
Continuous Distributed Counting for Non-monotonous Streams

Zhenming Liu1 Božidar Radunović 2 Milan Vojnović 3

Technical Report
MSR-TR-2011-128

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1zhliu@eecs.harvard.edu Harvard School of Engineering and Applied Sciences. Work performed while an intern with
Microsoft Research Cambridge.

2bozidar@microsoft.com Microsoft Research, Cambridge, UK.
3milanv@microsoft.com Microsoft Research, Cambridge, UK.

Abstract – We consider the continual count tracking problem in a distributed environment where the input is an
aggregate stream originating from k distinct sites and the updates are allowed to be non-monotonous, i.e. both incre-
ments and decrements are allowed. The goal is to continually track the count within a prescribed relative accuracy
ε at the lowest possible communication cost. Specifically, we consider an adversarial setting where the input values
are selected and assigned to sites by an adversary but the order is according to a random permutation or is a random
i.i.d process. The input stream of values is allowed to be non-monotonous with an unknown drift −1 ≤ µ ≤ 1 where
the case µ = 1 corresponds to the special case of a monotonous stream of only non-negative updates. We show that
a randomized algorithm guarantees to track the count accurately with high probability and has the expected commu-
nication cost Õ(min{

√
k/(|µ|ε),

√
kn/ε, n}), for an input stream of length n, and establish matching lower bounds.

This improves upon previously best known algorithm whose expected communication cost is Θ̃(min{
√
k/ε, n}) that

applies only to an important but more restrictive class of monotonous input streams, and our results are substantially
more positive than the communication complexity of Ω(n) under fully adversarial input. We also show how our frame-
work can also accommodate other types of random input streams, including fractional Brownian motion that has been
widely used to model temporal long-range dependencies observed in many natural phenomena. Last but not least, we
show how our non-monotonous counter can be applied to track the second frequency moment and to a Bayesian linear
regression problem.

1 Introduction
A continuous distributed tracking model was introduced in [6] to address the challenges of designing an effective

strategy to constantly track statistics in a dynamic, distributed environment. In this model, data arrive in multiple
streams to a number of sites. All the sites are connected to a coordinator, and the goal of the coordinator is to contin-
uously track some function of the aggregate data, and update it as new data arrives. An exact tracking would require
each data sample to be communicated to the coordinator, which would incur a prohibitively large communication cost
- linear in the size of the input stream. Similarly, space and time processing requirements may be very large. However,
for most applications it is satisfactory to provide an approximate tracking. Thus, a general formulation of a continuous
distributed tracking problem is to design an algorithm that will minimize the space, time and/or communication com-
plexity while providing approximation guarantees on the tracking accuracy. Continuous distributed tracking problems
have recently gained much interest in the research community [21, 8, 2, 20].

One of the basic building blocks for many of the existing algorithms is a counter. The goal of the counter is
to report, with a given relative accuracy, the sum of values of all elements that have arrived across the aggregate
stream arriving from distributed sites. The main assumption in almost all the previous works is that the input stream
being counted is monotone non-decreasing and, surprisingly, there is very little work on continuous distributed non-
monotonic counters. Similarly, most of the previous algorithms using counters are not guaranteed to work correctly
under non-monotonous input stream.

However, many data streams do not satisfy the monotonicity property. A simple motivating example is a vot-
ing/ranking application. Suppose users’ votes come in a distributed stream. The goal is to keep a continuous track of
which of the two options has a higher number of votes, and approximately by which voting margin. Here, the votes
for each option can essentially be seen as two separate data streams, but we are interested in continuously monitoring
the difference of the two streams, which is clearly non-monotonic. The naive approach of estimating the count of each
option separately and then taking the difference will not provide a relative error guarantee for the difference.

Non-monotonic streams are common in many situations when dealing with instantaneous instead of cumulative
phenomena, e.g. tracking a difference. One example we analyze in more detail is monitoring a process that exhibits
long-range dependency, a phenomena that has been found to be prevalent in nature, e.g. network traffic [14]. Also,
non-monotonic counters are useful as building blocks in more complex algorithms whose inputs are not necessarily
monotone. A source of non-monotonicity could be the use of random projections that transform an input data stream
into a non-monotonous stream. Another example that we discuss is a streaming implementation of a Bayesian linear
regression problem (c.f. [3]), which is useful in the context of machine learning platforms for processing of large-scale
data (e.g. [15]).

In this work we are interested in designing a continuous non-monotonic distributed counter with optimal com-
munication complexity. We will also discuss its applications in different scenarios. In the next section, we define the
problem in more detail.

1

1.1 Problem Definition
Consider a standard distributed streaming model where k sites are connected to a coordinator. Each site is

allowed to communicate with the coordinator but they cannot communicate with each other directly (and a broadcast
message counts as k messages). Data items a1, . . . , an arrive at sites ψ(1), . . . , ψ(n) respectively, at time instants
τ1 < · · · < τn. We shall refer to the item at as the t-th update. In a general continuous distributed monitoring
problem, the coordinator is responsible to maintain a value of a function f(a1, . . . , at) at each time τt with a relative
accuracy ε. We are interested in the counter problem, where the goal is to track a sum St =

∑
i≤t ai of all the items

that have arrived until time τt. The coordinator then needs to maintain an estimate that is between (1 − ε)St and
(1 + ε)St. Note that, by definition, the counter problem has low space and time complexity, and thus we focus on
minimizing communication complexity.

A monotone counter only allows for positive increments. In particular, a canonical example of a monotone
counter [12] implies at = 1 for all t, meaning that a counter is incremented by one whenever an update arrives. We
relax the assumption that at is positive, and we call this a non-monotone counting problem.

To the best of our knowledge, the only research so far dealing with non-monotonous input streams is Aracka-
parambil et al. [2], who studied the tracking of frequency moments Fp, where deletion operations are allowed (at = 1
denotes an insertion and at = −1 denotes a deletion). There, a strong negative result is established for the adversary
input case for both tracking counts and tracking Fp when deletion is allowed: the worst-case communication com-
plexity is Ω(n) messages for an input stream of n elements. It is straightforward to construct a worst-case input for
the counter problem: consider the case where there is only one site and the updates consist of alternations between an
insertion and a deletion. In this case, the true global counter evolves as the sequence 0, 1, 0, 1, When one update
is missed from the site, then the multiplicative error from the server becomes unbounded. Therefore, upon the arrival
of each update, the site has to send a message to the server, which implies a communication lower bound of Ω(n)
messages. While there is no way to circumvent this linear lower bound barrier for the worst-case input, it is natural to
ask what the communication complexity is when the input is not fully adversarial and consider the following question:

Can we design a continuous, distributed tracking protocols for counter for non-monotonous updates
that has a sublinear communication complexity when the input is randomized?

In particular, we are interested in a random permutation model. In this model, an adversary first decides the
entire sequence of updates a′1, . . . , a

′
n for all sites. We only assume that the sequence is bounded. Then, the “nature”

decides a random permutation π. The final input to the sites is a1 = a′π(1), a2 = a′π(2), . . . , an = a′π(n). This model is
very natural in large-scale settings (such as Internet scale, for example), where data is collected from a large number
of individuals (e.g. Twitter of Facebook users). In such a model, a large amount of data is generated in short time
intervals, and it is reasonable to assume that the order in which the individuals enter their inputs in the system is
random, but the input itself can be arbitrary.

We are also interested if sublinear algorithms can be obtained for other types of random inputs that are well
motivated by applications. For example, the use of random projections for computing sketches motivates to consider
random i.i.d. updates. Another example is found in nature where many real-world phenomena exhibit self-similarity
and long-range dependence (e.g. network traffic [14]) which where traditionally modeled by random processes such
as fractional Brownian motion and found to be in good conformance with empirical data.

In all these data models, we shall assume that an adversary chooses the function ψ(t) which defines how the
stream is partitioned among the sites (an example is a load-balancing algorithm that can arbitrarily scatter inputs
across sites). The adversary can only decide the function ψ(t) based on the information observed up to a point in time.
This means that when the input is a random permutation, ψ(t) can depend on the content of the updates decided by
the adversary, the prefix of the permutation observed so far, and the values ψ(1), . . . , ψ(t − 1); while when the input
is random, the function ψ(t) can only depend on the values of a1, . . . , at−1 and the values of ψ(1), . . . , ψ(t − 1); .
We will also assume that the times τ1, . . . , τn at which the inputs arrive are decided by an adversary. This essentially
implies that the coordinator and the other sites have no knowledge of the time instants at which an input arrives to its
corresponding site, and any communication can only be initiated by a site that has received an update.

Note that our model is a strict generalization of the standard monotone stream model for counting (c.f. Huang
et al. [12]), where the updates are fixed to at = 1, and the arrival times and sites are adversarial. In our case, we
relax the assumption on the value of updates and allow for randomly permuted adversarial or entirely random values
of updates, while still keeping the adversarial data partitioning and arrival times.

2

1.2 Our Contributions
Our main results in this paper are matching upper and lower bounds on the communication complexity for a

continuous, distributed, non-monotonous counter (up to a poly-logarithmic factor), which are sublinear in the size of
the input. While these bounds hold for different types of inputs, we give a single algorithm that is optimal for all
the types of inputs considered, and whose communication cost also matches the corresponding lower bounds. The
algorithm is lightweight in having only Õ(1) space and update time complexity.

We first provide results for the case of Bernoulli i.i.d. input (Section 3) where we develop basic techniques that
will be used in subsequent analysis. In the Bernoulli i.i.d. model, we assume that each update at is a Bernoulli random
variable, with Pr[at = 1] = 1 − Pr[at = −1] = p, for some unknown parameter p ∈ [0, 1]. The counter value St is
then a Bernoulli random walk with a drift µ = 2p − 1. In the case of a Bernoulli i.i.d. input without a drift (µ = 0),
we show that a count can be tracked with Õ(

√
kn/ε) communication cost. In case of a Bernoulli i.i.d. input with

an unknown drift µ ∈ [−1, 1], the achievable communication cost is Õ(min{
√
kn,
√
k/|µ|}/ε). In both cases, our

algorithm does not need to know the drift. We also give matching lower bounds for most important cases (Section 4),
showing the optimality of our algorithm.

This result should be compared with the communication cost Θ̃(
√
k/ε) for a monotonous counter (with at = 1)

that was recently established in [12]. We show that the same bound holds for a more general choice of updates (any
i.i.d. Bernoulli input), as long as the drift is a positive constant. This is perhaps not entirely surprising, as for the
constant drift case, we use the algorithm from [12] as one of the building blocks for our algorithm. The key novel
insight is that the communication cost increases to Õ(

√
kn/ε) when the drift is |µ| = O(1/

√
n). Thus, we demonstrate

that we are still able to track the count with a sublinear communication complexity, and we describe the parameter
ranges in which the cost is polynomial vs. polylog in the input size.

We next turn to our main results for the permutation model (Section 3.3). Here we show that tracking is achievable
with Õ(

√
kn/ε) communication cost and we give a matching lower bound (Section 4). This is to be contrasted with

Θ(n) lower bound for a non-monotonic counter in a fully adversarial setting [2]. We show that randomly permutating
an arbitrary non-monotonous input is enough, in a setting where all other parameters are chosen by an adversary,
to permit a tracking algorithm with a sublinear communication cost. This shows that a sublinear tracking of non-
monotonous input is still possible in a large number of real-world scenarios.

We further show that our algorithm can achieve a Õ(k
3−δ

2 n1−H/ε) communication cost when tracking a frac-
tional Brownian motion with Hurst parameter H ∈ [1/2, 1), where 1 < δ ≤ 1/H is an arbitrary parameter (Sec-
tion 3.4). For the case of independent increments (H = 1/2), we get the same bound as before. For the case of
positively correlated increments (1/2 < H < 1), which is of most interest in applications, we get a smaller commu-
nication cost. This is intuitive in view of the facts that increments are positively correlated which makes the process
more predictable and the variance is larger which implies smaller expected residence of the count in the region of
small values where there is a higher sensitivity to relative errors. Interestingly, the algorithm does not require to know
the exact value of the parameter H , but only needs to have an estimate 1/δ such that H ≤ 1/δ.

Finally, we show how our counter can be used as a building block for some instances of distributed tracking
problems (Section 5). First, we construct an algorithm to track the second frequency moment (F2 tracking) with
Õ(
√
kn/ε3) communication complexity (Section 5.1) and we provide a lower bound Ω(min{

√
kn/ε, n}) that is

matching in both n and k. We also show how to use the non-monotonous counter as a building block for a Bayesian
linear regression problem (Section 5.2), and show that the Bayesian linear regression can also be tracked with sublinear
communication cost.

It is noteworthy that while the communication cost for non-monotonous random streams with subconstant drift is
sublinear in the input size, this is significantly larger than for monotonous streams (Õ(

√
n) vs Õ(1)), which is because

the problem is intrinsically more difficult. However, the fact that the communication cost is sublinear in the input size
would still make the algorithm of appeal for practical applications. For example, Twitter users generate more than 108

tweets a day [19]. In this scenario, the communication cost of our algorithm for tracking a single counter would only
be in the order of 104 messages per day, which is a significant reduction of the traffic load. Furthermore, our bounds
are matching with the bounds for the monotonous counters in k and ε parameters.

We briefly discuss the main techniques used in this paper. As we are designing algorithms for random input data
stream in a distributed environment, our solution naturally calls for an integration of different techniques from sampling
theory, analysis of stochastic processes, classical streaming algorithms, and distributed algorithm design. The main
ingredient in our algorithm to tackle an otherwise intractable problem in the adversarial setting is to make an optimal
prediction on the evolution of the counter process using a scarce communication resource and adaptively changing

3

the tracking strategy as we continuously update our predictions. Making the prediction requires us to understand the
volatility structure of the counter process; in our specific case, this boils down to the analysis of first passage time
of random walks and random permutations. Designing a communication efficient tracking algorithm requires us to
construct a sampling based protocol that can judiciously cope with the volatile structure of the process. To prove our
matching lower bounds, we needed to carefully decompose the entire tracking process into disjoint segments so that
we can apply results from the communication complexity and sampling theory separately on each segment and reach
a strong lower bound that is polynomial in n.

1.3 Related Work
The research on functional monitoring in distributed systems has considered a variety of problems (e.g. [9, 10, 4,

7, 16]) including one-shot and continuous tracking query problems. To the best of our knowledge, Cormode et al. [6]
is the first work that articulated the distributed computation model that we consider in the present paper. Substantial
progress has recently been made on understanding various problems under this model, including drawing a sample
with or without replacement (e.g. [8, 20]) and answering holistic queries such as tracking the rank of an item or
computing a quantile (e.g. [12, 5, 21]).

The most closely related work to ours is the recent work of Huang et al. [12] and Arackaparambil et al. [2]. The
work of Huang et al. examines the same counter problem as ours but assuming an important but more restrictive
class of monotonous streams, where only positive increments are allowed. Our work relaxes this assumption on the
input by allowing for non-monotonous streams where decrements are allowed (either i.i.d. or random permutation).
Specifically, we assume that the rate of positive increments is (1+µ)/2, for some unknown drift parameter−1 ≤ µ ≤
1. For the special case of the drift parameter µ = 1, our counter algorithm would solve the same counter problem as
in [12] with the matching performance.

The work of Arackaparambil et al. considered non-monotone functional monitoring in the adversarial setting,
including the problem of continuously tracking F2 that we study here. They established an Ω(n) lower bound for
the 1-site case and an Ω(n/k) lower bound for the k-site case. For the random input stream that we study here, we
establish a tight lower bound that is sublinear in n and grows with k, suggesting that our problem under random input
may have a different structure than the one under fully adversarial input.

2 Algorithms and Notations
We now present our algorithm for continuous distributed counting for non-monotonous streams. The algorithm

is applicable to all input models, subject to choosing appropriate constants. In the subsequent sections we will show
how to choose the constants for each input model under consideration.

In what follows, we shall let µ = E[Xi] be the drift rate of the counter process, Ŝt be the coordinator’s estimate
of St. When the context is clear, we refer to at as both the t-th update and the item arrived at time t interchangeably
though we shall be clear that the actual physical time is irrelevant in our algorithm. Also, we shall assume that each
site always keeps track of the total number of updates arrived locally and maintain a local sum counter. Let us start
with introducing the basic constructs we need for the design of our distributed algorithm.

2.1 Building Blocks
The key novel building block in our scheme is:

Sampling and Broadcasting (SBC). In this protocol, the coordinator broadcasts its current estimate Ŝt to all the sites
at the beginning. Each site maintains a common sampling rate ≈ 1/(ε2Ŝ2

t) that depends only on the global estimate
Ŝt. Whenever a site receives a new update, it samples a Bernoulli random variable Rt with the above rate. If Rt = 1,
the following actions will be carried out sequentially (invoking Θ̃(k) message exchanges):

1. The site signals the coordinator to sync all data.
2. The coordinator broadcasts a message to all the sites to collect their local counters.
3. Each site reports its local counter to the coordinator. The coordinator computes the new exact count and broad-

casts this new count to all sites.

4

Upon receiving the new count Ŝt, each site adjusts the sampling rate of the Bernoulli random variable to

Sample-Prob(Ŝt, t) = min

{
α logβ n

ε2Ŝ2
t

, 1

}
(1)

where α and β are some appropriately chosen positive constants.
We will also use the following building blocks:

HYZ counter. In [12], a distributed counter is developed to track monotone updates with a relative accuracy ε and er-

ror probability δ using Õ(
√
k
ε log(1/δ)) communication when k = O(1/ε2) and Õ(k log(1/δ)) communication when

k = ω(1/ε2) (here, Õ(·) hides the poly-logarithmic dependencies on n). We shall refer this protocol as HYZ(ε, δ).
Geometric Progression Search for µ (GPS). The goal of this building block is to produce a reliable estimator of µ.
It will report an estimate µ̂ only when sure w.h.p. that µ̂ ∈ [(1 − ε)µ, (1 + ε)µ], where ε is a given constant. It also
guarantees that µ̂ is found before time Θ(log n/µ2). We describe the GPS protocol in more details in Appendix.
Straightforward Synchronization (StraightSync). In this protocol, the coordinator pulls out the exact values of t
and St from the sites in the beginning of the protocol. When a local site receives an update, it contacts the coordinator
and executes the following steps sequentially:

1. The site sends both the total number of local updates and the local counter to the coordinator.
2. The coordinator updates the global count and the global number of updates.
3. The coordinator sends the updated global count and global number of updates to the site.

2.2 Algorithm Overview
Our algorithm, called Non-monotonous Counter, consists of two phases.

Phase 1: The first phase covers updates from t = 0 to t = τ , where τ = c log n/(µ2ε) for some sufficiently large
constant c > 0. During this phase, we have two communication patterns:
• When (εŜt)

2 ≥ k, we use the SBC protocol.
• When (εŜt)

2 < k, we use the StraightSync protocol.
The coordinator shall make a broadcast when the algorithm makes a switch between SBC and StraightSync protocol.

Phase 2: The second phase covers from t = τ to t = n (the second phase could be empty when τ ≥ n). In the second
phase, the algorithm maintains a HYZ(Θ(εµ),Θ(1/n2)) to track the total number of positive updates and another
HYZ(Θ(εµ),Θ(1/n2)) to track the total number of negative updates. The difference between the positive updates and
the negative updates is the estimator maintained by the coordinator.

In addition, our GPS procedure is executed in the background, and it will be able to tell us a good estimate of µ,
and decide when Phase 1 ends. When the algorithm changes from the first phase to the second phase, the coordinator
shall make a broadcast to inform different sites of the phase change.

3 Upper Bounds
In this section, we analyze the performance of the Non-monotonous Counter algorithm for i.i.d. input, randomly

ordered streams, and fractional Brownian motion. Because the input is of stochastic nature, we shall write the updates
as X1, X2, . . . , Xn instead of a1, . . . , an to emphasize the randomness. Our analysis starts with the simplest case,
where k = 1 and the input is i.i.d. with µ = 0. Then we move to the more complex scenarios, in which there are
multiple sites and unknown µ. Finally, we generalize our algorithms and analysis to the randomly ordered stream and
fractional Brownian motion case, where the updates are no longer independent. Along the way, we shall explain the
reasons why we design the algorithm in such a way and gradually unfold the key techniques used in the analysis.

3.1 I.i.d. Input with Zero Drift
Recall the algorithm Non-monotonous Counter that is described in Section 2. To analyze the behavior of our

algorithm we start by giving an upper bound for the single-site case (k = 1), and we then turn to the multi-site case.
In the single-site case, we need to introduce a small modification to the algorithm. Since the site is aware of the exact

5

counter value Ŝt = St, there is no need for the straightforward stage and we assume that the algorithm is always in
the broadcast stage. Also, there is no need for the coordinator to send messages back to the site.

We will use the sampling probability as defined earlier in (1) with α > 9/4 and β = 2. The parameter α controls
the tradeoff between communication complexity and the success probability. The choice of pt is intuitive because the
smaller St is, the more likely that a small change of St will cause large multiplicative change; therefore, the site should
report the value to the coordinator with higher probability.

We have the following theorem:

Theorem 3.1. For the single-site case, the randomized algorithm Non-monotonous Counter with the sampling prob-
ability as in (1), with α > 9/2 and β = 2, guarantees to track the count within the relative accuracy ε > 0 with
probability 1−O(1/n) and uses the total expected communication of O(min{

√
n/ε · log n, n}) messages.

Proof is provided in Appendix. Here, we comment on the intuition of using a sampling based algorithm and
setting the sampling probability as specified in (1). We want the site to send messages to the coordinator as infrequently
as possible. Suppose that at time t, we have St = s and a message is sent to the server. We need to understand what
the next appropriate time would be to send another message. Ideally, this shall happen at the time where St first passes
through either s/(1+ε) or s/(1−ε). Implementing this strategy is feasible when there is only one site but it is unclear
how it can scale up to k site case (because the challenge of distributed tracking algorithms exactly lies in the difficulties
of exactly tracing the aggregate statistics and thus it is hard to spot the exact first passage time). It is therefore desirable
to use a “smooth” strategy by a site, i.e. the algorithm does not critically rely on the knowledge on the time when St
first passes through some pre-specified points. The sampling based algorithm possesses such a property. We also need
to estimate the sampling rate of the algorithm. Intuitively, it takes an unbiased random walk approximately (εs)2 time
to travel for a distance of about length εs (to hit either s/(1 − ε) or s/(1 + ε)). When εs becomes sufficiently large,
we even have a concentration result, i.e. with high probability, the time it takes to hit either s/(1− ε) or s/(1 + ε) is
Θ̃((εs)2). Therefore, sampling at rate Θ̃(1/(εs)2) is not only sufficient to maintain high accuracy but also optimal.

We now extend to the multiple site case. Let us first go through the intuition why we want to distinguish the
two stages of the algorithm, the straightforward (StraightSync) stage and the broadcast (SBC) stage, described in
Section 2. The main idea of our distributed algorithm is to simulate the behavior of the sampling algorithm for
the single site case (Theorem 3.1). For that we require that each site has a good estimate Ŝt of the global count
St. As Ŝt gets updated, the copies of the counter at all sites need to be updated, in order to maintain the correct
local sampling rate. The only way to achieve so is to broadcast the counter, which would result in Θ̃(k) messages
exchanged. The crucial observation here is that when Ŝt gets updated frequently (i.e., when St is sufficiently small),
broadcasting messages after each update could be wasteful. It may be even worse than the trivial approach where a
site synchronizes only with the coordinator whenever it receives an update (resulting in Θ̃(1) messages). This “trivial”
approach is captured in our straightforward strategy, and we switch to it whenever it is less expensive. Note that we can
use the estimator Ŝt instead of the actual value St to decide whether the broadcasting or the straightforward strategy
has the smaller communication cost, because we guarantee a sufficiently high accuracy of the estimator.

We have the following theorem.

Theorem 3.2. The randomized algorithm Non-monotonous Counter with the sampling probability as in (1), with α
large enough positive constant and β = 2, guarantees to track the count within the relative accuracy ε > 0 with
probability 1−O(1/n) and uses the total expected communication of O(min{

√
kn/ε · log n, n}) messages.

Proof is provided in Appendix. It is based on a coupling argument that enables us to reuse the result of Theo-
rem 3.1.

3.2 I.i.d. Input with Unknown Drift
In the previous section we have seen that the communication complexity in the case with no drift is Õ(

√
n).

However, the monotone counter from [12] is a special case of our model with µ = 1, and its communication complexity
is Õ(1). Clearly, we conclude that a positive drift might help. The natural question then is whether this observation
holds for an arbitrary drift µ 6= 0, and how can we exploit it when the drift is unknown.

To gain an intuition on the input’s behavior for an arbitrary drift, it is helpful to re-parameterize each input Xt as
Xt = µ+Zt, where µ is the drift term and Zt is a random variable representing the “noise” term, We shall intuitively
view Zt as noise that behaves similar to Gaussian noise. We want to identify which term contributes more to the
estimation error. Suppose St = s. It takes the drifting term εt time units to reach ±εs while it takes the noise term

6

(εs)2 to do so. When εt < (εs)2, the drifting term dominates the process, otherwise, the noise term dominates the
process. Approximating s by its mean s ≈ tµ and solving the equation, εt < (εs)2, we get t ≈ 1/(µ2ε). Therefore,
the random walk St qualitatively behaves as follows: up to time t = Θ(1/(εµ2)), the ”noise” sum term dominates the
process; after time Θ(1/(εµ2)), the drifting term dominates the process. Therefore, intuitively, for t ≤ 1/(εµ2) we
should use the algorithm that deals with the non-drift case, and for t ≥ 1/(εµ2) we might be able to use the monotone
counter HYZ.

Note that the algorithm does not know the actual value of the drift µ. We use an online estimator (the GPS
algorithm, described in Section 2) to obtain an estimate µ̂. Our estimator is conservative in the sense that it does not
report µ̂ until confident that it is within [(1 − ε′)µ, (1 + ε′)µ] (the performance of the GPS estimator is discussed in
Section H in Appendix). Once the estimator µ̂ is reported, we can safely switch to the monotone counter HYZ.

However, we need to guarantee correctness of the algorithm even before we have an estimate of µ̂. The monotone
counter HYZ essentially samples with sampling probability Θ(1/(εt)). So to guarantee the correctness before we
know whether we are in the no-drift phase or in the drift phase, we need to sample with the maximum of the sampling
rate Θ(1/(ε2S2

t)) of the no-drift phase and the sampling rate Θ(1/(εt)) of the monotone counter. We shall choose a
slightly more conservative rate by tuning the constants in the sampling probability (1) so that Sample-Prob(St, t) ≥
Θ̃(1/ε2s2 + 1/εt) for all t < 1/(µ2ε).

The crucial observation here is that this conservative way of sampling will not result in substantial increase in
communication resource. Indeed, we have two types of unnecessary communication cost.
• Type 1: when t ≤ 1/(εµ2), the term Θ̃(1/εt) in the sampling rate is wasteful.
• Type 2: when t > 1/(εµ2), the term Θ̃(1/(εs)2) in the sampling rate is wasteful.

The total wasted communication for type one is bounded by Θ(
∑
t≤n(1/t)) = Θ(log n), which is acceptable. Com-

puting the waste of type 2 is a bit more tedious. But we would be able to see that in expectation
∑
t≤1/(εµ2) 1/(ε2S2

t) =

Ω
(∑

t≤n 1/(ε2S2
t)
)

, i.e the total wasted communication from the term Θ̃(1/(εs)2) is bounded by the total “useful”
communication from the same term. Therefore, the conservative sampling strategy is also optimal.

Finally, we can also split the no-drift phase into the the straightforward (StraightSync) stage and the broadcast
(SBC) stage, as discussed in the previous section. We then have the following theorem.

Theorem 3.3. There exists a choice of constants α and β > 0 for the randomized algorithm Non-monotonous Counter,
for the k-site count problem with unknown drift, to guarantee the continuous tracking within a prescribed relative
accuracy ε with high probability and the following communication cost in expectation:
• Õ

(
min

{ √
k
|µ|ε ,

√
kn
ε , n

}
+
√
k
ε

)
, if k = O(1/(µε)2), and

• Õ
(

min
{ √

k
|µ|ε ,

√
kn
ε , n

}
+ k
)

, if k = ω(1/(µε)2).

Proof is provided in Appendix.

3.3 Randomly Ordered Data Streams
We now move to the random permutation case. We use the same tracking algorithm described in Section 2 to

solve this problem by using the sampling rate defined in (1) with β = 2 and sufficiently large α > 0.

Theorem 3.4. Let a1, . . . , an be an arbitrary, randomly permuted, sequence of bounded real values. The randomized
algorithm Non-monotonous Counter with the sampling probability in (1) for β = 2 and sufficiently large constant
α > 0 guarantees to track the count within the relative accuracy ε with probability 1 − O(1/n) and uses the total
expected communication of O(

√
n/ε · log n+ log3 n) messages.

Note that here, because of the adversarial choice of the input sequence, we cannot exploit the drift. We remark
that when the update is a fractional number from [−1, 1] rather than {−1, 1}, our Non-monotonous Counter algorithm
still holds. The key difference between the analysis for Theorem 3.4 and the one for i.i.d. input is that the updates
are correlated when the content of the stream is decided in advance. This difference boils down to a modified analysis
for the first passage time of the partial sums. In the Bernoulli i.i.d. case, a straightforward application of Hoeffding’s
inequality suffice to give a bound on the first passage time. While here Hoeffding’s inequality is no longer applicable,
we are able to use tail inequalities for sampling without replacement [11, 18] to circumvent this problem. Appendix E
gives a detailed analysis.

7

3.4 Fractional Brownian Motion
In this section we consider the counting process St evolving as a fractional Brownian motion with parameters

σ > 0 and 0 < H < 1 where we extend the counting process to continuous time in a natural manner. We briefly
discuss some of the basic properties of fractional Brownian motion (more details can be found, e.g. in [17]). Fractional
Brownian motion is a process with stationary increments whose finite dimensional distributions are Gaussian. Specif-
ically, for a fractional Brownian motion St, we have E[St] = 0, for every t ≥ 0 and the covariance of the process is
defined as

E[StSu] =
σ2

2
(|t|2H + |u|2H − |u− t|2H).

Thus, the variance of the process is E[S2
t] = σ2|t|2H , for every t ≥ 0. The parameter H is known as the Hurst

parameter. For H = 1/2, the process corresponds to a Brownian motion whose increments are independent. For
0 < H < 1/2, the variance of St grows sublinearly with t and the process has a negative autocorrelation while
for 1/2 < H < 1, the variance of St grows superlinearly with t. The process is self-similar, meaning that random
variables Sat and aHSt have the same distribution. To simplify notation, in the remainder, we will assume σ2 = 1.
Notice that this is without loss of generality as it amounts only to rescaling of the time units. It is noteworthy that
the fractional Brownian motion is one of standard statistical models that captures some of the salient properties of
temporal statistical dependencies that were observed in many natural phenomena, including self-similarity and long-
range dependency (see, e.g. [17]).

We present an algorithm that requires only an upper bound on the Hurst parameter H and guarantees continual
tracking within prescribed relative accuracy with high probability for the range H ∈ [1/2, 1). Note that this is the
range of particular interest in practice since typical values of the Hurst parameter observed in nature fall precisely in
this region. For the purpose of deriving an upper bound on the communication complexity, we will write the sampling
probability in the following form, for 1 < δ ≤ 2,

Sample-Prob(St, t) = min

{
αδ log1+δ/2 n

(ε|St|)δ
, 1

}
(2)

where αδ = c(2(c+ 1))δ/2, for any c > 3/2.
As before, we start with the single site (k=1) case. We have the following theorem (proof in Appendix F).

Theorem 3.5. For the single site (k = 1) case, the randomized algorithm Non-monotonous Counter with the sampling
probability as in (2) guarantees to track the count within the relative accuracy ε > 0 with probability 1 − 1/n for
every 1/2 ≤ H ≤ 1/δ, where 1 < δ ≤ 2, and uses the total expected communication of O(n1−H/ε · log1/2+1/δ n)
messages.

We observe that for standard Brownian motion, which we may interpret as a continuous-time analog of a random
walk, we have H = 1/δ = 1/2, and in this case, the sampling probability and the result of the last theorem matches
that of Theorem 3.1. For values of the Hurst parameter H in (1/2, 1), the communication complexity of the algorithm
is sublinear in n, with the upper bound increasing with n as a polynomial with the exponent decreasing with H as
1 − H (up to a poly-logarithmic factor). Note that this is inline with the intuition as a larger value of the parameter
H means a larger variance and thus less of a concentration around value zero where the relative error tolerance is the
most stringent.
Multiple sites. Finally, we look at the case with multiple sites. Let the sampling probability be as in (2) but with
constant γα,δ redefined as follows αδ = 9 · 2δ/2(c+ 1)1+δ/2, for any c > 3/2. Using the same coupling argument as
in Theorem 3.3, we have the following corollary (proof in Appendix.)

Corollary 3.6. The randomized algorithm Non-monotonous Counter, with the sampling probability given in (1), guar-
antees to track the count across k sites within the relative accuracy ε > 0 with probability 1 − O(1/n) for every
1/2 ≤ H ≤ 1/δ, where 1 < δ ≤ 2, and uses the total expected communication of Õ(n1−Hk

3−δ
2 /ε) messages.

4 Lower Bounds
In this section, we establish matching lower bounds for the two cases of inputs: i.i.d. Bernoulli and random

permutation. Recall that we denote with Mn the number of messages exchanged over an input of size n. We are

8

interested in the lower bounds on the expected number of messages E[Mn] that is necessary to track the value over
an interval of n updates within ε relative accuracy with high probability. We use sample-path arguments to prove the
results.

We start by presenting lower bounds for the single site case, first without and then with a drift. We then provide
our main results that provides a lower bound parameterized with the number of sites k for the case without drift. We
conclude by giving a lower bound for the case with random permutation input stream.

Theorem 4.1. Consider the single site (k = 1) continual count-tracking problem for an input of n random i.i.d.
updates without a drift (Pr[Xi = 1] = Pr[Xi = −1] = 1/2) within relative accuracy ε > 0 with probability at least
1−O(1/n). Then the expected number of messages exchanged is Ω(min{

√
n/ε, n}).

Proof is provided in Appendix G. The key idea of the proof is the observation that whenever the value of the
counter is in E = {s ∈ Z : |s| ≤ 1/ε}, the site must report the value to the coordinator as otherwise an error would
occur with a constant probability. The proof then follows by noting that

∑
t≤n Pr[St ∈ E] = Ω(

√
n/ε).

The lower bound in Theorem 4.1 is established by counting the average number of visits to the set E , and we can
use the same argument to establish a lower bound for the general case of Bernoulli updates with with an arbitrary drift
−1 < µ < 1 (that is 0 < p < 1). Intuitively, the no drift case should be the worst case with respect to communication
complexity as observed in Section 3. Also, for any constant µ > 0 we expect to have the lower bound similar to the
bound from [12] for a monotone counter E[Mn] = Ω(1/ε). It is thus of interest to ask what the lower bound would be
for small but non-zero drift µ = o(1). We have the following result (proof in Appendix G).

Theorem 4.2. Consider the single site (k = 1) continual count-tracking with Bernoulli random walk updates with
drift µ = o(1) and relative accuracy parameter ε > 0. Suppose ε = ω(1/

√
n) and |µ| = O(ε). Then, for the tracking

to succeed with probability at least 1−O(1/n), the expected number of messages is Ω
(

min
{√

n, 1
|µ|

}
· 1
ε

)
.

The result is in line with the intuition that any non-zero drift may only reduce the communication complexity,
and it matches the bound in [12] for large enough µ. Our lower bound matches the corresponding upper bound result
(presented in Theorem D.1 in the Appendix) up to poly-logarithmic factors.

We now move to the main result of this section which provides a lower bound that is parameterized with the
number of sites k. We consider only the non-drift case, as this is used to establish the lower bound for the permutation
model. While the proof for k = 1 case essentially only needs to exploit the structure of a simple random walk, here we
need to carefully integrate techniques from communication complexity theory with the structure of random walks. The
main step is a reduction to a query problem (Lemma 4.4) that at a time instance asks whether the sum of updates over
all k sites is larger than or equal to a Θ(

√
k) threshold, which requires Ω(k) communication to guarantee a sufficiently

low probability of error; otherwise, the overall error probability does not satisfy the requirements.
We start our analysis by introducing a building block for communication complexity.

Definition 4.3 (Tracking k inputs). Let c be a constant. Consider the following functional monitoring problem: let
X1, X2, ..., Xk be unbiased i.i.d. variables from {−1, 1} that arrive uniformly to each of the sites (i.e. each site
receives exactly one update). Upon the arrival of the last update, we require the coordinator to
• be able to tell whether the sum is positive or negative if |

∑
i≤kXi| ≥ c

√
k.

• do anything (i.e. no requirement) when |
∑
i≤kXi| < c

√
k.

We have the following lemma.

Lemma 4.4. Solving the tracking k inputs problem with probably 1 − c0 (w.r.t. both the protocol and the input) for
some constant c0 requires Θ(k) communication.

We provide a proof in Appendix G.3 that is based on the same main ideas as in the proof of Lemma 2.2 in [12]
with some minor technical differences to account for particularities of our setting.

We are now ready to present our main lower bound theorem for the k-site case.

Theorem 4.5. For the case of k < n sites, the expected number of communicated messages to guarantee relative
accuracy ε > 0 with probability at least 1−O(1/n) is Ω(min{

√
kn/ε, n}).

Proof is provided in Appendix G. Here, again our lower bound matches the corresponding upper bound presented
in Theorem 3.3. The intuition behind the result is as follows. We chop the stream into phases of k updates each, where

9

each site gets exactly one update per phase. If the counter value St is in between −
√
k/ε and

√
k/ε, we show that our

problem is equivalent to the tracking of k input problems, and Θ(k) messages need to be sent to guarantee correctness.
Summing the expected number of visits of the counter to these states, we obtain the lower bound.
Random Permutation. Finally, we have the following corollary providing a lower bound on the communication
complexity for randomly permuted input stream (proof in Appendix).

Corollary 4.6. The expected total communication in presence of a randomly permuted adversarial input, with −1 ≤
at ≤ 1 for all 1 ≤ t ≤ n, is at least Ω(

√
kn/ε) messages.

5 Applications

5.1 Tracking the Second Frequency Moment
We now apply our distributed counter algorithms for continuously tracking second frequency moment of the

randomly ordered stream. Let us recall the F2 problem. The input stream consists of a1, a2, ..., an, where at =
(αt, zt), αt are all items from the universe [m], and zt ∈ {−1, 1} for all t ≤ n. Denote with mi(t) =

∑
s≤t:αs=i zs

the sum of elements of type i in the stream at time t. Here, we allow the count mi(t) to be non-monotonous in
t (i.e. allow decrements of the counts). Our goal is to continuously track the second moment of the stream, i.e.
F2(t) =

∑
i≤mm

2
i (t), at the coordinator. We shall refer to this problem as monitoring F2(t) with decrements.

Next, we review the AMS [1] streaming algorithm for this problem. Consider a counter whose value at the t-th
update is St, and set S0 = 0. Let h : [m] → {−1, 1} be a 4-wise independent hash function. Upon receiving the i-th
item (αt, zt), we add h(αt) to the counter St if zt = 1 and subtract h(αt) from St otherwise.

From the analysis in [1], we have E[S2
t] = F2(t) and Var[S2

t] ≤ 2F 2
2 (t). Therefore, it suffices to maintain

O(1
ε2 log(1/δ)) counters with Θ(ε) multiplicative errors simultaneously to ensure the coordinator is able to approxi-

mately track the second moment at time twith probability 1−δ. We may maintain as many asO(1
ε2 (log(1/δ)+log n))

counters to continuously track F2(·) up to time n with probability 1 − δ (by using a union bound). Tracking each
counter in randomly ordered stream takes Õ(

√
kn/ε) communication. Therefore, the expected total number of com-

municated messages is Õ(
√
kn/ε3). We also remark that the lower bound Ω(

√
kn/ε) for counter in randomly ordered

stream is also a lower bound for F2(·) for randomly ordered streams. We may summarize the upper bound and the
lower bound results in the following corollary.

Corollary 5.1. The communication lower bound for distributed monitoring of F2(t) with decrements in randomly or-
dered stream is Ω(min{

√
kn/ε, n}). There exists an algorithm for tracking F2(t) using communication Õ(

√
kn/ε3).

5.2 Bayesian Linear Regression
We next describe another application of a distributed non-monotone counter in tracking the posterior of the

coefficients in a Bayesian linear regression. Recall the Bayesian linear regression problem (c.f. [3]): assume we are
given a set of training data (x1, y1), (x2, y2), . . . , (xn, yn), where xi is a row-vector xi ∈ Rd and yi ∈ R. We are
interested in carrying out a linear regression over this data, i.e. finding a w ∈ Rd such that y = wT · x best fits the
training data {(xt, yt)}t≤n. Furthermore, we impose an initial prior knowledge over the vector w0, and in particular
we assume that it follows a multivariate Gaussian distribution w0 ∼ N (m0, S0). Our goal is to maintain a posterior
belief over wt, as the training data {(xt, yt)}t≤n arrives.

In distributed functional monitoring setting, the training data {(xt, yt)}t≤n arrives at different sites in a streaming
fashion and the coordinator has to continuously track an approximate estimate of the mean mt and the variance St
of wt. We assume that the training data is an arbitrary bounded sequence selected by an adversary, and randomly
permuted, as in the random permutation model.

We next describe how we may use O(d2) counters to track the posterior belief. Let At be an t × d matrix so
that the i-th column of At is xi. Also, denote with yt ∈ Rt a vector whose i-th component is yi. Furthermore, let β
be the inverse of the variance of the noise variable in the model, i.e., yt = wT · At + N (0, β−1). The value of β is
usually assumed to be a known parameter (see Bishop [3] for a detailed description of the model). It turns out that the
posterior of w is also a Gaussian distribution with mean mt and variance St, where

mt = St(S
−1
0 m0 + βATt y)

S−1
t = S−1

0 + βATt At.
(3)

10

The inverse of S−1
t at time t is also referred as the precision matrix. Observe that tracking the precision matrix S−1

t as
well as the vector ATt y suffices to recover the posterior structure of w. Our specific goal here is to continuously track
S−1
t and ATt y by using our counter algorithm.

Upon the arrival of the t+ 1-st update, we have

S−1
t+1 = S−1

t + β xTt+1xt+1︸ ︷︷ ︸
outer product of xt+1

and
ATt+1yt+1 = ATt yt + (yt+1 × (xt+1)1, yt+1 × (xt+1)2, . . . , yt+1 × (xt+1)d)

T .

Therefore, to track S−1
t ∈ Rd×d, it suffices to keep d2 counters {Ci,j}i,j≤d such that upon the arrival of the t-th

training data, Ci,j ← Ci,j + β(xt)i(xt)j . Similarly, we may keep another d copies of counters {Di}i≤d to track
ATt yt, where Di ← Di + yt × (xt)i at the t-th update.

The total communication complexity using this algorithm thus is Õ(
√
knd2/ε), being sublinear in the size of

training data for a wide range of parameters.

Acknowledgments
We thank Zengfeng Huang, Ke Yi and Qin Zhang for useful discussions regarding the relation of Lemma 2.2

in [12] and the lower bound for the sampling problem in Lemma 4.4.

References
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. In Proc.

of ACM Symp. on Theory of Computing, pages 20–29, 1996.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring without monotonicity. In Proc. of
ICALP, 2009.

[3] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[4] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query tracking. In
Proc. of International Conference on Very Large Databases, 2005.

[5] G. Cormode, M. Garofalakis, S. Mutukrishnan, and R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In Proc. of SIGMOD, June 2005.

[6] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring. In Proc. of SODA,
2008.

[7] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continuous monitoring of
duplicate-resilient aggregates on data streams. In Proc. IEEE International Conference on Data Engineering,
2006.

[8] G. Cormode, S. Mutukrishnan, K. Yi, and Q. Zhang. Optimal sampling from distributed streams. In Proc. of
PODS, June 2010.

[9] M. B. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proc. of SIG-
MOD, pages 58–66, 2001.

[10] M. B. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor networks. In
Proc. of PODS, 2004.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. American Statistical Association
Journal, pages 13–30, March 1963.

11

[12] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms for tracking distributed count, frequencies, and ranks.
In arXiv:1108.3413v1, Aug 2011.

[13] T. Konstantopoulos. Markov Chains and Random Walks. Lecture notes, 2009.

[14] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of ethernet traffic. IEEE/ACM
Transactions on Networking, 2(1):1–15, 1994.

[15] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. Graphlab: A new framework for
parallel machine learning. In Proc. of the 26th Conference on Uncertainty in Artificial Intelligence (UAI), 2010.

[16] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. In Proc.
ACM SIGMOD International Conference on Management of Data, 2003.

[17] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes. Chapman & Hall, 1994.

[18] R. J. Serfling. Probability inequalities for the sum in sampling without replacement. Ann. Statist, 2(1):39–48,
1974.

[19] T. S. Team. The engineering behind twitter’s new search experience, 2011.

[20] S. Trithapura and D. P. Woodruff. Optimal random sampling from distributed streams revisited. In Proc. of
DISC, Roma, Italy, Sep 2011.

[21] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. In Proc. of PODS, June 2009.

A Probability Review
In this section we review some basic results from the probability theory that we use throughout the paper.

A.1 Hoeffding’s Inequality
Let −∞ < ai ≤ bi < ∞ be a given sequence of real numbers for 1 ≤ i ≤ t. The following inequality was

established by Hoeffding [11].

Theorem A.1. Suppose X1, X2, . . . , Xt is a sequence of independent random variables such that ai ≤ Xi ≤ bi for
every 1 ≤ i ≤ t. Let µ = E[

∑
i≤tXi]. Then, the following inequality holds, for every x ≥ 0,

Pr[
∑
i≤t

Xi − µ ≥ x] ≤ exp(− 2x2∑
i≤t(bi − ai)2

).

In the paper, we often use the following special case.

Corollary A.2. Assume that in addition ai = −1 and bi = 1, for every 1 ≤ i ≤ t. Then,

Pr[
∑
i≤t

Xi − µ ≥ x] ≤ exp(−x
2

2t
), for every x ≥ 0.

A.2 Sampling Without Replacement
Similar type of bounds as in earlier section hold also for sampling without replacement. In particular, the follow-

ing is a result of Hoeffding [11] (Section 6) for sampling from a finite population.

Theorem A.3. Suppose X1, X2, . . . , Xt is a sample drawn by uniform random sampling without replacement from a
set of values {c1, c2, . . . , cn} such that for some −∞ < a < b <∞, it holds a ≤ ci ≤ b, for every 1 ≤ i ≤ n. Then,
the bound of Theorem A.1 holds with µ = (1

n

∑
i≤n ci)t, i.e. for every x ≥ 0,

Pr[
∑
i≤t

Xi − µ ≥ x] ≤ exp(− 2x2

(b− a)2t
).

12

B Additional Notations
We will repeatedly use some notation in the rest of the appendices which we summarize in the following. We

will denote the sampling probability in SBC for the t-th update with pt = Sample-Prob(Ŝt, t). For an algorithm, we
define En to be the number of errors observed over an input of size n. We will be interested in algorithms such that
Pr[En > 0] = O(1/n). We define Mn to be the number of messages transmitted over an input of size n. We note that
it is sufficient to limit th size of a message to O(log n) bits to convey any possible counter value. Thus the number of
bits transmitted over an input of size n is Θ̃(Mn). We define Rn to be 1 if a message is sent to the coordinator and
otherwise Rt = 0. We further denote with Ut the time until next message is sent to the coordinator as observed at time
t. Similarly, we define Vt to be the time until the count process exists the ball Bε(St) = {s ∈ Z : |x− St| ≤ εSt}.

For the purpose of exposition, we will first start with the most fundamental case with Bernoulli i.i.d. increments.
Recall that in this case Pr[Xt = 1] = p and Pr[Xt = −1] = 1 − p. The expected increment in each step is then
µ , p − (1 − p) = 2p − 1. We shall refer to µ as the drift of the problem. We will first treat the case without drift
(µ = 0 and p = 1/2) and then the general case with an unknown drift. The analysis for other distributions heavily
utilizes the idea developed for these simple cases.

C Analysis for i.i.d. Input with Zero Drift

C.1 Single Site Case
In this subsection, we prove Theorem 3.1.

Communication cost. We first show that the expected number of communicated messages is bounded as asserted.
Let ϑ =

√
α/ε · log n and note

E[Rt] = Pr[|St| ≤ ϑ] + ϑ2E[
1

S2
t

I(|St| > ϑ)].

Since Pr[|St| ≤ ϑ] = Θ(ϑ/
√
t) and E[1

S2
t
I(|St| > ϑ)] = Θ(1/(ϑ

√
t)), it follows

E[Rt] = Θ(ϑ/
√
t).

Hence, the expected number of transmitted messages is
∑
t≤n E[Rt] = O(ϑ

√
n) = O(

√
n/ε · log n).

Correctness. We next establish the asserted bound on the probability of error. Let us write Ft to be the σ-algebra
generated by X1, . . . , Xt and R1, . . . , Rt, i.e. all the information available up to the t-th update is measurable by
Ft. Define the indicator variable Rt that sets to 1 if and only if at the t-th update the site sends a message to the
coordinator. Notice that our algorithm guarantees thatR1 = 1. Let Ut be the number of updates until the next report is
sent to the coordinator as observed at the t-th update, i.e. Ut = min{τ > 0 : Rt+τ = 1}. We remark that Ut depends
on a future event and thus, it is not measurable by Ft. Next, let Vt = min{τ > 0 : St+τ /∈ Bε(St)} be the number
of updates until the first instance at which the coordinator fails to track the counter within the relative accuracy ε, and
let En be the number of such update instances. Notice that a necessary and sufficient condition that at least one error
happens is that there exists at least one t ≤ n such that Rt = 1 and Vt < Ut. We thus have

Pr[En > 0] = Pr[Rt = 1 and Vt < Ut, for some 1 ≤ t ≤ n],

where I(·) is an indicator function that sets to 1 if and only if its parameter is true. By using the union bound, we have

Pr[En > 0] ≤
∑
t≤n

E[Rt · I(Vt < Ut)]. (4)

Using the fact that Rt is measurable by Ft, we have

E[Rt · I(Vt < Ut)] = EFt [E[RtI(Vt < Ut) | Ft]]
= EFt [RtE[I(Vt < Ut) | Ft]]
= EFt [Rt Pr[Vt < Ut | St]]

≤ EFt

[
Rt ·max

s
Pr[Vt < Ut | St = s]

]
= EFt [Rt] ·max

s
Pr[Vt < Ut | St = s].

13

We next proceed to give an upper bound for Pr[Vt < Ut | St = s]. Note that for every r ≥ 0, it holds

Pr[Vt < Ut | St = s] = Pr[Vt < Ut, Vt > r | St = s] + Pr[Vt < Ut, Vt ≤ r | St = s]

≤ Pr[r < Ut | St = s, Vt > r] + Pr[Vt ≤ r | St = s] (5)

We start by giving a bound on Pr[Vt ≤ r | St = s]. Notice that under St = s the distribution of Vt is equal to the
distribution of the first passage time of either value ds/(1− ε)e − s or value bs/(1 + ε)c − s for a symmetric random
walk started at the origin. The following lemma follows by standard results from the theory of random walks (c.f.
[13]) and the Hoeffding bound:

Lemma C.1. For every r ≥ 0, it holds

Pr[Vt ≤ r | St = s] ≤ 2 exp(−
(ε

1−ε)
2s2

2r
). (6)

Proof. Let V +
t denote the number of steps until the random walk up-crosses the value d s

1−εe, starting from value s.
Similarly, we define V −t to be the number of steps until the random walk down-crosses the value b s

1+εc starting from
value s. Then,

Pr[Vt ≤ r|St = s] ≤ Pr[V +
t ≤ r|St = s] + Pr[V −t ≤ r|St = s]

≤ 2 Pr[V +
t ≤ r|St = s].

Now, let b = d s
1−εe − s and note that by the reflection principle of random walks, we have

Pr[V +
t ≤ r|St = s] = Pr[X1 +X2 + · · ·+Xr = b] + 2 Pr[X1 +X2 + · · ·+Xr > b]

≤ 2 Pr[X1 +X2 + · · ·+Xr ≥ b].

By applying the Hoeffding’s inequality, we bound the the probability in the right-hand side with exp(− b2

2r) which
yields the asserted result.

From (6), we observe that Pr[Vt ≤ r | St = s] ≤ 2/nc for given c > 0, iff it holds

(C1): r ≤ 1

2c log n

(
ε

1− ε

)2

s2.

We next note
Pr[r < Ut|St = s, Vt > r] ≤ (1− ρε(s))r (7)

where ρε(s) = Sample-Prob(s/(1 − ε), t). Requiring that the right-hand side in the above inequality is less than or
equal to 1/nc, we obtain

(C2): ρε(s) ≥ 1− exp(− c log n

(1− ε)2r
).

Indeed, both conditions (C1) and (C2) hold true by taking r = 1
2c logn

(
ε

1−ε

)2

s2 and ρε(s) = min{ 2c2 log2 n
(εs)2 , 1}. The

latter choice is a sufficient condition for (C2) in view of the fact that min{x, 1} ≥ 1− e−x, for x ≥ 0. Therefore, we
showed that for Pr[Vt < Ut|St = s] ≤ 3/nc to hold, it suffices that the sampling probability satisfies

pt ≥ min{2c2 log n

ε2S2
t

, 1}. (8)

Combining with (4), we have

Pr[En > 0] ≤
∑
t≤n

E[Rt] ·O(1/nc)

= Θ(ϑn1/2−c) = Θ(n1/2−c log n).

From the last inequality, we note that no error occurs with high probability provided that c > 3/2. Hence, in view of
the inequality (8), it suffices to to choose the sampling probability as in (1) with α = 2c2 > 9/2 and β = 2. This
completes the proof.

14

C.2 Multiple Sites
In this subsection, we prove Theorem 3.2. We need again to show that the algorithm is correct and the communi-

cation complexity is as described. We start with showing the correctness part.
Correctness. We will invoke a coupling argument that will allow us to reuse the results of Theorem 3.1. We couple
the proposed multiple sites algorithm with the single site sampling algorithm with a different set of error parameters
over the same set of input. Specifically, we also execute a single site algorithm with relative accuracy ε/3 and success
rate 1−O(1/n2)1, in parallel to the multiple sites algorithm. We shall show that when the single site algorithm makes
no error, our multiple sites algorithm will also make no error.

We need a few more notations. Let ps,i be the sampling rate for the single site algorithm and Rs,i be its cor-
responding Bernoulli random variable. Let pm,i be the sampling rate for the multiple sites algorithm and Rm,i be
its corresponding Bernoulli random variable. When we are in the straightforward stage, we shall assume pm,i = 1.
Finally, let Ŝs,t be the estimator of the single site algorithm at time t and Ŝm,t be the estimator for the multiple sites
algorithm.

When ps,i ≤ pm,i, we couple the Bernoulli random variable in the following way: if Rs,i = 1, then we set
Rm,i = 1; otherwise, we setRm,i = 1 with probability (pm,i−ps,i)/(1−ps,i) andRm,i = 0 otherwise. One may see
that we still have Pr[Rm,i = 1] = pm,i. When ps,i > pm,i, the two Bernoulli variables are sampled independently.

Now we show that when the single site makes no error, our multiple sites algorithm also makes no error. Suppose
on the contrary that at time t the multiple sites algorithm makes the first error. Then our algorithm ensures that for
every τ < t, it holds pm,τ ≥ ps,τ (by our choice of sampling probabilities), i.e. the multiple sites algorithm samples
more frequently than the single site algorithm. Therefore, our coupling rule gives us Ŝm,t = St1 and Ŝs,t = St2 , where
t1 > t2, i.e. the multiple sites algorithm is holding a more recent value of the count. Now, since St1 ∈ Bε/3(St2)
(because the single site algorithm is correct) and St /∈ Bε(St1), this implies that St /∈ Bε/3(St2), which implies the
single site algorithm also errors at time t, which is a contradiction.

Communication cost. We have the following types of communications,
1. At the straightforward stage, whenever there is an update, O(1) messages are exchanged.
2. At the broadcast stage, whenever there is an update, O(k) messages are exchanged.
3. At the beginning and the end of the broadcasting stage, the coordinator needs to make a broadcast to signal the

stage change, which takes Θ(k) messages.
Notice that in order to change from the broadcast stage to straightforward stage, type 2 messages are sent for at least
once. Therefore, the total complexity of the type 3 messages is asymptotically smaller than type 2 messages. We need
to only focus on the communication complexity for the first two type of messages.

Let Ct be the communication cost associated with the t-th update and let Rm,t indicates the event that a message
is sent to the communicator after the t-th update (Rm,t shall correspond with Rt in Theorem 3.1). Therefore, when
(εŜt)

2 < k, Ct = 1; otherwise, E[Ct] = kE[Rm,t]. We estimate Ct using the following rule:
• If (1− ε)(εSt)2 ≤ k, we set Ct = 1;
• If (1 + ε)(εSt)

2 > k, we set Ct = kE[Rm,t].
This rule intuitively gives a conservative guess on which stage we are in (conditioned on the estimator being correct).
Notice that when (1− ε)(εSt)2 < k < (1 + ε)(εSt)

2, in this case, we can set Ct = 1 + kE[Rm,t] without impacting
the asymptotic behavior. The case where our estimator makes an error (and thus the above rules may not give an
overestimate of Ct) is an asymptotically smaller term.

We next proceed with computing the expectation of Ct using our overestimation rule,

E[Ct] ≤ Pr[St ≤
√
k

ε
√

1− ε
]︸ ︷︷ ︸

straightforward stage

+ kE[Rm,tI(St ≥
√
k

ε
√

1 + ε
)]︸ ︷︷ ︸

broadcast stage

+ O(1/n2)︸ ︷︷ ︸
estimator fails

= O(

√
k · log n

ε
√
t

). (9)

We can compute the above terms using Theorem 3.1. Thus, the total communication cost in expectation is O(
√
nk/ε ·

log2 n).

1To boost the success rate, we need to use a larger constant in the sampling parameter, i.e. Sample-Prob(St, t) =

min

{
2(1+c)2 log2 n

ε2Ŝ2
t

, 1

}
, any c > 3/2

15

D Analysis for i.i.d. Input with Unknown Drift

D.1 Single Site Case
Let us define the sampling probability, for a constant α > 0, as follows

Sample-Prob(St, t) = min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}
. (10)

We have the following theorem for the single-site case, that we will use to prove the results for the multi-site case.

Theorem D.1. For k = 1 and for a sufficiently large constant α > 0, the randomized algorithm Non-monotonous
Counter with the sampling probability as in (10) guarantees to continually track the count within relative accuracy ε
with at least probability 1− O(1/n) and uses the total expected communication of O(min{1/(µε) · log3/2 n,

√
n/ε ·

log n, n}) messages.

Proof. In some parts of the analysis, we assume that p ≥ 1/2, i.e. the drift µ is non-negative, which is sufficient as the
other case can be analyzed by similar steps. The proof will follow the same main steps as in the proof of Theorem 3.1
and we will reuse the notation introduced therein.

Communication cost. We shall upper bound
∑
t≤n E[Rt] which is the expected communication cost of our algo-

rithm. Let us introduce two Bernoulli random variables R1
t and R2

t with respective parameters min{α log2 n
ε2S2

t
, 1} and

min{α log3 n
εt , 1}. We then have ∑

t≤n

E[Rt] ≤
∑
t≤n

E[R1
t] +

∑
t≤n

E[R2
t].

Since ∑
t≤n

E[R2
t] = O(

log n

ε
) (11)

we shall focus on the term
∑
t≤n E[R1

t]. Using the trick presented in Theorem 3.1, we have

E[R1
t] = Pr[|St| ≤ ϑ] + ϑ2E[

1

S2
t

I(|St| > ϑ)]

where ϑ =
√
α
ε · log n.

We first note that E[R1
t] = O(

√
n/ε · log n) for any drift µ ∈ (−1, 1). The key observation is the simple fact

that Pr[St = s] = O(1/
√
t) for every s ∈ [−t, t] which, for example, follows from the Berry-Esseen central limit

theorem. Now, it easily follows
∑
t≤n Pr[|St| ≤ ϑ] =

∑
t≤nO(ϑ/

√
t) = O(ϑ

√
n) = O(

√
n/ε · log n). Also, we

have
∑
t≤n ϑ

2E[1
S2
t
I(|St| > ϑ)] = O(ϑ2

∑
t≤n

∑
s>ϑ

1√
ts2

) = O(ϑ
√
n) = O(

√
n/ε · log n). We have thus showed

that for every drift µ ∈ (−1, 1), we have ∑
t≤n

E[R1
t] = O(

√
n/ε · log n). (12)

We next show that ∑
t≤n

Pr[|St| ≤ ϑ] = O(
ϑ

µ
). (13)

Let us denote σ2 = 1− µ2 and ρ =
√

1+µ
1−µ . We observe

Pr[|St| ≤ ϑ] =

ϑ∑
s=−ϑ

(
t
t+s
2

)
2−tσtρs = O(

1√
t
· σt

ϑ∑
s=−ϑ

ρs) = O(
1√
t
· σt · ρ

ϑ+1 − 1

ρ− 1
)

16

where we made use of the fact
(
t
t+s
2

)
2−t ≤

(
t
t
2

)
2−t ≤

√
2√
π
√
t
. Now,

ρϑ+1 − 1

ρ− 1
=
µϑ

µ
(1 + o(1)) = ϑ(1 + o(1)).

Therefore, Pr[|St| ≤ ϑ] = O(ϑσt/
√
t). Observing that

n∑
t=1

1√
t
σt ≤ e− log(1

σ) +

∫ n

1

1√
t
e− log(1

σ)tdt = Θ(
1

log1/2(1
σ2)

) = Θ(
1

µ
)

we obtain
∑
t≤n Pr[|St| ≤ ϑ] = O(ϑ/µ), thus (13) holds.

We will further show that ∑
t≤n

ϑ2E[
1

S2
t

I(|St| > ϑ)] = O(
ϑ

µ
· log3/2 n). (14)

We will separately consider two possible cases µ = o(ε/ log n) and µ = Ω(ε/ log n).

Case 1: µ = o(ε/ log n), i.e. µ = o(1/ϑ). In this case, let τn = 1/µ2 · logδ n, for δ > 1. Notice that we have∑
t≤τn

ϑ2E[
1

S2
t

I(|St| > ϑ)] =
∑
t≤τn

ϑ2
∑
s>ϑ

1

s2
Pr[St = s]

=
∑
t≤τn

ϑ2
∑
s>ϑ

1

s2
·O(1/

√
t)

= O(ϑ
√
τn) = O(

ϑ

µ
· logδ/2 n).

Therefore, it remains to upper bound
∑
t>τn

ϑ2E[1
S2
t
I(|St| > ϑ)]. To do this, we observe that for every time t ≥ τn,

it holds
ϑ2E[

1

S2
t

I(|St| > ϑ)] ≤ Pr[St ≤ µt/2] + ϑ2E[
1

S2
t

I(St > µt/2)].

For the first term, we use the Hoeffding bound to obtain

Pr[St ≤ µt/2] ≤ exp(− (µt/2)2

2t
) ≤ exp(−µ

2τn
8

) = exp(−1

8
logδ n)

and observe that Pr[St ≤ µt/2] = O(1/nc), for arbitrary constant c > 0, and hence Pr[St ≤ µt/2] = O(ϑ/µ).
It remains only to show

∑
t≥τn ϑ

2E[1
S2
t
I(St > µt/2)] = O(ϑ/µ), which we do as follows

∑
t>τn

ϑ2E[
1

S2
t

I(St > µt/2)] =
∑
t>τn

ϑ2
∑

s>µt/2

O(
1

s2
√
t
)

=
∑
t>τn

ϑ2 ·O(
1

µt3/2
) = O(

ϑ2

µτ
1/2
n

)

= O(
ϑ2

logδ/2 n
) = o(

ϑ

µ
)

where the last equality follows because of our assumption µ = o(1/ϑ).

Case 2: µ = Ω(ε/ log n), i.e. µ = Ω(1/ϑ). Since we assume that the drift is positive, we have∑
t≤n

ϑ2E[
1

S2
t

I(|St| > ϑ)] ≤
∑
t≤n

2ϑ2E[
1

S2
t

I(St > ϑ)].

17

Let us define τn = 2ϑ/µ and then note∑
t≤n

ϑ2E[
1

S2
t

I(|St| > ϑ)] ≤ O(
ϑ

µ
) +

∑
t≥τn

2ϑ2E[
1

S2
t

I(St > ϑ)].

In the prevailing case µ = Ω(1/ϑ), so let µ ≥ c/ϑ, for a constant c > 0 and sufficiently large n. We then have

E[
1

S2
t

I(St > ϑ)] ≤ E[
1

S2
t

I(St > c/µ)]

=
1

µ2t2

 ∑
c/µ<s≤µt/2

µ2t2

s2
Pr[St = s] + 4 Pr[St > µt]

≤ 1

µ2t2

(
(µ2t)2

c2
Pr[St ≤ µt/2] +O(1)

)
.

Now, using the Hoeffding’s inequality, we have Pr[St ≤ µt/2] = Pr[−St + µt ≥ µt/2] ≤ exp(−µ
2t
8), and thus it

follows

E[
1

S2
t

I(St > ϑ)] ≤ 1

µ2t2

(
(µ2t)2

c2
e−

(µ2t)
8 +O(1)

)
=

1

µ2t2
·O(1) = O(

1

µ2t2
).

Therefore, ∑
t≥τn

ϑE[
1

S2
t

I(St > ϑ)] = O(ϑ2
∑

t≥2ϑ/µ

1

µ2t2
) = O(

ϑ

µ
).

Combining (11), (12), (13) and (14) with the trivial fact
∑
t≤n E[Rt] ≤ n, we showed that the communication

complexity is
∑
t≤n E[Rt] = O(min{ log3/2 n

µε ,
√
n·logn
ε , n}).

Correctness. The probability that an error occurs is upper bounded as follows:

Pr[En > 0] ≤
∑
t≤n

E[Rt · I(Vt < Ut)].

We shall show the following holds

E[Rt · I(Vt < Ut)] = O(1/n2), for every 1 ≤ t ≤ n (15)

and then the proof of correctness follows via the union bound.
As already showed in (5), we have that for any value r ≥ 0, the following holds

Pr[Vt < Ut, Vt > r | St = s] ≤ Pr[Vt ≤ r | St = s] + Pr[r < Ut | St = s, Vt > r]. (16)

Recall that Ut ≤ r means that at least one report is sent to the coordinator and Vt > r means that the walk does
not escape the ball Bε(s) within next r updates as observed at update t. Similar to our analysis in Theorem 3.1, the
“trick” here is to identify an appropriate value of r (that could depend on s) such that w.h.p. between update t and
t+ r, the following two events happen:

1. at least one message is sent, and
2. the walk has not escape the ball Bε(s).

Similar to as in in equations (6) and (7) in the proof of Theorem 3.1, we will next choose the value of r such that
both above conditions hold with high probability. Specifically, we take

r = min

{
εs

(1− ε)2
,

1

µ

}
· εs

c log n

where c is a large enough positive constant. Notice again that the variable r is chosen only for the purpose of analysis
and is not used for the execution of the algorithm.

18

In the following we first upper bound the probability that the count exits the ball Bε(s) and then upper bound the
probability that no message is sent to the coordinator.
Escape from the ball Bε(s). We may decompose the subwalk into two components: the drift component and the noise
component. We shall show that for every r′ ≤ r, the following holds:

1. The expected increment is smaller than εs/2, i.e.

E[
∑

t≤i≤t+r′
Xi] ≤ εs/2. (17)

2. The value of the increment is within µr′ ± εs/2 with high probability, i.e.

Pr

| ∑
t≤i≤t+r′

Xi − µr′| ≥ εs/2

 is small. (18)

When both two conditions hold, we are able to show that the probability that the walk escapes the ball Bε(s) is small.

Condition 1: Observe that r ≤ εs/(µc log n). Therefore, the expected drift between time t and t+ r′ is at most

µr ≤ εs/(c log n) ≤ εs/2.

Condition 2: Let us denote the noise component by N ,
∑
t≤i≤t+r′ Xi− r′µ. By using the Hoeffding inequality, we

have for large enough constant c > 0,

Pr[|N | ≥ εs/2] ≤ 2 exp

(
− (εs)2

8r′

)
≤ 2 exp

(
− (εs)2

8r

)
= O(1/n3).

By using the union bound, we can conclude that the probability that the walk escapes Bε(s) is O(1/n2), i.e. Pr[Vt ≤
r | St = s] = O(1/n2).

Time until next message. We now upper bound the probability Pr[r < Ut | St = s, Vt > r] by considering two
possible cases.

Case 1. εs
(1−ε)2 ≤ 1

µ , i.e. r = (εs)2

(1−ε)2c logn . In this case, the noise component is dominant. The sampling rate is at least

as large as pt′ ≥ min
{

α log2 n
(1−ε)2(εs)2 , 1

}
for every t < t′ ≤ t + r. If pt′ = 1 for at least one t < t′ ≤ t + r, we have

Pr[r < Ut | St = s, Vt > r] = 0 and we are done. If, otherwise, for every t < t′ ≤ t + r it holds pt′ < 1, then we
have

Pr[r < Ut | St = s, Vt > r] ≤
(

1− α log2 n

(1− ε)ε2s2

)r
. (19)

By substituting the value r = (εs)2

(1−ε)2c logn , we have Pr[r < Ut | St = s, Vt > r] = O(1/n2), for sufficiently large
constant c.
Case 2. εs

(1−ε)2 > 1
µ , i.e. r = εs

µc logn . In this case, the drift term is dominant. The sampling rate satisfies pt′ ≥

min
{
c log3 n
εt , 1

}
for every t < t′ ≤ t + r. In case that there exists t′ such that pt′ = 1, we have Pr[r < Ut | St =

s, Vt > r] = 0 and we are done. If for every t < t′ ≤ t+ r, pt′ < 1, we have

Pr[r < Ut | St = s, Vt > r] ≤
(

1− α log3 n

εt

)(
1− α log3 n

ε(t+ 1)

)
· · ·
(

1− α log3 n

ε(t+ r)

)
≤
(

1− α log3 n

ε(t+ r)

)r
.

We further consider two subcases: when t is small and otherwise.

Case 2a. t < αr log2 n
ε . For this case, we have t+ r ≤ 2αr log2 n/ε, and thus(

1− α log3 n

(t+ r)ε

)r
≤
(

1− α log3 n

2αr log2 n

)r
= O(1/n2).

19

Case 2b. t > αr log2 n
ε . For this case t + r < 2t. The crucial observation is that the value of St has a strong lower

bound, i.e. it holds with high probability. Specifically, by the Hoeffding inequality, we have

Pr[St ≤
tµ

2
] ≤ exp

(
−µ

2t

8

)
.

Using the facts t > (αr log2 n)/ε, r = εs
cµ logn and s > (1−ε)2

µε , we have t ≥ α
cµ2 (1− ε)2 log n, i.e.

Pr[St ≤
tµ

2
] = O(1/n2). (20)

Therefore, we have for s ≥ tµ
2 ,

Pr
[
r < Ut

∣∣∣St = s, Vt > r
]
≤
(

1− c log3 n

2tε

)εt/(c logn)

≤ exp(−α
c
· log2 n) ≤ 1/n2.

Summary. Finally, we summarize the above cases. Let e be the following event

e =

{
St >

(1− ε)2

µε

}
∩
{
St <

tµ

2

}
.

Equation (20) gives us Pr[¬e] = O(1/n2). Also, let f be an element in the probability space associated with Ft and
FFt(·) be the distribution function of Ft. We note that the following series of inequalities hold

EFt [Rt · Pr[Vt < Ut | St]]

=

∫
f

Rt Pr[Vt < Ut | f]dFFt(f)

=

∫
f

Rt Pr[Vt < Ut | f]dFFt(f, e) +

∫
f

Rt Pr[Vt < Ut | f]dFFt(f,¬e) (rule out the rare event ¬e.)

≤
∫
f

Rt Pr[Vt < Ut | f]dFFt(f, e) +O(1/n2)

≤
∫
f

Rt (Pr[Vt < r | f] + Pr[r ≤ Ut | f, Vt ≥ r]) dFFt(f, e) +O(1/n2)

≤
∫
f

Rt
(
O
(
1/n2

)
+O

(
1/n2

))
dFFt(f, e) +O(1/n2)

≤ O(1/n2)

∫
f

RtdFFt(f, e) +O(1/n2)

≤ O(1/n2) · E[Rt] = O(1/n2).

Therefore,
∑
t≤n E [Rt · I(Vt < Ut)] = O(1/n) which completes the proof.

D.2 Multiple Site Case
In this section we prove Theorem 3.3. We shall show the following three statements in our analysis:

1. Using the non-drift algorithm before update τ = Θ(1/(µ2ε) · log n) is sufficient to track the count with high
probability.

2. Using the difference estimator after update τ is also sufficient to track the count with high probability.
3. The communication complexity in the first phase is

• Õ
(

min{
√
k
|µ|ε ,

√
kn
ε }
)

, if k = O(1/(µε)2),

• Õ(min{
√
k
|µ|ε ,

√
kn
ε }), if k = ω(1/(µε)2).

20

Correctness up to time τ . To show the first part, since our k-site algorithm is only mimicking the algorithm for
the 1-site case, we only need to show that our sampling rate here is at least as large as the sampling rate for the 1-site
without drifting case. Specifically, we shall show that

min

{
α log4 n

ε2S2
t

, 1

}
≥ min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}
with high probability, i.e., log4 n/(ε2S2

t) = Ω(log3 n/(εt)), and hence, St = O(
√
t log n/ε) with high probability.

This can be seen through applying a standard Chernoff bound.
Correctness after time τ . Let Pt and Mt denote the number of positive and negative increments observed up to time
t, respectively, i.e. Pt =

∑
i≤t I(Xi = 1) and Mt =

∑
i≤t I(Xi = −1). Let P̂t and M̂t be estimators of Pt and Mt,

respectively, such that P̂t ∈ B1/(εµ)(Pt) and M̂t = B1/(εµ)(Mt). Here, we show that P̂t− M̂t ≥ (1− ε)St with high
probability. Notice that the other condition P̂t − M̂t ≤ (1 + ε)St can also be showed to hold with high probability in
a similar fashion.

First, notice that P̂t−M̂t ≥ Pt−Mt−µεt/6. By using a Chernoff bound and the fact that t = Ω(1/(µ2ε)·log n),
we have t ≤ 2

3µSt with high probability. Therefore, P̂t − M̂t ≥ Pt −Mt − εSt with high probability.
Communication cost for the first phase. We reuse the notation developed for the analysis of multiple site case with
no drift. Let Ct be the communication cost associated with the t-th update. We have

E[Ct] ≤ Pr[St ≤
√
k/ε] +

k log4 n

ε2
E[

1

S2
t

I(|St| ≤
√
k/ε)]. (21)

Using the communication analysis developed in Theorem D.1 and re-scaling the parameter ε as ε/
√
k, we have

Pr[|St| ≤ ϑ] + ϑ2E[
1

S2
t

I(|St| ≥ ϑ)]

= Pr[St ≤
√

2α
√
k/ε log2 n] +

k log2 n

ε2
E[

1

S2
t

I(|St| ≥
√
k/ε)]

≥ 1

log2 n
E[Ct]

where the last inequality follows from (21).
Therefore, ∑

t≤n

E[Ct] ≤ log2 n
∑
t≤n

(Pr[|St| ≤ ϑn] + ϑ2
nE[

1

S2
t

I(|St| ≥ ϑn)])

which allows us to conclude:
• Õ(min{

√
k
|µ|ε ,

√
kn
ε }), if k = O(1/(µε)2), and

• Õ(min{
√
k
|µ|ε ,

√
kn
ε }), if k = ω(1/(µε)2).

E Algorithms for Randomly Ordered Streams
In this section, we study our algorithms for random permutation input. We shall mimic our analysis for the i.i.d.

case input starting with an algorithm for single site case, where the drift is small and analyze its performance. Then,
we will move to the general case with a proof that reuses results from the single site case.

E.1 Single Site Case
Let us recall that µ is used to represent the drift rate of the counter process, which for a random permutation is

defined by letting µn denote the final value of the counter.
Our algorithm for the single site case is identical to the single site algorithm for i.i.d. input stream. Specifically,

we shall use the following sampling rate, for a constant α > 0,

Sample-Prob(St, t) = min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}
. (22)

21

We next prove Theorem 3.4 which is decomposed into three steps. In Lemma E.3, we show that the algorithm
is correct for sufficiently small drift. In Lemma E.4, we show that the algorithm is correct for large drift. Finally, we
shall analyze the communication cost in Lemma E.5.

We first present two lemmas about deviation of a random permutation from a typical sample-path which we shall
use in the remainder of the proof.

Lemma E.1. Let X1, X2, . . . , Xn be a random permutation such that
∑
i≤nXi = µn. Also, let St ,

∑t
i=1Xi.

Then, we have for every c ≥ 0,

Pr[∃t < n

2
: |St −

t

n
µ| ≥

√
2(1 + c)t log n] ≤ 1

nc
. (23)

We may apply Lemma E.1 to the left half and right half of permutation (when we apply it to the right half, we
read the permutation from right to left) and yield the following corollary.

Corollary E.2. Let X1, X2, . . . , Xn be a random permutation such that
∑n
i=1Xi = µn. Also, let St ,

∑t
i=1Xi.

Then, we have for every c ≥ 0,

Pr[∃t < n

2
: |St −

t

n
µ| ≥

√
2(1 + c) min{t, n− t} log n] ≤ 1

nc
. (24)

Proof. (of Lemma E.1) Our proof is a straightforward application of Hoeffding inequality for the special case of
sampling without replacement. Specifically, by Theorem 2 in [11], we have for every t ≤ n

2 and c ≥ 0,

Pr[|St −
t

n
µ| ≥

√
2(1 + c)t log n] ≤ 2 exp(−

(
√

2(1 + c)t log n)2

2t
) =

2

n1+c
.

By using the union bound across t under consideration, we complete the proof.

We next state our main result for the case where µ = Õ(
√
n).

Lemma E.3. Let µn be the final value of the counter. Suppose that µn ≤
√
n log2 n, then the algorithm Non-

monotonous Counter with the sampling probability as in (22) correctly tracks the counter with probability 1−O(1/n).

Proof. We again use the same notation as for the i.i.d. case. We have

Pr[En > 0] ≤
∑
t≤n

E[Rt · I(Vt < Ut)].

Our goal is again to show that E[Rt · I(Vt < Ut)] = O(1/n2). We need to consider two cases t ≤ n/2 and t > n/2.
In what follows, we only focus on the case t ≤ n/2 as the case t > n/2 can be analyzed by following similar same
steps.

Define the event e that for large enough constant γ > 0, the following holds: |St − µt| ≤ γ
√
t log n for every

1 ≤ t ≤ n. Lemma E.1 gives us Pr[e] ≥ 1− 1/n
1
2γ

2−1. When the event e occurs, we have St ≥ −γ
√
t log n.

In what follows, our analysis will focus on the case where e happens. The probability of ¬e is sufficiently small
that it becomes negligible for our analysis.

Recall that
E[RtI(Vt < Ut)] = EFt [Rt Pr[Vt < Ut | St]].

and that for any r ≥ 0, the following holds

Pr[Vt < Ut | St = s] ≤ Pr[Vt ≤ r | St = s] + Pr[r < Ut | St = s, Vt > r]. (25)

Let us define r = ε2s2

c(1−ε)2 logn , where c > 0 is an appropriately chosen constant. We need to analyze two terms that
appear in the right-hand side of equation (25) which, respectively, correspond to the probability that the walk between
steps t and t + r exits the ball Bε(s) and the probability that no message is sent between t and t + r. Our goal is to
show that both terms are O(1/n2), which allows us to conclude the correctness proof.

22

Escape from the ball Bε(s) Here, we need to bound Pr[Vt ≤ r | St = s, e]. We shall again view the walk as a
composition of a drift and noise component and show that the values of both components are smaller than εs/2 from
update t to update t+ r] in order to conclude that Pr[Vt ≤ r | St = s, e] is small.

Case 1: drifting is small. Now, let us consider the trajectory of the walk from t to n. We know that the walk starts at
value s and ends at value µn. Since no information during this period is revealed, the trajectory is a random trajectory
(with known starting and ending point). In other words, we may view the trajectory as a random permutation with drift
µn− s. Since s ≥ −γ

√
t log n (recall that we assume event e happens), we have that the total drift for the trajectory is

bounded by µn+ γ
√
n log n ≤ 2

√
n log2 n. The “drift rate” thus is ≤ 4√

n
log2 n. Next, we compute an upper bound

for the expected increment until time t+ r′, for 0 < r′ ≤ r. We have, for every 0 < r′ ≤ r,

E[
∑

t≤i≤t+r′
Xi] ≤

4√
n

log2 n · r.

Case 2: noise is small. Let us define N = E[
∑
t≤i≤t+r′ Xi] − µr′. By using the Hoeffding inequality (without

replacement), we have

Pr[|N | ≥ εs

2
] ≤ 2 exp(−ε

2s2

8r′
) ≤ 2 exp(−ε

2s2

8r
) = O(1/n3).

By using the union bound, we may conclude that

Pr

| ∑
t≤i≤t+r′

Xi| > εs, for some 1 ≤ r′ ≤ r

 = O(1/n2).

Time until next message. We now move to the term Pr[Vt < Ut, Vt > r | St = s, e]. By using the same manipulation
as in the proof of Theorem 3.2, we have that for large enough constant c > 0,

Pr[Vt < Ut, Vt > r | St = s, e] ≤ Pr[r ≤ Ut | S, Vt > r] ≤
(

1− (1− ε)2c log2 n

ε2s2

)r
= O(1/n2).

Therefore, we may conclude that

Pr[Rt · I(Vt < Ut)] ≤ Pr[¬e] +

∫
f

E[I(Vt < Ut) | f]dFFt(f, e) = O(1/n2)

which completes our analysis.

Now we proceed to analyze the case where µ >
√
n log2 n.

Lemma E.4. Let µ be the final value of the counter. Suppose µn ≥
√
n log2 n, then the algorithm Non-monotonous

Counter with the sampling probability as in (22) correctly tracks the counter with probability 1−O(1/n).

Proof. We shall use the same set of notation and start by recalling the fact

Pr[En > 0] ≤
∑
t≤n

E[RtI(Vt < Ut)].

We need to show that E[RtI(Vt < Ut)] = O(1/n2) to conclude our analysis. Recall that we use e to represent the
event that |St − µt| ≤ γ

√
t log n, for every 1 ≤ t ≤ n, where γ is a large enough constant. Using

Pr[Vt < Ut | St = s, e] ≤ Pr[r < Ut | St = s, Vt > r, e] + Pr[Vt ≤ r | St = s, e],

we need to show that Pr[r < Ut | St = s, Vt > r, e] = O(1/n2) and Pr[Vt ≤ r | St = s, e] = O(1/n2). In this case,
we choose r as follows

r = min

{
(εs)2

c(1− ε)2 log n
,

εs

cµ log n

}
where c is a large enough constant c > 0.

23

Escape from the ball Bε(s) We now analyze the term Pr[Vt ≤ r | St = s, e]. We again view the random walk as a
composition of the drifting and noise component and show that the values of both components are smaller than εs/2
from update t to update t+ r in order to conclude that Pr[Vt ≤ r | St = s, e] is small.

Case 1: drifting is small. Let r′ ≤ r. We shall again interpret the trajectory from t to n as a random permutation that
starts at value s and ends at value µn. Since s ≥ µt− γ

√
t log n (under event e), we have that the total drift is at most

µ(n − t) + γ
√
t log n. We can verify that µ(n − t) > γ

√
t log n for sufficiently large n. Therefore, 2µ(n − t) is an

upper bound of the total drift in the random trajectory part. Now, for any 0 < r′ ≤ r, the expected increment between
t and t+ r′ is E[

∑
t≤i≤t+r′ Xi] ≤ 2µr ≤ εs/2, where the last inequality holds because r ≤ εs

cµ logn .

Case 2: noise is small. For any r′ ≤ r, let us recall that N = E[
∑
t≤i≤t+r′ Xi] − µr′. By using the Hoeffding

inequality (without replacement), we have

Pr[|N | ≥ εs

2
] ≤ 2 exp(− (εs)2

8r′
) ≤ 2 exp(− (εs)2

8r
) = O(1/n3).

We may thus conclude that Pr[Vt ≤ r | St = s, e] = O(1/n2).

Time until next message. We now upper bound the probability Pr[r < Ut | St = t, Vt > r, e]. We again separately
consider two possible cases.

Case 1. εs
(1−ε)2 ≤ 1

µ , i.e. r = (εs)2

c(1−ε)2 logn . In this case, we have

Pr[Ut > r | Vt > r, St = s] ≤
(

1− α log2 n

(1− ε)2(εs)2

)r
= O(1/n2), for large enough γ > 0.

Case 2. εs
(1−ε)2 ≥ 1

µ , i.e. r = εs
c(logn)µ . In this case, we need to further consider two subcases: t ≤ 1/(εµ2) · log n

or otherwise. Recall that Õ(1/µ2ε) is approximately the cut such that in the region before the cut, the noise term
dominates and in the region after the cut the drifting term dominates.
Case 2a. t ≤ 1/(εµ2) · log n. We have

Pr[Ut > r | Vt > r, St = s] ≤
(

1− γ log3 n

εt

)r
≤

(
1− γ log3 n

ε log n/(µ2ε)

) εs
c(1−ε)2 lognµ

≤
(

1− γ log3 n

log n/(µ2)

) ε 1
µε

(1−ε)2

c(1−ε)2 lognµ

= O(1/n2)

where in the second inequality we use the fact t ≤ 1/(µ2ε) · log2 n and the definition of r, and in the third inequality
we use the fact s ≥ (1− ε)2/(µε).
Case 2b. t ≥ 1/(µ2ε)·log n. The event e gives us s ≥ µt/2, for sufficiently large n. Therefore, r ≥ εµt/2

cµ logn = εt
2c logn .

We then have

Pr[r < Ut | St, Vt > r] ≤
(

1− γ log3 n

εt

) εt
2c logn

= O(1/n2).

We next move to analyze our communication cost. We have the following lemma.

Lemma E.5. The expected communication complexity of algorithm Non-monotonous Counter to track any random
permutation is at most O(1

ε ·
√
n log n+ log3 n) if µ is bounded away from 1 (i.e. 1− µ = Ω(1)).

24

Proof. We shall show that for any t ∈ [log2 n, n− log2 n], it holds

Pr[St = x] = O(
1

min{
√
t,
√
n− t}

), −t ≤ x ≤ t. (26)

Then we may use the technique developed in Theorem 3.1 to conclude that the expected communication cost from the
sampling component Θ̃(1/(ε2s2)) is O(1

ε ·
√
n log n) while that of the sampling component Θ̃(1/(εt)) is O(log3 n),

which would complete our proof. Notice that giving up the regions [0, log2 n] and [n− log2 n, n] is legitimate because
the communication cost incurred in these two regions is asymptotically dominated by that in the other region.

We now proceed to prove (26). Let x be the number of positive signs and y be the number of negative signs. We
have x+ y = n and x− y = µn, i.e. x = 1+µ

2 n and y = 1−µ
2 n. We divide the positive signs and negative signs into

three groups, D, X , and Y . The set Y consists of the set of negative signs; the size of Y is 1−µ
2 n. X consists of the

set of positive signs of size 1−µ
2 µ. D consists of the remaining signs of size µn.

We use the following way of generating random permutations:
• We first place signs from D uniformly at random across all n time units.
• We next place X and Y uniformly at random in the rest of the slots.

Let Dt be the number of signs from D that fall into the region [0, t]. Then Dt follows a binomial distribution i.e.
Dt ∼ B(µn, t/n). By using a Chernoff bound, we have for any constant ε0:

Pr[Dt ≥ (1 + ε0)µt] ≤ exp(−ε20µ/3). (27)

Via some straightforward algebra manipulation, we may conclude from (27) that

Pr[t−Dt = Ω(t)] ≥ 1− 1

n4
.

The fraction 1/n4 is chosen rather arbitrary. Let us denote the event t − Dt = Ω(t) as e. Under event e, let t0 =
t−Dt = Θ(t). The rest of the slots in [0, t] then are chosen uniformly from X and Y . Let x0 be the number of signs
that are chosen from x and y0 be the number of signs that are chosen from Y , where x0 + y0 = t0. We have

Pr[St = Dt + x0 − y0] =

(|X|
x0

)(|Y |
y0

)(|X|+|Y |
t0

) .
Let us write q(x0) = Pr[St = Dt + x0 − y0]. We shall show that

1. q(1) < q(2) < q(3) < · · · < q(t0/2) > q(t0/2 + 1) > · · · > q(t0).
2. q(t02) = Θ(q(t02 + 1)) = Θ(q(t02 + 2)) = · · · = Θ(q(t02 +

√
t0)).

The second item allows us to conclude that q(t0/2) = O(1/
√
t0) = O(1/

√
t). The first item gives us that q(t0/2) is

the maximum item among all, which allows us to conclude that Pr[St = x] = O(1/
√
t) for all x.

Proving the first item only require some straightforward manipulation. The second item seems to be a known
folklore. For completeness, we sketch a proof for q(t0/2) = Θ(q(t0/2 +

√
t0). Our goal is to show that

q(t0/2)

q(t0/2 +
√
t0)

= O(1).

We have

q(t0/2)

q(t0/2 +
√
t0)

=

(|X|
t0
2

)(|Y |
t0
2

)
(|X|
t0
2 +
√
t0

)(|Y |
t0
2 −
√
t0

) =
(|X| · · · |X − t0

2 |)
2

[(t0/2)!]2
· (t0/2−

√
t0)!(t0/2 +

√
t0)!

(|X| · · · |X − t0
2 +
√
t0|)(|X| · · · |X − t0

2 −
√
t0|)

.

Notice that

(t0/2−
√
t0)!(t0/2 +

√
t0)!

[(t0/2)!]2
=

(t0/2 + 1) · · · (t0/2 +
√
t0)

(t0/2−
√
t0 + 1) · · · t0/2

=
∏
i≤
√
t0

(
1 +

√
t0

t0/2−
√
t0 + i

)

≤
(

1 +

√
t0

t0/2

)√t0
= O(1).

25

Similarly, we may show that

(|X| · · · |X − t0
2 +
√
t0|)(|X| · · · |X − t0

2 −
√
t0|)

(|X| · · · |X − t0
2 |)2

= O(1),

concluding q(t0/2) = O(q(t0/2−
√
t0)), which completes our complexity analysis.

E.2 Multiple Site Case
In this section, we prove Theorem 3.4. Our analysis mostly follows the algorithm for the drifted case. Here we

highlight a few key components in our analysis. Specifically, we need to verify the following statements.
1. It takes Õ(1/µ2) samples to estimate µ within an arbitrarily fixed relative accuracy.
2. When t = Õ(1/(µ2ε)), then 1/(ε2S2

t) = Ω̃(1/εt). This condition makes sure that treating the input as non-
drifting is fine before time t = Õ(1/(µ2ε)).

3. When t = Ω̃(1/(µ2ε)), then the difference estimator works.
4. The expected communication cost is

(a) If t = Õ(1/(µ2ε)), the expected communication cost is Õ(
√

k
t

1
ε).

(b) If t = Ω̃(1/(µ2ε)), the expected cost is
• Õ(

√
k/(µε)) when k < 1/(µ2ε2).

• Õ(k) otherwise.
First, notice that by Theorem A.3, when t = Ω(log n/(µ2ε)), we have Pr[|St − µt| > 0.1µt] ≤ exp(−Θ(tµ2)) =
exp(−Θ(log2 n)). Therefore, the concentration results still holds. Item 1 and 3 above can be proved by only using this

tail inequality. For item 2, we essentially only need to prove St ≤
√

t
ε logc n for some constant c > 0. This can also

be proven by the concentration inequality. To prove item 4a, we only need to utilize the fact that for any t < 1/(µ2t),
Pr[St = x] = O(1

min{
√
t,
√
n−t}). Our communication complexity at time t = Õ(1/(µ2ε)) is

Pr[St ≤
√
k/ε] + kPr[St ≥

√
k/ε] = O(

√
k

ε

1

min{
√
t,
√
n− t}

)

which implies that the expected communication cost in the first phase is Õ(
√

k
t

1
ε). The communication in the second

phase can be directly implied from Huang et al. [12].

F Algorithms for Fractional Brownian Motion
In this section we first prove Theorem 3.5 following the same steps as in the proof of Theorem 3.1.

Communication cost. We first note the following lemma.

Lemma F.1. Suppose S is a Gaussian random variable with mean zero and variance σ2 > 0. Then, for every
constants c > 0 and δ > 1,

E[min{c|S|−δ, 1}] ≤
√

2

π

δ

δ − 1

c1/δ

σ
.

Proof. We need to show that for a Gaussian random variable with mean zero and variance σ2 > 0, the following holds
for every c > 0 and δ > 1,

E[min{c|S|−δ, 1}] ≤
√

2

π

δ

δ − 1

c1/δ

σ
.

Note that

E[min{c|S|−δ, 1}] = E[c|S|−δI(|S|δ > c)] + Pr[|S|δ ≤ c]
= 2cE[S−δI(S > c1/δ)] + 2 Pr[S ∈ [0, c1/δ]]

=
2c

σδ
E[

1

N
I(N > c1/δ/σ)] + 2 Pr[N ∈ [0, c1/δ/σ]]

26

where N is a standard normal random variable (with mean 0 and variance 1). Now, note

2c

σδ
E[

1

N
I(N > c1/δ/δ)] ≤ 2c

σδ
1√
2π

∫ ∞
c1/δ/σ

1

xδ
e−

x2

2 dx

≤ 2c

σδ
1√
2π

∫ ∞
c1/δ/σ

1

xδ
dx

=
2c

σδ
1√
2π

1

δ − 1

(σ

c1/δ

)δ−1

=

√
2

π

1

δ − 1

c1/δ

σ
.

It also holds

2 Pr[N ∈ [0, c1/δ/σ]] ≤ 2 · 1√
2π

c1/δ

σ
=

√
2

π

c1/δ

σ
.

Summing the two together we complete the proof.

Applying the lemma to the sampling probability given in (2), we have for every 1 ≤ t ≤ n,

E[Rt] ≤
√

2

π

δ

δ − 1

[α(2(α+ 1))δ/2 log1+δ/2 n]1/δ

ε

1

tH
.

Therefore, the expected communication cost is∑
t≤n

E[Rt] = O(n1−H/ε · log1/2+1/δ n).

Correctness. We next bound the probability of error. Note

Pr[Vt ≤ r | St = s] = Pr[max
i=t+1,...,t+r

Si − St ≥ d
s

1− ε
e − s | St = s]

≤ nPr[St+r − St ≥
ε

1− ε
s | St = s] (28)

We shall make use of the following lemma.

Lemma F.2. Let (Z, Y) be a bivariate Gaussian random variable with mean (0, 0) and covariance matrix Σ =(
σ2
Z cZ,Y

cZ,Y σ2
Y

)
. Then, conditional onZ ∈ [z, z+dz), Y is a Gaussian random variable with mean µY |z = cZ,Y /σ

2
Z ·z

and variance σ2
Y |z = σ2

Y − cZ,Y /σ2
Z .

Proof. Let us denote with φZ,Y (z, y) the density of a bivariate normal random variable with mean (0, 0) and covari-
ance matrix Σ and let φZ(z) be the density of a normal random variable with mean zero and variance σ2

Z .
We have

Pr[Y > y | Z ∈ [z, z + dz)] =
Pr[Y > y,Z ∈ [z, z + dz)]

Pr[Z ∈ [z, z + dz)]

=
1

φZ(z)

∫ ∞
y

φZ,Y (z, u)du.

Therefore,

Pr[Y > y | Z ∈ [z, z + dz)] =
1

1√
2πσZ

e
− z2

2σ2
Z

· 1

2π
√
|Σ|

∫ ∞
y

exp

(
−1

2

(
z u

)
Σ−1

(
z
u

))
du

Now, note

Σ−1 =
1

|Σ|

(
σ2
Y −cZ,Y

−cZ,Y σ2
Z

)

27

where |Σ| = σ2
Y σ

2
Y − c2Z,Y . It is readily obtained that

(
z y

)
Σ−1

(
z
y

)
=

z2

σ2
Z

+
σ2
Z

|Σ|

(
y − cZ,Y

σ2
Z

z

)2

and, thus,

1

2π
√
|Σ|

∫ ∞
y

exp

(
−1

2

(
z u

)
Σ−1

(
z
u

))
du = e

− z2

2σ2
Z ·
∫ ∞
y

exp(−1

2

σ2
Z

|Σ|
(u− cZ,Y

σ2
Z

z)2)du

= e
− z2

2σ2
Z · 1

2πσZ

∫ ∞
σZ√
|Σ|

(y−
cZ,Y

σ2
Z

z)

e−
1
2w

2

dw

= e
− z2

2σ2
Z · 1√

2πσZ
Φ̄

(
σZ√
|Σ|

(y − cZ,Y
σ2
Z

z)

)

where in the second equation we use the change of variable w = σZ√
|Σ|

(u− cZ,Y
σ2
Z
z).

Therefore, we obtain

Pr[Y > y | Z ∈ [z, z + dz)] = Φ̄

(
σZ√
|Σ|

(y − cZ,Y
σ2
Z

z)

)
.

Let Gr be a Gaussian random variable with mean zero and variance

σ2
G(
s

b
) =

σ2
St+r|s

(1−
µSt+r|s

b)2

then, note Pr[St+r > b | St ∈ [s, s+ ds)] = Pr[Gr > b].
Defining κG = E[St(St − St+r)] and δ2

G = E[(St+r − St)2], it can be readily showed that

σ2
G(
s

b
) =

δ2
G − κ2

G/σ
2
St

(1− s
b + s

bκG/σSt)
2
.

Now, since (Su, u ≥ 0) is a fractional Brownian motion with parameter 0 < H < 1, we have

δ2
G = r2H

κG =
1

2
[(t+ r)2H − t2H − r2H].

In particular, for standard Brownian motion, δ2
G = r and κG = 0.

For given ηn > 0, Pr[Gr > b] ≤ ηn is equivalent to

σ2
G(
s

b
) ≤

(
b

Φ̄−1(ηn)

)2

(29)

where Φ̄(·) is the complementary distribution of a normal random variable.
The following is a key lemma that enables us to use a stochastic comparison to derive an algorithm that does not

require exact knowledge of the Hurst parameter H , for the case 1/2 ≤ H < 1, but only an upper bound on it.

Lemma F.3. It holds σ2
G(sb) ≤ δ2

G

(1− sb)2 , for 1/2 ≤ H < 1.

Proof. This is evident from the fact κG ≥ 0 iff 1/2 ≤ H < 1 where equality holds for H = 1/2.

28

Furthermore, we may use the fact Φ̄(x) ≤ e− x
2

2 , for large enough x, which yields Φ̄−1(ηn) ≤ (2 log(1/ηn))1/2,
for large enough n. Hence, we obtain that for (29) to hold for ηn = 1/nα+1, it suffices that σ2

G

(1− sb)2 ≤ (b
α logn)2, i.e.

r ≤
(

|b− s|
((α+ 1) log n)1/2

)1/H

. (30)

If this condition holds for b = s/(1 − ε), then this implies Pr[St+r − St ≥ ε
1−εs | St = s] ≤ 1/nα+1, and thus in

view of (28), it follows Pr[Vt ≤ r | St ∈ [s, s+ ds)] ≤ 1/nα.
The rest of the proof follows by the same arguments as in the proof of Theorem 3.2, using pt = min{ α logn

(1−ε)2r , 1}
and r defined by taking equality in (30) with b− s = εs/(1− ε), which yields the sampling probability

pt ≥ min

{
(2(α+ 1) log n)1/(2H)

(ε|St|)1/H
· α log n, 1

}
.

The right-hand side is increasing with H , hence it suffices to set the sampling probability such that equality holds in
the last relation with H replaced by 1/δ. This is our sampling probability defined in (2).

Finally, we bound the error probability. We showed that Pr[Vt < Ut | St ∈ [s, s + ds)] ≤ 3/nα, for every real
value s and 1 ≤ t ≤ n. Hence,

Pr[En > 0] ≤
∑
t≤n

E[Rt] ·O(1/nα) = O(n1−H−α/ε · log1/2+1/δ).

Hence, no error occurs with probability at least 1− 1/n, for any α > 2−H .

F.1 Proof of Corollary 3.6
We can use exactly the same coupling argument as in Theorem 3.2. The only difference is in calculating

the communication costs at different stages, expressed in (9). The communication in the straightforward stage is
Õ(n1−H

√
kε). To analyze the broadcast stage, let us write the sampling probability in (2) as pt = max{ν/|St|δ, 1}

with ν = (9 · 2δ/2(c + 1)1+δ/2)1/δ/(ε/
√
k) (we use the same re-scaling of the parameter ε to ε/

√
k as in the proof

of Theorem 3.3). Notice that ν1/δ <
√
k/(ε
√

1 + ε), and hence the probability of sending a message at time t when
in broadcast stage is kνE[|St|−δI(|St| >

√
k

ε
√

1−ε)]. From here, using a similar derivation as in Lemma F.1, we get

that the overall expected cost in the broadcast stage is Õ(n1−Hk
3−δ

2 /ε), which is the dominant cost for our choice of
1 < δ ≤ 2. In the remainder of this proof we calculate upper bounds on the expected communication cost.

We start by considering Eq. (9). Let us first calculate the expected number of messages in the straightforward
stage. We have

Pr[St ≤
√
k

ε
√

1− ε
] = Pr[N ≤

√
k

tHε
√

1− ε
] ≤

√
2

π

√
k

tHε
√

1− ε
where N is a standard normal random variable.

Next, we calculate the expected number of messages in the broadcast case. Let ν = 9(α+1)(2(α+1))δ/2 log1+δ/2 n
εδ

,
so the sampling probability is pt = max{ν/|St|δ, 1}. Notice that ν1/δ ≤

√
k/(ε
√

1 + ε). We then have

kE[Rm,tI(St ≥
√
k

ε
√

1 + ε
)] = kE[max{ν/|St|δ, 1}I(St ≥

√
k

ε
√

1 + ε
)]

= kνE[|St|−δI(|St| >
√
k

ε
√

1− ε
)]

= k
ν

tδH
E[

1

N
I(|N | ≥

√
k

ε
√

1− ε
1

tH
)]

≤ k
ν

tδH

√
2

π

1

δ − 1

(√
k

ε
√

1− ε
1

tH

)−δ+1

= Õ

(
1

tH
1

ε
k

3−δ
2

)
.

We see that the broadcast stage is dominant for 1 < δ ≤ 2, and hence the expected communication cost is Õ(n1−Hk
3−δ

2 /ε).

29

G Communication Complexity Lower Bounds
In this section we provide proofs for our results on lower bounds on the communication complexity of the con-

tinuous distributed counting problem with non-monotonous input stream.

G.1 Proof of Theorem 4.1
Let E = {s ∈ Z : |s| ≤ 1/ε}. Our crucial observation here is that whenever St walks inside the region E we

have ε|St| < 1 and no errors are allowed. Specifically, let It be the indicator random variable that sets to 1 if and
only if St ∈ E . Notice that E[It] = Pr[St ∈ E] = Ω(|E|/

√
t) = Ω(1/(

√
tε)) and E[

∑
t≤n It] = Θ(min{

√
n/ε, n}).

On the other hand, our error requirement gives us Pr[Mn ≥
∑
t≤n It] ≥ 1 − 1/n. We can then derive E[Mn] from

E[
∑
t≤n It] using the following argument. Let A be the subset of the probability space where Mn ≥

∑
t≤n It and let

¬A be the subset where this does not hold. We have

E[Mn] ≥
∫
A
MndF ≥

∫
A

∑
t≤n

ItdF = E[
∑
t≤n

It]−
∫
¬A

∑
t≤n

ItdF ≥ E[
∑
t≤n

It]− 1,

where the last equality follows from the facts that
∑
t≤n It ≤ n by construction, and that

∫
¬A dF ≤ 1/n.

G.2 Proof of Theorem 4.2
The proof is by direct analysis of the probability of event St ∈ E = {s ∈ Z : |s| ≤ 1/ε}, where the distribution

of St is given by

Pr[St = s] =

(
t
t+s
2

)
p
t+s
2 (1− p)

t−s
2 .

We remark that in the proof it is implicitly assumed that p, µ and ε are sequences indexed with n, but we omit to make
this explicit in the notation for simplicity of presentation.

For convenience, we introduce the notation σ2 = Var[X1] = 4p(1− p) and let ρ =
√

p
1−p . We then have

Pr[St = s] = σt
1

2t

(
t
t+s
2

)
ρs.

Since 1
2t

(
t
t+s
2

)
=
√

2
π

1√
t

for s = o(
√
t), we have

Pr[St = s] =

√
2

π

1√
t
σtρs · [1 + o(1)], for s = o(

√
t).

In order to simplify the notation and with a slight abuse in the remainder of the proof we omit to write the factor
[1 + o(1)].

Let θ0 ≥ 0 and θ1 ≥ 0 be such that |θ0| = o(
√
t) and θ1 = o(

√
t) and consider Pr[St ∈ [−θ0, θ1]], for

t = 1, 2, . . . , n. For 1/2 < p < 1 and s = o(
√
t), we have

Pr[St ∈ [−θ0, θ1]] =

√
2

π

1√
t
σt

θ1∑
s=−θ0

ρs

=

√
2

π

1√
t
σt
(
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

)
.

Let En[−θ0, θ1] denote the number of visits of the set [−θ0, θ1] by the counter St and let τn = ω(max{θ0, θ1}).
Then, note

E[En[−θ0, θ1]] ≥
n∑

t=τn

Pr[St ∈ [−θ0, θ1]] =

(
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

)
·
√

2

π

n∑
t=τn

1√
t
σt.

30

Notice that for every c > 0,
n∑

t=τn

1√
t
e−ct =

∫ n

τn

1√
t
e−ctdt ≥

∫ 2
√
n

2
√
τn

e−
c
4u

2

du = 2

√
π

c
[Φ(
√

2cn)− Φ(
√

2cτn)]

where Φ is the distribution of a standard normal random variable.
Therefore,

E[En[−θ0, θ1]] ≥ 4anbn

log1/2(1
σ2)

(31)

where

an =
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

bn = Φ(log1/2(
1

σ2
)
√
n)− Φ(log1/2(

1

σ2
)
√
τn).

Now, we consider the case of a small but non-zero drift µ = p− (1− p) = o(1) and θ0 = θ1 = 1/ε where 1/ε is
a positive integer. We will assume that τn = o(n) and τn = ω(1/ε2), thus ε = ω(1/

√
n).

It is straightforward to show that the following asymptotes hold:

ρ = 1 + µ+O(µ2)

ρ− 1 = µ+O(µ2)

σ2 = 1− µ2

log(
1

σ2
) = µ2 +O(µ3)

For the term an, it holds

an = 2
ρ

1
ε+1 − 1

ρ− 1
− 1 =

2

µ
(e

µ
ε − 1) · [1 + o(1)].

Hence, an = Θ(1/µ), for µ = O(ε). Notice that for the case ε = o(µ), an grows as Ω(eµ/ε).
For the term bn, we observe

bn = Φ(log1/2(
1

σ2
)
√
n)− Φ(log1/2(

1

σ2
)
√
τn) = [Φ(µ

√
n)− Φ(µ

√
τn)] · [1 + o(1)]

and is easy to derive that bn = Θ(1), for µ = O(1/
√
n) and bn = Θ(µ

√
n) for µ = o(1/

√
n). Indeed, these are easy

to derive from the above asymptotes and the facts Φ(µ
√
n) − Φ(µ

√
τn) = 1 − 1/2 = 1/2 for µ = ω(1/

√
n) and

Φ(µ
√
n)− Φ(µ

√
τn) ≥ 1√

2π
e−

µ2n
2 µ(
√
n−√τn).

The assertion of the theorem follows by plugging the derived asymptotes for an, bn and log1/2(1/σ2)) = µ[1 +
o(1)] into (31).

G.3 Proof of Lemma 4.4
The proof in this section follows that of Lemma 2.2 in [12]. Here, we only need to argue that the communication

lower bound still holds for a two round deterministic protocol such that
• in the first round, a subset of sites report their individual values to the coordinator;
• in the second round, the coordinator probes a subset of sites to make the decision.
The lemma follows in view of the fact that a randomized protocol can be seen as a distribution over a set of

deterministic algorithms. It suffices to consider the case where o(k) messages are sent in the first round, as otherwise
we are done with the proof. This essentially reduces the communication complexity problem to a known sampling
complexity problem [12]. The only remaining obstacle here is that the input distribution under our consideration is
not exactly the same as the one studied in [12]. Therefore, we need to re-establish the sampling lower bound in our
setting, which is provided in the remainder of this section.

Let k′ = Θ(k) be the number of sites that have not sent any messages in the first round, and without loss of
generality, assume that these sites are 1, 2, . . . , k′. Since the number of messages sent in the first round is o(k), in the
second round, we need to solve a problem that is at least as hard as the following one:

31

• answer whether the sum
∑
i≤kXi is positive or negative, if |

∑
i≤k′ Xi| ≥ c

√
k′;

• do anything (i.e. no requirement) when |
∑
i≤k′ Xi| < c

√
k′

where c is a positive constant.
Let us denote with z the number of sites that are sampled by the coordinator in the second round, and without loss

of generality, let us assume that these sites are 1, 2, . . . , z. To contradict, let us suppose z = o(k′). Let N =
∑
i≤zXi

be the cumulative update value of the sampled sites and U =
∑
z<i≤k′ Xi be the cumulative update value of the

unsampled sites. Clearly, the optimal detection algorithm for the sampling problem is to declare
∑
i≤k′ Xi > c

√
k′

if N > 0, to declare
∑
i≤k′ Xi < −c

√
k′ if N < 0 and to declare either (with probability 1/2) if N = 0. The

probability of error is then

Pr[error] ≥ Pr[N < 0, N + U ≥ c
√
k′]

≥ Pr[−c
√
z ≤ N < 0] Pr[U ≥ c(

√
k′ +

√
z)].

Since N is a sum of independent and identically distributed random variables of mean zero and variance 1, we have
E[N] = 0 and Var[N] = z, and thus Pr[−c

√
z ≤ N < 0] = Θ(1). Similarly, since U is a sum of independent

and identically random variables of mean zero and variance 1, we have E[U] = 0 and Var[U] = k′ − z, and under
our assumption z = o(k′), it holds c(

√
k′ +

√
z) = c

√
k′ − z · [1 + o(1)] = cVar[U] · [1 + o(1)], and thus Pr[U ≥

c(
√
k′ +

√
z)] = Θ(1). Therefore, the probability of error is Ω(1) which contradicts the error requirement, for

sufficiently small constant c0 in the statement of the lemma.

G.4 Proof of Theorem 4.5
We chop the updates into n/k phases, each of which consists of k updates. In each phase, the k updates are

randomly matched to k sites (so that each site receives exactly one update). Let Ij be an indicator random variable that
sets to 1 when, at the beginning of the jth phase, the sum is in [−min{

√
k/ε,
√
jk},min{

√
k/ε,
√
jk}]. Notice that

when the sum is in [−min{
√
k/ε,
√
jk},min{

√
k/ε,
√
jk}], the additive error we can tolerate is at most ε

√
k/ε =

√
k.

Therefore, at the end of the jth stage, the tracking algorithm has to be able to tell whether the absolute value of j-th
phase’s sum is below −

√
k, above

√
k, or in between the two. This is at least as difficult as the tracking k inputs

problem we studied above, with Θ(k) communication lower bound.
Let Mn be the total number of messages exchanged between the coordinator and the sites. Our correctness

requirement gives us Pr[Mn ≥ Ω(k
∑
i≤n/k Ii)] ≥ 1 − 1/n. Using the fact that E[

∑
i Ii] = min{

√
n/(εk), n/k},

and following similar arguments as in the proof of Theorem 4.1, we get Ω(min{
√
kn/ε, n}).

G.5 Proof of Corollary 4.6
Consider an adversary that select each input a′t randomly such that Pr[a′t = 1] = Pr[a′t = −1] = 1/2. Then the

process (at) obtained by randomly permuting (a′t) is also a sequence of Bernoulli variables, and from Theorem 4.5
we know that E[Mn] ≥ Ω(

√
kn/ε). Clearly, using an averaging argument, there is at least one deterministic sequence

a′t that, randomly permuted, requires on average Ω(
√
kn/ε) messages. This proves the claim.

H Geometric Progression Search for µ

In this protocol we continuously search for an estimate µ̂ such that µ̂ ∈ [(1−ε)µ, (1+ε)µ], where ε is given input
parameter. This protocol also guarantees that µ̂ is found before time Θ(log n/µ2). In our search process, we define a
geometric progression sequence {`i}i≥0 such that `i = (1− ε)i, for i ≥ 0. Our algorithm progressively tests whether
µ ≤ `i for i ≥ 0. When we find an `i such that µ ≥ `i, we only need Õ(1/µ2) = Õ(1/`2i) samples to estimate µ (here
Õ(·) hides polylogarithmic dependencies on n).

To decide whether µ ≤ `i, the coordinator will probe all the sites at time t = Θ(log n/`2i) (recall that we
maintain a HYZ counter to track the total number of updates). When µ < `i, we have Pr[St ≥ `i+1 · t] = O(1/n3)
by a Chernoff bound. When µ ≥ `i, we then can move to estimate µ, specifically, our estimator is µ̂ = St/t and we
have Pr[µ̂ /∈ [(1 − ε)µ, (1 + ε)µ]] = O(1/n3). One may see that we are able to find an estimate of µ before time
Θ(log n/µ2) using such a process.

32

Notice that the sampled data are reused in our search process. Therefore, the error events are correlated. But
since the length of the data stream is n, we may use a union bound to conclude that the probability we make at least
one error in the search process is O(1/n2). Finally, our search ends before we reach `i = Θ̃(1/n), which means the
total number of communication is Õ(k).

33

