[H1,Q1b]], _X1, [[H1,Q1b],[H1],[Q1b]], _X1),
union(_X1,_X1,_X168),
namesDisjoint([[H1,Q1b],[ccdB]], _X164, [[H1],[Q1b],[H1,Q1b]], _X168),
union(_X164,_X168,_X169),
reac([[Q2a]],[],[[H2]], [_X170]),
prom(r0051,con([_X171])),exclusiveNames(prom, r0051,[],_X173),
rbs(_X178,rate([_X177])),exclusiveNames(rbs, _X178,[],_X179),
pcr(_X183,codes([Q2a],[_X180])),exclusiveNames(pcr, _X183,[[Q2a]],_X184),
rbs(_X187,rate([_X186])),exclusiveNames(rbs, _X187,[],_X188),
pcr(_X192,codes([Q1b],[_X189])),exclusiveNames(pcr, _X192,[[Q1b]],_X193),
ter(_X196,_),exclusiveNames(ter, _X196,[],_X197),
noDuplicates([Q1b]),
namesDisjoint([[Q1b]], _X193, [], _X197),union(_X193,_X197,_X198),
namesDisjoint([], _X188, [[Q1b]], _X198),union(_X188,_X198,_X199),
noDuplicates([Q1b,Q2a]),
namesDisjoint([[Q2a]], _X184, [[Q1b]], _X199),union(_X184,_X199,_X200),
namesDisjoint([], _X179, [[Q2a],[Q1b]], _X200),union(_X179,_X200,_X201),
namesDisjoint([], _X173, [[Q2a],[Q1b]], _X201),union(_X173,_X201,_X202),
namesDisjoint([], _X1, [[Q2a],[Q1b]], _X202),union(_X1,_X202,_X205),
namesDisjoint([], _X1, [[Q2a],[Q1b]], _X205),union(_X1,_X205,_X206),
namesDisjoint([], _X1, [[Q2a],[Q1b]], _X206),union(_X1,_X206,_X207),
noDuplicates([H2,Q1b,Q2a]),
namesDisjoint([[Q2a],[H2]], _X1, [[Q2a],[Q1b]], _X207),union(_X1,_X207,_X208),
noDuplicates([H1,H2,Q1b,Q2a,ccdB]),
namesDisjoint([[H1,Q1b],[ccdB],[H1],[Q1b]], _X169, [[Q2a],[H2],[Q1b]], _X208),
union(_X169,_X208,_X209),_X210=[],
namesDisjoint([], _X139, [], _X210),union(_X139,_X210,_X211),
transport(compartment([H1]), [H1],[_X212]),
transport([H1], compartment([H1]),[_X213]),
transport(compartment([H2]), [H2],[_X214]),
transport([H2], compartment([H2]),[_X215]),
union(_X1,_X1,_X216),_X217=[],union(_X1,_X1,_X218),_X219=[],

11

namesDisjoint([], _X217, [], _X219),union(_X217,_X219,_X220),
noDuplicates([H2]),
namesDisjoint([[H2],[H2]], _X1, [], _X220),union(_X1,_X220,_X221),
namesDisjoint([[H2],[H2]], _X1, [[H2]], _X221),union(_X1,_X221,_X222),
noDuplicates([H1,H2]),
namesDisjoint([[H1],[H1]], _X1, [[H2]], _X222),union(_X1,_X222,_X223),
namesDisjoint([[H1],[H1]], _X1, [[H1],[H2]], _X223),union(_X1,_X223,_X224),
namesDisjoint([], _X211, [[H1],[H2]], _X224),union(_X211,_X224,_X225),
namesDisjoint([], _X1, [[H1],[H2]], _X225),union(_X1,_X225,_X226)])

In addition to the predicates used in the Prolog goal generated for the repressila-
tor program, the above goal also uses predicates for reactions and for transport
with the evident interpretation. Invoking the goal in Prolog results in four sub-
stitutions. The resulting LBS program with one of these substitutions applied
is shown below.

rate RMRNADeg = 0.001;

c1 [
initpop g252 1 |
mrna253 ->{RMRNADeg} |
g252 ->{0.12} g252 + mrna253 |
mrna253 ->{0.1} mrna253 + luxR |
mrna253 ->{0.1} mrna253 + lasI |
lasI ~ ->{1} m3OC12HSL |
m3OC12HSL ->{10} |
m3OC6HSL ->{10} |
luxR + m3OC6HSL ->{0.5} luxR-m3OC6HSL |
luxR-m3OC6HSL ->{1} luxR + m3OC6HSL |
initpop g297 1 |
mrna298 ->{RMRNADeg} |
g297 ->{1e-6} g297 + mrna298 |
g297 + luxR-m3OC6HSL ->{1} g297-luxR-m3OC6HSL |
g297-luxR-m3OC6HSL ->{0.8} g297 + luxR-m3OC6HSL |
g297-luxR-m3OC6HSL ->{0.1} g297-luxR-m3OC6HSL + mrna298 |
mrna298 ->{0.1} mrna298 + ccdA2 |
initpop g320 1 |
mrna321 ->{RMRNADeg} |
g320 ->{0.12} g320 + mrna321 |
mrna321 ->{0.1} mrna321 + ccdB |
ccdA2 ~ ccdB ->{0.00001} |
ccdB + lasI ->{10} ccdB |
ccdB + luxR ->{10} ccdB

] |

c2 [
initpop g353 1 |
mrna354 ->{RMRNADeg} |
g353 ->{1e-6} g353 + mrna354 |
g353 + m3OC12HSL-lasR ->{1} g353-m3OC12HSL-lasR |
g353-m3OC12HSL-lasR ->{0.8} g353 + m3OC12HSL-lasR |

12

g353-m3OC12HSL-lasR ->{0.1} g353-m3OC12HSL-lasR + mrna354 |
mrna354 ->{0.1} mrna354 + ccdB |
m3OC12HSL + lasR ->{0.5} m3OC12HSL-lasR |
m3OC12HSL-lasR ->{1} m3OC12HSL + lasR |
luxI ~ ->{1} m3OC6HSL |
m3OC6HSL ->{10} |
m3OC12HSL ->{10} |
ccdB + luxI ->{10} ccdB |
ccdB + lasR ->{10} ccdB |
initpop g380 1 |
mrna381 ->{RMRNADeg} |
g380 ->{0.12} g380 + mrna381 |
mrna381 ->{0.1} mrna381 + luxI |
mrna381 ->{0.1} mrna381 + lasR

] |

c1[m3OC12HSL] ->{0.5} m3OC12HSL |
m3OC12HSL->{0.5} c2[m3OC12HSL] |
c2[m3OC6HSL] ->{0.5} m3OC6HSL |
m3OC6HSL->{0.5} c1[m3OC6HSL] |

c1 [
m3OC12HSL ->{1} |
m3OC6HSL ->{1}

] |

c2 [
m3OC12HSL ->{1} |
m3OC6HSL ->{1}

] |

c1 [
ccdA2 ->{10.0} |
ccdB ->{0.005} |
lasI ->{0.001} |
lasR ->{0.001} |
luxI ->{0.001} |
luxR ->{0.001}

] |

c2 [
ccdA2 ->{10.0} |
ccdB ->{0.005} |
lasI ->{0.001} |
lasR ->{0.001} |
luxI ->{0.001} |
luxR ->{0.001}

]

13

Table 2: A type system for a subset of GEC.

TBrick
(t : u(Qt)) : {(t)}

TNil
0 : ∅

TCons
P : τ

P | C : τ

TPar
P : τ P ′ : τ ′

P ‖ P ′ : τ ∪ τ ′

TSeq
P : {t̃i}I P ′ : {t̃′j}J {t̃it̃′j}I×J (GCLs

P ;P ′ : {t̃it̃′j}I×J

TComp
P : τ

c[P] : τ

TNew
P : τ

new x(P) : τ

5 Towards a type system for GEC

A type system defines which syntactically well-formed programs are also seman-
tically meaningful. We build on the work of the GenoCad tool which employs
a context-free grammar that generates biologically meaningful strings of part
identifiers. For the purpose of our type system, we assume a modified Geno-
Cad language, called GCL, with strings over part types rather than explicit part
names. This can be accomplished by pruning the grammar for GenoCad ap-
propriately. We observe however that “incomplete” devices, such as a promoter
followed by a ribosome binding site, are not allowed in GCL. But we do want to
allow incomplete devices in GEC since these can be used to naturally compose
complete GenoCad devices as in the definition of gate modules in the Results
section. We therefore let a program type τ be a set of substrings t̃ of strings
in GCL, where each t̃ represents a single list of parts in a device. More for-
mally, we let GCLs ∆= {s | ∃s′ ∈ GCL s.t. s is a substring of s′} and we let
t̃ ∈ τ (GCLs. Membership of the substring closure GCLs can be decided by
e.g. the algorithm presented in [1].

A first step towards a type system for GEC without modules is then shown in
Table 2. The addition of modules to the type system requires type environments
in order to keep track of the types of defined modules, but this is a standard
and easy extension. A more complete type system would additionally ensure
that e.g. complex species are not used where a part identifier or rate constant
is expected, and that there are no inconsistencies in the use of compartment
hierarchies.

14

6 Proofs

In the following proofs we relax our definition of contexts to be any term with
zero or more holes (and not exactly one hole, as in the paper). We say that
Θ = ({(θi, ρi, σi, τi)}) is Ns-injective iff Doms(θi) = ρi; for then θi ↓ Doms(θi)
is injective per definition of context-sensitive substitutions. Here, and in the
proofs to follow, we implicitly assume that indices such as i are universally
quantified over an appropriate domain that will be apparent from the context.

Lemma 1. If Θ1 and Θ2 are Ns-injective, then also Θ1 6 Θ2 is Ns-injective.

Proof. let Θ1 = {(θi, ρi, σi, τi)} and Θ2 = {(θ′j , ρ′j , σ′j , τ ′j)}. Take any θi ∪ θ′j
in Θ1 6 Θ2. Per assumption, Doms(θi) = ρi and Doms(θ′j) = ρ′j . Hence
Doms(θi ∪ θ′j) = ρi ∪ ρ′j , so Θ1 6 Θ2 is Ns-injective.

Lemma 2. Let C be a constraint. Then JCK is Ns-injective.

Proof. By induction on C. For the three base cases (R, T and K), ρi =
Doms(θi) per definition. For the inductive steps, we invoke the IH to get
that JC1K and JC2K are Ns-injective. It then follows from Lemma 1 that also
JC1K 6 JC2K is Ns-injective.

Lemma 3. For any compartment-free program P and environment Γ for which
Γ(p)(Ã) is Ns-injective for all p ∈ Dom(Γ) ∩ FP(P) and all matching Ã, also
JP KΓ is Ns-injective.

Proof. By induction on P . Selected cases:

• P = u : t(Qt). Then ρ = Doms(θ) per definition.

• P = 0. Holds vacuously since Doms(θ) = ρ = ∅.

• P = p(ũ) {P1} ; P2. Let f(Ã) ∆= JP1{Ã/ũ}KΓ. By the IH, f(Ã) is
Ns-injective. Per assumption Γ(p)(Ã) is Ns-injective for all p ∈ Dom(Γ)∩
FP(P). Therefore also Γ′(p)(Ã) is Ns-injective for all p ∈ Dom(Γ′)∩FP(P)
where Γ′ ∆= Γ{p 7→ f}. The IH then applies to P2 and Γ′.

• P = p(Ã). Follows from the assumption that Γ(p)(Ã) is Ns-injective.

• P = P1 | C. The IH gives that JP1KΓ is Ns-injective and Lemma 2 gives
that JCK is Ns-injective. It follows from 2 that also JP1KΓ 6 JCK is Ns-
injective.

• P = new x.P1. The IH applies to JP1[x′/x]KΓ.

Let P0 be a program and let Θ = ({(θi, ρi, σi, τi)}). We say that Θ is Ns-
P0-injective iff θi ↓ (Doms(θi) ∩ FV(P0)) is injective and FV(P0) ⊆ Doms(θi).

Proposition 1 (Piece-wise injectivity). Let P0 be any compartment-free pro-
gram with FP(P0) = ∅, let C(·) be any context and let Γ be any environment. If
C(·) has a hole, or if there is a p ∈ Dom(Γ) ∩ FP(C(·)) s.t Γ(p)(Ã) is Ns-P0-
injective for all matching Ã, then also JC(P)KΓ is Ns-P0-injective.

15

Proof. By induction on C(·). Selected cases:

• C(·) = ·. Then JC(P)KΓ = JP KΓ is Ns-injective by Lemma 3, and Ns-
injectivity implies Ns-P0-injectivity.

• C(·) = C1(·) ‖ C2(·). If the precondition holds for P then it must hold for
at least one side, say for C1(·) without loss of generality. Then JC1(P0)KΓ
is Ns-P0-injective by the IH. The union of a function injective on some
interval with any other function, when defined, is also injective on this
interval.

• C(·) = p(ũ) {C1(·)} ; C2(·). If the precondition holds for P there are two
cases to consider:

1. The precondition holds for C1(·). Then f(Ã) ∆= JC1(P0){Ã/ũ}KΓ =
JC1{Ã/ũ}(P0)KΓ per definition and per assumption that context in-
stantiations are capture free, i.e. no free variables of P0 become
bound by formal parameters. By the IH, f(Ã) Ns-P -injective. Ap-
ply the IH to JC2(P0)KΓ{p7→f} which now satisfies the precondition
and hence is Ns-P0-injective.

2. The precondition holds for C2(·). We can then apply the IH directly
to JC2(P0)KΓ.

• C(·) = p(Ã). There is no hole in p(Ã), so if the precondition holds, there is
a p′ ∈ Dom(Γ) ∩ FP(C(·)) s.t Γ(p′)(Ã) is Ns-P0-injective for all matching
Ã. Since FP(C(·)) = {p}, we must have that p′ = p.

• C(·) = c[C′(·)]. If the precondition holds for C(·) then it must also hold for
C′(·). Per definition Jc[C′(P0)]KΓ has the same substitutions as JC′(P0)KΓ,
and the latter is Ns-P0-injective by the IH.

• C(·) = new x.C′(·). Again we rely on context instantiations being capture-
free so that x 6∈ FV(P0). Hence C′(P0)[x′/x] = C′[x′/x](P0) and the IH
applies.

Proposition 1 in the paper is an immediate corollary of Proposition 1 above.
Let P0 = u : t(Qt) be a basic program. We say that a program P is P0-sound

in environment Γ iff for JP KΓ = {(θi, ρi, σi, τi)} it holds that uθi : t(Q) ∈ Kb for
some Q and FS(Q) \ FS(Qtθi) ⊆ τi.

Lemma 4. Let P0 = u : t(Qt) be a basic program and let Θ, Θ′ be two substi-
tutions with Θ P0-sound. Then Θ 6 Θ′ is also P0-sound.

Proof. Let Θ = {(θi, ρi, σi, τi)}, Θ′ = {(θ′j , ρ′j , σ′j , τ ′j)} and take any (θi∪ θ′j , ρi∪
ρ′j , σi ∪ σ′j , τi ∪ τ ′j) ∈ Θ 6 Θ′. Per assumption that Θ is P0-sound, there is a
Q s.t. uθi : t(Q) ∈ Kb, Qtθi ⊆ Q and FS(Q) \ FS(Qtθi) ⊆ τi. Note that
FV(Qt) ⊆ Dom(θi) and FV(u) ⊆ Dom(θi) because Kb consists of ground terms,
so Qtθi = Qt(θi∪θ′j) and uθi = u(θi∪θ′j). Therefore also u(θi∪θ′j) : t(Q) ∈ Kb,
Qt(θi ∪ θ′j) ⊆ Q and FS(Q) \ FS(Qt(θi ∪ θ′j)) ⊆ τi ⊆ (τi ∪ τ ′j).

16

Proposition 2 (Non-interference). Let P0 = u : t(Qt) be a basic program, let
C(·) be a compartment-free context and let Γ be an environment. If C(·) has
a hole, or if there is a p ∈ Dom(Γ) ∩ FP(C(·)) s.t Γ(p)(Ã) is P0-sound for all
matching Ã, then also JC(P0)KΓ is P0-sound.

Proof. By induction on C(·). Selected cases (the cases for module definition,
module invocation and new variables are shown as in the proof of Proposition
1):

• C(·) = ·. Then JC(P0)KΓ = Ju : t(Qt)KΓ and the result follows directly
from the definition of the denotation function.

• C(·) = C1(·) ‖ C2(·). If the precondition holds for P then it must hold for
for either side, say for C1(·) without loss of generality. Then JC1(P0)KΓ is
P0-sound by the IH. By Lemma 4 also JC1(P0)KΓ 6 JC2(P0)KΓ = JP KΓ is
P0-sound.

Proposition 2 in the paper is an immediate corollary of Proposition 2 above.

References

[1] J. Rekers and W. Koorn. Substring parsing for arbitrary context-free gram-
mars. SIGPLAN Not., 26(5):59–66, 1991.

17

