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Abstract—Voice Activity Detectors (VAD) play important role
in audio processing algorithms. Most of the algorithms are
designed to be causal, i.e. to work in real time using only
current and past audio samples. Off-line processing, when we
have access to the entire voice utterance, allows using different
type of approaches for increased precision. In this paper we
propose an algorithm for off-line VAD based on the different
probability density functions (PDFs) of the speech and noise.
While a Gaussian distribution is a very good model for noise,
the speech PDF is peakier. The proposed VAD algorithm works
in frequency domain and estimates the speech signal presence
probability for each frequency bin in each audio frame, the
speech presence probability for each frame and also provides a
binary decision per bin and frame. Provides improved precision
compared to the streaming real-time VAD algorithms.

I. INTRODUCTION

Voice Activity Detectors (VAD) are algorithms for detecting
the presence of a speech signal in the mixture of speech
and noise. They are part of noise suppressors, double talk
detectors, codecs, and automatic gain control blocks, to men-
tion a few. The VAD output can vary from simple binary
decision (yes/no), trough soft decision (probability of speech
presence in the current audio frame), to probability of speech
presence in each frequency bin of each audio frame. The
commonly used VAD algorithms are based on the assumption
of quasi-stationary noise, i.e. noise changes much slower
than the speech signal. A classic VAD algorithm works in
real time and makes the decisions based on the current and
previous frames, i.e. it is causal. Most of these algorithms
work in frequency domain for better integration in the audio
processing chain and provide estimation for each frequency
bin separately. One of the frequently used as a baseline VAD
algorithm is standardized as ITU-T Recommendation G.729-
Annex B [1]. An improved and generalized VAD is described
in [2], where authors create a soft decision VAD assuming
Gaussian distribution of the noise and speech signals. A simple
HMM is added to create a hangover scheme in [3] and to
finalize the decision utilizing the timing of switching the states.
This algorithm can be optimized for better performance as
described in [4].

Most of the VAD algorithms assume Gaussian distribution
of the noise and speech signals. It is well known that while
the distribution of noise amplitudes in time domain is well
modelled with the Gaussian distribution, the distribution of
the amplitudes of the speech signal has higher kurtosis than

the Gaussian distribution. Gazor and Zhang [5] published a
study for the speech signal distribution in time domain, later
in [6] this study was extended with models of the Probability
Density Functions (PDFs) of the speech signal magnitudes
in frequency domain. In the literature are published several
attempts to utilize the non-Gaussianity of the speech signal
for better noise suppression rules [7] and [8], or for better
VAD [9]. In most of the cases it is very difficult to find
analytical form of the suppression rules, or speech presence
probability, and the proposed solutions are either approximate
or computationally expensive.

In many cases we do the processing off-line and have
access to the entire speech utterance. These scenarios include
speech enhancement of the recorded utterances sent for speech
recognition in the cloud, post-processing of the audio track in
video shots, off-line encoding of audio signals. This type or
processing allows building more precise statistical models and
is more tolerant to computationally expensive algorithms. The
question is how much the prior knowledge of the PDFs of
the speech and noise signals can help for better parameters
estimation, which leads to better VAD algorithms.

In this paper we propose an algorithm for off-line VAD
based on the statistical processing of the entire utterance. In
section II we formulate the problem and present the statistical
models in a VAD. Sections III, IV, and V describe the
application of the statistical modeling of the noise and speech
PDFs for estimation of the speech and noise signal parameters
for normalization and VAD. In section VI we describe the
experimental results and conclude in VII.

II. PROBLEM DEFINITION

A. Modelling

We have a limited discrete signal in time domain x (lT )
where l ∈ [0, L− 1], xmin ≤ x (lT ) ≤ xmax, ∀l, and T is
the sampling period. An example of such signal is shown in
figure 1. This signal is a mixture of two limited, discrete, and
uncorrelated signals x (lT ) = n (lT ) + s (lT ), noise n (lT )
and speech s (lT ) respectively. After framing, windowing, and
converting to frequency domain we have X

(n)
b = N

(n)
b +S

(n)
b ,

where b ∈ [0, B − 1] is the frequency bin, B is the number
of frequency bins, n ∈ [0, N − 1] is the frame number, and
N is the number of audio frames. As we do the processing
off-line the same can be written in matrix form X = N+ S,
where all are B×N complex matrices representing the spectra
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Fig. 1. Noisy signal in time domain with SNR=10 dB.
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Fig. 2. Noisy signal in frequency domain with SNR=10 dB.

of the signal, the noise, and the speech components. This
representation is visualized in figure 2, where the magnitudes
are in a decibel scale.

In each frame and/or frequency bin we consider two hy-
potheses:

H0: speech is absent, X = N
H1: speech is present, X = N+ S

The goal of the VAD algorithm is to produce for each
frequency bin and for each frame (column in the matrices
above) the probability of speech signal presence, P (n)

b (H1)
and P (n) (H1) respectively. An example of the expected VAD
decision per frame is shown in figure 1.

B. Voice Activity Detectors

Let assume that the noise and speech signals are fully char-
acterized by their respective variances σ2

n and σ2
s and we have

a prior knowledge of the PDFs of these two signals pn
(
a
∣∣σ2

n

)
and ps

(
a
∣∣σ2

s

)
. The PDF of a mix of two uncorrelated signals

is the convolution of the PDFs of the two signals:

px
(
a
∣∣σ2

n, σ
2
s

)
= pn

(
a
∣∣σ2

n

)
∗ ps

(
a
∣∣σ2

s

)
. (1)

Note that this equation has analytical solution for a small
number of distribution pairs, it has to be solved numerically
for most of the cases.

The probability P (H1 |a ) of signal with amplitude a to
contain speech is derived after direct applying of the Bayesian
rule:

P (H1 |a ) =
p (a |H1 )P (H1)

p (a |H1 )P (H1) + p (a |H0 )P (H0)
. (2)

Here P (H1) and P (H0) = 1 − P (H1) are the prior
probabilities for speech and noise presence. After dividing by
p (a |H0 )P (H0) we have:

P (H1 |a ) =
εΛ

1 + εΛ
, (3)

where ε = P (H1)/P (H0), and Λ is the likelihood of speech
signal presence:

Λ =
px
(
a
∣∣σ2

n, σ
2
s

)
pn (a |σ2

n )
. (4)

The proportion of the prior probabilities for speech and noise ε
can be assumed constant and known. Then if we can estimate
the noise and speech variances - we can estimate the speech
presence presence probability in each frame and/or frequency
bin.

The binary flag V (n) for speech presence (1) or absence (0)
can be obtained by comparing the likelihood Λ or the speech
presence probability P (n) with fixed threshold η:

V (n) =

∣∣∣∣ 1 if P (n) (H1) > η
0 if P (n) (H1) ≤ η

(5)

For practical purposes a small hysteresis is added to prevent
”ringing” of the flag when the probability is close to the
threshold.

C. Parameters Estimation

For given set of M equally spaced amplitudes
am = xmin +m∆, where m ∈ [0,M − 1], xmin < a < xmax,
∆ = (xmax − xmin)/(M − 1), we always can build the
histogram hM (am) of the input signal and compute the
probability density function:

p(am) =
hM (am)

∆
∑
m

hM (am)
. (6)

To make the PDF p(am) independent of the pauses between
the clean speech phrases we remove the bin of the histogram,
which contains the zero magnitude.

The distance between the two probability distributions is
given by the Jensen-Shannon divergence [10], which is a
symmetrized and smoothed version of Kullback-Leibler di-
vergence [11] DKL (p ∥q ):

DJS (p ∥q ) = 1

2
(DKL (p ∥m ) +DKL (q ∥m )) , (7)



where m = (p+ q) /2. The Kullback-Leibler divergence is
defined as:

DKL (p ∥q ) =
∑
i

p (xi) log
p (xi)

q (xi)
(8)

and measures the expected number of extra bits, required to
code samples from q when using a code based on p, rather than
using a code based on q. Lower Jensen-Shannon divergence
DJS indicates a better fit of the model to the measured
histogram.

We can estimate the noise and speech variances by mini-
mizing the divergence between measured PDF hM (a), derived
from the histogram of amplitudes, and the models of the noise
and speech signals PDF px

(
a
∣∣σ2

n, σ
2
s

)
:

[
σ̂2
n, σ̂

2
s

]
= argmin

σ2
n,σ

2
s

(
DJS

(
hM (a)

∥∥px (a ∣∣σ2
n, σ

2
s

)))
(9)

Considering the fact that it is unlikely to have analytic solution
for the PDF of the mixed signal (see II-B) we will have to
solve the minimization problem in equation 9 numerically.

Once we have estimation of the noise and speech variances
we can compute the likelihood using equation 4 and then
compute the speech presence probability for each audio frame
and/or frequency bin using equation 3. We are going to apply
this technique several times further in this paper.

III. SPEECH SIGNAL NORMALIZATION

Before to convert to frequency domain and proceed with
the VAD algorithm we found useful to normalize the speech
signal. In many cases the recorded signal has low level,
contains clicks, bursts of wind noise. The last two are the
reason why a simple normalization of the peak amplitude will
not work - typically these are short peaks with high amplitude.
It is OK to clip them and to normalize the amplitude of the
actual speech signal.

We can build the histogram of the signal in time domain
using the procedure described in II-C and compute the PDF
of the mixed signal pxt(am) according to equation 6. The
PDF of the noise signal is modeled as zero-mean Gaussian
distribution:

pnt
(
a
∣∣σ2

nt

)
=

1

σnt

√
2π

exp

(
− a2

2σ2
nt

)
(10)

where σ2
nt is the noise variance.

The PDF of the speech signal is modelled with zero-mean
Generalized Gaussian Distribution [12] as:

pst
(
a
∣∣σ2

st

)
=

βt

2αtΓ (1/βt)
exp

(
−
(
|a|
αt

)βt
)

(11)

where Γ (·) is the gamma function, αt is the scale, and βt

is the shape parameter. When the shape parameter βt = 2
we have Gaussian distribution, when βt = 1 we have Laplace
distribution, and the clean speech distribution has even higher
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Fig. 3. Distribution fit for signal in time domain with SNR=10 dB.

kurtosis. We assume that the shape parameter is constant for
the clean speech signal and known in advance. The only
parameter of the clean speech signal PDF which needs to be
estimated is the scale, related to the speech signal variance σ2

st

as:

αt =

√
σ2
stΓ (1/βt)

Γ (3/βt)
. (12)

We can use equation 9 to estimate the noise and speech
variances σ2

nt and σ2
st respectively. Figure 3 shows an example

of the distributions of signal in time domain with SNR=10 dB.
This is enlarged view of the central part of the distribution.
Note the missing histogram bin with zero values and the
heavier tail of the distribution of the speech signal.

The input signal in time domain can be normalized by
applying gain Gs = σst0/σst aiming to have desired deviation
of the speech component σst0. To handle corner cases, such
as only noise or too small amount of speech signal, this gain
is limited as

G = min [Gs, Gp] , (13)

where Gp is the gain which will cause 90% of the samples to
be clipped. It can be obtained from the cumulative distribution
function, easily computed from the estimated PDF, or directly
from the histogram.

IV. PER-FRAME VAD ALGORITHM

After normalization and conversion to frequency domain we
can compute the RMS of the signal frames as:

A(n) =

√√√√ 1

N

Bend∑
b=Bbeg

(
X

(n)
b

)2
. (14)

Here we implicitly applied a band-pass filter by using only the
frequency bins from Bbeg to Bend.

We model the PDF of magnitudes of noise only frames with
Weibull distribution [13]:



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Magnitude

W
ei

bu
ll 

P
D

F

 

 
k=2
k=4
k=5
k=0.3
k=0.5
k=1.0

Fig. 4. Weibull distribution.

pnf
(
A
∣∣σ2

nf

)
=

knf
λnf

(
A

λnf

)knf−1

exp

(
−
(

A

λnf

)knf
)
.

(15)
Here λnf is the scale parameter and knf is the shape pa-
rameter. This distribution is defined for A ≥ 0 and is shown
in figure 4 for various shape parameters. When knf = 2
Weibull distribution becomes Rayleigh distribution, which is
the PDF of the magnitudes of a complex numbers with a zero-
mean Gaussian distribution of the real and imaginary parts,
i.e. noise. We can state that this is the distribution of the
magnitudes of frames with one sample. With increasing of
the shape parameter above 2 the Weibull distribution becomes
more and more narrow bell-shaped keeping the same mean.
This models well the reduction of the variation of the frame
RMS with increasing the number of the samples in the frame.
Here we assume known shape parameter knf > 2, which is
frame size dependent.

The only parameter we have to estimate is the scale param-
eter λnf , which is related with the noise variance as:

λnf =
σnf

Γ
(
1 + 1

knf

) . (16)

In this case σnf is the deviation of the noise, i.e. the mean of
the PDF.

We model the PDF of magnitudes of the audio frames with
only speech psf

(
A
∣∣∣σ2

sf

)
with the same Weibull distribution

(Figure 4), but with different shape parameter ksf . When the
shape parameter ksf = 1 the Weibull distribution becomes
exponential distribution and the actual clean speech PDF has
even higher kurtosis. We assume known shape parameter
ksf < 1 of the PDF of the speech audio frames and then
the only parameter we have to estimate is the scale parameter
λsf , which is a function of the speech signal variance σ2

sf as
shown in equation 16.

Using the approach described in section II-C we can build
the histogram and estimate the noise only and speech only
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Fig. 5. Distribution fit of the frame magnitudes for signal in frequency domain
with SNR=10 dB.

variances σnf and σns by minimizing the Jensen-Shannon
divergence. Figure 5 illustrates the result from this distribution
fitting for a signal with SNR=10 dB converted to frequency
domain.

With the obtained noise only and speech only variances σnf

and σsf we can estimate the frame presence probability using
the process described in section II-B.

V. PER-BIN VAD ALGORITHM

The approach for per-bin estimation of the speech presence
probability is the same. Here we will omit the bin index
wherever is possible. The noise PDF if given by Rayleigh
distribution [14]:

pnb
(
Ab

∣∣σ2
nb

)
=

Ab

σ2
nb

exp

(
− A2

b

2σ2
nb

)
, Ab ≥ 0 (17)

Here σ2
nb is the noise variance for frequency bin b.

The clean speech signal distribution psb
(
A
∣∣σ2

sb

)
is mod-

elled also with Weibull distribution according to equation 15.
λsb is the scale parameter and ksb is the shape parameter,
which is assumed known and constant across all frequency
bins [6] with light dependency of the frame size. The scale
parameter is related with the speech variance per equation 16.
Here we also will have to omit the first magnitude bin because
of the same reasons as in section IV. An example for fitting
of the PDF for the frequency bin corresponding to 1000 Hz is
shown in figure 6. The estimated speech presence probability
per frequency bin is show in figure 7 for the same signal with
SNR=10 dB.

For relatively high SNRs the complex and computationally
expensive minimizations can be avoided by direct estimation
of the noise and clean speech variances for each bin separately.
Given per-frame speech signal presence probability P (n) (H1)
we can estimate the noise and speech plus noise variances as
an weighted average:
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Fig. 6. Distribution fit of the magnitudes in 1000 Hz frequency bin for signal
in frequency domain with SNR=10 dB.
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Fig. 7. Estimated speech presence probability per frequency bin, SNR=10 dB.

σ̂2
nb =

∑
n

(
X

(n)
b

)2 (
1− P (n) (H1)

)
∑
n

(
1− P (n) (H1)

) , (18)

σ̂2
s+n,b =

∑
n

(
X

(n)
b

)2
P (n) (H1)∑

n
P (n) (H1)

. (19)

Then we can assume σ̂sb
2 ≈ σ̂2

s+n,b and continue the estima-
tion as above.

VI. EXPERIMENTAL RESULTS

A. Data set

For evaluation of the proposed algorithm we created a clean
speech file containing 10 utterances randomly taken from 10
different speakers in TIMIT [15] database and mixed them
with vehicle noise recorded in a moving car in proportion
to create set of files with SNR of 0, 10, 20, 30, 40, and
50 dBC. Two sets of files were created for the evaluation of the

proposed algorithm - one for training and one for evaluation.
Different speakers and noise segments were selected for the
two sets. Both sets also include the clean speech files and the
noise only files. All files are with sampling rate of 16 kHz.

B. Evaluation parameters

As evaluation parameters we selected the error rate per
frame and per bin. The error rate per frame is estimated as:

Ef =

√
1

N

∑
n

(
P (n) (H1)−G(n) (H1)

)
, (20)

where G(n) (H1) is the ground truth, a binary mask obtained
by comparing the frame RMS of the clean speech signal with a
fixed, very low threshold. The ground truth per bin G

(n)
b (H1)

and the error rate per bin Eb are obtained and estimated in the
same way. Identical approach was used to compute the error
rates for the binary decisions.

C. Implementation and parameters

The values of the distributions parameters, assumed con-
stant, were obtained using the noise only and clean speech only
files from the training set. The prior probability proportions
and optimal thresholds were obtained by minimizing the error
rates against the training set. The values of the constant
parameters are shown in Table I.

The implementation of the off-line VAD was done in
Matlab. The histograms were estimated in M = 100 points.
The frame size for conversion to frequency domain was
512 samples with 50% overlapping, Hann window. For the
numerical estimation of the convolution in equation 1 was used
grid ten times denser than the one used for the histogram. For
solving the optimization problem in equation 9 was used the
Matlab function for non-constrained optimization fminunc(),
and the optimization process was constrained with setting
minimal and maximal values for each optimization parameter
and applying quadratic punishing functions, added to the
optimization criterion. Proper measures were taken to prevent
overflows and divisions by zero with adding small numbers to
the denominators.

D. Results

All of the results presented in this section were obtained
using the evaluation data set. Table II shows the results for
three VAD structures. The first is the VAD per frame, as
described in section IV, for the soft and binary decisions.
The second is the per-bin VAD from section V with direct
estimation of the variances of the noise and the speech signals
according to equations 18 and 19. The third VAD is the per-bin
VAD from section V with estimation of the noise and speech
variances by fitting the distributions.

VII. CONCLUSIONS

In this paper we presented an approach for off-line VAD
which utilizes the prior knowledge of the PDFs of the speech
and noise signals, components of the mixture.



TABLE I
VALUES OF THE CONSTANT PARAMETERS

βt knf ksf εf ηf ksb εb ηb
0.2403 4.2416 0.3244 0.0215 0.9 0.571 0.0236 0.25

TABLE II
RESULTS

Algorithm SNR, dB 0 10 20 30 40 50 Average
VAD per frame soft 0.3898 0.2149 0.1355 0.0578 0.0380 0.0338 0.1449

binary 0.3974 0.2061 0.1178 0.0524 0.0308 0.0283 0.1388
VAD per bin, direct soft 0.3523 0.3110 0.2674 0.2557 0.2526 0.2509 0.2833

binary 0.3233 0.2890 0.2478 0.2424 0.2312 0.2301 0.2606
VAD per bin, fit soft 0.2699 0.2007 0.1611 0.1355 0.1166 0.1118 0.1659

binary 0.2667 0.1947 0.1508 0.1236 0.1033 0.0985 0.1562

One of the core ideas in this approach is the numerical
estimation of the mixed signal PDF from the PDFs of the
noise and the speech signal. In time domain we model the
noise with Gaussian distribution and the clean speech signal
with Generalized Gaussian distribution. In frequency domain
we model the magnitudes of the audio frames with Weibull
distribution for both noise only and clean speech only audio
frames using different values of the shape parameter. In
frequency domain we model the magnitudes of the frequency
bins with Rayleigh distribution for noise only bins and with
Weibull distribution for the speech only bins. In all cases we
assume that we have constant values of the shape parameters,
which makes the PDFs function only of the variations. We
estimate these variations by fitting the estimated PDF to the
actual PDF using Jensen-Shannon divergence as minimization
criterion.

The algorithm is evaluated against a small data set with
various signal-to-noise ratios (SNRs) and shows comparable
performance with the real-time VAD algorithms of the same
class. The proposed approach handles much better signals with
very high SNRs where, surprisingly enough, the classic VADs
do not perform very well. This make it suitable for building the
baseline for testing and evaluating another VAD algorithms.

Potential next steps are adding a hangover scheme, proven to
be very effective for improving the precision of the VAD deci-
sions for both per-frequency bin and per frame. Implementing
the ideas from [9] for combining the per-bin decisions to form
a better per-frame decision is also a factor for improving the
performance.
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