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SUMMARY

We present a new method for modelling 2-D elastic media with the application of
the wavelet transform, which is also extended to cases where discontinuities simulate
geological faults between two different elastic media. The basic method consists of
the discretization of the polynomial expansion for the boundary conditions of the 2-D
problem involving the stress and strain relations for the media. This parametrization
leads to a system of linear equations that should be solved for the determination of the
expansion coefficients, which are the model parameters, and their determination leads to
the solution of the problem. The wavelet transform is applied with two main objectives,
namely to decrease the error related to the truncation of the polynomial expansion and
to make the system of linear equations more compact for computation. This is possible
due to the properties of this finite length transform. The method proposed here was
tested for six different cases for which the analytical solutions are known. In all tests
considered, we obtained very good matches with the corresponding known analytical
solutions, which validate the theoretical and computational parts of the project. We hope
that the new method is useful for modelling real media.
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1 I N T R O D U C T I O N

We propose, in this work, a new method of modelling 2-D elastic media. Associated with this new method, we use the wavelet

transform to minimize truncation errors and to reduce the size of the system of linear equations that results from the application of

the method. Despite the fact that the media we study are 2-D bodies, the result of the application of this new method can be viewed as

an approximate solution to some specific 3-D problems.

Among the motivations for developing this method are possible geological applications (that is, the study of tectonic plates and

geological faults) and simulations of the elastic behaviour of materials in several other fields of science.

We know that any given 2-D body may be subject to stress and displacements, which may be due to an external perturbation and

whose behaviour depends on the geometry and the physical properties of the body. According to de Veubeke (1979), the stress field

for such a plane body is related to the displacement components through a system of differential equations of two variables (x, y).

The solution to this system can sometimes be obtained analytically. Once this system is solved, we obtain expressions for the stress

and for the displacement components, which depend on two analytical functions, F and H, of the x and y variables.

The basic principle of the method is the discretization of the boundary conditions on the x and y space coordinates. These

conditions are imposed on the stress and displacement components along a given boundary contour of the medium. In order to make

the method feasible, the boundary conditions, which depend on the F and H analytical functions, have to be chosen in a way that

allows the problem to be solved in the simplest manner. With this in mind, assume that F and H are given by

Fðx, yÞ ¼
XM
m¼0

am fmðx, yÞ and Hðx, yÞ ¼
Xm

m¼0

bmgmðx, yÞ :
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Note that F and H are linear functions of terms containing constants am and bm, which are the model parameters. This means that the

boundary conditions are also linear combinations involving these constants. When we make these boundary conditions discrete

by taking sample points (xn, yn) along a contour, this results in a system of linear equations whose unknowns are the expansion

coefficients of the F and H functions, namely fm and gm, respectively. Once we have solved this system of equations, we can determine

which are the tension and the displacement components at any given point along the contour we are considering. This is useful to

simulate how the medium will behave in terms of its stress field and its deformations when an external perturbation is applied.

However, we have not yet considered the whole modelling problem. It remains to decide which type of expansion we will use. We

anticipate here (this will be discussed in detail below) that the expansion adopted will consider that F and H are polynomials. The

main reason for this choice is the simplicity we have for the related analytical solutions to the stress and displacement components,

although this is not a limitation to the use of other expansion functions in the method.

The digital signals we consider here, the stress and the displacement components are polynomial functions in the (x, y) 2-D

space. In order to make the analysis simpler, assume first that these signals are only functions of x, and that the equation for the

displacement component u has the following form:

u ¼
XM
m¼0

Amxm : (1)

In order to determine the Am (m=0, 1, . . . M) coefficients, we have to match, in the space or frequency domain, eq. (1) with

another function at some points, say U�(xn), in the time domain or FTU�n (where FT is the discrete Fourier transform operator) in

the frequency domain, as shown below:

�UðxnÞ ¼
XM
m¼0

Amxm
n , n ¼ 0, 1, . . . , N , (2)

FT �Un ¼
XM
m¼0

AmXm,n , n ¼ 0, 1, . . . , N : (3)

Note that in both cases we have a system of N+1 linear equations such that we can have, at the most, N+1 unknowns. This means

that, in both eq. (2) and eq. (3), we have to truncate the summation to a maximum of N+1 terms, which will generate a truncation

error that will affect the solution to Am. Since the signals considered here all have their energy mainly concentrated in the

low-frequency components, the truncation error due to eq. (3) will be smaller than the error due to eq. (2), which will justify

the application of the Fourier transform, which is the basis function transform commonly used in this kind of problem (e.g. Aki &

Larner 1970).

According to our comments above for the determination of Am, we can match the displacement component given by eq. (1) in

the space or in the frequency domain with a known function. Assume now that we have a basis function transform available that

combines both domains (space and frequency). It seems that there would be a greater flexibility in the matching described above

because we would use both domains to match the two functions. The truncation error may thus be smaller than that due to the

matching in the frequency domain alone. In fact, these transforms (which combine two domains) exist and are known as wavelet

transforms (Daubechies 1992; Vetterli & Kovacevic 1995). Another reason for using the wavelet transform instead of the Fourier

transform is the fact that the former concentrates more energy of the signal in a few basis functions than the latter, which can make

the truncation error smaller.

We also have problems when we face cases where the polynomial function used is larger than necessary. This will not introduce

errors, but will make the size of the matrix equation much larger than necessary, making the computation slower and the computer

memory space required larger. From this, we get the idea of using the wavelet transform, which can concentrate the energy of a given

signal in a few basis functions and make the system of equations more compact. This will allow the method to zero those coefficients

that are much smaller than the largest one established for a given signal.

Another major source of error in this type of solution to the problem is that included in the pseudo-inverse that we will use here.

This is an inversion technique based on the least-squares minimum of the difference between data and fitted results, on the basis of the

singular value decomposition of the matrix that we want to invert. We cannot do much about avoiding this type of error. We can only

try to estimate it, since this inversion method is among the methods available for dealing with problems of ill-conditioned matrices

and for the solution of overdetermined systems of equations. Fortunately, despite the fact that the rank of the matrices obtained in

the example cases we show here is always incomplete, it was always possible to establish one numerical rank without any ambiguity,

which allowed us to have small error levels.

So, the main objective of this paper is the development of a new method of modelling that takes into account plane elastic bodies.

We use wavelet transforms in order to reduce truncation errors and to make the resulting system of equations more compact.

In order to make the method useful for the study of geological models, or for the study of materials in other fields of science, it is

necessary to validate the method through application to models with very simple geometry, whose analytical solutions are known and

with more complex geometries, which take into account media with different elastic properties and include faults. The results for

these cases prove that this is a very simple and useful method for modelling plane elastic media.
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2 M O D E L L I N G T H E G E N E R A L S Y S T E M

Parts of the original development of this work are presented in the Appendix for the sake of clarity in the present text.

We define in Fig. 1 the general (arbitrary) system. The general system is composed of a region divided into I cells. These cells are

named using an index, say i (=1, 2, . . . , I). Each cell is homogeneous and elastic, defined by coefficients Gi and ui (rigidity and

Poisson’s ratio). They include a central point with coordinates (xi
0, yi

0) with respect to the main coordinate axis system (X, Y). We

also introduce a specific coordinate system for each cell (Fig. 2),

x ¼ X ÿ x0
i

y ¼ Y ÿ y0
i

(
, (4)

and a vector of coefficients xi, which has the following components:

xTi ¼ a
ðiÞ
0 , b

ðiÞ
0 , p

ðiÞ
0 , q

ðiÞ
0 , a

ðiÞ
1 , b

ðiÞ
1 , p

ðiÞ
1 , q

ðiÞ
1 , . . . a

ðiÞ
M , b

ðiÞ
M , p

ðiÞ
M , q

ðiÞ
M

� �
: (5)

This vector contains the coefficients that describe the state of stress and displacement through the polynomial functions (A7),

(A8), (A9), (A10) and (A11), where M is the order of the polynomial function used. Once we know these coefficients, we can calculate

the stress (sx, sy, txy) and the displacement (u, o) components.

According to the above, each cell has a set of coefficients that range from zero to order M. On the other hand, it is not possible

to determine the coefficients for each cell separately since there is interaction among the cells determined by the internal contours

of the model (that is, determined by those contours that separate each pair of neighbouring cells). Note that, according to eqs (5),

(A7), (A8), (A9), (A10) and (A11), each cell has its own stress and displacement fields, indicating that each will be deformed in its own

way. It is also important to remember that there may or may not be displacement of one cell with respect to another given cell of the

model. This will depend on how we define the boundary conditions of the internal borders among the cells. If we allow displacement

to exist between two given cells, the interface between these cells can be considered as a fault.

We now define the contour of each cell assuming that it encloses the centre of coordinates of the local coordinate system (x, y)

(Fig. 2). We also define a vector n(nx, ny) normal to the contour line. Then, the traction components to the contour is given by

eqs (A22) and (A23), which we rewrite as

tx ¼ pxnx þ qxyny

ty ¼ qxynx þ pyny

(
:

The x-component of the traction, tx, is defined as the force per unit of area in the x-direction that is applied by the side of the

boundary that contains the vector normal to the other side, n. The definition of ty is analogous to the definition of tx.

We then introduce the contour segments that divide the contours into appropriate sections. We number the contour segments

using two indices: the first defines the number of the cell we are considering, while the second indicates the border along the contour in

the counterclockwise direction (Fig. 3).

The starting point of segment (i1) is labelled P(i, 1) and has coordinates (xi1, yi1), the starting point of segment (i2) [which is

the endpoint of the segment (i1)] is called P(i, 2) and has coordinates (xi2, yi2), and so on.

Some of the segments are along the external boundary of the system, and others are along the internal boundaries. If the segment

we are considering is an internal one, the same segment is also part of a neighbouring cell. We apply a boundary condition to the

external segments and one continuity condition (or fault condition, if this is the case) to the internal segments. The external boundary

Figure 1. Definition of the geometry of the general system.

Figure 2. Contour of a cell including the local coordinate system.
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condition will be imposed on the traction, or on the displacement we observe, on the boundary we are considering. In cases of internal

segments, the continuity boundary condition is imposed on the traction (tx, ty) and on the displacement (u, o). The fault boundary

condition (when this is the case) consists of a discontinuity on the displacement and on the continuity of the traction.

Before we start analysing the boundary conditions, we should specify how we consider any given segment (i1) in this problem

(Fig. 4).

2.1 Contour parametrization

For any given (i, j) segment we define the discrete variable jij, which has known values along the straight-line segment shown in

Fig. 4. These values are taken in the counterclockwise direction with respect to the local axis of coordinates of the cell. Note in Fig. 4

that the real contour of the cell is different from the straight contour we consider. The difference between these two is given by the

function fij (jij), which is measured in the direction of the normal to the cell, as shown in Fig. 4.

We need the locations of the points on the contour we are considering (xi (jij), yi (jij)) and the external normal to the real contour

on each of these points. With this in mind, we define the following:

the starting point of the (i, j) segment, P(i, j)=(xij, yij);

the endpoint of the (i, j) segment, which is the starting point of the next (i, j) segment, P(i, j+1)=(xi, j+1, yi, j+1);

the distance between the starting and the endpoints, dij (which is the length of the straight line between the two points).

The procedure is as follows.

(i) First we draw a line connecting P(i, j) and P(i, j+1). The coordinates of each point on the straight line segment are

xd
i ðmijÞ ¼ xd

ij þ mij

ðxi, jþ1xijÞ
dij

yd
i ðmijÞ ¼ yd

ij þ mij

ðyi, jþ1 ÿ yijÞ
dij

8>>>><>>>>: : (6)

The corresponding normal vector to the real contour is given by

nxi
ðmijÞ ¼

dyiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

nyi
ðmijÞ ¼ ÿ

dxiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

8>>>>>><>>>>>>:
: (7)

In this way we know the positions of the points and the normal to the (i, j) segment as a function of jij.

(ii) Now we have to find the coordinates of the points on the real contour. In order to do this, we draw a line normal to the

segment, from (xi
d(jij), yi

d(jij)), and find the coordinates of the point of intersection of this line with the real contour. We write

the coordinates {xi (jij), yi (jij)} of this point of intersection (Fig. 4).

Figure 3. Parametrization of a contour line into segments (or borders)

and the convention used to number these segments.
Figure 4. Parametrization of a given contour.
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After all the segments have been discretized and one segment (i, j) has been specified, we find the point on the contour

{xi (jij), yi (jij)}={x(i, j, n), y(i, j, n)}. This point will be part of a table of coordinates (x, y) with three indices that has to be supplied

by the user. The three indices are

i ¼ 1, 2 . . . I ðcell numberÞ ,

j ¼ 1, 2 . . . jðiÞ ðnumber of the segment in the ith cellÞ ,

n ¼ 1, 2 . . . Ni ðnumber of the point on the jth segmentÞ :

Note that {x(i, j, n), y(i, j, n)} is another way of representing {x(jij), y(jij)}.

2.2 External boundary conditions when the displacement is given

In this case, we obtain the external boundary conditions with respect to the displacement. Consider one condition in one segment on

the external border, where the displacement (u, o) is given. Consider the jth segment of the ith cell, and find the points on the contour

going from P(i, j) to P(i, j+1),

ðxðmijÞ, yðmijÞÞ , mij ¼
n

Ni
dij and n ¼ 0, 1, . . . , Ni :

The u and o displacement components are functions of x and y, but, in order to make the notation simpler, we will only use the

variable jij. Suppose that the external boundary condition is given by

uðmijÞ ¼ �UðmijÞ ,

oðxiijÞ ¼ �VðmijÞ ,

where

�UðmijÞ ¼
XM
m¼0

eðaÞm ðmijÞaðiÞm þ eðbÞm ðmijÞbðiÞm þ eðcÞm ðmijÞpðiÞm þ eðdÞm ðmijÞqðiÞm

h i
, (8)

�VðmijÞ ¼
XM
m¼0

f ðaÞm ðmijÞaðiÞm þ f ðbÞm ðmijÞbðiÞm þ f ðcÞm ðmijÞpðiÞm þ f ðdÞm ðmijÞqðiÞm

h i
: (9)

We then take the wavelet transform (operator WT) of both sides of eq. (8) with respect to jij (which is the variable that is used

when we discretize a contour to parametrize the 2-D problem with respect to the x, y-coordinates) and we obtain

WT �UðmijÞ ¼
XM
m¼0

WTeðaÞm ðmijÞaðiÞm þWTeðbÞm ðmijÞbðiÞm þWTeðcÞm ðmijÞpðiÞm þWTeðdÞm ðmijÞqðiÞm

h i
: (10)

A similar equation can be obtained for the representation of (9).

2.3 External boundary conditions when the traction is known

We now consider the boundary conditions on the external border of the model, where the traction t(tx, ty) is given instead of the

displacement conditions.

Assume that the jth segment of the ith cell is in an external contour, and that the external traction (Tx, Ty) is given. Following the

discretization procedure of the contour described in Section (2.1), we sample the contour between points P(i, j) and P(i, j+1),

ðxðmijÞ, yðmijÞÞ , mij ¼
n

Ni
dij and n ¼ 0, 1, . . . , Ni :

In this case, we also need the normal to each of these points,

ðnxðmijÞ, nyðmijÞÞ , mij ¼
n

Ni
dij and n ¼ 0, 1, . . . , Ni :

Assume that the external boundary conditions are given,

txðmijÞ ¼ TxðmijÞ ,

tyðmijÞ ¼ TyðmijÞ :

458 J. W. C. Rosa et al.

# 2001 RAS, GJI 146, 454–488

 by guest on July 9, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


In this case, we consider that the internal traction components, tx and ty, are known (equal to the external traction applied) on the

(i, j) contour, and that they are given by Tx and Ty. Then,

TxðmijÞ ¼
XM
m¼1

pðaÞm ðmijÞam þ pðbÞm ðmijÞbm þ pðcÞm ðmijÞpm þ pðdÞm ðmijÞqm

n o
, (11)

TyðmijÞ ¼
XM
m¼1

qðaÞm ðmijÞam þ qðbÞm ðmijÞbm þ qðcÞm ðmijÞpm þ qðdÞm ðmijÞqm

n o
, (12)

where we have the following expressions for pm and qm:

pðaÞm ðmijÞ ¼ nxðmijÞgðaÞm ðmijÞ þ nyðmijÞrðaÞm ðmijÞ ,

qðaÞm ðmijÞ ¼ nxðmijÞrðaÞm ðmijÞ þ nyðmijÞhðaÞm ðmijÞ :

We then take the wavelet transform, with respect to n, of both sides of eq. (11),

WTTxðmijÞ ¼
XM
m¼1

WTpðaÞm ðmijÞam þWTpðbÞm ðmijÞbm þWTpðcÞm ðmijÞpm þWTpðdÞm ðmijÞqm

n o
: (13)

An equation similar to (13) is obtained for Ty.

2.4 Internal boundary conditions assuming continuity of the displacement

In this case we obtain the boundary condition equations for the internal segments, assuming that there is no displacement between

two cells. The internal segment is divided into two contours, (i, j) and (k, l), which are the contours seen by the ith and kth cells,

respectively. An example is shown in Fig. 5.

Assume that the segment defined by P(i, j)pP(i, j+1) is the same as that defined by P(k, l)pP(k, l+1). We consider the

matching of u, o, tx, ty for each point along the segment.

We first consider the matching of u. In eq. (8) we express u(i, j, n) of the jth segment of the ith cell as

uðmijÞ ¼
XM
m¼0

eðaÞm ðmijÞaðiÞm þ eðbÞm ðmijÞbðiÞm þ eðcÞm ðmijÞpðiÞm þ eðdÞm ðmijÞqðiÞm

h i
:

The same can be done for the lth segment of the kth cell,

uðmklÞ ¼
XM
m¼0

eðaÞm ðmklÞaðkÞm þ eðbÞm ðmijÞbðkÞm þ eðcÞm ðmklÞpðkÞm þ eðdÞm ðmklÞqðkÞm

h i
,

where jkj=dijxjij.

The point specified by (i, j, n) is the same as the point specified by (k, l, N(i, j)xn), that is, jkj=dijxjij. In this way, the

continuity of u along the contour can be expressed as

uðmijÞ ¼ uðmklÞ :

Taking the wavelet transform on both sides, we haveXM
m¼0

WTeðaÞm ðmijÞaðiÞm þ
XM
m¼0

WTeðbÞm ðmijÞbðiÞm þ
XM
m¼0

WTeðcÞm ðmijÞpðiÞm þ
XM
m¼0

WTeðdÞm ðmijÞqðiÞm ÿ
XM
m¼0

WTeðaÞm ðmklÞaðkÞm ÿ
XM
m¼0

WTeðbÞm ðmklÞbðkÞm

ÿ
XM
m¼0

WTeðcÞm ðmklÞpðkÞm ÿ
XM
m¼0

WTeðdÞm ðmklÞqðkÞm ¼ 0 : (14)

Now we consider the continuity of the traction (tx, ty) along the internal contour, shared by segments P(i, j)pP(i, j+1) and

P(k, l)pP(k, l+1) . The continuity is expressed as tx(i, j, n)=tx(k, l, nk), where nk=N(k, l)xn, which means jkj=dijxjij (Fig. 6).

On the other hand, nx(jij)=xnx(dijxjij) and ny(jij)=xny(dijxjij), since the external normal of a segment is opposed to the external

normal to another segment. The continuity condition for tx will be, from eq. (11),XM
m¼0

pðaÞm ðmijÞaðiÞm þ
XM
m¼0

pðbÞm ðmijÞbðiÞm þ
XM
m¼0

pðcÞm ðmijÞpðiÞm þ
XM
m¼0

pðdÞm ðmijÞqðiÞm ÿ
XM
m¼0

pðaÞm ðmklÞaðkÞm ÿ
XM
m¼0

pðbÞm ðmklÞbðkÞm

ÿ
XM
m¼0

pðcÞm ðmklÞpðkÞm ÿ
XM
m¼0

pðdÞm ðmklÞqðkÞm ¼ 0 : (15)

Modelling elastic media with the wavelet transform 459

# 2001 RAS, GJI 146, 454–488

 by guest on July 9, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Taking the wavelet transform of the above equation, we obtainXM
m¼0

WTpðaÞm ðmijÞaðiÞm þ
XM
m¼0

WTpðbÞm ðmijÞbðiÞm þ
XM
m¼0

WTpðcÞm ðmijÞpðiÞm þ
XM
m¼0

WTpðdÞm ðmijÞqðiÞm ÿ
XM
m¼0

WTpðaÞm ðmklÞaðkÞm ÿ
XM
m¼0

WTpðbÞm ðmklÞbðkÞm

ÿ
XM
m¼0

WTpðcÞm ðmklÞpðkÞm ÿ
XM
m¼0

WTpðdÞm ðmklÞqðkÞm ¼ 0 : (16)

2.5 Internal boundary conditions for cases of faults

The displacement discontinuity (Figs 7 and 8), that is, the effect of the fault itself, is imposed on the parallel displacement

component up,

upðmijÞ þ upðmklÞ ¼ ÿktp , (17)

where the constant k is inversely proportional to the friction between the two cells. This means that the higher the value of the

constant k, the easier it is to have displacement along the fault, and that the lower the value of the constant k, the more difficult it is to

have displacement along the fault.

The other boundary conditions are related to continuity on the medium,

unðmijÞ þ unðmklÞ ¼ 0 , (18)

txðmijÞ þ tyðmklÞ ¼ 0 , (19)

tyðmijÞ þ tyðmklÞ ¼ 0 : (20)

Figure 5. Convention used for an internal segment of the problem.

Figure 6. Continuity condition for an internal boundary.

Figure 8. Normal displacement vector on a fault model.

Figure 7. Internal boundary segment for the case of a fault.
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3 M A T R I X E Q U A T I O N F O R T H E D E T E R M I N A T I O N O F T H E M O D E L P A R A M E T E R S

We now show how to obtain the matrix equation that is used to calculate the parameters of the model. First, consider the vector xi,

defined by eq. (5): we rewrite it as

xi ¼

a
ðiÞ
0

b
ðiÞ
0

p
ðiÞ
0

q
ðiÞ
0

..

.

a
ðiÞ
M

b
ðiÞ
M

p
ðiÞ
M

q
ðiÞ
M

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

We gather all the xi vectors together in a single vector, defined as

x ¼

x1

x2

..

.

xI

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
:

The matrix equation for the determination of the x vector is written as

Ax ¼ b , (21)

where A and b are known. As an example, we rewrite the set of eq. (11) in its matrix form,

TxðmijÞ ¼
XM
m¼1

pðaÞm ðmijÞam þ pðbÞm ðmijÞbm þ pðcÞm ðmijÞpm þ pðdÞm ðmijÞqm

n o
: (22)

Recall that a set containing all coordinates (x(jij)y(jij)), jij=(n /Ni)dij and n=0, 1, . . . , Ni is equivalent to {x(i, j, n), y(i, j, n)}. We can

then represent eq. (22) by

Txði, j, nÞ ¼
XM
m¼1

pðaÞm ði, j, nÞam þ pðbÞm ði, j, nÞbm þ pðcÞm ði, j, nÞpm þ pðdÞm ði, j, nÞqm

n o
: (23)

The purpose of this change of notation is to improve our understanding of the set-up of the Ai matrix. If we hide the i and j indices,

the Ai matrix can be written as

Ai ¼

p
ðaÞ
0 ð0Þ p

ðbÞ
0 ð0Þ p

ðcÞ
0 ð0Þ p

ðdÞ
0 ð0Þ . . . p

ðaÞ
M ð0Þ p

ðbÞ
M ð0Þ p

ðcÞ
M ð0Þ p

ðdÞ
M ð0Þ

p
ðaÞ
0 ð1Þ p

ðbÞ
0 ð1Þ p

ðcÞ
0 ð1Þ p

ðdÞ
0 ð1Þ . . . p

ðaÞ
M ð1Þ p

ðbÞ
M ð1Þ p

ðcÞ
M ð1Þ p

ðdÞ
M ð1Þ

..

. ..
. ..

. ..
.

. . . ..
. ..

. ..
. ..

.

p
ðaÞ
0 ðNÞ p

ðbÞ
0 ðNÞ p

ðcÞ
0 ðNÞ p

ðdÞ
0 ðNÞ . . . p

ðaÞ
M ðNÞ p

ðbÞ
M ðNÞ p

ðcÞ
M ðNÞ p

ðdÞ
M ðNÞ

2666666664

3777777775
: (24)

On the other hand, the bi vector is written as

bi ¼

Txði, j, 0Þ

Txði, j, 1Þ

..

.

Txði, j, NÞ

266666664

377777775 : (25)
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Note that the application of the wavelet transform to the above subsystem with respect to n is equivalent to applying the wavelet

transform with N basis functions to the column vectors (p0
(a), . . . , pM

(d)) that make up the Ai matrix and to the right-hand side column

vector bi.

Note that the boundary condition considered above was an external one, and that the components of the bi vector may or may

not be null. If the boundary conditions were internal ones, however, these conditions would all be null.

The total number of unknowns in the system of eq. (25) is 4(M+1)rI, where I is the number of cells. The number of equations

of this system is given by the number of sample points multiplied by the number of boundary conditions: N(i, j)r[2(number of

external boundary segments)+4(number of internal boundary segments)]. Note that we have two boundary conditions for each

external segment, and four boundary conditions for each internal segment.

4 C O M P U T A T I O N O F T H E M O D E L P A R A M E T E R S

For the computation of the model parameters for a plane elastic medium, it is necessary, according to the modelling method

presented above, to find a vector xsR such that Ax=b, where AsRmrn and bsRm are given, and m>n (such that we have an

overdetermined system). In this section, the solution of this overdetermined system of linear equations is obtained in the least-

squares (LS) sense. This solution is represented by xLS=A+b, where A+ is the pseudo-inverse of A. The pseudo-inverse of A is based

on the SVD (singular value decomposition) of A. Furthermore, the calculation of the rank of matrix A is also performed using the

SVD of A.

The algorithm we used is the one from Golub & Reinsch (1970). It first reduces the matrix A to an upper bidiagonal form using

householder matrices. According to Golub & Van Loan (1985), this is the best way of treating problems of deficient rank throughout

the computation of the SVD. Due to this, we emphasize here the ability of the SVD to manipulate the difficulties of deficient rank in

least-squares problems, even if there are round-off approximations. Then, given A=USVT, the SVD of A is

xLS ¼
Xr

i¼1

uTi b=pi

ÿ �
vi ,

where r=rank(A). We represent the computed versions of U, V and S=diag(si) by Û, V̂ and Ŝ=diag(ŝi). We can then show

(Golub & Van Loan 1985) that

UŒ ¼W þ *U , where WTW ¼ Im and E*UE2ƒe

VŒ ¼ Z þ *V , where ZTZ ¼ In and E*VE2ƒe ,

&̂ ¼WTðAþ *AÞZ , whereE*AE2ƒeEAE2 ,

where e is a small multiple of the machine precision limit. In this way, the SVD algorithm calculates the singular values of the

approximated matrix A+DA.

The Û and V̂ matrices are not necessarily approximated to their exact counterparts U and V. On the other hand, it can be shown

that ŝk is similar to sk. This implies that near rank deficiency in A is detected when the SVD of A is computed.

We now discuss the condition number. Assume that the A matrix has incomplete rank (rjn). It is natural to least square

problems fixing the last nxr singular values as zero. We then have the question of how the calculated solution varies with respect to

perturbations in A. This question can be answered in terms of the condition number,

irðAÞ ¼
p1

pr
:

If kr(A) is large, then the A matrix is said to be ill-conditioned, that is, there are singular values that should be treated as zero.

However, in the ill-conditioned least-squares problems, the observation of small singular values alone does not settle the decision

about the value of rank(A). One way to avoid this difficulty is to use a parameter d>0 and consider the hypothesis that A has

numerical rank r̂ if ŝi satisfies

p̂1§ . . . §p̂r“ > d§p̂r“þ1§ . . . §p̂n :

Whenever this is the case, we can consider

xr“ ¼
Xr“
i¼1

ûTi b
p̂i

v̂i

as an approximation of xLS.

The d parameter would be consistent with the machine precision limit, for example, d=udAd. On the other hand, if the level

of the relative error on the data is larger than u, then d would be correspondingly larger, for example, d=10x2dAd. Given

thatdxr̂d2#1/ŝr̂j1/d, d can be chosen with the intention of producing a least-squares solution with a conveniently small norm.
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If ŝr̂&d, then we have reasons for not worrying about the xr̂ solution, because the A matrix can be considered, without

ambiguity, as a matrix of rank r̂. On the other hand, {ŝ1, . . . , ŝn} may not be clearly divided into subsets of large and small singular

values, which will make the determination of r̂ somewhat arbitrary. Fortunately, this is not the case for the problem we are

considering.

5 A P P L I C A T I O N O F T H E M E T H O D T O S I M P L E C A S E S

In this section we apply the modelling method described above to three cases of a single cell (this means that there are no internal

boundary conditions involved in the problem) for which the analytical solution is known. The analytical solutions for all three cases

considered here were obtained from the use of mathematical equations presented by de Veubeke (1979).

5.1 Geometry 1

5.1.1 System definition and expected results

Consider the problem shown in Fig. 9. The theoretical solution is easily obtained when we compare the boundary conditions to

the general expressions for sx, sy and txy, which are given by eqs (A9) (A10) and (A11), respectively. In this way, we obtain the

theoretical solutions

px ¼ py ¼ a1

qxy ¼ 0

(

and a1=P /2. Since the only non-zero coefficient is a1=P /2, the equations for u and o (eqs A7 and A8, respectively) result in

Gu ¼ ð1ÿ kÞ
1þ k

a1x

Go ¼ ð1ÿ kÞ
1þ k

a1y

8>>><>>>:
which will yield the deformed shape of the body shown in Fig. 10.

5.1.2 Application of the method

The first step in the application of the method is the definition of the system, which was given in Section 5.1.1. It is important to

highlight some points of that definition. First, there is only one system of local coordinates, which is the same as the main coordinate

axis, because there is a single cell in our model. There is only one coefficient vector, which is given by

xT1 ¼ a
ð1Þ
0 , b

ð1Þ
0 , p

ð1Þ
0 , q

ð1Þ
0 , . . . , a

ð1Þ
M , b

ð1Þ
M , p

ð1Þ
M , q

ð1Þ
M

� �
:

Given that the model has a square shape, the segmentation of the contour of the body is obvious. There are four contour segments,

which correspond to the four square sides.

Figure 9. Problem geometry, including the boundary conditions. The

elastic constants are G1=1 and m=1/3.

Figure 10. Expected solution for the problem (calculated using the

x- and y-components of the displacement field and P=1).
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In order to discretize the contour, the procedure is also very simple since the segments are all straight lines. In this way, we obtain

fxð1, 1, nÞ, yð1, 1, nÞg ¼ fÿ0:5, 0:5ÿ n=Ng for the ð1, 1Þ contour; with n ¼ 0, 1, . . . , N ,

fxð1, 2, nÞ, yð1, 2, nÞg ¼ fÿ0:5þ n=N, ÿ 0:5g for the ð1, 2Þ contour; with n ¼ 0, 1, . . . , N ,

fxð1, 3, nÞ, yð1, 3, nÞg ¼ f0:5, ÿ 0:5þ n=Ng for the ð1, 3Þ contour; with n ¼ 0, 1, . . . , N ,

fxð1, 4, nÞ, yð1, 4, nÞg ¼ f0:5ÿ n=N, 0:5g for the ð1, 4Þ contour; with n ¼ 0, 1, . . . , N :

Regarding the above boundary conditions, we know the tractions that are applied to the external contours. We have the

following.

For contour (1, 1)

txð1, 1, nÞ ¼ ÿP

tyð1, 1, nÞ ¼ 0

(
and

nxð1, 1, nÞ ¼ ÿ1

nyð1, 1, nÞ ¼ 0
:

(

Then, from eq. (11) we obtainXM
m¼1

gðaÞm ð1, 1, nÞað1Þm þ gðbÞm ð1, 1, nÞbð1Þm þ gðcÞm ð1, 1, nÞpð1Þm þ gðdÞm ð1, 1, nÞqð1Þm

h i
¼ P (26)

and from eq. (12) we haveXM
m¼1

rðaÞm ð1, 1, nÞað1Þm þ rðbÞm ð1, 1, nÞbð1Þm þ rðcÞm ð1, 1, nÞpð1Þm þ rðdÞm ð1, 1, nÞqð1Þm

h i
¼ 0 : (27)

For contour (1, 2)

txð1, 2, nÞ ¼ 0

tyð1, 2, nÞ ¼ ÿP
and

nxð1, 2, nÞ ¼ 0

nyð1, 2, nÞ ¼ ÿ1
:

((

Then,XM
m¼1

rðaÞm ð1, 2, nÞað1Þm þ rðbÞm ð1, 2, nÞbð1Þm þ rðcÞm ð1, 2, nÞpð1Þm þ rðdÞm ð1, 2, nÞqð1Þm

h i
¼ 0 , (28)

XM
m¼1

hðaÞm ð1, 2, nÞað1Þm þ hðbÞm ð1, 2, nÞbð1Þm þ hðcÞm ð1, 2, nÞpð1Þm þ hðdÞm ð1, 2, nÞqð1Þm

h i
¼ P : (29)

For contour (1, 3)

txð1, 3, nÞ ¼ P

tyð1, 3, nÞ ¼ 0
and

nxð1, 3, nÞ ¼ 1

nyð1, 3, nÞ ¼ 0
:

((

Then,XM
m¼1

gðaÞm ð1, 3, nÞað1Þm þ gðbÞm ð1, 3, nÞbð1Þm þ gðcÞm ð1, 3, nÞpð1Þm þ gðdÞm ð1, 3, nÞqð1Þm

h i
¼ P , (30)

XM
m¼1

rðaÞm ð1, 3, nÞað1Þm þ rðbÞm ð1, 3, nÞbð1Þm þ rðcÞm ð1, 3, nÞpð1Þm þ rðdÞm ð1, 3, nÞqð1Þm

h i
¼ 0 : (31)

For contour (1, 4)

txð1, 4, nÞ ¼ 0

tyð1, 4, nÞ ¼ P
and

nxð1, 3, nÞ ¼ 1

nyð1, 3, nÞ ¼ 0
:

((

Then,XM
m¼1

rðaÞm ð1, 4, nÞað1Þm þ rðbÞm ð1, 4, nÞbð1Þm þ rðcÞm ð1, 4, nÞpð1Þm þ rðdÞm ð1, 4, nÞqð1Þm

h i
¼ 0 , (32)

XM
m¼1

hðaÞm ð1, 4, nÞað1Þm þ hðbÞm ð1, 4, nÞbð1Þm þ hðcÞm ð1, 4, nÞpð1Þm þ hðdÞm ð1, 4, nÞqð1Þm

h i
¼ P : (33)
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The next stage is the construction of the matrix equation from eqs (26)–(33),

A ¼

gðaÞ0 ð1, 1Þ gðbÞ0 ð1, 1Þ gðcÞ0 ð1, 1Þ gðdÞ0 ð1, 1Þ . . . gðaÞM ð1, 1Þ gðbÞM ð1, 1Þ gðcÞM ð1, 1Þ gðdÞM ð1, 1Þ

rðaÞ0 ð1, 1Þ rðbÞ0 ð1, 1Þ rðcÞ0 ð1, 1Þ rðdÞ0 ð1, 1Þ . . . rðaÞM ð1, 1Þ rðbÞM ð1, 1Þ rðcÞM ð1, 1Þ rðdÞM ð1, 1Þ

rðaÞ0 ð1, 2Þ rðbÞ0 ð1, 2Þ rðcÞ0 ð1, 2Þ rðdÞ0 ð1, 2Þ . . . rðaÞM ð1, 2Þ rðbÞM ð1, 2Þ rðcÞM ð1, 2Þ rðdÞM ð1, 2Þ

hðaÞ0 ð1, 2Þ hðbÞ0 ð1, 2Þ hðcÞ0 ð1, 2Þ hðdÞ0 ð1, 2Þ . . . hðaÞM ð1, 2Þ hðbÞM ð1, 2Þ hðcÞM ð1, 2Þ hðdÞM ð1, 2Þ

gðaÞ0 ð1, 3Þ gðbÞ0 ð1, 3Þ gðcÞ0 ð1, 3Þ gðdÞ0 ð1, 3Þ . . . gðaÞM ð1, 3Þ gðbÞM ð1, 3Þ gðcÞM ð1, 3Þ gðdÞM ð1, 3Þ

rðaÞ0 ð1, 3Þ rðbÞ0 ð1, 3Þ rðcÞ0 ð1, 3Þ rðdÞ0 ð1, 3Þ . . . rðaÞM ð1, 3Þ rðbÞM ð1, 3Þ rðcÞM ð1, 3Þ rðdÞM ð1, 3Þ

rðaÞ0 ð1, 4Þ rðbÞ0 ð1, 4Þ rðcÞ0 ð1, 4Þ rðdÞ0 ð1, 4Þ . . . rðaÞM ð1, 4Þ rðbÞM ð1, 4Þ rðcÞM ð1, 4Þ rðdÞM ð1, 4Þ

hðaÞ0 ð1, 4Þ hðbÞ0 ð1, 4Þ hðcÞ0 ð1, 4Þ hðdÞ0 ð1, 4Þ . . . hðaÞM ð1, 4Þ hðbÞM ð1, 4Þ hðcÞM ð1, 4Þ hðdÞM ð1, 4Þ

26666666666666666666666664

37777777777777777777777775
8ðNþ1Þ|4ðMþ1Þ

:

Note that each of the column vectors of the A matrix has N components. There will thus be 8N lines in the A matrix, which

means, 8N+8 equations. The number of unknowns is given by the number of columns of A, which is 4(M+1). The vector b has

the following form:

b ¼

½P�N|1

½0�N|1

½0�N|1

½P�N|1

½P�N|1

½0�N|1

½0�N|1

½P�N|1

2666666666666666666664

3777777777777777777775
8N|1

,

and finally,

x1 ¼

a
ð1Þ
0

b
ð1Þ
0

p
ð1Þ
0

q
ð1Þ
0

..

.

a
ð1Þ
M

b
ð1Þ
M

p
ð1Þ
M

q
ð1Þ
M

266666666666666666666666666664

377777777777777777777777777775
4ðMþ1Þ|1

:

Now we have to apply the wavelet transform with N basis functions to each of the vectors that comprise A and to the b

right-hand-side vector.

After we have applied the method and found the equation Ax=b, we calculate the model parameters. We make the number of

equations greater than or equal to the number of unknowns in the problem [8(N+1)i4(M+1) or Ni(Mx1)/2]. For this case, as

well as for the others treated here, we use M=7 and N=8. The solution to the matrix problem is then x=A+b, where A+ is

the pseudo-inverse of A. This is the solution of the system of linear equations in the least-squares sense considering the SVD of the

A matrix.
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Performing the singular value decomposition of the A matrix, we obtain kr(A)=s1/sr is of order 1016. The A matrix is thus of

incomplete rank. Since the last singular values are much smaller than the others (Fig. 11), we can say that the rank of this matrix is 28,

and not 32 (=4M+4). This matrix will thus be inverted using the pseudo-inverse with a d value (the tolerance value) equal to 10x10,

so that the small singular values are treated as zero. After the A matrix has been inverted and the vector x=A+b has been computed,

we obtain the coefficients shown in Fig. 12.

We have considered coefficients up to seventh order, but they were all nulls, except the coefficient a1=0.5. Since P was fixed as 1,

then the result obtained is the same as the theoretical result. We have also computed the deformation values (through the displace-

ment values) using the general equations (A7) and (A8) and the above coefficients, resulting in the geometry shown in Fig. 13. If the

result obtained with the application of the method developed here is compared with the expected result (Fig. 10), we see that they are

identical.

We also tried to make the A matrix compact in order to check the results. For this, we recall that the wavelet transform was

applied to each of the vectors comprising A and b. For each of these transformed component vectors we zeroed those coefficients for

which the absolute values were smaller than tolrmax(component vector), where tol is a tolerance value, which is selected by the user.

The results presented in Figs (12) and (13) were obtained for tol=0. The results shown in Figs 14 and 15, however, were obtained

with a tolerance value of tol=0.9.

Figure 11. Singular values obtained in the solution of the problem.

Figure 12. Coefficients obtained in the solution of the problem.
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Before the compression of the matrix, the percentage of non-zero elements of the matrix was 75 per cent. After the compression,

this rate dropped to 9.8 per cent. If we superpose Figs 15 and 13 we obtain Fig. 16. Note that the two results (compact and non-

compact systems) are basically the same and comparable to the analytical solution of the problem, which makes the compact version

valid for this case.

5.2 Geometry 2

5.2.1 Definition of the system and expected results

Consider now the problem shown in Fig. 17. The theoretical solution is obtained when we compare the boundary conditions for sx,

sy and txy with eqs (A9), (A10) and (A11), respectively. We obtain

px ¼ 2a2x

py ¼ 6a2x

qxy ¼ ÿ2a2y

8>>><>>>: :

Figure 14. Coefficients obtained with the compact matrix.

Figure 13. Result obtained from the application of the method. The body represented by the solid line is the original one, and that represented by the

dotted line is the deformed one.
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With respect to the displacement, the expected result will be

Eu ¼ a2ð1ÿ 3kÞx2 ÿ a2ð5þ kÞy2

Eo ¼ 2ð3ÿ kÞa2xy

(
,

which will produce the deformed body shown in Fig. 18.

5.2.2 Application of the method

The application of the method is identical to that presented in Section 5.1.2. We will thus only emphasize the calculation of the

coefficients and the results.

After the A matrix is built, we calculate the its singular value decomposition (Fig. 19). We fix the value 10x10 as the limit for the

same reasons as given in the previous case. Inverting the matrix using this tolerance value, we obtain the coefficients shown in Fig. 20.

According to the coefficients obtained, we can consider that only the coefficient a2=0.5 is different from zero. Using this we obtain

the result shown in Fig. 21.

With the compact system, the percentage of non-zero elements dropped to 10.6 per cent in this case, and the computer memory

size dropped to 2768 bytes. Before we made the system compact, the percentage of non-zero elements was 64.8 per cent, and the size

of the matrix in the computer memory was 16 384 bytes. The results with and without the use of the compact version of the problem

are shown in Fig. 22, together with the original (undeformed) body. Note that again we have a very good match of the two results.

Figure 15. Deformation result obtained when we use the compact

A matrix and the compact form of the b vector.

Figure 17. Geometry of the problem and associated boundary conditions.

Figure 16. Superposition of the results presented in Fig. 13 (normal

system) and those from Fig. 15 (corresponding to the compact system

solution).
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Figure 18. Analytical solution of the problem compared with the

original square form.
Figure 19. Singular values from the decomposition of the A matrix.

Figure 20. Coefficients obtained in the solution of the problem.

Figure 21. Result obtained. The body represented by the solid line is

the original and that represented by the dotted line is the deformed one.
Figure 22. Result obtained with and without the use of the compact

matrix and right-hand side vector of the problem compared with the

expected analytical solution.
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5.3 Geometry 3

5.3.1 Definition of the system and expected results

Consider the case shown in Fig. 23. The theoretical solutions to this system are

px ¼ ÿ6b2y

py ¼ ÿ2b2y

qxy ¼ 2b2x

8>>><>>>:
and b2=P /2. The only non-zero coefficient is b2=P /2 so the expressions for the displacement components u and o are

Gu ¼ ÿð3ÿ kÞ
ð1þ kÞ b2xy

Go ¼ b2
ð5þ kÞ
ð1þ kÞ x2 ÿ b2

ð1ÿ 3kÞ
1þ k

y2

:

8>>><>>>:
The solution, in terms of the displacement components, is shown in Fig. 24.

5.3.2 Application of the method

Using the same procedure as in Section 5.1.2, we obtained the results shown in Fig. 25. There are four small singular values; this

means that the rank can be considered deficient and equal to 28. After calculating the pseudo-inverse, the coefficients obtained from

the solution of the problem are those shown in Fig. 26. In terms of deformation, the solution is that of Fig. 27. The result calculated

by this method is again identical to the theoretical result.

Using the compact version of the method, the percentage of non-zero elements dropped to 10.7 per cent, and the computer

memory size of the matrix dropped to 2768 bytes. The corresponding values for these two variables before the application of the

compact version of the method were 64.9 per cent and 16 384 bytes. Note that, once again (Fig. 28), there is a very good match

between the theoretical and computed solutions.

6 M O D E L L I N G E L A S T I C M E D I A W I T H F A U L T S

We now consider systems that are better suited to demonstrate and test the method, based on the initial theory of de Veubeke (1979),

for models with internal contours. The contours considered in the previous cases were somewhat limited because they were all straight

lines and they were all external boundaries to the bodies considered. Those cases were intended to prove the validity of the method.

Figure 23. Geometry of the problem and associated boundary conditions.
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Figure 26. Coefficients obtained from the solution of the problem.

Figure 27. Result obtained from the application of the method.

The body represented by the solid line is the original system and that

represented by the dashed line is the deformed body.

Figure 28. Result obtained for the deformation of the body compared

with the deformation computed from the known analytical solution of

the problem.

Figure 24. Expected result from the known analytical solution of the

problem. Figure 25. Singular values obtained from the singular value

decomposition of the A matrix.

Modelling elastic media with the wavelet transform 471

# 2001 RAS, GJI 146, 454–488

 by guest on July 9, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


We will now treat cases that involve two cells whose geometries (Fig. 29) are the same. The differences between the cases we now

consider are in the elastic properties of the cells and the amplitude of the sinusoidal boundary that represents the internal contour. We

treat three cases, which are as follows.

(1) Sinusoidal maximum amplitude at the boundary F=0.1, the same elastic properties for both cells (G1=G2=1 and

m1=m2=0.5) and displacement continuity for the internal contour. This means that the friction between the two cells is infinite.

(2) Same as case (1), but with different elastic properties for the two cells (G1=10, G2=1, m1=m2=0.5).

(3) Sinusoidal amplitude is null, F=0 (the fault is a straight line), the same elastic properties for both cells (G1=G2=1

and m1=m2=0.5) and continuity of the displacement components on the internal contour of the model.

6.1 Definition of the system

Consider the system defined as shown in Fig. 29. Since there are two cells, there will be two local coordinate axis systems and we

will have two vectors of coefficients, given by

xT1 ¼ a
ð1Þ
0 , b

ð1Þ
0 , p

ð1Þ
0 , q

ð1Þ
0 , . . . , a

ð1Þ
M , b

ð1Þ
M , p

ð1Þ
M , q

ð1Þ
M

� �
,

xT2 ¼ a
ð2Þ
0 , b

ð2Þ
0 , p

ð2Þ
0 , q

ð2Þ
0 , . . . , a

ð2Þ
M , b

ð2Þ
M , p

ð2Þ
M , q

ð2Þ
M

� �
:

6.2 The boundary conditions and their discretization

The second step of the modelling method is the identification of the contour segments. There are six contours in the system, three for

each cell. The sinusoidal interface separating the two cells is treated as the (1, 3) contour for cell 1 and as the (2, 3) contour for cell 2.

In this way, we can require displacement between the two cells. The displacement will be controlled by a sliding factor k. If the cells

are welded together, then k=0. If kl0, then the internal contour segment is a fault.

The discretization of the external contours is simple because these are straight lines. For the internal contours, the discretization

is not so straightforward, but it is also simple. The discretization of the contours results in sets of coordinates {x(jij), y(jij)} (where

i represents the cell we are considering, j represents the contour and jij is the variable that is used for the discretization and for the

parametrization of the (i, j) contour). These sets of coordinates, as well as the corresponding boundary conditions, are shown below

for each case.

Contour (1, 1)

The boundary coordinates are

xðm11Þ ¼ ÿ0:25

yðm11Þ ¼ 0:75ÿ m11

nxðm11Þ ¼ ÿ1

nðm11Þ ¼ 0

m11 ¼
n

N
1 , n ¼ 0, 1, . . . , N

8>>>>>>>>>>><>>>>>>>>>>>:
: (34)

The boundary conditions are

tx ¼ 0

ty ¼ 0

(
: (35)

Contour (1, 2)

The boundary coordinates are

xðm12Þ ¼ m12 ÿ 0:25

yðm12Þ ¼ ÿ0:25

nx ¼ 0

ny ¼ ÿ1

m12 ¼
n

N
1 , n ¼ 0, 1, . . . , N

8>>>>>>>>>>><>>>>>>>>>>>:
: (36)
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The boundary conditions are

tx ¼ 0

ty ¼ ÿp

(
, (37)

where tx and ty are given by

tx ¼ pxnx þ qxyny ,

ty ¼ nxqxy þ nypy :

Contour (2, 1)

The boundary coordinates are

xðm21Þ ¼ 0:25

yðm21Þ ¼ ÿ0:75þ m21

nx ¼ 1

ny ¼ 0

m21 ¼
n

N
1 , n ¼ 0, 1, . . . , N ÿ 1

8>>>>>>>>>>><>>>>>>>>>>>:
: (38)

The boundary conditions are

tx ¼ 0

ty ¼ 0

(
: (39)

Contour (2, 2)

The boundary coordinates are

xðm22Þ ¼ 0:25ÿ m22

yðm22Þ ¼ 0:25

nxðm22Þ ¼ 0

nyðm22Þ ¼ 1

m22 ¼
n

N
1 , n ¼ 0, 1, . . . , N ÿ 1

8>>>>>>>>>>><>>>>>>>>>>>:
: (40)

The boundary conditions are

tx ¼ 0

ty ¼ ÿp

(
: (41)

Contour (1, 3)

We have

nij
x ¼

yi, jþ1 ÿ yij

dij

nij
y ¼

xi, jþ1 ÿ xij

dij

8>>><>>>: :

The coordinates of a point on the real contour are given by

xiðmijÞ ¼ xd
i ðmijÞ þ nij

x fijðmijÞ

yiðmijÞ ¼ xd
i ðmijÞ þ nij

y fijðmijÞ

8<: :
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If we use f (j13)=F sin[(2pj13)/d2] and F=0.1, we obtain

x1ðm13Þ ¼ 0:75ÿ m13ffiffiffi
2
p þ f ðm13Þffiffiffi

2
p

y1ðm13Þ ¼ ÿ0:25ÿ m13ffiffiffi
2
p þ f ðm13Þffiffiffi

2
p

m13 ¼
n

N

ffiffiffi
2
p

, n ¼ 0, 1, . . . , N ÿ 1

8>>>>>>>><>>>>>>>>:
: (42)

Substituting eq. (42) into

nxi
ðmijÞ ¼

dyiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

nyi
ðmijÞ ¼ ÿ

dxiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

8>>>>>><>>>>>>:
,

we obtain

nx1
¼

1þ Fn
ffiffiffi
2
p

cos 2nm13ffiffiffi
2
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 2F2n2 cos2 2nm13ffiffiffi

2
p

� �� �s

ny1
¼

1ÿ
ffiffiffi
2
p

nF cos 2nm13ffiffiffi
2
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 2F2n2 cos2 2nm13ffiffiffi

2
p

� �� �s

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

: (43)

Contour (2, 3)

It is not necessary to use

nij
x ¼

yi, jþ1 ÿ yij

dij

nij
y ¼

xi, jþ1 ÿ xij

dij

8>>><>>>:
and the fact that the coordinates of a point on the real contour are given by

xiðmijÞ ¼ xd
i ðmijÞ þ nij

x fijðmijÞ

yiðmijÞ ¼ xd
i ðmijÞ þ nij

y fijðmijÞ

8<:
to obtain the points on the sinusoidal contour seen by cell (2), because the local coordinate axis for cell (2) is translated from the local

coordinate axis of cell (1) by 0.5 in both the x- and y-directions,

x2ðm23Þ ¼ x1ðm23Þ ÿ 0:5

yðm23Þ ¼ y1ðm23Þ ÿ 0:5

(
: (44)

Regarding the components of the external normal, it is not necessary to apply

nxi
ðmijÞ ¼

dyiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

nyi
ðmijÞ ¼ ÿ

dxiðmijÞ
dmij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi

dmij

� �2

þ dyi

dmij

� �2
s,

8>>>>>><>>>>>>:
to obtain the components of the normal direction because they are opposed to those from the (1,3) contour when the same point is

considered,

nx2
ðm13Þ ¼ ÿnx1

ð
ffiffiffi
2
p
ÿ m13Þ ,

nx2
ðm13Þ ¼ ÿny1

ð
ffiffiffi
2
p
ÿ m13Þ :

(45)
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The boundary conditions for (1, 3) and (2, 3) are

tð1Þx ðx1, y1Þ þ tð2Þx ðx2, y2Þ ¼ 0 , (46)

tð1Þy ðx1, y1Þ þ tð2Þy ðx2, y2Þ ¼ 0 , (47)

uð1Þn ðx1, y1Þ þ uð2Þn ðx2, y2Þ ¼ 0 , (48)

uð1Þp ðx1, y1Þ þ uð2Þp ðx2, y2Þ þ ktð1Þp ðx1, y1Þ ¼ 0 , (49)

Boundary conditions (46) and (47) correspond to the continuity of tx and ty. Boundary condition (48) corresponds to the

displacement discontinuity for the normal component and boundary condition (49) corresponds to the constitutive relation of

the fault for the internal contour. Recall that, for this case, k=0.

The next step is to write the boundary conditions in their polynomial form. We need the following equations:

uðx, yÞ ¼
XM
m¼0

eðaÞm ðx, yÞam þ eðbÞm ðx, yÞbm þ eðcÞm ðx, yÞpm þ eðdÞm ðx, yÞqm

h i
,

oðx, yÞ ¼
XM
m¼0

f ðaÞm ðx, yÞam þ f ðbÞm ðx, yÞbm þ f ðcÞm ðx, yÞpm þ f ðdÞm ðx, yÞqm

h i
,

pxðx, yÞ ¼
XM
m¼0

gðaÞm ðx, yÞam þ gðbÞm ðx, yÞbm þ gðcÞm ðx, yÞpm þ gðdÞm ðx, yÞqm

h i
,

pyðx, yÞ ¼
XM
m¼0

hðaÞm ðx, yÞam þ hðbÞm ðx, yÞbm þ hðcÞm ðx, yÞpm þ hðdÞm ðx, yÞqm

h i
,

qxyðx, yÞ ¼
XM
m¼0

rðaÞm ðx, yÞam þ rðbÞm ðx, yÞbm þ rðcÞm ðx, yÞpm þ rðdÞm ðx, yÞqm

h i
:

Then, for contour (1, 1)XM
m¼1

gðaÞm ðm11Það1Þm þ gðbÞm ðm11Þbð1Þm þ gðcÞm ðm11Þpð1Þm þ gðdÞm ðm11Þqð1Þm

n o
¼ 0 , (50)

XM
m¼1

rðaÞm ðm11Það1Þm þ rðbÞm ðm11Þbð1Þm þ rðcÞm ðm11Þpð1Þm þ rðdÞm ðm11Þqð1Þm

n o
¼ 0 : (51)

For contour (1, 2)XM
m¼1

rðaÞm ðm12Það1Þm þ rðbÞm ðm12Þbð1Þm þ rðcÞm ðm12Þpð1Þm þ rðdÞm ðm12Þqð1Þm

n o
¼ 0 , (52)

XM
m¼1

hðaÞm ðm12Það1Þm þ hðbÞm ðm12Þbð1Þm þ hðcÞm ðm12Þpð1Þm þ hðdÞm ðm12Þqð1Þm

n o
¼ p : (53)

For contour (2, 1)XM
m¼1

gðaÞm ðm21Það2Þm þ gðbÞm ðm21Þbð2Þm þ gðcÞm ðm21Þpð2Þm þ gðdÞm ðm21Þqð2Þm

n o
¼ 0 , (54)

XM
m¼1

rðaÞm ðm21Það2Þm þ rðbÞm ðm21Þbð2Þm þ rðcÞm ðm21Þpð2Þm þ rðdÞm ðm21Þqð2Þm

n o
¼ 0 : (55)

For contour (2, 2)XM
m¼1

rðaÞm ðm22Það2Þm þ rðbÞm ðm22Þbð2Þm þ rðcÞm ðm22Þpð2Þm þ rðdÞm ðm22Þqð2Þm

n o
¼ 0 , (56)

XM
m¼1

hðaÞm ðm22Það2Þm þ hðbÞm ðm22Þbð2Þm þ hðcÞm ðm22Þpð2Þm þ hðdÞm ðm22Þqð2Þm

n o
¼ ÿp : (57)
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For contours (1, 3) and (2, 3)XM
m¼1

aðaÞm ðm13Það1Þm þ aðbÞm ðm13Þbð1Þm þ aðcÞm ðm13Þpð1Þm þ aðdÞm ðm13Þqð1Þm þ aðaÞm ðm23Það2Þm þ aðbÞm ðm23Þbð2Þm þ aðcÞm ðm23Þpð2Þm þ aðdÞm ðm23Þqð2Þm

n o
¼ 0 , (58)

where,

aðaÞm ðmijÞ ¼ nxi
ðmijÞgðaÞm ðmijÞ þ nyi

ðmijÞrðaÞm ðmijÞ ,XM
m¼1

bðaÞm ðm13Það1Þm þ bðbÞm ðm13Þbð1Þm þ bðcÞm ðm13Þpð1Þm þ bðdÞm ðm13Þqð1Þm þ bðaÞm ðm23Það2Þm þ bðbÞm ðm23Þbð2Þm þ bðcÞm ðm23Þpð2Þm þ bðdÞm ðm23Þqð2Þm

n o
¼ 0 (59)

and

bðaÞm ðmijÞ ¼ nxi
ðmijÞrðaÞm ðmijÞ þ nyi

ðmijÞhðaÞm ðmijÞ ,XM
m¼1

cðaÞm ðm13Það1Þm þ cðbÞm ðm13Þbð1Þm þ cðdÞm ðm13Þpð1Þm þ cðdÞm ðm13Þqð1Þm þ cðaÞm ðm23Það2Þm þ cðbÞm ðm23Þbð2Þm þ cðcÞm ðm23Þpð2Þm þ cðdÞm ðm23Þqð2Þm

n o
¼ 0 , (60)

cðaÞm ðmijÞ ¼ nxi
ðmijÞeðaÞm ðmijÞ þ nyi

ðmijÞf ðaÞm ðmijÞ ,XM
m¼0

oðaÞm ðm13Það1Þm þ oðbÞm ðm13Þbð1Þm þ oðcÞm ðm13Þpð1Þm þ oðdÞm ðm13Þqð1Þm þ oðaÞm ðm23Það2Þm þ oðbÞm ðm23Þbð2Þm þ oðcÞm ðm23Þpð2Þm þ oðdÞm ðm23Þqð2Þm

n
þk tðaÞm ðm13Það1Þm þ tðbÞm ðm13Þbð1Þm þ tðcÞm ðm13Þpð1Þm þ tðdÞm ðm13Þqð1Þm

h io
¼ 0 : (61)

Finally,

oðaÞm ðmijÞ ¼ nxi
ðmijÞf ðaÞm ðmijÞ þ nyi

ðmijÞeðaÞm ðmijÞ ,

tðaÞm ðmijÞ ¼ nxi
ðmijÞbðaÞm ðmijÞ ÿ nyi

ðmijÞaðaÞm ðmijÞ :

6.3 The matrix equation for the determination of the model parameters

The boundary conditions (eqs 50–61) are linear with respect to the coefficients (which are the model parameters). As a result, the

system of equations, which is composed of the boundary conditions, is linear and can be represented by a matrix equation whose

solution is a vector, where the elements are the parameters we are interested in. The matrix equation is given by

Ax ¼ b (62)

where the matrix A is

A ¼

gðaÞ0 ðm11Þ gðbÞ0 ðm11Þ gðcÞ0 ðm11Þ gðdÞ0 ðm11Þ . . . gðdÞM ðm11Þ 0 0 0 0 . . . 0

rðaÞ0 ðm11Þ rðbÞ0 ðm11Þ rðcÞ0 ðm11Þ rðdÞ0 ðm11Þ . . . rðdÞM ðm11Þ 0 0 0 0 . . . 0

rðaÞ0 ðm12Þ rðbÞ0 ðm12Þ rðcÞ0 ðm12Þ rðdÞ0 ðm12Þ . . . rðdÞM ðm12Þ 0 0 0 0 . . . 0

hðaÞ0 ðm12Þ hðbÞ0 ðm12Þ hðcÞ0 ðm12Þ hðdÞ0 ðm12Þ . . . hðdÞM ðm12Þ 0 0 0 0 . . . 0

0 0 0 0 . . . 0 gðaÞ0 ðm21Þ gðbÞ0 ðm21Þ gðcÞ0 ðm21Þ gðdÞ0 ðm21Þ . . . gðdÞM ðm21Þ

0 0 0 0 . . . 0 hðaÞ0 ðm21Þ hðbÞ0 ðm21Þ hðcÞ0 ðm21Þ hðdÞ0 ðm21Þ . . . hðdÞM ðm21Þ

0 0 0 0 . . . 0 rðaÞ0 ðm22Þ rðbÞ0 ðm22Þ rðcÞ0 ðm22Þ rðdÞ0 ðm22Þ . . . rðdÞM ðm22Þ

0 0 0 0 . . . 0 hðaÞ0 ðm22Þ hðbÞ0 ðm22Þ hðcÞ0 ðm22Þ hðdÞ0 ðm22Þ . . . hðdÞM ðm22Þ

ÆðaÞ0 ðm13Þ ÆðbÞ0 ðm13Þ ÆðcÞ0 ðm13Þ ÆðdÞ0 ðm13Þ . . . ÆðdÞM ðm13Þ ÆðaÞ0 ðm23Þ ÆðbÞ0 ðm23Þ ÆðcÞ0 ðm23Þ ÆðdÞ0 ðm23Þ . . . ÆðdÞM ðm23Þ

âðaÞ0 ðm13Þ âðbÞ0 ðm13Þ âðcÞ0 ðm13Þ âðdÞ0 ðm13Þ . . . âðdÞM ðm13Þ âðaÞ0 ðm23Þ âðbÞ0 ðm23Þ âðcÞ0 ðm23Þ âðdÞ0 ðm23Þ . . . âðdÞM ðm23Þ

ªðaÞ0 ðm13Þ ªðbÞ0 ðm13Þ ªðcÞ0 ðm13Þ ªðdÞ0 ðm13Þ . . . ªðdÞM ðm13Þ ªðaÞ0 ðm23Þ ªðbÞ0 ðm23Þ ªðcÞ0 ðm23Þ ªðdÞ0 ðm23Þ . . . ªðdÞM ðm23Þ

ôðaÞ0 ðm13Þ ôðbÞ0 ðm13Þ ôðcÞ0 ðm13Þ ôðdÞ0 ðm13Þ . . . ôðdÞM ðm13Þ æðaÞ0 ðm23Þ æðbÞ0 ðm23Þ æðcÞ0 ðm23Þ æðdÞ0 ðm23Þ . . . æðdÞM ðm23Þ

266666666666666666666666666666666666666664

377777777777777777777777777777777777777775

, (63)
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where

qðaÞm ðm13Þ ¼ oðaÞm ðm13Þ þ ktðaÞm ðm13Þ :

The vector b is

0N|1

0N|1

0N|1

½ÿp�N|1

0N|1

0N|1

0N|1

½ÿp�N|1

0N|1

0N|1

0N|1

0N|1

2666666666666666666666666666666666664

3777777777777777777777777777777777775

: (64)

Given A and b, we can calculate the vector of coefficients

x ¼

a
ð1Þ
0

b
ð1Þ
0

p
ð1Þ
0

q
ð1Þ
0

..

.

q
ð1Þ
M

a
ð2Þ
0

b
ð2Þ
0

p
ð2Þ
0

q
ð2Þ
0

..

.

q
ð2Þ
M

2666666666666666666666666666666666666666664

3777777777777777777777777777777777777777775

:

Each component vector of A contains N+1 elements. There are thus 12(N+1) lines in matrix A, which means 12(N+1) equations in

the system. The number of unknowns is 8(M+1). The system has to be solved for 12(N+1)i8(M+1) unknowns.

If we examine eqs (A7) and (A8) for the components of the displacement in the x- and y-directions, respectively, we can conclude

that the a0 and b0 coefficients are related to the displacement of a rigid body, b1, which is related to the rotation, and both p0 and q0

will mean simple translations. Then, from the systems presented here, a0=b0=0 for both cells. Furthermore, we can say that b1=0

for all cases where the elastic properties of the two cells are the same.

In order to finish the application of the method to the cases that we consider in this paper, we modify the system of equations in a

similar fashion to what was first used in seismology by Aki & Larner (1970) with the Fourier transform by applying the wavelet

transform (Daubechies 1992; Vetterli & Kovacevic 1995), with N+1 basis functions, with the boundary conditions with respect to j.

This is equivalent to applying the wavelet transform with N+1 basis functions to each vector component of A and b.
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7 A N A L Y S I S C R I T E R I A

The faults modelled in this work present such complexity that there is no analytical solution for them. For these cases, we will use two

ways of looking at the results. The first criteria is a tentative estimate of the degree of contamination of the solution by errors

introduced by the inversion method. We assume that the system is described by the matrix equation Ax=b, where A and b are known

and A is ill-conditioned. The least-squares solution for this system, using the singular value decomposition of A, is given by

xLS ¼ Aþb ,

where A+ is the pseudo-inverse of A. Bearing in mind that with the least-squares method we obtain a solution xLS that minimizes

rLS=dAxLSxbd, we can use, as a measure of the error, the value of rLS. However, this is an absolute measure; a relative measure of

the error would be more convenient for us.

Define an error vector relative to the external applied force, P:

ep ¼
jAxLS ÿ bj

P
:

Define also the error vector relative to the lateral length of the square:

eU ¼
jAxLS ÿ bj

U
:

Figure 29. Definition of the system geometry, which will also be used

to validate the modelling method.

Figure 30. Singular value decomposition of A

Figure 31. Relative error in the traction and displacement components.
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Considering that both P and U are unity, we can define a relative error vector,

er ¼
jAxLS ÿ bj

1
:

Since the only boundary conditions that are related to the displacement are the last two elements in the vector, the 2(N+1) lines of the

vector er contain the normal and the parallel displacement errors relative to the length of the square. The other lines contain errors in

Figure 32. Model parameters for (a) cell 1 and (b) cell 2.
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the traction determined along the segments of the contour relative to the applied external traction. We then fixed the order of the

maximum relative displacement and the traction errors to be 10x3. If the error introduced by the inversion method is not significant

or acceptable (er<10x3), then we use the second criterion, which is the subjective analysis of the results.

However, the inversion method used is not the only source of errors in the problem. There are also errors due to the truncation of

the polynomial order. This problem can be avoided if we combine two methods. The first is the use of the wavelet transform to

minimize such errors. The second consists of remodelling the system with a polynomial of higher order. If the solution obtained with

the model that uses a higher-order polynomial, say M2, is the same as that obtained with the model that uses polynomials of order M1

(M1<M2), then we can consider that the method that uses polynomials of order M1 describes the system considered totally, that is,

the truncation error is zero. Note that this strategy does not say that using polynomials of order M1 is best; that is, there can be

polynomials of even lower order that totally represent the system considered. We highlight the fact that the results obtained by

using higher-order polynomials are not presented because we would have a redundancy of data, given that the solutions obtained

by higher-order polynomials, would be similar to those shown here.

8 F I R S T F A U L T M O D E L

After we have built the system of equations Ax=b, where A and b are known, we calculate the vector of coefficients x

(model parameters). The system is that defined by Fig. 29 with G1=G2=1, m1=m2=0.5 and the fault amplitude F=0.1. Modelling

the system with polynomials of order M=11 and with N=7 discretization points, we obtain a matrix A with 96 lines (12N+12) and

96 columns (8M+8). From the singular value decomposition of A (Fig. 30), we note that matrix A has an incomplete numerical rank

equal to 89.

Note that a few singular values (treated here as zero) are much smaller than most of the singular values considered. According to

the above discussion, we can thus trust the solution obtained, because the A matrix can be considered, without ambiguity, as having a

rank equal to 89. In fact, the relative error on the determined traction and displacement components (Fig. 31) is almost of the same

order as the double precision used in the computer program for the solution of the problem (i.e. 10x16). The solution, in terms of

coefficients, is shown in Fig. 32.

Using the coefficients presented in Fig. 32, we calculated the deformation (using the displacement values) of the system. This

result is shown in Fig. 33. In this case, note the symmetry on the deformations suffered by the system. This was expected intuitively

because the elastic properties of the two cells are identical and both are welded together, that is, the system works as if it was a

single body.

When we compress matrix A, we reduce the computer memory size required to store it. In this case, it was reduced from 73 728 to

25 488 bytes. The percentage of non-zero elements was reduced from 59.03 to 22.7 per cent. Although the result is not shown here, the

deformation sustained by the system, when we use the compressed version of the matrix, is very close to that shown in Fig. 33.

9 S E C O N D F A U L T M O D E L

The system modelled in this section is also that shown in Fig. 29, considering the elastic properties G1=10, G2=1 and m1=m2=1/3.

Furthermore, the maximum amplitude of the sinusoidal interface is F=0.1. The system described above was modelled using

Figure 33. Solution of the problem. The dashed line represents the deformed body, while the full line shows the original body.
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polynomials of order M=23 and N=15 discretization points for each contour segment. Having done this, we obtained a system of

linear equations represented by the matrix equation Ax=b. When solving such a system using the pseudo-inverse, we obtain the

parameters shown in Fig. 34.

Using such coefficients in the computation of the displacement and of the traction components, we obtained the relative error

vector (see Section 7 for more details) shown in Fig. 35. Keeping in mind that the errors are tolerable, we used the model parameters to

determine the deformation sustained by the system. The result is shown in Fig. 36. Qualitatively, the deformation experienced by the

system is very consistent. Note that cell 2 (the upper cell), was deformed more than cell 1. This was expected, since the rigidity of cell 1

Figure 34. Coefficients of the model calculated using the pseudo-inverse. (a) Coefficients of cell 1; (b) coefficients of cell 2.
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is 10 times greater than the rigidity of cell 2. Note also that cell 2 undergoes a rotation when deformed; that is, the right-hand side of

this cell is deformed more than the left-hand side. In fact, the right-hand side of the system consists mainly of elements corresponding

to cell 2, whose rigidity is smaller (Fig. 36).

1 0 T H I R D F A U L T M O D E L

The third case consists of modelling the system presented in Fig. 29 with a sinusoidal internal segment with amplitude F=0. The

elastic properties of the two cells are the same and are given by G1=G2=1 and m1=m2=0.5. The system was modelled using

polynomials of order M=8 and N=7 discretization points, so we obtained a system of 96 equations (12N+12) and 72 unknowns

(8M+8). The rank of the matrix is incomplete, but can be chosen, without any ambiguity, as being rank(A)=64. Since the numerical

rank is very well determined (Fig. 37), we expect the relative errors on the traction and on the displacement components to be very

small. In fact, the numerical order of the error is equal to the precision used in the calculation of the pseudo-inverse (10x16). The

relative error is shown in Fig. 38.

Once we have computed the pseudo-inverse, we obtain the model parameters shown in Fig. 39. Note that the coefficients of

order higher than 2 all have null value, suggesting that polynomials of order 1 could have being used to model this system. Note that

Figure 35. Relative error as a function of the traction and displace-

ment components relative to the external traction applied and the

lateral length of the square, respectively.

Figure 36. Deformation undergone by the system considered due to

the application of an external traction, calculated using the model

parameters.

Figure 37. Singular value decomposition of the A matrix.

Figure 38. Error related to the traction and the displacement (relative

to the external applied traction and to the lateral length of the square,

respectively). Both the original lateral length and the external traction

have values equal to one.
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all contours are straight and that the traction, applied to the system on the upper and lower borders, is constant along the entire

segment. On the other hand, if we consider a system where the interface is sinusoidal, we need polynomials of higher order to describe

the sinusoidal behaviour, which is reflected in the observed traction and displacement components.

After we have obtained the model parameters, we determine the model deformation, which we show in Fig. 40. Note that the

system deforms in the same way as a single body, as in the first case (Fig. 33). In fact, the solutions obtained for the two cases are

identical.

This system was made compact and we obtained good results. With the compaction procedure, the percentage of non-null

elements changed from 56.48 to 15.89, and the size of the computer memory used was reduced from 55 296 bytes to 13 464 bytes. The

solution corresponding to the compact equation problem is superposed on the solution of the non-compact matrix problem in

Fig. 41, revealing a very close similarity between the two.

Figure 39. Coefficients of the model computed using the pseudo-inverse. (a) Cell 1 coefficients; (b) cell 2 coefficients.
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Why did this system show good results when the compact matrix was used when the solution of other systems (with a sinusoidal

interface, such as the first case, where the observed deformation is identical to that obtained for this case) did not? The reason for this

is related to the degree of complexity of the two systems. The system for which the internal interface is sinusoidal is more complex

than that with a straight line interface. As a consequence, the more complex system (with the sinusoidal interface) will show less

redundancy of information in the matrix than the less complex system (that with a straight line interface).

1 1 C O N C L U S I O N S

We introduced a new method for modelling 2-D elastic media with the application of the wavelet transform. The method proved to be

reliable and fast when we applied it to a set of six models for which we knew the analytical solution. Usage of the wavelet transform

reduces the associated computational errors when we truncate the polynomial expansion and makes the system of linear equations

more compact for the computation.

We expanded the method for modelling elastic media using the wavelet transform to cases composed of more than one elastic

medium, including the simulation of faults separating two distinct elastic media. The results of six different tests, involving cases with

relatively complex fault structures, proved that the method is suitable for modelling 2-D cases where the elastic constants of the media

involved are known. Although we cannot compare the results with analytical solutions to the problems including faults, the results

we obtain prove that the method is also effective when modelling such cases. We expect that this method will be useful in

modelling real cases with great success, due to the fast and compact solution to the problem we obtain when using the approach to

model 2-D elastic models.
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Figure 40. Deformed body solution compared to the original body.

The dashed line represents the deformed body, while the full line

represents the original body.

Figure 41. Comparison of the solutions obtained for the system when

matrix A is in its compact form (dashed line) and when it is not compact

(full line) for the determination of the solution of the problem.
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A P P E N D I X A : G E N E R A L P L A N E S T R E S S P R O B L E M

Using the theory developed by de Veubeke (1979), we can express the stress and displacement components as functions of F and H,

which are analytical functions,

u ¼ 1

2G
Refð3ÿ kÞF ÿ ð1þ kÞòF 0 þH 0g , (A1)

o ¼ 1

2G
Imfð3ÿ kÞF ÿ ð1þ kÞòF 0 þH 0g , (A2)

px ¼ Ref2ð1þ lÞF 0 ÿ ð1þ lÞ�fF 00 þH 00g , (A3)

py ¼ Ref2ð1þ lÞF 0 þ ð1þ lÞ�fF 00 ÿH 00g , (A4)

qxy ¼ Imfð1þ lÞ�fF 00 ÿH 00g : (A5)

The determination of functions F and H is obviously related to the boundary conditions of the problem. We can usually distinguish

the case in which the surface stress components are specified along the borders (called the first fundamental problem) from the case

where the displacement components are specified there (called the second fundamental problem).

A1 Applications to the case where F(f) and H(f) are polynomials

The first analytical function that we look at is the polynomial function, which is a linear relationship including coefficients that allows

the set-up of a system of linear equations for the determination of these coefficients:

F ¼ 1

1þ k

XM
m¼0

ðam þ ibmÞðxþ iyÞm

H 0 ¼
XM
m¼0

ðpm þ iqmÞðxþ iyÞm

8>>>>><>>>>>:
: (A6)

From eqs (A1) and (A6), we obtain

2Guðx, yÞ ¼ 3ÿ k
1þ k

a0 þ p0 þ 2x
1ÿ k
1þ k

a1 ÿ
4y

1þ k
b1 þ xp1ya1 þ

XM
m¼2

Re

�
3ÿ k
1þ k

ðxþ iyÞm ÿmðx2 þ y2Þðxÿ iyÞmÿ2

� �
am

þ i
3ÿ k
1þ k

ðxþ iyÞm þmðx2 þ y2Þðxÿ iyÞmÿ2

� �
bm þ ½ðxÿ iyÞm�pm ÿ ½iðxÿ iyÞm�qm

�
: (A7)

From eqs (A2) and (A6), we obtain

2Goðx, yÞ ¼ 3ÿ k
1þ k

b0 ÿ q0 þ 2y
1ÿ k
1þ k

a1 þ
4x

1þ k
b1 ÿ yp1xa1 þ

XM
m¼2

Im

�
3ÿ k
1þ k

ðxþ iyÞm ÿmðx2 þ y2Þðxÿ iyÞmÿ2

� �
am

þ i
3ÿ k
1þ k

ðxþ iyÞm þmðx2 þ y2Þðxÿ iyÞmÿ2

� �
bm þ ½ðxÿ iyÞm�pm ÿ ½iðxÿ iyÞm�qm

�
: (A8)

From eqs (A3) and (A6), we obtain

pxðx, yÞ ¼2a1 þ p1 þ 2xa2 ÿ 6yb2 þ 2xp2 ÿ 2yq2 þ
XM
m¼3

Re
�

m½ð3ÿmÞx2 ÿ ð1þmÞy2 þ 4ixy�ðxþ iyÞmÿ3am

þ im½ð3ÿmÞx2 ÿ ð1þmÞy2 þ 4ixy�ðxþ iyÞmÿ3bm þmðxþ iyÞmÿ1pm þ imðxþ iyÞmÿ1qm

	
: (A9)

From eqs (A4) and (A6), we obtain

pyðx, yÞ ¼2a1 ÿ p1 þ 6xa2 ÿ 2yb2 ÿ 2xp2 þ 2yq2 þ
XM
m¼3

Re
�

m½ðmþ 1Þx2 þ ðmÿ 3Þy2 þ 4ixy�ðxþ iyÞmÿ3am

þ im½ðmþ 1Þx2 þ ðmÿ 3Þy2 þ 4ixy�ðxþ iyÞmÿ3bm ÿmðxþ iyÞmÿ1pm ÿ imðxþ iyÞmÿ1qm

	
: (A10)

From eqs (A5) and (A6), we obtain

qxyðx, yÞ ¼ ÿ q1 ÿ 2ya2 þ 2xb2 ÿ 2yp2 ÿ 2xq2 þ
XM
m¼3

Im
�

mðmÿ 1Þðx2 þ y2Þðxþ iyÞmÿ3am

þ imðmÿ 1Þðx2 þ y2Þðxþ iyÞmÿ3bm ÿmðxþ iyÞmÿ1pm ÿ imðxþ iyÞmÿ1qm

	
: (A11)
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We then define the following equations as a function of Cartesian coordinates:

uðx, yÞ ¼
XM
m¼0

eðaÞm ðx, yÞam þ eðbÞm ðx, yÞbm þ eðcÞm ðx, yÞpm þ eðdÞm ðx, yÞqm

h i
, (A12)

oðx, yÞ ¼
XM
m¼0

f ðaÞm ðx, yÞam þ f ðbÞm ðx, yÞbm þ f ðcÞm ðx, yÞpm þ f ðdÞm ðx, yÞqm

h i
, (A13)

pxðx, yÞ ¼
XM
m¼0

gðaÞm ðx, yÞam þ gðbÞm ðx, yÞbm þ gðcÞm ðx, yÞpm þ gðdÞm ðx, yÞqm

h i
, (A14)

pyðx, yÞ ¼
XM
m¼0

hðaÞm ðx, yÞam þ hðbÞm ðx, yÞbm þ hðcÞm ðx, yÞpm þ hðdÞm ðx, yÞqm

h i
, (A15)

qxyðx, yÞ ¼
XM
m¼0

rðaÞm ðx, yÞam þ rðbÞm ðx, yÞbm þ rðcÞm ðx, yÞpm þ rðdÞm ðx, yÞqm

h i
: (A16)

From eqs (A12) and (A7), we obtain the following set of equations:

e
ðaÞ
0 ¼

1

2G

3ÿ l
1þ l

e
ðaÞ
1 ¼

1

G

1ÿ l
1þ l

x

eðaÞm ¼
1

2G

3ÿ l
1þ l

Imfðxþ iyÞmg ÿ m

2G
ðx2 þ y2ÞRefðxÿ iyÞmÿ2g , m§2

e
ðbÞ
1 ¼ 0

e
ðbÞ
1 ¼ ÿ

2

Gð1þ lÞ y

eðbÞm ¼ ÿ
1

2G

3ÿ l
1þ l

Imfðxþ iyÞmg ÿ m

2G
ðx2 þ y2ÞImfðxÿ iyÞmÿ2g , m§2

eðcÞm ¼
1

2G
Refðxÿ iyÞmg , m§0

eðdÞm ¼
1

2G
Imfðxÿ iyÞmg , m§0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: (A17)

From eqs (A13) and (A8), we obtain

f
ðaÞ
0 ¼ 0

f
ðaÞ
1 ¼ 1

G

1ÿ l
1þ l

y

f ðaÞm ¼ 1

2G

3ÿ l
1þ l

Imfðxþ iyÞmg ÿ m

2G
ðx2 þ y2ÞImfðxÿ iyÞmÿ2g , m§2

f
ðbÞ
0 ¼ 1

2G

3ÿ l
1þ l

f
ðbÞ
1 ¼ ÿ 2

Gð1þ lÞ x

f ðbÞm ¼ 1

2G

3ÿ l
1þ l

Refðxþ iyÞmg ÿ m

2G
ðx2 þ y2ÞRefðxÿ iyÞmÿ2g , m§2

f ðcÞm ¼ 1

2G
Imfðxÿ iyÞmg , m§0

eðdÞm ¼ ÿ
1

2G
Refðxÿ iyÞmg , m§0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: (A18)
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From eqs (A14) and (A9), we get the set of equations

g
ðaÞ
1 ¼ 2

g
ðaÞ
2 ¼ 2x

g
ðaÞ
m ¼ mRef½ð3ÿmÞx2 ÿ ð1þmÞy2 þ 4ixy�½xþ iy�mÿ3g , m§3

g
ðbÞ
1 ¼ 0

g
ðbÞ
2 ¼ ÿ6y

g
ðbÞ
m ¼ ÿmImf½ð3ÿmÞx2 ÿ ð1þmÞy2 þ 4ixy�½xþ iy�mÿ3g , m§3

g
ðcÞ
1 ¼ 1

g
ðcÞ
2 ¼ 2x

g
ðcÞ
m ¼ mRefðxþ iyÞmÿ1g , m§3

g
ðdÞ
1 ¼ 0

g
ðdÞ
2 ¼ ÿ2y

g
ðdÞ
m ¼ ÿmImfðxþ iyÞmÿ1g , m§3

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: (A19)

Comparing eqs (A15) and (A10), we obtain the set of equations

h
ðaÞ
1 ¼ 2

h
ðaÞ
2 ¼ 6x

h
ðaÞ
m ¼ mRef½ð1þmÞx2 ÿ ðmÿ 3Þy2 þ 4ixy�½xþ iy�mÿ3g , m§3

h
ðbÞ
1 ¼ 0

h
ðbÞ
2 ¼ ÿ2y

h
ðbÞ
m ¼ ÿmImf½ð1þmÞx2 ÿ ðmÿ 3Þy2 þ 4ixy�½xþ iy�mÿ3g , m§3

h
ðcÞ
1 ¼ ÿ1

h
ðcÞ
2 ¼ ÿ2x

h
ðcÞ
m ¼ mRefðxþ iyÞmÿ1g , m§3

h
ðdÞ
1 ¼ 0

h
ðdÞ
2 ¼ 2y

h
ðdÞ
m ¼ mImfðxþ iyÞmÿ1g , m§3

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: (A20)
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From eqs (A16) and (A11), we obtain the set of equations

r
ðaÞ
1 ¼ 0

r
ðaÞ
2 ¼ ÿ2y

r
ðaÞ
m ¼ mðmÿ 1ÞImfðx2 þ y2Þðxþ iyÞmÿ3g , m§3

r
ðbÞ
1 ¼ 0

r
ðbÞ
2 ¼ 2x

r
ðbÞ
m ¼ ðmÿ 1ÞRef½x2 þ y2�½xþ iy�mÿ3g , m§3

r
ðcÞ
1 ¼ 0

r
ðcÞ
2 ¼ ÿ2y

r
ðcÞ
m ¼ ÿmImfðxþ iyÞmÿ1g , m§3

r
ðdÞ
1 ¼ ÿ1

r
ðdÞ
2 ¼ ÿ2x

r
ðdÞ
m ¼ ÿmRefðxþ iyÞmÿ1g , m§3

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: (A21)

Finally, we obtain the equations for the case of the internal stress field. Define n(nx, ny) as the normal to the external contour

(Fig. A1). The traction, t(tx, ty), is an internal force per unit area in the direction of the normal vector n (Fig. A2). We thus obtain

tx ¼ pxnx þ qxyny (A22)

ty ¼ nxqxy þ nypy (A23)

Substituting eqs (A14) and (A16) into eq. (A22), we obtain

tx ¼
XM
m¼1

fðnxgðaÞm þ nyrðaÞm Þamg þ
XM
m¼1

fðnxgðbÞm þ nyrðbÞm Þbmg þ
XM
m¼1

fðnxgðcÞm þ nyrðcÞm Þpmg þ
XM
m¼1

fðnxgðdÞm þ nyrðdÞm Þqmg : (A24)

Substituting eqs (A15) and (A16) into eq. (A23), we obtain

ty ¼
XM
m¼1

fðnxrðaÞm þ nyhðaÞm Þamg þ
XM
m¼1

fðnxrðbÞm þ nyhðbÞm Þbmg þ
XM
m¼1

fðnxrðcÞm þ nyhðcÞm Þpmg þ
XM
m¼1

fðnxrðdÞm þ nyhðdÞm Þqmg : (A25)

Figure A1. Definition of the normal reference vector to the contour

used.
Figure A2. Definition of the x- and y-components of the traction

vector.
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