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Abstract – We consider some known dynamical
systems for Nash bargaining on graphs and focus
on their rate of convergence. We first consider
the edge-balanced dynamical system by Azar et al
and fully specify its convergence for an important
class of elementary graph structures that arise in
Kleinberg and Tardos’ procedure for computing a
Nash bargaining solution on general graphs. We show
that all these dynamical systems are either linear or
eventually become linear and that their convergence
times are quadratic in the number of matched edges.
We then consider another linear system, the path
bounding process of natural dynamics by Kanoria
et al, and show a result that allows to improve
their convergence time bound toO(n4+δ), for any
δ > 0, and for a graph of n nodes that has a unique
maximum-weight matching and satisfies a positive
gap condition.

I. INTRODUCTION

Bargaining and, in particular, the concept of Nash
bargaining on general graphs has been a focus of much
recent research in economics, sociology and computer
science [1], [2], [3], [4], [5]. In a bargaining system,
players aim at making pairwise agreements to share a
fixed wealth specific to a pair of players. Bargaining
solutions aim at providing predictions on how the wealth
will be shared and how this sharing would depend on
players’ positions in a network describing some notion
of relationships among players.

The concept of Nash bargaining solution was intro-
duced by Nash [6] for two players, each having an
exogenous, alternative profit at its disposal were they to
disagree on how to share the wealth. Recent research
has focused on the concept of Nash bargaining with
multiple players where each player has alternative profits
determined by trading opportunities with neighbors in
a graph. In computer science literature, Kleinberg and
Tardos [1] were the first to establish various properties
of Nash bargaining outcomes on general graphs. They
also propose a polynomial-time algorithm for computing
them, provided one exists. Follow up work aimed at
introducing some local dynamics that are natural (so
they, hopefully, have some connections with reality)
and studied their convergence properties. Azar et al [3]
considered the so callededge-balanced dynamicsand
established various properties about fixed points and
convergence but left open the characterization of the
convergence rate. In a tandem of papers [4], [5], Kanoria
et al considered an alternative,natural dynamics, and
established polynomial convergence time bounds under

assumptions described later in the paper. An open re-
search question has been to gain a better understanding
of convergence properties and obtain tight bounds on the
convergence time for this type of systems.

In this paper we consider dynamical systems of Nash
bargaining and focus on characterizing their rate of
convergence. We first consider edge-balanced dynamics
of Azar et al [3] over elementary graphs that arise in the
decomposition procedure of Kleinberg and Tardos [1]
which include a path, a cycle, a blossom and a bicycle
(see Figures 1, 2, 3 and 4 for examples). It turns out
that, for all these network structures, the dynamics is
either linear or eventually becomes linear. Specifically,
we show that the dynamics islinear for a path and a
cycle and iseventually linearfor a blossom and a bicycle
(and characterize the time when this takes place). This
allows us to fully characterize the rate of convergence
by deploying well known spectral methods for linear
systems. As a result, for all these elementary structures,
we find that the convergence time isquadratic in the
number of matched edges.

We then consider apath bounding processintroduced
by Kanoria et al to study convergence properties of the
so called natural dynamics introduced in [4]. This path
bounding process is yet another linear system that in [4]
was used to establish the convergence time upper bound
O(n6+δ), for any δ > 0, for any graph with a unique
maximum-weight matching and satisfies a positive gap
condition (we discuss in Section II). It turns out that an
upper bound for this path bounding process asserted in
Lemma 27 [4] can be improved from1−Θ(1/n3) to 1−
1/n which implies an improvement of the convergence
time bound toO(n4+δ), for δ > 0.

A. Outline of the Paper

In Section II we introduce system assumptions and
overview relevant concepts, including the concept of
Nash bargaining outcomes, local dynamics, and the KT
procedure. Section III provides the characterization of
the edge-balanced dynamics and convergence times for
each of the elementary graphs of the KT decomposition.
In Section IV, we provide a result for a path bounding
process for natural dynamics. Section V reviews related
work. Finally, we conclude in Section VI.

II. SYSTEM AND ASSUMPTIONS

A. Nash Bargaining Outcomes on Graphs

We consider a graphG = (V,E) whereV is the set of
nodes andE is the set of edges. Each node corresponds
to a distinct player that participates in the trading game
defined as follows. Each edge(i, j) ∈ E is associated
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with a weight wi,j ≥ 0 representing the amount that
can be shared between playersi andj should these two
players decide to trade with each other. The trading game
is one-exchange meaning that each player attempts to
make a pairwise agreement with at most one other player,
which corresponds to a matchingM ⊂ E in the graph
where(i, j) ∈ M if and only if playersi andj reached
an agreement. We denote withxi the profit of player
i where xi ≥ 0 and let ~x = (x1, x2, . . . , xn) denote
the vector of players’ profits according to an arbitrary
enumeration of then = |V | players.

A balanced outcome or a Nash bargaining solution is
a pair (M,~x) whereM is a matching inG and~x is a
vector of players’ profits. Such an outcome satisfies the
following properties:

• Stability : for every edge(i, j) ∈ E,

xi + xj ≥ wi,j.

• Balance: for every(i, j) ∈ M , it holds

xi− max
k∈Vi\{j}

(wi,k−xk)+ = xj− max
k∈Vj\{i}

(wj,k−xk)+

where, hereinafter,Vi denotes the set of neighbors
of a nodei and (·)+ := max(0, ·).

The stability means that there exists no player that
can improve her profit by unilaterally deciding to trade
with an alternative trading partner. The balance property
originates from the Nash bargaining problem [6] where
two players1 and2 aim at a pairwise agreement to share
a profitw having outside profit optionsr1 andr2 in case
of disagreement. The Nash bargaining solution is then for
players1 and2 to share the surplusw−r1−r2 equally, if
positive, i.e. receive profitsp1 = r1+

1
2(w−r1−r2)+ and

p2 = r2 +
1
2(w− r1− r2)+, respectively. This allocation

is balanced in the sense thatp1 − r1 = p2 − r2, which
is exactly the above asserted balance property where
the outside profit options are determined by the values
that players may extract through trading agreements with
their neighbors.

B. Local Nash Bargaining Dynamics

Edge-balanced dynamics(Azar et al [3]). First con-
sidered by Rochford [7] and Cook and Yamagishi [8],
this dynamical process assumes that players already
agreed on a matchingM and are negotiating the value of
the outcome~x. Hence, each matched playeri is assigned
a trading partner, which we denote withpi. A version
of this dynamics in discrete-time can be represented as
follows. For a fixed0 < α ≤ 1 and given an initial value

~x(0), for i = 1, 2, . . . , n andt = 0, 1, . . ., we have that

xi(t+ 1) = xi(t) + α {[yi(t)+

+
1

2
(wi,pi

− yi(t)− ypi
(t))

]wi,pi

0

− xi(t)

}
(1)

where yl(t) is the best alternate value that a matched
player l may get at timet by trading with her other
neighbors, i.e.

yl(t) = max
k:(l,k)∈E\M

(wl,k − xk(t))+

and we use the notation[·]ba = min(max(·, a), b), for
a ≤ b.

It is not difficult to observe that if playersi and j
are matched, thenxi(t) + xj(t) = wi,j is time invariant,
i.e. if the latter holds for a timet, then it still holds
for time t+1. Note that the dynamics is not necessarily
consistent with Nash bargaining solution for every timet
as for a matched pair(i, j), the edge-surpluswi,j−yi(t)−
yj(t) is allowed to be negative; the only requirement is
that the allocationyi(t) + 1

2 (wi,j − yi(t) − yj(t)) is in
[0, wi,j ]. However, the edge surpluses are guaranteed to
be positive fort large enough [3].

Natural dynamics (Kanoria et al [4]). For this dy-
namics,xi,j(t) is defined to be the profit that player
i can earn at timet by partnering with one of his
neighbors other than playerj. The bargaining is assumed
to evolve according the following system: given initial
values xi,j(0), for (i, j) ∈ E, for 0 < α ≤ 1 and
t = 0, 1, . . .,

xi,j(t+1) = xi,j(t)+α

{

max
k∈Vi\{j}

yk,i(t)− xi,j(t)

}

(2)

whereyi,j(t) denotes the offer made by playeri to player
j at time t:

yi,j(t) = (wi,j −xi,j(t))+−
1

2
(wi,j −xi,j(t)−xj,i(t))+.

Indeed, this is consistent with Nash’s bargaining solu-
tion. If xi,j(t) > wi,j then playeri can earn more
elsewhere and makes a zero offer to playerj. Otherwise,
player i offers just the right amount so that if playerj
accepts the offer, the resulting allocation is according to
a Nash bargaining solution:

wi,j − yi,j(t) = xi,j(t) +
1

2
(wi,j − xi,j(t)− xj,i(t))+.

The profit of a playeri is equal to the current best offer
made to this player, thus at timet equal to

xi(t) = max
k∈Vi

yk,i(t).

The above dynamics was showed in [4] to converge to a
Nash bargaining solution in polynomial time, provided
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that it exists and is unique, and the graph satisfies a
positive gap condition which we define later in this
section.

Both dynamical systems by Azar et al and Kanoria
et al are nonlinear because of the maximum operators
that appear in evaluating best profit values available to
the players. Specifically, both dynamical systems are
piecewise linear inIR|V |

+ and IR
|E|
+ , respectively. This

fact may be leveraged in some future analysis.

C. KT Procedure

Nash’s bargaining solutions on graphs are intimately
related to maximum-weight matchings. In [1] it was
found that the matchingM of a stable outcome~x is
a maximum-weight matching. Furthermore, whenever
a stable outcome exists, a balanced outcome exists as
well [1]. The outcome vector~x can be seen as a
feasible solution of a dual to a fractional relaxation of a
maximum-weight matching (primal):

maximize
∑

(i,j)∈E wi,jxi,j
over xi,j ≥ 0, (i, j) ∈ E

subject to
∑

j:(i,j)∈E xi,j ≤ 1

where the dual problem is the following linear problem
with two variables per inequality:

minimize
∑

i∈V xi
over xi ≥ 0, i ∈ V

subject to xi + xj ≥ wi,j, (i, j) ∈ E.

In [1], it was established that a balanced outcome
(M,~x) can be found in polynomial time by first finding
a maximum-weight matchingM and then solving the
above dual problem to find a balanced vector~x. The dual
problem can be solved by an iterative procedure where
each iteration maximizes the smallest slack as described
in the following.

A node i ∈ V slack si is defined bysi = xi −
max(l,i)∈E\M (wi,l−xl)+ while an edge(i, j) ∈ E slack
si,j is defined bysi,j = xi + xj − wi,j. Indeed, for a
stable outcome~x, si,j ≥ 0, for every (i, j) ∈ E. It is
not difficult to observe that node and edge slacks satisfy
si = min(xi,min(i,l)∈E\M si,l).

The KT procedure for finding a balanced outcome
proceeds by successively fixing the valuesxi for some
nodes in V . This is allowed by the following key
property [1]: if there exists a setA ⊂ V andσ ≥ 0 such
that si ≤ σ for every i ∈ A and si ≥ σ for i ∈ V \ A
and a vector~x such that valuesxi are balanced inA,
then there exists a vector~x′ such thatx′i = xi for every
i ∈ A that is a balanced outcome forG.

The KT algorithm is sketched as follows. Letσ ≥ 0
be a variable and letA be a set of nodes for which values

xi have been already assigned. The setA is constructed
such that no matched edge crosses the cut(A,V \ A),
i.e. for every nodei ∈ A there exists no nodej ∈ V \A
such that(i, j) ∈ M . Initially, σ = 0 and setA contains
all the unmatched nodes. The algorithm then proceeds
inductively with respect to the number of nodes with
unassigned values as given by|V \ A|. Givenσ andA
the inductive step amounts to assigning values to nodes
in V \A that maximize the minimum slackσ′ ≥ σ which
amounts to solving the following linear program

maximize σ′

subject to x′i ≥ σ′, i ∈ V \ A
x′i + x′j = wi,j, (i, j) ∈ M

x′i + x′j ≥ wi,j + σ′, (i, j) ∈ E \ (M ∪ E(A))

x′i = xi, i ∈ A,

whereE(A) corresponds to the set of edges of the graph
G linking nodes inA.

For a fixedσ′, this is a linear inequalities’ problem
with at most two variables per inequality, for which
polynomial algorithms exist. In particular, by results of
Aspvall and Shilach [9], for a givenσ′, the system
of inequalities is infeasible if there exists an infeasible
simple loop in the graph construction described in [9].
A path is said to be a loop if the initial and final nodes
are identical and is said to be simple if all intermediate
nodes of this path are distinct. Furthermore, if a feasible
solution exists than it can be constructed by finding the
most constraining feasible simple loop. For the above
system of inequalities, any such feasible simple loop is
either a path, a cycle, a blossom or a bicycle. We refer
to these asKT elementary graphsand define them in the
following:

• Path. A path consists of alternating matchings with
each of its end nodes anchored at either a node
i ∈ A or at a matched edge(i, j) ∈ M such that
sj = xj.1

• Cycle. A cycle consists of an even number of nodes
connected by a path of alternating matchings.

• Blossom. A blossom is a concatenation of a cycle
and a path (we refer to as a stem) as follows.
The cycle consists of an odd number of nodes that
are connected by a cycle of alternating matchings
started from a node (we call gateway) with an
unmatched edge. The stem is a path of alternating
matchings such that one end node is matched to the
gateway node and the other end node is anchored
as for a path.

1Recall that if for a matched edge(i, j) ∈ E, i ∈ V \A, then also
j ∈ V \ A, and vice versa.
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• Bicycle. A bicycle is a concatenation of two blos-
soms by connecting the end nodes of their re-
spective stems such that the connected stems form
alternating matchings.

The above described step is repeated until all the nodes
are assigned values, i.e. untilV \A = ∅. Hence, the total
number of such stepsk is at most the number of nodes
n. At each stepl, a KT elementary structureCl and
maximum slackσl are identified such that theσl’s form
an non-decreasing sequence,0 = σ0 ≤ σ1 ≤ · · · ≤ σk.

A positive gap condition. A balanced outcome~x with
slacksσ0, σ1, . . . , σk is said to have a gapσ > 0 if, for
every1 ≤ l ≤ k,

σl − σl−1 ≥ σ

and, for every pair of nodesi andj of Cl such that the
edge(i, j) is not part ofCl, we have

xi + xj − wi,j ≥ σl + σ.

This positive gap condition enables to study convergence
of a dynamic process by partitioning into a sequence
of KT elementary graphs and decoupling the dynamics
over these elementary graphs, a technique introduced and
used in [4].

D. Convergence

We introduce a few elementary concepts about sta-
bility of dynamical systems in a somewhat informal
manner and then define the notion of convergence time
considered in this paper. We say that a dynamical system,
according to which~x(t) evolves overt ≥ 0, is asymp-
totically stable, if there exists a point~x∗ such that for
every initial value~x(0), we have

lim
t→∞

||~x(t)− ~x∗|| = 0.

The system is said to beglobally asymptotically stableif
~x∗ is unique, i.e. does not depend on the initial condition
~x(0).

In particular, for a linear system~x(t+ 1) = A~x(t) +
~b(t) whereA is a given matrix and~b(t) is a vector that
may depend ont, we have that the system is globally
asymptotically stable if the spectral radius of the matrix
A is smaller than1 (i.e. all eigenvalues are of modulo
strictly smaller than1). The concepts of asymptotic
stability and global asymptotic stability are standard,
see [10] for more details.

We say that the convergence to a point~x∗ is exponen-
tially bounded if there existC > 0 andR > 0 such that
for every initial value~x(0), we have

||~x(t)− ~x∗|| ≤ Ce−Rt, for everyt ≥ 0,

where we refer toR as the rate of convergence and
call T = 1/R the convergence time. Moreover, If
~x(t) evolves according to the aforementioned linear
system then the rate of convergence is given by(i)
R = log(1/ρ(A)) whereρ(A) is the spectral radius of
matrix A if the system is globally asymptotically stable,
and(ii) R = log(1/λ2(A)) whereλ2(A) is the modulus
of the largest eigenvalue of matrixA that is smaller than
1, if the system is asymptotically stable.

III. D YNAMICS FOR KT ELEMENTARY GRAPHS

In this section, we will observe that for all the el-
ementary graphs of the KT decomposition, the values
held by the nodes eventually evolve according to alinear
discrete-time dynamical system, i.e., for given matrixA

and vector~b(t), ~x(t) evolves according to

~x(t+ 1) = A~x(t) +~b(t). (3)

We will find that for a path and a cycle the dynamics
is linear for every timet ≥ 0 while for a blossom and
a bicycle there exists a finite timeT0 ≥ 0 such that the
dynamics is linear for everyt ≥ T0. The asymptotic
behavior is determined by spectral properties of matrix
A. Note that it suffices to consider the spectrum of
matrix A for α = 1. This is because, for every given
0 < α ≤ 1, λ′ = 1−α+αλ is an eigenvalue and~v is an
eigenvector of the matrixA, whereλ is an eigenvalue
and~v is an eigenvector of the matrixA underα = 1.
We will see that for every KT elementary graph, the
eigenvalues of matrixA, underα = 1, are located in
the interval [−1, 1] and will show that−1 can be an
eigenvalue only for a cycle with an even number of
matched edges or a bicycle with an even number of
matched edges in each of its loops. In the latter two
cases, forα = 1, there is no convergence to a limit
point as the asymptotic behavior is periodic because
of the eigenvalue−1. This is ruled out by choosing
the smoothing parameter0 < α < 1, making all the
eigenvalues strictly larger than−1, and thus ensuring
convergence to a limit point.

Finally, we note that for our results in this section, we
assume uniform edge weights and under this assumption,
without loss of generality, we letwe = 1, for everye ∈
E.

A. Path

x+ x−x1 x2 xn
· · ·

Figure 1. A path with boundary conditions.

We consider a path with boundary valuesx+(t) and
x−(t) as illustrated in Figure 1. In this case, the evolution
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of the node values~x(t) boils down to a discrete-time
linear dynamical system (3) whereA is the n × n
symmetric tridiagonalmatrix

A =











0 1/2 0 · · · 0

1/2
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1/2

0 · · · 0 1/2 0











(4)

and~b(t) = (1−x+(t)
2 , 0, . . . , 0

︸ ︷︷ ︸

n−2

, x
−(t)
2 )T .

The eigenvalues of matrixA are

λk = cos

(
πk

n+ 1

)

, k = 1, 2, . . . , n,

with the corresponding orthonormal eigenvectors

~vk =

√

2

n+ 1

(

sin

(
πk

n+ 1

)

, . . . , sin

(
πkn

n+ 1

))T

.

Note that every eigenvalue is of modulo smaller than1.
This implies asymptotic stability for every0 < α ≤ 1.
From the above spectrum, we have the following char-
acterization of the convergence time whose proof is
deferred to Appendix A.

Theorem 1:For a path ofn matched edges and every
0 < α ≤ 1, the convergence time is

T =
2

απ2
n2 · [1 +O(1/n2)].

From this theorem, we observe that the convergence time
is quadratic in the number of matched edges.

B. Cycle

x1

x2

xn

Figure 2. A cycle.

For a cycle, the dynamics of node values~x(t) boils
down to a linear dynamical system (3) whereA is the

following circulant matrix, for n = 2, A =

(
0 1
1 0

)

,

and otherwise

A =

















0 1/2 0 · · · 0 0 1/2

1/2 0 1/2
.. . . . . . . . 0

0 1/2
. . .

.. .
. . .

. . . 0
...

. . . . . . .. . . . . . . .
...

0
. . . . . . .. . . . . 1/2 0

0
. . . . . . .. . 1/2 0 1/2

1/2 0 0 · · · 0 1/2 0

















(5)

and where vector~b = ~0. Note that in this case

~x(t) = At~x(0), for t ≥ 0.

By using similar arguments as for a path, it is not
difficult to establish that the eigenvalues of matrixA
are

λk = cos

(
2π(k − 1)

n

)

, k = 1, 2, . . . , n,

with the corresponding orthonormal eigenvectors

~vk =







1√
n
(1, 1, . . . , 1, 1)T , if k = 1

1√
n
(1,−1, . . . , 1,−1)T , if k = 1 + n/2

√
2
n (1, cos (φk) , . . . , cos (φk(n − 1)))T , o.w.

where for easy of notation,φk = 2π(k−1)(n−1)
n .

Using the spectral decomposition of the symmetric
matrix A (see [10] for details), we have

~x(t) =

n∑

k=1

λt
k~vk~v

T
k ~x(0). (6)

We distinguish two cases:

• Case 1: n is even. In this case,λk = −1, for k =
1 + n/2, and λk > −1, otherwise. From (6), we
have

~x(t) =
(

~v1~v
T
1 + (−1)t~v1+n/2~v

T
1+n/2

)

~x(0) + o(1).

Therefore, the asymptotic behavior is periodic.
• Case 2: n is odd. In this case,−1 < λk ≤ 1, for

everyk, and thus we have asymptotic convergence
to the limit point, limt→∞ xi(t) = 1

n

∑n
j=1 xj(0),

for every i.

In view of the above observations, we note that for
even n, we need to assume thatα is strictly smaller
than 1 in order to rule out asymptotically periodic
behavior, while for oddn, we can allow forα = 1.
The following result shows that in like manner as for a
path, the convergence time is quadratic in the number
of matched edges, but note that it is four times smaller,
asymptotically for largen.

Theorem 2:For cycle graph ofn matched edges and
0 ≤ α < 1, if n is even, and0 < α ≤ 1, if n is odd, the
convergence time is

T =
1

α2π2
n2 · [1 +O(1/n2)].
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x1 x2 xn

y1
y2

ym
Figure 3. A blossom.

C. Blossom
A blossom is a concatenation of a cycle and a path

(we refer to as a stem); see Figure 3 for an example.
We consider a blossom withn matched edges in the
stem andm matched edges in the loop. We refer to the
node that connects the stem and the loop as agateway
node. The matched edges of the stem are enumerated as
1, 2, . . . , n along the stem towards the gateway note. We
let xi denote the value of the end node of an edgei of
the stem that is connected to a node towards the open
end of the stem. Similarly, we enumerate matched edges
of the loop as1, 2, . . . ,m and letyi denote the value of
the node that appears first on a matched edgei as we go
along the loop in the clockwise direction.

It can be observed that node values~x(t) and ~y(t)
evolve according to the following non-linear dynamical
system:

x1(t+ 1) =
x2(t)

2

xi(t+ 1) =
xi−1(t) + xi+1(t)

2
, 1 < i < n

xn(t+ 1) =
1 + xn−1(t)−max[1− y1(t), ym(t)]

2

y1(t+ 1) =
xn(t) + y2(t)

2

yi(t+ 1) =
yi−1(t) + yi+1(t)

2
, 1 < i < m

ym(t+ 1) =
1 + ym−1(t)− xn(t)

2
.

(7)

Note that the system is non-linear only because of the
maximum operator that acts in the update for the node
matched to the gateway node, which connects the stem
and the loop of the blossom. The maximum operator is
over the values of the nodes that are in the loop matched
to the neighbors of the gateway node,1 − y1(t) and
ym(t). It turns out that, eventually, one of these two
values is larger or equal to the other and, hence, the
system dynamics becomes linear. This is showed in the
following lemma. Note that the sumy1(t) + ym(t), if
smaller or equal than1 indicatesmax(1−y1(t), ym(t)) =
1−y1(t), and otherwise,max(1−y1(t), ym(t)) = ym(t).

Theorem 3:For a blossom withn matched edges in
the stem andm matched edges in the loop, for every

initial value(~x(0), ~y(0)), the sum of node valuesy1(t)+
ym(t) satisfies:

1) y1(t) + ym(t), for t ≥ 0, is autonomous of~x(t),
t ≥ 0.

2) limt→∞ y1(t) + ym(t) = 1.
3) The asymptotic rate of convergence isπ

2

2m2 .
4) There exists a timeT0 ≥ 0 such that eithery1(t)+

ym(t) ≤ 1 or y1(t) + ym(t) ≥ 1 for everyt ≥ T0.
5) T0 = O(m2).
The theorem derives from an explicit characterization

of y1(t) + ym(t), for every t ≥ 0, which we present in
the following:

Lemma 1:Given initial value~y(0), for everyt ≥ 0,

y1(t) + ym(t) = 1−
2

m+ 1

dm

2
e

∑

i=1

f2i−1(~y(0))λ
t
2i−1 (8)

where

fk(~y) = 1 + λk − 2
√

1− λ2
k

√

m+ 1

2
~vTk ~y.

We provide proofs of Theorem 3 and Lemma 1 in
Appendix B and C, respectively.

From Theorem 3 item 4, we have that the dynamics
for a blossom is eventually according to the following
linear system

(
~x(t+ 1)
~y(t+ 1)

)

= A

(
~x(t)
~y(t)

)

+~b

where matrixA and vector~b assume one of the following
two choices:

• Case 1: (1− y1(t) ≥ ym(t))

A =

(
Tn P

Q Tm

)

(9)

with Tn andTm tridiagonal matrices of paths ofn
andm matched edges, respectively, and

P =










0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1
2 0 · · · 0










,Q =










0 · · · 0 1
2

0 · · · 0 0
... · · ·

...
...

0 · · · 0 0
0 · · · 0 −1

2










.

and~b = (0, . . . , 0
︸ ︷︷ ︸

n+m−1

, 1/2)T .

• Case 2: (1− y1(t) < ym(t)) same as under Case 1
but

P =










0 · · · 0 0
0 · · · 0 0
... · · ·

...
...

0 · · · 0 0
0 · · · 0 −1

2
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and~b = (0, . . . , 0
︸ ︷︷ ︸

n−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T .

In the following we only consider Case 1 as the
spectrum of matrixA under Case 2 is exactly the
same. We note that the eigenvalues of the matrixA are
(λ1, λ2, . . . , λn+bm/2c, µ1, µ2, . . . , µdm/2e) where

λk = cos

(
2πk

2n+m+ 1

)

, k = 1, . . . , n+ bm/2c

µk = cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , dm/2e

with a proof provided in Appendix D.
It is noteworthy that all the eigenvalues have modulo

strictly smaller and1, and thus, the system is globally
asymptotically stable. We now characterize the conver-
gence time from an instance at which the system became
linear.

Theorem 4:For a blossom withn matched edges in
the stem andm matched edges in the loop, for every
0 < α ≤ 1, the convergence timeT satisfies: ifm is
even, then

T =
2

απ2
(2n +m)2 · [1 + o(1)]

otherwise, form odd,

T =
2

απ2
max

(

m2,
1

4
(2n+m)2

)

· [1 + o(1)].

Observations. The result implies that the convergence
time is O((n + m)2), i.e. quadratic in the number of
matched edges. There is a significant difference with
regard to whether the number of matched edges in the
loop, m, is even or odd. The convergence is slower for
m even. Specifically, if the length of the stem is at least
twice the length of the loop, the convergence time is
larger for a factor4. For a fixedn, the convergence
time is asymptotically 2

απ2m2 as for a path of lengthm
which is intuitive. Likewise, ifm is fixed and odd, the
convergence time is asymptotically2απ2n2 as for a path
of lengthn and thus also in conformance to intuition.

Proof: For the eigenvaluesλ1, λ2, . . . , λn+bm/2c, it
is readily checked that

max
k

|λk| = −λn+bm/2c = cos

(
(1 + 1m odd )π

2n+m+ 1

)

while, on the other hand,

max
k

|µk| = µ1 = cos

(
π

m+ 1

)

.

Therefore, the spectral radius of matrixA, ρ(A) =
max(maxk |λk|,maxk |µk|) is given by

ρ(A) =







cos
(

π
2n+m+1

)

, m even

cos
(

2π
2n+m+1

)

, m odd ,m ≤ 2n− 1

cos
(

π
m+1

)

, m odd ,m > 2n− 1.

The asserted asymptotic follows from the last identities.

D. Bicycle

x1 x2 xn

y1
y2

ym
z1

z2

zl

Figure 4. A bicycle.

A bicycle graph consists of two loops that are
connected by a path. Without loss of generality, we
refer to one of the loops as loop 1 and to other as loop
2 and refer to the path as a cross-bar; see Figure 4 for
an illustration. Notice that a bicycle graph corresponds
to a concatenation of two blossoms by connecting the
end nodes of their respective stems so that a cross-bar
is formed of alternating matchings. We letl andm be
the number of matched edges in loop 1 and loop 2,
respectively, and letn be the number of matched edges
of the cross-bar. The values of end nodes of matched
edges are denoted by~z(t) = (z1(t), z2(t), . . . , zl(t))

T ,
~x(t) = (x1(t), x2(t), . . . , xn(t))

T and ~y =
(y1(t), y2(t), . . . , ym(t))T , for loop 1, cross-bar,
and loop 2, respectively. See Figure 4 for positions of
the corresponding nodes.

We note that for a bicycle the system evolves accord-
ing to the following non-linear system:

z1(t+ 1) =
1 + z2(t)− x1(t)

2

zi(t+ 1) =
zi−1(t) + zi+1(t)

2
, 1 < i < l

zl(t+ 1) =
zl−1(t) + x1(t)

2

x1(t+ 1) =
x2(t) + max[1− z1(t), zl(t)]

2
plus other updates as for blossom (7).

(10)

In this case, the non-linearity originates because of two
gateway nodes that connect the cross-bar with loops,
each such gateway node having two alternative profit
options with nodes in the loops. Similarly as for a
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blossom we have that eventually the dynamics becomes
linear as stated in the following:

Proposition 1: For a bicycle withl and m matched
edges in loops andn matched edges in the cross-bar,
there exists a timeT0 ≥ 0 such that for everyt ≥ T0,
(~z(t), ~x(t), ~y(t)) evolves according to a linear system.
Furthermore,T0 = O(max(l,m)2).

This observation follows from Theorem 3 applied to
each loop of the bicycle. This can be done because both
y1(t) + ym(t) andz1(t) + zl(t) evolve autonomously as
given by Lemma 1 fory1(t) + ym(t) and analogously
for z1(t) + zl(t).

We have showed that the dynamics for a bicycle
is eventually according to a linear system, which is
specified as follows:





~z(t+ 1)
~x(t+ 1)
~y(t+ 1)



 = A





~z(t)
~x(t)
~y(t)



+~b (11)

where

A =





Tl Q′ 0

P′ Tn P

0 Q Tm





with the given matrix blocks defined by

(
Tl Q′

P′ Tn

)

and

(
Tn P

Q Tm

)

are the matrices that correspond to two blossoms formed
by loop 1 and cross-bar, and cross-bar and loop 2,
respectively.

The pair (A,~b) admits four possible values, corre-
sponding to all possible combinations of two cases for
each of the loops (Case 1 and Case 2 in Section III-C):

1) BothP′ andP as in Case 1
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l+n+m−2

, 1/2)T ,

2) P′ as in Case 1,P as in Case 2,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

m+n−2

, 1/2)T ,

3) P′ as in Case 2,P as in Case 1,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l+n−2

,−1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T ,

4) BothP′ andP as in Case 2,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

n−2

,−1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T .

In the following, we will only consider the case under
item 1 as the same end results hold for other cases. The

eigenvalues of the matrixA are given by

cos

(
π(2k − 1)

l + 1

)

, k = 1, . . . , dl/2e,

cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , dm/2e,

cos

(
2πk

2n+ l +m

)

, k = 1, . . . , n+ bl/2c + bm/2c

which we establish in Appendix E.
Remark that in any case all the eigenvalues are strictly

smaller than1. On the other hand, if bothl and m
are even, then−1 is an eigenvalue with eigenvector
(1,−1, 1,−1, . . . , 1,−1)T , and otherwise, all the eigen-
values are strictly larger than−1. Therefore, if bothl and
m are even, then the asymptotic behavior of system (11)
is periodic, while otherwise, it is globally asymptotically
stable.

As a byproduct, similarly to Theorem 4, we can
establish that from an instance at which the system
became linear, the convergence time scales as follows.

Theorem 5:For a bicycle withn matched edges in
the stem andm and l matched edges in the loops, the
convergence timeT satisfies the following. Ifm or l is
even, then for every0 < α < 1 (andα = 1 if both m
and l are even),

T =
2

απ2
(2n+m+ l)2 · [1 + o(1)]

otherwise, ifm andn are odd, then for every0 < α ≤ 1,

T =
2

απ2
max

(

m2, l2,
1

4
(2n+m+ l)2

)

· [1 + o(1)].

Therefore, the convergence time isO((l + n +m)2),
i.e. quadratic in the number of matched edges.

IV. T HE PATH BOUNDING PROCESS

We consider a bounding process for natural dynamics
on a path, which was introduced in [4]. The bounding
process, referred to assimplified dynamics, provides
lower and upper bounds for the original dynamics by
appropriately choosing initial and boundary conditions.
This simplified dynamics is defined as follows. We
consider a path ofn edges where nodes are enumerated
as0, 1, . . . , n and letM denote an alternating matching
on this path. Letu(t), v(t), t ≥ 0, be arbitrary real-
valued sequences and letα > 0. Then, the simplified
dynamics is given by

x̂0,1(t+ 1) = x̂0,1(t) + α(u(t)− x̂0,1(t))

x̂n,n−1(t+ 1) = x̂n,n−1(t) + α(v(t) − x̂n,n−1(t))
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while for i = 1, 2, . . . , n− 1,

x̂i,i+1(t+ 1) = x̂i,i+1(t) + α(yi−1,i(t)− x̂i,i+1(t))

x̂i,i−1(t+ 1) = x̂i,i−1(t) + α(yi+1,i(t)− x̂i,i−1(t))

where

yi,j(t) =

{
1
2 (wi,j − x̂i,j(t) + x̂j,i(t)), (i, j) ∈ M
wi,j − x̂i,j(t), otherwise.

A path boundary process is a process~̄x(t) satisfying
the following property: given two simplified dynamics
~̂x(t) and ~̂x′(t), |x̂i,i+1(t) − x̂′i,i+1(t)| ≤ x̄i,i+1(t) and
|x̂i+1,i(t)−x̂′i+1,i(t)| ≤ x̄i+1,i(t), for every edge(i, i+1)
and t ≥ 0.

It was showed in [4] that such a path bounding
process can be defined as follows. Letx̄i,i+1(0) =

x̄i+1,i(0) = ||~̂x(0) − ~̂x′(0)||∞, for i = 0, 1, . . . , n − 1.
For an unmatched edge(i, i+ 1), we let

x̄i,i+1(t) = x̄i,i+1(t)+

+ α

(
x̄i−1,i(t) + x̄i,i−1(t)

2
− x̄i,i+1(t)

)

, i > 0

x̄i+1,i(t) = x̄i+1,i(t)+

+ α

(
x̄i+2,i+1(t) + x̄i+1,i+2(t)

2
− x̄i+1,i(t)

)

while for a matched edge(i, i+ 1),

x̄i,i+1(t) =x̄i,i+1(t) + α (x̄i−1,i(t)− x̄i,i+1(t))

x̄i+1,i(t) =x̄i+1,i(t)+

+ α (x̄i+2,i+1(t)− x̄i+1,i(t)) , i < n− 1

and

x̄0,1(t+ 1) =x̄0,1(t) + α(u(t) − x̄0,1(t))

x̄n,n−1(t+ 1) =x̄n,n−1(t) + α(1 − u(t)− x̄n,n−1(t))

whereu(t) is an arbitrary{0, 1}-valued sequence.
The following theorem provides a stronger result than

in Lemma 27 [4].
Theorem 6:Supposen is odd,n > 1, andu(t) is an

arbitrary {0, 1}-valued sequence. Then, for initial value
x̄i,i+1(0) = x̄i+1,i(0) = 0, for every edge(i, i + 1), we
have that for everyt ≥ 0,

x̄i,j(t) ≤ 1 (12)

and
max(x̄1,0(t), x̄n−1,n(t)) ≤ 1−

1

n
. (13)

The proof of the theorem is based on analysis of a
tridiagonal linear system and is provided in Appendix F.

The improvement of the theorem is in the last asserted
inequality where we provide tighter bound1 − 1/n in
comparison with1− c/n3 for a constantc > 0 asserted

in Lemma 27 [4]. As a consequence, the convergence
time upper bound in [4] can be improved to

T ≤ C[W/σ + log(σ/ε)] · n4+δ

where W is an upper bound on the maximum edge
weight, σ is the gap parameter, andε, C and δ are
positive constants.

V. RELATED WORK

The concept of balanced outcomes was introduced by
Nash in [6] for the case of two players with exogenous
profit options. This concept follows from a set of axioms
and different axioms were subsequently considered; e.g.
see [11].

Kleinberg and Tardos [1] considered the concept of
Nash bargaining solutions on graphs where profit options
available to a player are not exogenously given but
determined by her position in the graph. They estab-
lished relations between stable and balanced outcomes
and devised a polynomial time algorithm for computing
balanced outcomes. Their work left open the question on
existence and properties of local dynamics.

A local dynamics for Nash bargaining on graphs was
recently considered by Azar et al [3]. This paper assumed
a fixed matching of nodes and considered a local, so
called edge-balanced dynamics, for outcome vector~x.
They established that fixed points of this dynamics are
balanced outcomes. The assumption that matching is
fixed was removed by Kanoria et al in their natural
dynamics studied in [4] and [5]. In [4], they established
that provided that there exists a unique Nash bargaining
solution and the graph satisfies the positive gapσ > 0
condition (Section II-C), the natural dynamics converges
to this Nash bargaining solution in a polynomial time.
Specifically, they showed that there exists a constant
C > 0 such that the convergence time is upper bounded
by C[W/σ + log(σ/ε)]n6+δ , where W is an upper
bound on the maximum edge weight,σ > 0 is the gap
and ε, δ > 0. In [5], using a different approach, they
established that if maximum matching is unique, then
there existsT = O(n4/g2) such that for every initial
value the natural dynamics induces the maximum-weight
matching, for everyt ≥ T ; heren is the number of the
nodes andg is the difference between the total weight
of the maximum-weight matching and that of the second
best matching, which we refer to as thematching weight
gap.

Finally, another related work is that on maximum-
weighted matchings on graphs because of a close con-
nection between stable outcomes and maximum weight
matchings and similarity of distributed algorithms con-
sidered for solving the two problems. Bayati et al [12]
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considered an auction-like algorithm, which is similar in
spirit to the natural dynamics for solving the balanced
allocation problem, and showed that for complete bipar-
tite graphs with a unique maximum-weight matching,
the convergence time isO(Wn/g) where W is the
maximum edge weight,g is the matching weight gap
andn is the number of nodes.

VI. CONCLUSION

In this paper we showed that some known Nash
bargaining dynamics on graphs can (eventually) be char-
acterized by linear dynamical systems and this enabled
us to derive tight characterizations of their convergence
rates. An interesting direction for future work is to
investigate tightness of the convergence time bounds
derived under different assumptions such as the positive
gap condition of the KT procedure or the matching
weight gap.
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APPENDIX

A. Proof of Theorem 1

An eigenvalueλ and associated eigenvector~v of
matrix A satisfy

λv1 =
1

2
v2

λvi =
1

2
vi−1 +

1

2
vi+1, 1 < i < n

λvn =
1

2
vn−1.

Using λ = cos(φ) and vi = sin(φi), for φ ≥ 0
in the above equations, along with some elementary
trigonometric calculus, it readily follows thatφ = πk

n+1 ,
for k = 1, 2, . . . , n.

Since−1 < λk < 1 for everyk andλ1 > 0 has the
largest modulo, the convergence time is given byT =
log(1−α+αλ1). Noting thatλ1 = 1− π2

2n2 +O(1/n4),
the asserted result follows.

B. Proof of Lemma 1

The part of the system~y(t) evolves as the following
non-autonomous linear system

~y(t+ 1) = A~y(t) +~b(t)

where A is a tridiagonal matrix that corresponds
to a path of m matched edges and~b(t) =
(xn(t)/2, 0, . . . , 0

︸ ︷︷ ︸

m−2

, (1− xn(t))/2)
T .

SinceA is a symmetric matrix, we can use the spectral
decomposition

A =

m∑

k=1

λk~vk~v
T
k

where λ1, λ2, . . . , λm are the eigenvalues and
~v1, ~v2, . . . , ~vm are the orthonormal eigenvectors of
matrix A, which we identified in Section III-A.

Using the spectral decomposition, we note

yi(t) =

m∑

k=1

λt
kvk,i~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k vk,i~v

T
k
~b(s)

wherevk,i = sin
(

πk
m+1 i

)

is the i-th coordinate of the
eigenvector~vk. Summing upy1(t) andym(t), we obtain

y1(t) + ym(t)

=

m∑

k=1

(vk,1 + vk,m)

(

λt
k~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k ~vTk

~b(s)

)

=
∑

k odd
2vk,1

(

λt
k~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k ~vTk

~b(s)

)
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where the last inequality is because of the factvk,m =
vk,1 for k odd andvk,m = −vk,1 for k even. Furthermore,

~vTk
~b(s) = vk,1

xn(s)

2
+ vk,m

1− xn(s)

2

=
vk,1
2

for k odd.

Therefore,

y1(t) + ym(t)

=
∑

k odd

(

λt
k2vk,1~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k v2k,1

)

=
∑

k odd

(

λt
k2vk,1~v

T
k ~y(0) +

1− λt
k

1− λk
v2k,1

)

=
∑

k odd

(

λt
k2

√

2

m+ 1

√

1− λ2
k~v

T
k ~y(0)+

+(1− λt
k)

2

m+ 1
(1 + λk)

)

=
2

m+ 1

∑

k odd

(1 + λk)−
2

m+ 1

∑

k odd

(1 + λk

−2

√

m+ 1

2

√

1− λ2
k~v

T
k ~y(0)

)

λt
k.

It remains only to show that

2

m+ 1

∑

k odd
(1 + λk) = 1

which follows readily by elementary trigonometric cal-
culus.

C. Proof of Theorem 3

The statements of the theorem derive from Lemma 1
as follows. Item 1 clearly holds as the function (8)
depends only on the initial value~y(0). Item 2 follows
from (8) because all the eigenvaluesλk are real and with
modulo strictly smaller than1. Item 3 holds from the
fact that the largest modulo eigenvalue of matrixA is
λ1 = cos

(
π

m+1

)

= 1 − π2

2m2 + O(1/m4) and hence

R = log(1/λ1) =
π2

2m2 +O(1/m4). Item 4 holds as the
sum in (8) is asymptotically dominated by the largest
modulo eigenvalueλ2i−1 such that~vT2i−1~y(0) 6= 0, i.e.
the mode associated to the eigenvalueλ2i−1 is excited.
Let us consider the case where such an eigenvalue is
λ1 and m is even; the other cases follow by similar
arguments. From Lemma 1, we havey1(t) + ym(t) =

= 1−
2

m+ 1
λt
1



f1(~y(0)) +

dm

2
e

∑

i=2

f2i−1(~y(0))

(
λ2i−1

λ1

)t




and, thus, since|λ2i−1/λ1| < 1, for every 1 < i ≤
dm/2e,

y1(t) + ym(t) = 1−
2

m+ 1
λt
1 [f1(~y(0)) + o(1)] .

Finally, item 5 holds as

γ := max
i

|
λ2i−1

λ1
| ≤

λ3

λ1
= 1−

4π2

m2
+O(1/m4).

For an arbitraryε > 0, we have|λ2i−1/λ1|
t ≤ ε, for

every i > 1, provided that timet is such that

t ≥
log
(
1
ε

)

log
(

1
γ

) =
log
(
1
ε

)

4π2
m2[1 + o(1)].

Hence,T0 = O(m2).

D. Eigenvalues for a Blossom

Remark that an eigenvalueλ and eigenvector~v of
matrix A satisfyA~v = λ~v, i.e.

1

2
v2 = λv1 (14)

1

2
vi−1 +

1

2
vi+1 = λvi, 1 < i < n+m (15)

−
1

2
v1 +

1

2
vn+m−1 = λvn+m (16)

Suppose λ = cos(φ) and ~v =
(sin(φ), sin(2φ), . . . , sin((n + m)φ))T . Then, by
elementary trigonometric identities we note that (14)
and (15) hold for everyφ. On the other hand, (16) is
equivalent to

sin((n+m− 1)φ) = sin(nφ) + 2 cos(φ) sin((n+m)φ)

which by using elementary trigonometric identities is
equivalent to

sin

(
2n+m+ 1

2
φ

)

cos

(
m+ 1

2
φ

)

= 0.

Therefore,φ is either

φ1 =
2k1

2n+m+ 1
π or φ2 =

2k2 − 1

m+ 1
π

wherek1 andk2 are arbitrary integers. Since cosine is a
periodic function, it can be readily checked thatcos(φ1)
attains all possible values overk = 1, 2, . . . , n+ bm/2c
and similarly forcos(φ2) over k = 1, 2, . . . , dm/2e.
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E. Eigenvalues for a Bicycle

If λ is an eigenvalue of matrixA with eigenvector~v,
then we have

λv1 =
1

2
v2 −

1

2
vl+1

λvi =
1

2
vi−1 +

1

2
vi+1, i = 2, . . . , n+m+ l − 1

λvn+m+l =
1

2
vn+m+l−1 −

1

2
vl+n .

In the remainder, we separately consider two cases
depending on whether eitherl orm is even, or otherwise.
Case 1: l or m is odd.

Without loss of generality, supposel is odd. Let
us introduce the following one-to-one linear transfor-
mation ~z = S~v where matrixS is defined byzi =
vi + vl−i+1, for i = 1, . . . , bl/2c, and zi = 2vi for
i = bl/2c+1, . . . , n+ l+m. It is not difficult to verify
that S is non-singular and thus a matrixB such that
A = S−1BS is similar to A and, therefore, has the
same eigenvalues [13][Theorem 1.3.3].

Using the transformation~z = S~v andA~v = λ~v, we
have

λz1 =
1

2
z2

λzbl/2c+1 = zbl/2c

λzn+m+l =
1

2
zn+m+l−1 −

1

2
zn+l

and for i = 2, . . . , bl/2c and i = bl/2c+ 2, . . . , n+ l+
m− 1,

λzi =
1

2
zi−1 +

1

2
zi+1 .

Notice thatλ~z = SAS−1~z = B~z, and from the above
identities

B =

(
P 0

Q R

)

whereP is a dl/2e × dl/2e tridiagonal matrix given by

P =











0 1/2 0 · · · 0

1/2
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . 1/2

. . . 1/2
0 · · · 0 1 0











,

Q is a (n+m+ bl/2c)×dl/2e matrix with all elements
equal to zero but the element in the first row and last
column equal to1/2, andR is a (n+m+ bl/2c)× (n+
m + bl/2c) matrix that corresponds to a blossom with
n+dl/2e matched stem edges andm matched loop edges
and is of the form (9) under Case 1 in Section III-C.

Using the properties of determinants of block matri-
ces, we observe that eigenvalues ofB consist of eigen-
values of matricesP andR. Therefore, the eigenvalues
of matrix B, and by similarity of matrixA, are

cos

(
π(2k − 1)

l + 1

)

, k = 1, . . . , dl/2e, (17)

cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , dm/2e, (18)

cos

(
2πk

2n+ l +m

)

, k = 1, . . . , n+ bl/2c + bm/2c(19)

where (17) are eigenvalues of matrixP, which is easily
derived and thus omitted, and (18) and (19) are eigenval-
ues ofR which we have already showed in Section III-C.

It is not difficult to see that the above eigenvalues hold
whenever eitherl or m is odd.
Case 2: both l andm are even.

We use a similar but different one-to-one transforma-
tion as under Case 1:zi = vi+vl−i+1, for i = 1, . . . , l/2,
zi = vi + vi+1 for i = l/2 + 1, . . . , n + l + m/2, and
zi+n+l = vn+l+i + vm+n+l−i+1 for i = 0, . . . ,m/2. We
have that

λz1 =
1

2
z2

λzl/2 =
1

2
zl/2−1 +

1

2
zl/2

λzn+l+m/2 =
1

2
zn+l+m/2 +

1

2
zn+l+m/2+1

λzn+m+l =
1

2
zn+m+l−1

and for i = l/2 + 1, . . . , n + l + m/2 − 1 and i =
n+ l +m/2 + 1, . . . , n +m+ l − 1,

λzi =
1

2
zi−1 +

1

2
zi+1 .

Similarly as for Case 1, using the properties of deter-
minants of block matrices, we have that the eigenvalues
of A are

cos

(
π(2k − 1)

l + 1

)

, k = 1, . . . , l/2,

cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . ,m/2,

cos

(
πk

n+ l/2 +m/2

)

, k = 1, . . . , n+ l/2 +m/2− 1,

and − 1

where (1,−1, 1,−1, . . . , 1,−1)T is the eigenvector of
eigenvalue−1.
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F. Proof of Theorem 6

Let us start by noting that there are two possible
alternating matchingsM : (1) defined by letting the edge
(0, 1) be matched and (2) otherwise. The number of
unmatched edges in the two cases isbn/2c and dn/2e,
respectively. The analysis follows the same steps for the
two cases, thus we consider only the first case.

The first assertion (12) clearly holds for every initial
value such that0 ≤ x̄i,j(0) ≤ 1, for every edge(i, j).
This follows by induction because the states are updated
to convex combinations of values in[0, 1].

In the remainder of this section, we show asser-
tion (13) through the following steps: (1) we first
identify a tridiagonal system that describes the system
evolution; (2) we then show that for everyt ≥ 0,
max(x̄1,0(t), x̄n−1,n(t)) is maximum by taking either
u(t) = 1 or u(t) = 0, for every t ≥ 0; (3) in this
step, we show thatlimt→∞max(x̄1,0(t), x̄n−1,n(t)) =
µ where 0 < µ ≤ 1 − 1/n; and (4) we show
that from the initial value as assumed in the theorem,
max(x̄1,0(t), x̄n−1,n(t)) converges toµ from below. Fi-
nally, we put pieces together at the end of this section.
Step 1: a tridiagonal-system representation. It suffices
to consider the caseα = 1 as taking0 < α ≤ 1 only
affects the rate of convergence. Under this assumption,
the path bounding dynamics boils down to the following:

• For an unmatched edge(i, i + 1):

x̄i,i+1(t+ 1) =
1

2
x̄i−1,i(t) +

1

2
x̄i,i−1(t), for i > 0

x̄i+1,i(t+ 1) =
1

2
x̄i+2,i+1(t) +

1

2
x̄i+1,i+2(t)

• Otherwise, for a matched edge(i, i + 1):

x̄i,i+1(t+ 1) = x̄i−1,i(t)

x̄i+1,i(t+ 1) = x̄i+2,i+1(t), for i < n− 1

wherex̄0,1(t) andx̄n,n−1(t) are arbitrary input sequences
taking values in{0, 1} such that̄x0,1(t)+ x̄n,n−1(t) = 1,
for every t ≥ 0.

From the above dynamics, we observe that for un-
matched edges(i, i + 1), i.e. for i = 1, 3, . . . , 2m − 1
where m = bn/2c is the total number of unmatched
edges, we have fort > 0,

x̄i,i+1(t+ 1) =
1

2
x̄i−2,i−1(t− 1) +

1

2
x̄i+1,i(t− 1)

x̄i+1,i(t+ 1) =
1

2
x̄i+3,i+2(t− 1) +

1

2
x̄i,i+1(t− 1)

(20)

wherex̄−1,0(t− 1) = x̄0,1(t) and x̄2m+2,2m+1(t− 1) =
x̄n,n−1(t).

We consider the dynamics of the valuesx̄i,i+1(t)
and x̄i+1,i(t) for unmatched edges at even times as the

dynamics of this process boils down to a simpler linear
dynamical system. Notice that knowing these state values
at even times, the corresponding state values at odd times
are determined by the original state updates. To this end,
let us define, fort ≥ 0 and i = 1, 2, . . . ,m,

xi(t) := x̄2i−1,2i(2t) andyi(t) := x̄2i,2i−1(2t).

From (20), we have fort ≥ 0 and i = 1, 2, . . . ,m,

xi(t+ 1) =
1

2
xi−1(t) +

1

2
yi(t)

yi(t+ 1) =
1

2
xi(t) +

1

2
yi+1(t)

(21)

wherex0(t) and ym+1(t) are arbitrary input sequences
taking values in{0, 1} such thatx0(t) + ym+1(t) = 1,
for everyt ≥ 0.

Note that of our particular interest arey1(t) andxm(t)
as

x̄1,0(t+ 1) = x̄2,1(t) = y1(t)

x̄n−1,n(t+ 1) = x̄n−2,n−1(t) = xm(t).
(22)

From (21), it is not difficult to observe that for every
t > 0, yi(t) = xi+1(t) for i = 1, 2, . . . ,m−1. Therefore,
we can fully describe the dynamics by the following
discrete-time linear system, fort > 0,

x1(t+ 1) =
1

2
x0(t) +

1

2
x2(t)

x2(t+ 1) =
1

2
x1(t) +

1

2
x3(t)

...

xm−1(t+ 1) =
1

2
xm−2(t) +

1

2
xm(t)

xm(t+ 1) =
1

2
xm−1(t) +

1

2
ym(t)

ym(t+ 1) =
1

2
xm(t) +

1

2
ym+1(t)

with the initial valuesx1(1) = x0(0)/2, xi(1) = 0, for
1 < i ≤ m, andym(1) = ym+1(0)/2.

In other words, ~z(t) =
(x1(t), x2(t), . . . , xm(t), ym(t))T is defined by the
initial point ~z(1) = (x0(0)/2, 0, . . . , 0

︸ ︷︷ ︸

m−1

, ym+1(0)/2)
T

and
~z(t+ 1) = A~z(t) +~b(t), t > 0, (23)

where A is the (m + 1) × (m + 1) tridiagonal
matrix with elements given by (4), and~b(t) =
(12x0(t), 0, . . . , 0︸ ︷︷ ︸

m−1

, ym+1(t)/2)
T .

In view of (22), notice that of our interest arez2(t)
andzm(t) becausey1(t) = z2(t) andxm(t) = zm(t).
Step 2: extremal input sequence. We will show that
the input sequencex0(s) = 1, for s ≥ 0 is extremalin
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the following sense: for every givent > 0, it maximizes
z2∧m(t) and minimizeszm∨2(t). Indeed, by symmetry,
x0(s) = 0, for s ≥ 0 is extremal in the sense of
minimizing z2∧m(t) and maximizingzm∨2(t), for any
given t > 0.

Let us definesi(t) = zi(t) + zm−i+2(t) and di(t) =
zi(t) − zm−i+2(t), for i = 1, 2, . . . ,m + 1 and t < 0.
From these definitions, it is readily observed that

si(t) = sm−i+2(t) (24)

and
di(t) = −dm−i+2(t) (25)

and, thus, it suffices to consider only the following
vectors~s(t) = (s1(t), s2(t), . . . , sdm/2e(t))

T and ~d(t) =
(d1(t), d2(t), . . . , ddm/2e(t))

T .
Using (23), it is not difficult to derive that, fori =

1, 2, . . . , dm/2e, andt > 0,

si(t+ 1) =
1

2
si−1(t) +

1

2
si+1(t) (26)

wheres0(t) = 1, and

di(t+ 1) =
1

2
di−1(t) +

1

2
di+1(t) (27)

whered0(t) = 2x0(t)− 1.
Remark that fori = dm/2e, si+1(t) = si(t) while

di+1(t) = 0 if m is even anddi+1(t) = −di(t),
otherwise.

It is readily observed that fori = 1, 2, . . . ,m+ 1,

zi(t) =
1

2
si(t) +

1

2
di(t).

For m = 1, we can write

z1(t) =
1

2
s1(t) +

1

2
d1(t)

z2(t) =
1

2
s1(t)−

1

2
d1(t)

where the last equality is by using (24) and (25), while,
otherwise, form > 1, we can write

z2(t) =
1

2
s2(t) +

1

2
d2(t)

zm(t) =
1

2
s2(t)−

1

2
d2(t)

(28)

where the last equality is by using (24) and (25).
From (26) and (27), note that that~s(t) evolves accord-

ing to an autonomous linear system while~d(t) evolves
according to a non-autonomous linear system with input
sequencex0(t) − 1

2 . From (27), we observe thatdi(t),
1 ≤ i ≤ dm/2e, are maximized for the input sequence
x0(t) = 1, for t ≥ 0. In view of the above identities, we
have that the latter sequence is extremal.

Step 3: limit point . Since all the eigenvalues of the
system (23) are real and with modulo strictly smaller
than1, the system is globally asymptotically stable, i.e.
it converges to a unique limit point from any given initial
value. The rate of convergence is determined by the
largest modulo eigenvalue, and the dominant asymptotic
term of the rate of convergence isπ

2

2m2 , for largem.
We identify the limit point of the system (23) for the

input sequence(x0(t), ym+1(t)) = (a, b), for t ≥ 0,
wherea andb are positive constants. This accommodates
the aforementioned extremal input sequence by choosing
a = 1 and b = 0. A fixed point ~z is a solution of the
following system of linear equations:

~z = A~z +~b

where~b = (a/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, b/2).

It can be readily checked that there is a unique solution
given by

zi = a+ i
b− a

m+ 2
, for i = 1, 2, . . . ,m+ 1.

Therefore,

z2 =

(

1−
2

m+ 2

)

a+
2

m+ 2
b

zm =
2

m+ 2
a+

(

1−
2

m+ 2

)

b.

In particular, fora = 1 andb = 0, we have

max(z2, zm) = z2∧m =

{
1− 1

m+1 , for m = 1

1− 2
m+2 , for m > 1.

Step 4: convergence to the limit point. We consider
max(z2(t), zm(t)), for t ≥ 0, for the input sequence
x0(t) = 1, for t ≥ 0. We consider only the casem > 1
as the casem = 1 can be considered by similar steps.

From (28), we note thatmax(z2(t), zm(t)) = z2(t),
for t ≥ 0, and thus it suffices to considerz2(t), for
t ≥ 0.

Notice that~z(1) = ~b(0) and thus from (23), fort > 0,

~z(t) =

t−1∑

s=0

At−1−s~b(s).

Let us use the spectral decomposition
A =

∑m+1
k=1 λk~vk~v

T
k where λk is an eigenvalue

and ~vk the corresponding eigenvector of matrixA,
which we identified in Section III-A. Noting that

~z(t) =

m+1∑

k=1

t−1∑

s=0

λt−1−s
k ~vk~v

T
k
~b(s)
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and

~vTk
~b(s)

√

m+ 2

2

=
x0(s)

2
sin

(
πk

m+ 2

)

+
1− x0(s)

2
sin

(
πk(m+ 1)

m+ 2

)

= sin

(
πk

m+ 2

)[
1

2
− (1− x0(s))1k even

]

we obtain

~z(t) =

√

2

m+ 2

m+1∑

k=1

~vk sin

(
πk

m+ 2

)

·

·

[

1− λt
k

2(1 − λk)
− 1k even

t−1∑

s=0

λt−1−s
k (1− x0(s))

]

.

From this, it is not difficult to derive

z2(t) =
2

m+ 2

m+1∑

k=1

λ2
k − (1 + λk)λ

t+1
k

−
4

m+ 2

m+1∑

k=1

(1− λ2
k)λk1k even·

·
t−1∑

s=0

λt−1−s
k (1− x0(s)).

For the extremal input sequencex0(t) = 0 for t ≥ 0,
we have

z2(t) =
4

m+ 2

dm/2e
∑

k=1

λ2
k −

2

m+ 2

m+1∑

k=1

(1 + λk)λ
t+1
k .

Using the identity
m+1∑

k=1

(1 + λk)λ
t+1
k =

{

2
∑dm/2e

k=1 λt+2
k t even

2
∑dm/2e

k=1 λt+1
k t odd

we have

z2(t) =
4

m+ 2

dm/2e
∑

k=1

λ2
k − λk(1 + λk1k even)λ

t
k.

Since0 < λk < 1 for 1 ≤ k ≤ dm/2e we observe
thatz2(t) is increasing witht, i.e. it approaches its limit
point from below.
Proof of the theorem. We showed that for everyt ≥ 0,

max(x̄1,0(t), x̄n−1,n(t)) ≤

{
1− 1

bn

2
c+2 1 < n ≤ 2

1− 2
bn

2
c+2 n > 2

and showed that there exists an extremal input sequence
(x̄0,1(t), x̄n,n−1(t)), t ≥ 0, for which the equality is
achieved asymptotically ast goes to infinity.

The asserted bound1 − 1/n in (13) readily follows
from the above displayed inequality, which completes
the proof.


