
Mining Web Logs to Debug Distant Connectivity Problems

Emre Kıcıman, David A. Maltz, Moises Goldszmidt and John C. Platt
Microsoft Research

ABSTRACT
Content providers base their business on their ability to receive and
answer requests from clients distributed across the Internet. Since
disruptions in the flow of these requests directly translateinto lost
revenue, there is tremendous incentive to diagnose why somere-
quests fail and prod the responsible parties into corrective action.
However, a content provider has only limited visibility into the state
of the Internet outside its domain. Instead, it must mine failure di-
agnoses from available information sources to infer what isgoing
wrong and who is responsible.

Our ultimate goal is to help Internet content providers resolve re-
liability problems in the wide-area network that are affecting end-
user perceived reliability. We describe two algorithms that repre-
sent our first steps towards enabling content providers to extract
actionable debugging information from content provider logs, and
we present the results of applying the algorithms to a week’sworth
of logs from a large content provider, during which time it handled
over 1 billion requests originating from over 10 thousand ASes.

1. INTRODUCTION
Networks by themselves have little value. Rather, their value

comes from a user’s ability to contact servers that provide the con-
tent they want. In this way, content providers are, in essence, the
public face of the Internet. In particular, they are in the uncom-
fortable position of being labeled by users as “unreliable”when a
failure occurs at a network provider between the user and thecon-
tent provider’s servers. Moreover, there is a tremendous financial
incentive for content providers to ensure that user requests are able
to reach them, since it is the flow of requests that brings a flow
of money (ad generated, e-commerce or otherwise) to the content
provider—missing requests means lost income.

Ultimately, we endeavor to provide content providers with infor-
mation they can use to improve the experience of their users.We
assume that content providers can make a limited number of “phone
calls” to badger unreliable network providers, so they mustcor-
rectly target their energy at the most appropriate network providers.
The likelihood of the network provider fixing a problem increases
as the content provider provides more information about theprob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 WorkshopsSeptember 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

lem, motivating content providers to do as much “remote diagno-
sis” as possible to avoid the “it’s working now, what do you want
us to do?” response, only to have the failure recur later.

In this paper, we begin to address this goal by framing and then
answering the question: How can a content provider mine infor-
mation already available from their systems and the Internet infras-
tructure to improve their end-to-end reliability in the eyes of their
clients? We study this question through analysis of web servers, as
they are the most prevalent form of service provided over theInter-
net today. The contributions of this paper include: (1) examining
the feasibility of using web log analysis (processing the records
of HTTP request successes and failures) to survey and improve
the end-to-end reliability of an Internet service. (2) a technique
for identifying when user-affecting events started and stopped; and
(3) a technique for attributing failed requests to potential causes of
failures, including network failures, broken client-sidesoftware, or
server-side outages.

2. THE PROBLEM
Our ultimate goal is to help Internet content providers resolve re-

liability problems in the wide-area network that are affecting end-
user perceived reliability. The goal is not necessarily to find all
reliability problems affecting end-users, but to prioritize and detect
the most significant and actionable ones. This is especiallytrue
considering the wide disparity in size and reliability of the vari-
ous Autonomous Systems (ASes) through which end-users receive
Internet connectivity.

As an example of how the goal of finding significant and action-
able problems differs from that of simply finding the largestfailure
rate, consider the following two cases: Case (I): a small AS with
failure rates that make the service effectively unavailable from that
AS. Case (II) a large AS, from which emanates many requests, that
has a small failure rate. Even though the failure rate is highin
one case and low in the other, there is significant business value
in fixing both of these cases. Having the customers of an entire
AS unable to reach a service negatively affects the reputation of
the content provider in a broad way, even if the number of affected
customers is small. Whereas for a large AS, even a small failure
rate can indicate many unhappy customers.

2.1 Available Information and Actions
Figure 1 shows how requests for web content flow from a user’s

web browser through the network to the content provider’s servers
and back. At the transport and application layer, requests originate
on a client machine as the client uses DNS to resolve the name
of the desired web site. The DNS response may specify a server
owned by the content provider, or that of an infrastructure provider
operating between the client and the content provider (e.g., Aka-

Data Center
Provider
Content

AS4

AS5

= client

= infrastructure

��

��AS2

��

��

��

AS1

�
�
�
�

 server�
�
�
� �

�
�
�

AS3

Figure 1: A content provider’s view of the network, with clients
connected via distant ASes, potentially with network infras-
tructure servers in between. DNS servers not shown.

mai [1]). When the client opens a TCP connection to transmit its
request, the connection may be directed through a proxy, to an in-
frastructure server, or directly to the content provider. If an infras-
tructure provider or proxy is involved, they may internallyroute
the request through several hops and/or DNS lookups. For each of
the transport and application layer steps described above,packets
might need to flow across and between multiple ASes. In each AS
and at each peering point, routing policy or congestion may cause
packets to be delayed or lost, and the request to fail.

An ideal set of HTTP request logs would be: 1)complete, con-
taining records of all HTTP requests, whether they were successful
or not, 2)deep, capturing information about requests’ dependen-
cies on infrastructure components, including client-side, network
and server-side systems, and any observations of failures in these
components; and 3)accessible, meaning the logs are easily avail-
able to content providers and fast to collect. While this idealized
web log does not exist, today’s typical content providers can cap-
ture part of this information from three different vantage points,
each with its advantages and disadvantages:

Client-side logs: Internet services often have a subset of cus-
tomers (such as paid or volunteer beta-testers, 3rd partiesthat mea-
sure site reliability, etc.) who have agreed to log and report their
view of the service. These logs can have very detailed information
about the end-to-end reliability of the service from these clients’
viewpoint, but these clients are often a poor sample of the overall
population. For example, many enthusiasts might be concentrated
in a particular region of the world, or have particularly reliable In-
ternet connections.

CDN logs: Content-distribution networks (CDNs), such as Aka-
mai, record logs of request success and failure of every request
that passes through their proxies, even if wide-area network failures
keep these requests from reaching the Internet service itself. How-
ever, these logs still do not contain information about any request
that fails to reach the CDN proxy. Moreover, because of various ge-
ographic distribution, load, and engineering constraints, these logs
are often not accessible for hours after requests initiallyoccur.

Central logs: These logs contain records of every request that
reaches the web servers at an Internet service. These logs are gener-
ally very easy to access, but do not contain direct information about
requests that never reach the service because of network failures.

The actions a content provider can take after determining that its
clients are seeing poor performance varies with the type of prob-
lem. Common actions include:

Reengineering connectivity:If congestion or routing policy ap-
pear to be a problem, contact the operators of the AS involvedand
ask them to move the site’s traffic to a different peering point, add

more capacity to the link to the AS’s peer or perhaps add a link
directly to the AS hosting the content provider’s site.

Targeted nagging: If a misconfiguration, such as a proxy prob-
lem, appears to be the issue, locate the operators of the misconfig-
ured system in question (e.g., the IP address block) and ask them to
fix their system.

Content changes:If a browser version incompatibility appears
to be the issue, contact the content producers with a requestto sup-
port the browser.

2.2 Challenges
Serious challenges confront the content provider who is trying to

help its customers see better service.
Defining failure in the presence of noise:A request may be

marked as “failed” for many reasons that are unrelated to network
infrastructure problems. For example, client-side browser failures,
where some version of a browser, robot, or malicious worm con-
sistently makes invalid HTTP requests. A converse example would
be a server-side problem in the content provider’s systems.Normal
user behavior, like canceling requests or “clicking away” before a
response arrives, may also cause a request to be logged as a fail-
ure. This may indicate an impatient user or a serious slowdown
in the network infrastructure. Working with request statuslogs re-
quires techniques to separate “background” odd behavior from se-
rious failures. Section 3.1 describes a technique that can separate
out several classes of noise from network infrastructure failures.

Coalescing of failures into incidents:While content providers
are very alert to major interruptions in connectivity, minor network
issues are more likely to be dealt with after-the-fact, prioritized
in accordance with their recurrence and longer-term impact. To
avoid overwhelming operators with all the individual failures that
occurred over the course of a day or week, we must be ready with
techniques that can coalesce groups of related failures into single
incidents. Section 3.2 presents one such a technique for determin-
ing the boundaries at which incidents begin and end.

Incomplete information: Packets can be lost anywhere, for many
reasons, and many kinds of failures can prevent requests from reach-
ing a logging point. Given the few points of visibility for the con-
tent provider, failures can result in seeing fewer requests, rather
than requests that fail. We must be able to infer the existence of
particular failure from absences of requests, and are addressing this
challenge in future work.

Experimental challenges: While perhaps less of an issue for
content providers, as researchers one of our major challenges is
finding ways to validate our techniques generally. This has proven
difficult as the ground truth cause of failure incidents is hard to
obtain. For this “first-impressions” paper, results were validated
through manual investigation that ruled out other causes. An alter-
nate approach might be to implement a test service on PlanetLab so
that known faults could be experimentally injected, but results from
such tests would be suspect as not replicating the full complexity
of a content provider’s service, the infrastructure providers, and the
diaspora of clients. Conducting solid evaluation remains atopic of
current work.

3. APPROACH AND DATA ANALYSIS
We first attack the issue of finding likely locations of failures in

the network, while explicitly accounting for failures due to DoS
attacks, broken problematic clients, etc. Secondly, we address the
challenge of identifying when incidents begin and end.

We focus our analysis on 3-hours of logs bracketing a problem-
atic period one afternoon in the fall of 2005, and present summary
results from analyzing a full week of web logs from January, 2006.

The logs we analyze were recorded at servers in Akamai’s CDN,
co-located in over 1000 networks close to end-users. All requests
answered locally by the Akamai servers were pruned from the logs,
leaving only those that traversed the wide-area network to the con-
tent provider and back. This pruning was done to focus our analysis
on faults occuring in the wide-area network between the Akamai
servers and the MSN data centers. A future analysis will focus
on failures, such as network problems between clients and Aka-
mai proxies, that would affect requests satisifed by Akamaiproxies.
For each request, the log records whether the request succeeded or
failed. We consider “abandoned requests”—where a user cancels a
request before receiving a response—to be failures as well.During
this week, we saw over 1 billion requests coming from over 10k
distinct ASes. During these periods, there were no known system
failures, nor did our analyses point to any system failures.

3.1 Where are the problems?
Fundamentally, our goal is to help Internet content providers

identify and fix any problems in the network infrastructure that are
affecting end-user perceived reliability. Our first step isto estimate
the failure probability of each piece of the network infrastructure
(including the client’s browser and the content provider’sservers).
When a serious problem occurs, our estimate of the failure rate of
some piece of the infrastructure should increase, and the Internet
content provider can contact the owner of that infrastructure and
encourage them to repair it. Since contact information is generally
available for each Autonomous System (AS), our first cut at iden-
tifying failed network infrastructure operates at the granularity of
ASes.

A naı̈ve method of estimating the failure rate of ASes would be to
simply count the fraction of of successful and failed requests from
every AS. However, as pointed out earlier, a request could fail for
many reasons other than network infrastructure problems. Afailure
at MSN’s servers or the sudden spread of a worm sending broken
HTTP requests would unfairly penalize the estimated failure rate of
many ASes. A more accurate method must take into account these
alternate explanations for failures, in effect estimatingthe failure
rate of other possible causes of problems as well as the failure rate
of network infrastructure. We call each potential cause of afailure
a candidate.

General Algorithm: Formally, to estimate the failure rates of
candidates given the success/failure of requests, we use a noisy-OR
model for root cause finding, a technique first used in the context of
medical diagnosis [2, 3]. That is, we assume that if any one ofthe
candidates on which a request depends fails, then the request fails
as well. Alternatively, we can state that when an HTTP request
succeeds, every associated candidate has also “succeeded.” But,
when an HTTP request fails, we only know thatat least oneof the
candidates involved with the request has failed.

We have a novel method for performing approximate inference
on the noisy-OR model. We apply stochastic gradient descent(SGD)
to the data likelihood to create on-line estimates of the underlying
probability that each candidate is the cause of observed failures.
This model was inspired by the noisy-OR boosting of [4], but does
not require boosting or that the underlying causes are tied in any
way. Unlike previous inference techniques, we maintain current es-
timates of candidate probabilities that update as new observations
arrive. Previous inference techniques for noisy-OR solve the cause
inference problem for a single fixed set of observations, essentially
using known values for the parameterization of theqj below.

First, for each request we determine which candidatesmightcause
that request to fail. This is equivalent to determining the set of can-
didates on which a request depends. In our experiments, we con-

sider three types of candidates: 1 the specific Internet sitebeing
contacted (i.e., the site’s hostname); (2) the client’s AS; and (3)
the client’s browser type. We are currently working to integrate
BGP feeds into our analysis, so that we can also explicitly consider
transit ASes between the servers and clients. We label the set of
candidates associated with each requesti asCi.

Then, we calculate the probabilitypi that any given requesti is
going to fail as a noisy-OR of the probabilitiesqj that any of the
candidatesj ∈ Ci associated with the request fails:

pi = 1 −
Y

j∈Ci

(1 − qj) (1)

We parameterizeqj to be a standard logistic function of the log-
oddszj :

qj =
1

1 + e−zj
(2)

For every new requesti, we can update our estimates of the fail-
ure probabilities of the candidates associated with the request. This
update is in the direction of the gradient of the log of the binomial
likelihood of generating the observations given the failure proba-
bilities:

D = yilog(pi) + (1 − yi)log(1 − pi) (3)

∆zj = η
∂D

∂zj

= η
qj(yi − pi)

pi

(4)

whereη is a weight that controls the impact of each update, and
yi ∈ {0, 1} indicates the observed success (yi = 0) or failure
(yi = 1) of a requesti.

We use an initial value ofzj = −5 for all candidatesj. For each
requesti, updates are applied only to the candidatesj involved in
that request. Since not all candidates are involved with each re-
quest, as requests are processed, the posterior probabilities of each
candidatej diverge from each other.

Empirically, we have found that using a relatively high value of
η = 0.1 and applying an exponential smoothing function on the
gradient,∆zj , provides a good trade-off between responsiveness
to failures and stability in reported values. Thus, we calculate a
smoothed gradient,̃∆zj , at timet as:

∆̃z
t
j = α∆̃z

t−1

j + (1 − α)∆z
t
j (5)

Interpretation and Motivation: We interpret the resultant prob-
abilitiesqj as follows. An estimated failure probability approach-
ing 100% implies that all the requests dependent on the candidate
j are failing, while a probability approach 0% implies that nore-
quests are failing due to candidatej. If the estimated probability
of failure is stable at some value between 0% and 100%, then that
implies that the candidatej is experiencing a partial failure, where
some dependent requests are failing while others are not. For exam-
ple, an AS that drops half of its outgoing connections would have a
failure probability estimate approaching 50%.

The SGD technique was selected for several reasons. First, it
avoids the problems of the naı̈ve approach described earlier that
only detect large failure rates (thereby missing the small failures
in large ASes). Second, the algorithm produces a refined estimate
of the probablity each candidate has failed after processing each
request. This on-line/incremental nature should make the algorithm
well suited for ongoing monitoring (we currently use it off-line, but

20:00 20:30 21:00 21:30 22:00 22:30 23:00

Figure 2: The timeline of observed system-wide failure rates
during a 3-hour period. We redact the scale of the error rate to
avoid disclosing sensitive information.

are examining on-line applications). Third, it is a very expressive
framework to which it is easy to add additional candidates. Fourth,
we believe it makes maximal use of all the available information.

Results: To test how well the success/failure of HTTP requests,
together with this SGD analysis, can estimate the failure probabili-
ties of network infrastructure components, we examined our3-hour
logs from fall 2005. Figure 2 shows the observed system-widefail-
ure rates during this period. The graph begins with a low rateof
background failures occurring due to broken browsers and prob-
lems at small ASes. At 21:30, we see that an incident occurs, and
the failure rate increases for approximately 85 minutes. Our goal
is to see whether and how quickly SGD analysis can localize these
failures to some network infrastructure component.

We highlight SGD’s failure probability estimates for several can-
didates in Figure 3. Here, we show the timeline of estimated prob-
abilities for 1) two ASes that are associated with the incident, 2)
an AS that suffers a short-lived failure at time 21:07 and at 21:30,
3) a browser-type, ColdFusion, that is failing almost continuously
throughout the 3-hour period, and 4) an AS that is not associated
with any failure during this period.

In Figure 4, we show the observed failure rates of the two client
ASes most closely correlated by the SGD analysis with the ma-
jor incident. Upon inspection, we find that these two ASes together
account for almost all of the additional error-load that occurred dur-
ing the time-period of the incident. The graph illustrates astrength
of our technique in that AS 2 is correctly identified as being as-
sociated with the incident, even though AS 2 is small enough that
the total number of errors it contributes is dwarfed by the failures
from AS 1. According to their WhoIs entry, both of these ASes
are located in the same geographic area, leading us to believe that
they share some relationship in the network topology, and a single
failure caused both to be unable to reach the MSN service. SGD’s
failure probability estimates for these ASes were immediately af-
fected, and rose to 95% within 2-3 minute of the incident’s start.

We applied our SGD analysis to a full week of web logs, and we
analyzed the resultant failure probability estimates to better under-
stand how many different ASes a content provider might have to
contact and work with to resolve a problem during a week. First,
we found that most ASes are quite reliable: almost 75% of ASes
have a peak estimated failure probability less than 1% (in other
words, greater than 99% reliability in their worst minute).More-
over, 99% of ASes maintained a mean estimated reliability of99%,
over a fifth maintained 99.9% reliability, and many maintained bet-
ter than “five 9’s” of reliability. Only 2.9% of ASes had a peak
estimated failure probability greater than 50%, and of these ASes,
only 19% had peaks greater than 50% for more than 10 minutes out
of the week.

 0

 0.2

 0.4

 0.6

 0.8

 1

20:00 20:30 21:00 21:30 22:00 22:30 23:00

(a) Bad AS 1 failure probability

 0

 0.2

 0.4

 0.6

 0.8

 1

20:00 20:30 21:00 21:30 22:00 22:30 23:00

(b) Bad AS 2 failure probability

 0

 0.2

 0.4

 0.6

 0.8

 1

20:00 20:30 21:00 21:30 22:00 22:30 23:00

(c) Bad AS 3 failure probability

 0

 0.2

 0.4

 0.6

 0.8

 1

20:00 20:30 21:00 21:30 22:00 22:30 23:00

(d) Bad browser type failure probability

 0

 0.2

 0.4

 0.6

 0.8

 1

20:00 20:30 21:00 21:30 22:00 22:30 23:00

(e) Good AS failure probability

Figure 3: A highlight of the estimated failure probabilitie s re-
sulting from our SGD analysis for two ASes associated with the
major incident during this time, a third AS that is failing se pa-
rately, a browser type that is almost continuously failing,and a
good AS that sees no failures during this time.

20:00 20:30 21:00 21:30 22:00 22:30 23:00

System-wide Failure Rate
AS 1 Failure Rate
AS 2 Failure Rate

Figure 4: A timeline of the observed failure rate from the two
candidate ASes most correlated with the incident shown in Fig-
ure 2.

3.2 Identifying incidents
Our goal in this subsection is to develop analysis techniques for

web logs that can discover when incidents affecting client-perceived
reliability begin and end. This information is important because it
can help focus further investigation efforts on alerts, maintenance
activities, logs, etc. occurring at about the same time as the inci-
dent. While humans are very good at manually analyzing data and
recognizing the pattern-changes that indicate that such anincident
has occurred, we wish to automate this procedure for two reasons:
1) humans cannot scale to analyzing the volumes of data in days
of web logs of client requests from thousands of ASes; 2) while
humans are good at detecting major incidents, the many minorin-
cidents can get lost as “noise,” especially when looking at such
large amounts of data.

A simple but naı̈ve algorithm is to detect incidents by looking for
failure rates to rise above a predetermined threshold, or bymoni-
toring for high minute-to-minute changes in the failure rate. How-
ever, because of the level of background noise, bursty failures, etc.,
these techniques generate too many false positives and negatives—
failures that begin slowly might not be noticed, and an incident that
caused very noisy or bursty changes in failure rate would be classi-
fied as many incidents instead of just one.

General Algorithm: We approach this problem as one of seg-
menting a time-series of failure rates into regions, where the time-
series values within each region are generally similar to each other,
and generally different from the time-series values in neighboring
regions. This is equivalent to finding thechange pointsin the time
series [5], and this particular offline approach is originally due to
Fisher [6]. In this model, a transition boundary between twore-
gions then represents abrupt changes in the mean failure rate, and
thus, the potential beginning or end of one or more incidents. This
problem is mathematically equivalent to the v-Optimal histogram
problem, described in [7].

More formally, given a time-series of failure ratesx1, · · ·xn, we
attempt to find a segmentation of the time-series intok regions,
such that we minimize the total distortion:

D = Σk
m=1Σ

sm

i=sm−1+1(xi − µm)2 (6)

wheresm represents the time-series index of the boundary be-
tween themth region and the(m + 1)th region,s0 = 0, sk = n,

andµm =
Σ

sm
i=sm−1+1

xi

sm−sm−1
, the mean value of time-series throughout

themth region. We implement a dynamic programming algorithm
to find the sets of boundaries that minimizeD.

To fit the parameterk, we can use one of the many model fitting
techniques described in the literature of statistical pattern recogni-
tion and statistical learning [8, 9]. In the analyses performed in this
paper, we iterated overk, generating a curve of distortion rates.
We select the value ofk associated with the knee in the distortion
curve, as this balances our desire to fit the boundaries to thedata
while avoiding the problem of overfitting (since overall distortion
approaches0 ask → n and every time period becomes its own
region).

Results: In Figure 5, we show the result of applying this tech-
nique to the problematic period from Fall 2005, segmenting the
system-wide failure rate into five pieces as indicated by theknee
in the distortion curve. We have applied this segmentation analysis
to system-wide failure rates, and are currently experimenting with
applying it to timelines of failure rates of individual ASesand other
candidates.

We should be clear that each segment found by this algorithm
does not correspond to either an incident or an incident-free pe-

20:00 20:30 21:00 21:30 22:00 22:30 23:00

System Error Rate

Figure 5: The 3-hour fall 2005 incident, as segmented by our
incident boundary technique. The segment boundaries corre-
spond to when an failure incident begins or ends.

riod. Rather, since many independent incidents might be occurring
simultaneously, each segment boundary corresponds to the begin-
ning or end of one or more incidents. To better understand such
occurrences, we are currently working to combine the information
we gain from our segmentation analysis with the results of our fail-
ure rate estimations for candidates. By comparing the sets of candi-
dates with high failure rates before and after each segment bound-
ary, we expect to be able to generate a list of incidents that have
started or stopped at each boundary.

4. RELATED WORK
There is a large body of prior work measuring client perceived

performance of web servers. Two of the most related are WIND and
WAWM. The WIND project[10] uses wavelets to process packet-
level traces of interactions with web servers to find “interesting”
portions of the data. Our work differs in two ways. First, ourseg-
mentation technique identifies event boundaries rather than indi-
vidual bins of time that contain interesting data, thereby reducing
the effort required from human operators. Second, we concentrate
on attributing problems to alocation in the network topology or an
alternate candidate (e.g., browser type), where WIND focuses on
finding networkpathswith issues but not the location of the issue
along the path. WAMN [11] uses packet-level traces collected at
clients and web servers to “assess the relative impact of server de-
lay, network delay, packet loss, etc. on transfer latency.”Our work
seeks to determine where in the network lie the problems causing
failed requests. This forces us to develop techniques that cope with
a wider range of causes for failed requests, including AS or DNS
failures that prevent the transfer from even starting.

Other researchers have addressed the issue of distributed net-
work measurement [12, 13] and failure diagnosis in IP networks [14]
and DNS infrastructure [15], but here we are concerned with how a
single content provider running a small number of data centers can
leverage the data available to it. Incorporating information from
public distributed network measurement services to refine the pre-
dictions of our techniques would be interesting future work. Sim-
ilar to these systems are the commercial services, such as Keynote
and Alexa, that “rate” the performance of content providersby ac-
cessing them from a large number of distributed clients.

Recent research has also applied various statistical and machine
learning analyses to detect and diagnose failures within the internal
systems of an Internet service [16, 17]. In general, these projects
are complementary to our own, though some challenges are shared
across domains: one such challenge is the visualization of algo-
rithmic results and the consideration of operator confidence in the
techniques [18].

5. DISCUSSION AND FUTURE WORK
This paper presents our initial steps to analyze the logs of re-

quests made to Internet content providers with the goal of identify-
ing and debugging wide-area network problems that interfere with
clients using the content provider. While we have begun by at-
tacking two specific problems—estimating the failure ratesof net-
work infrastructure elements and identifying the start andend of
incidents—there are many open, challenging problems in this area,
such as recognizing recurring problems and discriminatingbetween
classes of incidents (e.g., distinguishing router issues from DNS
problems).

Currently, we are applying our analyses to longer periods oftime
to better characterize and explore the problems occurring in the
wide-area network. To extend our visibility further into the network
infrastructure, we are integrating into our analyses more sources of
data, including centralized web logs, client-side web logsand BGP
feeds. We are also extending our analyses to better deal withmiss-
ing information, such as occurs when a network failure prevents a
request from reaching a proxy or server that would log its failure.

Finally, we are investigating the different kinds of results that
are useful to Internet content providers as they attempt to debug
failures in wide-area network infrastructure and work withthird-
parties to repair and resolve these problems. Our hope is that by
providing the right tools to the parties with the resources and in-
centives to resolve end-to-end connectivity issues, we will be able
to improve the reliability of the Internet as a whole.

6. REFERENCES
[1] http://www.akamai.com/. last visited 4/17/06.
[2] M. Shwe, B. Middleton, D. Heckerman, M. Henrion,

E. Horvitz, H. Lehmann, and G. Cooper, “Probabilistic
diagnosis using a reformultation of the INTERNIST-1/QMR
knowledge base: Part 1. the probabilistic model and
inference algorithms,” vol. 30, pp. 241–255, 1991.

[3] B. Middleton, M. Shwe, D. Heckerman, M. Henrion,
E. Horvitz, H. Lehmann, and G. Cooper, “Probabilistic
diagnosis using a reformultation of the INTERNIST-1/QMR
knowledge base: Part 2. evaluation of diagnostic
performance,” vol. 30, pp. 256–267, 1991.

[4] P. A. Viola, J. Platt, and C. Zhang, “Multiple instance
boosting for object detection.,” inProceedings of NIPS,
2005.

[5] M. Basseville and I. Nikiforov,Detection of Abrupt
Changes: Theory and Applications. Prentice Hall, 1992.

[6] W. Fisher, “On grouping for maximum homogeneity,”
Journal of the American Statistical Association, vol. 53,
pp. 789–798, December 1958.

[7] H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. Sevcik, and T. Suel, “Optimal histograms with quality
guarantees,” inProc. of the 24th Intl Conf on Very Large
Databases (VLDB), August 1998.

[8] R. O. Duda, P. E. Hart, and D. G. Stork,Pattern
Classification. Wiley-Interscience, 2nd ed., October 2000.

[9] T. Hastie, R. Tibshirani, and J. H. Friedman,The Elements of
Statistical Learning. Springer, July 2003.

[10] P. Huang, A. Feldmann, and W. Willinger, “A non-instrusive,
wavelet-based approach to detecting network performance
problems,” inProceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pp. 213 – 227, 2001.

[11] P. Barford and M. Crovella, “Measuring web performancein
the wide area,”ACM SIGMETRICS Performance Evaluation
Review, vol. 27, no. 2, pp. 37 – 48, 1999.

[12] R. Wolski, N. Spring, and J. Hayes, “The network weather
service: A distributed resource performance forecasting
service for metacomputing,” inJournal of Future Generation
Computing Systems, vol. 15, pp. 757–768, October 1999.

[13] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang,
“Planetseer: Internet path failure monitoring and
characterization in wide-area services,” inProceedings of the
Sixth Symposium on Operating Systems Design and
Implementation, 2004.

[14] S. Kandula, D. Katabi, and J. P. Vasseur, “Shrink: A toolfor
failure diagnosis in IP networks,” inProceedings of ACM
SIGCOMM Workshop on Mining Network Data, August
2005.

[15] V. Pappas, P. F. ltströ m, D. Massey, and L. Zhang,
“Distributed DNS troubleshooting,” inProceedings of ACM
SIGCOMM Workshop on Network Troubleshooting, August
2004.

[16] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” inProceedings of
the 1st IEEE International Conference on Autonomic
Computing, 2004.

[17] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons, “Correlating Instrumentation Data to System
States: A Building Block for Automated Diagnosis and
Control,” in Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI), December
2004.

[18] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea,
K. Patel, G. Tolle, J. Hui, A. Fox, M. Jordan, and
D. Patterson, “Combining visualization and statistical
analysis to improve operator confidence and efficiency for
failure detection and localization,” inProceedings of the 2nd
IEEE International Conference on Autonomic Computing,
2005.

