
International Journal of Computer Vision 47(1/2/3), 7–42, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms

DANIEL SCHARSTEIN
Department of Mathematics and Computer Science, Middlebury College, Middlebury, VT 05753, USA

schar@middlebury.edu

RICHARD SZELISKI
Microsoft Research, Microsoft Corporation, Redmond, WA 98052, USA

szeliski@microsoft.com

Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of
algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing
their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is
designed to assess the different components and design decisions made in individual stereo algorithms. Using
this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many
different variants. In order to establish a common software platform and a collection of data sets for easy evaluation,
we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components
and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo
data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a
comparative evaluation of a large set of today’s best-performing stereo algorithms.
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1. Introduction

Stereo correspondence has traditionally been, and con-
tinues to be, one of the most heavily investigated topics
in computer vision. However, it is sometimes hard to
gauge progress in the field, as most researchers only
report qualitative results on the performance of their
algorithms. Furthermore, a survey of stereo methods
is long overdue, with the last exhaustive surveys dat-
ing back about a decade (Barnard and Fischler, 1982;
Dhond and Aggarwal, 1989; Brown, 1992). This paper
provides an update on the state of the art in the field,
with particular emphasis on stereo methods that (1)
operate on two frames under known camera geometry,
and (2) produce a dense disparity map, i.e., a disparity
estimate at each pixel.

Our goals are two-fold:

1. To provide a taxonomy of existing stereo algorithms
that allows the dissection and comparison of indi-
vidual algorithm components design decisions;

2. To provide a test bed for the quantitative evalua-
tion of stereo algorithms. Towards this end, we are
placing sample implementations of correspondence
algorithms along with test data and results on the
Web at www.middlebury.edu/stereo.

We emphasize calibrated two-frame methods in or-
der to focus our analysis on the essential compo-
nents of stereo correspondence. However, it would be
relatively straightforward to generalize our approach
to include many multiframe methods, in particular
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multiple-baseline stereo (Okutomi and Kanade, 1993)
and its plane-sweep generalizations (Collins, 1996;
Szeliski and Golland, 1999).

The requirement of dense output is motivated by
modern applications of stereo such as view synthe-
sis and image-based rendering, which require disparity
estimates in all image regions, even those that are oc-
cluded or without texture. Thus, sparse and feature-
based stereo methods are outside the scope of this
paper, unless they are followed by a surface-fitting
step, e.g., using triangulation, splines, or seed-and-
grow methods.

We begin this paper with a review of the goals
and scope of this study, which include the need for
a coherent taxonomy and a well thought-out evalu-
ation methodology. We also review disparity space
representations, which play a central role in this pa-
per. In Section 3, we present our taxonomy of dense
two-frame correspondence algorithms. Section 4 dis-
cusses our current test bed implementation in terms
of the major algorithm components, their interactions,
and the parameters controlling their behavior. Section 5
describes our evaluation methodology, including the
methods we used for acquiring calibrated data sets with
known ground truth. In Section 6 we present experi-
ments evaluating the different algorithm components,
while Section 7 provides an overall comparison of 20
current stereo algorithms. We conclude in Section 8
with a discussion of planned future work.

2. Motivation and Scope

Compiling a complete survey of existing stereo meth-
ods, even restricted to dense two-frame methods, would
be a formidable task, as a large number of new meth-
ods are published every year. It is also arguable whether
such a survey would be of much value to other stereo re-
searchers, besides being an obvious catch-all reference.
Simply enumerating different approaches is unlikely to
yield new insights.

Clearly, a comparative evaluation is necessary to as-
sess the performance of both established and new algo-
rithms and to gauge the progress of the field. The pub-
lication of a similar study by Barron et al. (1994) has
had a dramatic effect on the development of optical flow
algorithms. Not only is the performance of commonly
used algorithms better understood by researchers, but
novel publications have to improve in some way on the
performance of previously published techniques (Otte
and Nagel, 1994). A more recent study by Mitiche and

Bouthemy (1996) reviews a large number of methods
for image flow computation and isolates central prob-
lems, but does not provide any experimental results.

In stereo correspondence, two previous comparative
papers have focused on the performance of sparse fea-
ture matchers (Hsieh et al., 1992; Bolles et al., 1993).
Two recent papers (Szeliski, 1999; Mulligan et al.,
2001) have developed new criteria for evaluating the
performance of dense stereo matchers for image-based
rendering and telepresence applications. Our work is a
continuation of the investigations begun by Szeliski and
Zabih (1999), which compared the performance of sev-
eral popular algorithms, but did not provide a detailed
taxonomy or as complete a coverage of algorithms. A
preliminary version of this paper appeared in the CVPR
2001 Workshop on Stereo and Multi-Baseline Vision
(Scharstein et al., 2001).

An evaluation of competing algorithms has limited
value if each method is treated as a “black box” and only
final results are compared. More insights can be gained
by examining the individual components of various al-
gorithms. For example, suppose a method based on
global energy minimization outperforms other meth-
ods. Is the reason a better energy function, or a better
minimization technique? Could the technique be im-
proved by substituting different matching costs?

In this paper we attempt to answer such questions by
providing a taxonomy of stereo algorithms. The taxon-
omy is designed to identify the individual components
and design decisions that go into a published algorithm.
We hope that the taxonomy will also serve to structure
the field and to guide researchers in the development
of new and better algorithms.

2.1. Computational Theory

Any vision algorithm, explicitly or implicitly, makes
assumptions about the physical world and the image
formation process. In other words, it has an under-
lying computational theory (Marr and Poggio, 1979;
Marr, 1982). For example, how does the algorithm mea-
sure the evidence that points in the two images match,
i.e., that they are projections of the same scene point?
One common assumption is that of Lambertian sur-
faces, i.e., surfaces whose appearance does not vary
with viewpoint. Some algorithms also model specific
kinds of camera noise, or differences in gain or bias.

Equally important are assumptions about the world
or scene geometry and the visual appearance of ob-
jects. Starting from the fact that the physical world
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consists of piecewise-smooth surfaces, algorithms have
built-in smoothness assumptions (often implicit) with-
out which the correspondence problem would be un-
derconstrained and ill-posed. Our taxonomy of stereo
algorithms, presented in Section 3, examines both
matching assumptions and smoothness assumptions in
order to categorize existing stereo methods.

Finally, most algorithms make assumptions about
camera calibration and epipolar geometry. This is ar-
guably the best-understood part of stereo vision; we
therefore assume in this paper that we are given a pair
of rectified images as input. Recent references on stereo
camera calibration and rectification include (Zhang,
1998, 2000; Loop and Zhang, 1999; Hartley and
Zisserman, 2000; Faugeras and Luong, 2001).

2.2. Representation

A critical issue in understanding an algorithm is the rep-
resentation used internally and output externally by the
algorithm. Most stereo correspondence methods com-
pute a univalued disparity function d(x , y) with respect
to a reference image, which could be one of the input
images, or a “cyclopian” view in between some of the
images.

Other approaches, in particular multi-view stereo
methods, use multi-valued (Szeliski and Golland,
1999), voxel-based (Seitz and Dyer, 1999; Kutulakos
and Seitz, 2000; De Bonet and Viola, 1999;
Culbertson et al., 1999; Broadhurst et al., 2001), or
layer-based (Wang and Adelson, 1993; Baker et al.,
1998) representations. Still other approaches use full
3D models such as deformable models (Terzopoulos
and Fleischer, 1988; Terzopoulos and Metaxas, 1991),
triangulated meshes (Fua and Leclerc, 1995), or level-
set methods (Faugeras and Keriven, 1998).

Since our goal is to compare a large number of meth-
ods within one common framework, we have chosen to
focus on techniques that produce a univalued dispar-
ity map d(x , y) as their output. Central to such meth-
ods is the concept of a disparity space (x , y, d). The
term disparity was first introduced in the human vi-
sion literature to describe the difference in location of
corresponding features seen by the left and right eyes
(Marr, 1982). (Horizontal disparity is the most com-
monly studied phenomenon, but vertical disparity is
possible if the eyes are verged.)

In computer vision, disparity is often treated as
synonymous with inverse depth (Bolles et al., 1987;
Okutomi and Kanade, 1993). More recently, several re-

searchers have defined disparity as a three-dimensional
projective transformation (collineation or homogra-
phy) of 3-D space (X , Y , Z ). The enumeration of
all possible matches in such a generalized disparity
space can be easily achieved with a plane sweep al-
gorithm (Collins, 1996; Szeliski and Golland, 1999),
which for every disparity d projects all images onto a
common plane using a perspective projection (homog-
raphy). (Note that this is different from the meaning of
plane sweep in computational geometry.)

In general, we favor the more generalized interpre-
tation of disparity, since it allows the adaptation of
the search space to the geometry of the input cameras
(Szeliski and Golland, 1999; Saito and Kanade, 1999);
we plan to use it in future extensions of this work to
multiple images. Note that plane sweeps can also be
generalized to other sweep surfaces such as cylinders
(Shum and Szeliski, 1999).

In this study, however, since all our images are taken
on a linear path with the optical axis perpendicular to
the camera displacement, the classical inverse-depth in-
terpretation will suffice (Okutomi and Kanade, 1993).
The (x , y) coordinates of the disparity space are taken
to be coincident with the pixel coordinates of a refer-
ence image chosen from our input data set. The corre-
spondence between a pixel (x , y) in reference image r
and a pixel (x ′, y′) in matching image m is then given
by

x ′ = x + sd(x, y), y′ = y, (1)

where s = ±1 is a sign chosen so that disparities are
always positive. Note that since our images are num-
bered from leftmost to rightmost, the pixels move from
right to left.

Once the disparity space has been specified, we can
introduce the concept of a disparity space image or
DSI (Yang et al., 1993; Bobick and Intille, 1999). In
general, a DSI is any image or function defined over
a continuous or discretized version of disparity space
(x , y, d). In practice, the DSI usually represents the
confidence or log likelihood (i.e., cost) of a particular
match implied by d(x , y).

The goal of a stereo correspondence algorithm is
then to produce a univalued function in disparity space
d(x , y) that best describes the shape of the surfaces
in the scene. This can be viewed as finding a surface
embedded in the disparity space image that has some
optimality property, such as lowest cost and best (piece-
wise) smoothness (Yang et al., 1993). Figure 1 shows
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Figure 1. Slices through a typical disparity space image (DSI): (a) original color image; (b) ground-truth disparities; (c–e) three (x , y) slices
for d = 10, 16, 21; (f) an (x , d) slice for y = 151 (the dashed line in Fig. (b)). Different dark (matching) regions are visible in Fig. (c)–(e),
e.g., the bookshelves, table and cans, and head statue, while three different disparity levels can be seen as horizontal lines in the (x , d) slice
(Fig. (f)). Note the dark bands in the various DSIs, which indicate regions that match at this dispartiy. (Smaller dark regions are often the result
of textureless regions.)

examples of slices through a typical DSI. More figures
of this kind can be found in Bobick and Intille (1999).

3. A Taxonomy of Stereo Algorithms

In order to support an informed comparison of stereo
matching algorithms, we develop in this section a tax-
onomy and categorization scheme for such algorithms.
We present a set of algorithmic “building blocks” from
which a large set of existing algorithms can easily be
constructed. Our taxonomy is based on the observa-
tion that stereo algorithms generally perform (subsets
of) the following four steps (Scharstein and Szeliski,
1998; Scharstein, 1999):

1. matching cost computation;
2. cost (support) aggregation;
3. disparity computation/optimization; and
4. disparity refinement.

The actual sequence of steps taken depends on the spe-
cific algorithm.

For example, local (window-based) algorithms,
where the disparity computation at a given point de-
pends only on intensity values within a finite win-
dow, usually make implicit smoothness assumptions
by aggregating support. Some of these algorithms can
cleanly be broken down into steps 1, 2, 3. For exam-
ple, the traditional sum-of-squared-differences (SSD)
algorithm can be described as:

1. the matching cost is the squared difference of inten-
sity values at a given disparity;

2. aggregation is done by summing matching cost over
square windows with constant disparity;

3. disparities are computed by selecting the minimal
(winning) aggregated value at each pixel.

Some local algorithms, however, combine steps 1 and
2 and use a matching cost that is based on a support re-
gion, e.g. normalized cross-correlation (Hannah, 1974;
Bolles et al., 1993) and the rank transform (Zabih and
Woodfill, 1994). (This can also be viewed as a prepro-
cessing step; see Section 3.1.)

On the other hand, global algorithms make explicit
smoothness assumptions and then solve an optimiza-
tion problem. Such algorithms typically do not per-
form an aggregation step, but rather seek a disparity
assignment (step 3) that minimizes a global cost func-
tion that combines data (step 1) and smoothness terms.
The main distinction between these algorithms is the
minimization procedure used, e.g., simulated annealing
(Marroquin et al., 1987; Barnard, 1989), probabilistic
(mean-field) diffusion (Scharstein and Szeliski, 1998)
or graph cuts (Boykov et al., 2001).

In between these two broad classes are certain it-
erative algorithms that do not explicitly state a global
function that is to be minimized, but whose behavior
mimics closely that of iterative optimization algorithms
(Marr and Poggio, 1976; Scharstein and Szeliski, 1998;
Zitnick and Kanade, 2000). Hierarchical (coarse-to-
fine) algorithms resemble such iterative algorithms, but
typically operate on an image pyramid, where results
from coarser levels are used to constrain a more local
search at finer levels (Witkin et al., 1987; Quam, 1984;
Bergen et al., 1992).
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3.1. Matching Cost Computation

The most common pixel-based matching costs in-
clude squared intensity differences (SD) (Hannah,
1974; Anandan, 1989; Matthies et al., 1989; Simoncelli
et al., 1991), and absolute intensity differences (AD)
(Kanade, 1994). In the video processing community,
these matching criteria are referred to as the mean-
squared error (MSE) and mean absolute difference
(MAD) measures; the term displaced frame difference
is also often used (Tekalp, 1995).

More recently, robust measures, including truncated
quadratics and contaminated Gaussians have been
proposed (Black and Anandan, 1993; Black and
Rangarajan, 1996; Scharstein and Szeliski, 1998).
These measures are useful because they limit the in-
fluence of mismatches during aggregation.

Other traditional matching costs include normalized
cross-correlation (Hannah, 1974; Ryan et al., 1980;
Bolles et al., 1993), which behaves similar to sum-
of-squared-differences (SSD), and binary matching
costs (i.e., match/no match) (Marr and Poggio, 1976),
based on binary features such as edges (Baker, 1980;
Grimson, 1985; Canny, 1986) or the sign of the
Laplacian (Nishihara, 1984). Binary matching costs are
not commonly used in dense stereo methods, however.

Some costs are insensitive to differences in cam-
era gain or bias, for example gradient-based measures
(Seitz, 1989; Scharstein, 1994) and non-parametric
measures such as rank and census transforms (Zabih
and Woodfill, 1994). Of course, it is also possible to cor-
rect for different camera characteristics by performing
a preprocessing step for bias-gain or histogram equali-
zation (Gennert, 1988; Cox et al., 1995). Other match-
ing criteria include phase and filter-bank responses
(Marr and Poggio, 1979; Kass, 1988; Jenkin et al.,
1991; Jones and Malik, 1992). Finally, Birchfield and
Tomasi have proposed a matching cost that is insensi-
tive to image sampling (Birchfield and Tomasi, 1998a).
Rather than just comparing pixel values shifted by in-
tegral amounts (which may miss a valid match), they
compare each pixel in the reference image against a
linearly interpolated function of the other image.

The matching cost values over all pixels and all dis-
parities form the initial disparity space image C0(x ,
y, d). While our study is currently restricted to two-
frame methods, the initial DSI can easily incorpo-
rate information from more than two images by sim-
ply summing up the cost values for each matching
image m, since the DSI is associated with a fixed

reference image r (Eq. (1)). This is the idea behind
multiple-baseline SSSD and SSAD methods (Okutomi
and Kanade, 1993; Kang et al., 1995; Nakamura et al.,
1996). As mentioned in Section 2.2, this idea can be
generalized to arbitrary camera configurations using
a plane sweep algorithm (Collins, 1996; Szeliski and
Golland, 1999).

3.2. Aggregation of Cost

Local and window-based methods aggregate the
matching cost by summing or averaging over a sup-
port region in the DSI C(x , y, d). A support region
can be either two-dimensional at a fixed disparity (fa-
voring fronto-parallel surfaces), or three-dimensional
in x-y-d space (supporting slanted surfaces). Two-
dimensional evidence aggregation has been imple-
mented using square windows or Gaussian convo-
lution (traditional), multiple windows anchored at
different points, i.e., shiftable windows (Arnold, 1983;
Bobick and Intille, 1999), windows with adaptive sizes
(Okutomi and Kanade, 1992; Kanade and Okutomi,
1994; Veksler, 2001; Kang et al., 2001), and windows
based on connected components of constant disparity
(Boykov et al., 1998). Three-dimensional support func-
tions that have been proposed include limited disparity
difference (Grimson, 1985), limited disparity gradient
(Pollard et al., 1985), and Prazdny’s coherence princi-
ple (Prazdny, 1985).

Aggregation with a fixed support region can be per-
formed using 2D or 3D convolution,

C(x, y, d) = w(x, y, d) ∗ C0(x, y, d), (2)

or, in the case of rectangular windows, using efficient
(moving average) box-filters. Shiftable windows can
also be implemented efficiently using a separable slid-
ing min-filter (Section 4.2). A different method of ag-
gregation is iterative diffusion, i.e., an aggregation (or
averaging) operation that is implemented by repeatedly
adding to each pixel’s cost the weighted values of its
neighboring pixels’ costs (Szeliski and Hinton, 1985;
Shah, 1993; Scharstein and Szeliski, 1998).

3.3. Disparity Computation and Optimization

Local Methods. In local methods, the emphasis is on
the matching cost computation and on the cost aggre-
gation steps. Computing the final disparities is trivial:
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simply choose at each pixel the disparity associated
with the minimum cost value. Thus, these methods per-
form a local “winner-take-all” (WTA) optimization at
each pixel. A limitation of this approach (and many
other correspondence algorithms) is that uniqueness
of matches is only enforced for one image (the refer-
ence image), while points in the other image might get
matched to multiple points.

Global Optimization. In contrast, global methods
perform almost all of their work during the dispar-
ity computation phase and often skip the aggregation
step. Many global methods are formulated in an energy-
minimization framework (Terzopoulos, 1986). The ob-
jective is to find a disparity function d that minimizes
a global energy,

E(d) = Edata(d) + λEsmooth(d). (3)

The data term, Edata(d), measures how well the dispar-
ity function d agrees with the input image pair. Using
the disparity space formulation,

Edata(d) =
∑
(x,y)

C(x, y, d(x, y)), (4)

where C is the (initial or aggregated) matching cost
DSI.

The smoothness term Esmooth(d) encodes the
smoothness assumptions made by the algorithm. To
make the optimization computationally tractable, the
smoothness term is often restricted to only measuring
the differences between neighboring pixels’ disparities,

Esmooth(d) =
∑
(x,y)

ρ(d(x, y) − d(x + 1, y))

+ ρ(d(x, y) − d(x, y + 1)), (5)

where ρ is some monotonically increasing function
of disparity difference. (An alternative to smoothness
functionals is to use a lower-dimensional representa-
tion such as splines (Szeliski and Coughlan, 1997).)

In regularization-based vision (Poggio et al., 1985),
ρ is a quadratic function, which makes d smooth every-
where and may lead to poor results at object boundaries.
Energy functions that do not have this problem are
called discontinuity-preserving and are based on robust
ρ functions (Terzopoulos, 1986; Black and Rangarajan,
1996; Scharstein and Szeliski, 1998). Geman and
Geman’s seminal paper (Geman and Geman, 1984)
gave a Bayesian interpretation of these kinds of

energy functions (Szeliski, 1989) and proposed a
discontinuity-preserving energy function based on
Markov Random Fields (MRFs) and additional line
processes. Black and Rangarajan (1996) show how line
processes can be often be subsumed by a robust regu-
larization framework.

The terms in Esmooth can also be made to depend on
the intensity differences, e.g.,

ρd(d(x, y) − d(x + 1, y)) · ρI (‖I (x, y)

− I (x + 1, y)‖), (6)

where ρI is some monotonically decreasing function
of intensity differences that lowers smoothness costs
at high intensity gradients. This idea (Gamble and
Poggio, 1987; Fua, 1993; Bobick and Intille, 1999;
Boykov et al., 2001), encourages disparity discontinu-
ities to coincide with intensity/color edges and appears
to account for some of the good performance of global
optimization approaches.

Once the global energy has been defined, a variety of
algorithms can be used to find a (local) minimum. Tra-
ditional approaches associated with regularization and
Markov Random Fields include continuation (Blake
and Zisserman, 1987), simulated annealing (Geman
and Geman, 1984; Marroquin et al., 1987; Barnard,
1989), highest confidence first (Chou and Brown, 1990)
and mean-field annealing (Geiger and Girosi, 1991).

More recently, max-flow and graph-cut methods
have been proposed to solve a special class of global
optimization problems (Roy and Cox, 1998; Ishikawa
and Geiger, 1998; Boykov et al., 2001; Veksler, 1999;
Kolmogorov and Zabih, 2001). Such methods are more
efficient than simulated annealing and have produced
good results.

Dynamic Programming. A different class of global
optimization algorithms are those based on dynamic
programming. While the 2D-optimization of Eq. (3)
can be shown to be NP-hard for common classes
of smoothness functions (Veksler, 1999), dynamic
programming can find the global minimum for inde-
pendent scanlines in polynomial time. Dynamic pro-
gramming was first used for stereo vision in sparse,
edge-based methods (Baker and Binford, 1981; Ohta
and Kanade, 1985). More recent approaches have fo-
cused on the dense (intensity-based) scanline opti-
mization problem (Belhumeur and Mumford, 1992;
Belhumeur, 1996; Geiger et al., 1992; Cox et al.,
1996; Bobick and Intille, 1999; Birchfield and Tomasi,
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Figure 2. Stereo matching using dynamic programming. For each
pair of corresponding scanlines, a minimizing path through the ma-
trix of all pairwise matching costs is selected. Lowercase letters (a–k)
symbolize the intensities along each scanline. Uppercase letters rep-
resent the selected path through the matrix. Matches are indicated
by M, while partially occluded points (which have a fixed cost) are
indicated by L and R, corresponding to points only visible in the
left and right image, respectively. Usually, only a limited disparity
range is considered, which is 0–4 in the figure (indicated by the non-
shaded squares). Note that this diagram shows an “unskewed” x-d
slice through the DSI.

1998b). These approaches work by computing the
minimum-cost path through the matrix of all pairwise
matching costs between two corresponding scanlines.
Partial occlusion is handled explicitly by assigning a
group of pixels in one image to a single pixel in the
other image. Figure 2 shows one such example.

Problems with dynamic programming stereo include
the selection of the right cost for occluded pixels and
the difficulty of enforcing inter-scanline consistency,
although several methods propose ways of address-
ing the latter (Ohta and Kanade, 1985; Belhumeur,
1996; Cox et al., 1996; Bobick and Intille, 1999;
Birchfield and Tomasi, 1998b). Another problem is that
the dynamic programming approach requires enforc-
ing the monotonicity or ordering constraint (Yuille and
Poggio, 1984). This constraint requires that the rela-
tive ordering of pixels on a scanline remain the same
between the two views, which may not be the case in
scenes containing narrow foreground objects.

Cooperative Algorithms. Finally, cooperative algo-
rithms, inspired by computational models of human
stereo vision, were among the earliest methods pro-
posed for disparity computation (Dev, 1974; Marr
and Poggio, 1976; Marroquin, 1983; Szeliski and
Hinton, 1985). Such algorithms iteratively perform
local computations, but use nonlinear operations that

result in an overall behavior similar to global optimiza-
tion algorithms. In fact, for some of these algorithms,
it is possible to explicitly state a global function that
is being minimized (Scharstein and Szeliski, 1998).
Recently, a promising variant of Marr and Poggio’s
original cooperative algorithm has been developed
(Zitnick and Kanade, 2000).

3.4. Refinement of Disparities

Most stereo correspondence algorithms compute a set
of disparity estimates in some discretized space, e.g.,
for integer disparities (exceptions include continuous
optimization techniques such as optic flow (Bergen
et al., 1992) or splines (Szeliski and Coughlan, 1997)).
For applications such as robot navigation or people
tracking, these may be perfectly adequate. However
for image-based rendering, such quantized maps lead
to very unappealing view synthesis results (the scene
appears to be made up of many thin shearing layers).
To remedy this situation, many algorithms apply a sub-
pixel refinement stage after the initial discrete corre-
spondence stage. (An alternative is to simply start with
more discrete disparity levels.)

Sub-pixel disparity estimates can be computed in a
variety of ways, including iterative gradient descent
and fitting a curve to the matching costs at discrete
disparity levels (Ryan et al., 1980; Lucas and Kanade,
1981; Tian and Huhns, 1986; Matthies et al., 1989;
Kanade and Okutomi, 1994). This provides an easy
way to increase the resolution of a stereo algorithm with
little additional computation. However, to work well,
the intensities being matched must vary smoothly, and
the regions over which these estimates are computed
must be on the same (correct) surface.

Recently, some questions have been raised about
the advisability of fitting correlation curves to integer-
sampled matching costs (Shimizu and Okutomi,
2001). This situation may even be worse when
sampling-insensitive dissimilarity measures are used
(Birchfield and Tomasi, 1998a). We investigate this
issue in Section 6.4 below.

Besides sub-pixel computations, there are of course
other ways of post-processing the computed dispar-
ities. Occluded areas can be detected using cross-
checking (comparing left-to-right and right-to-left dis-
parity maps) (Cochran and Medioni, 1992; Fua, 1993).
A median filter can be applied to “clean up” spurious
mismatches, and holes due to occlusion can be filled by
surface fitting or by distributing neighboring disparity
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estimates (Birchfield and Tomasi, 1998b; Scharstein,
1999). In our implementation we are not performing
such clean-up steps since we want to measure the per-
formance of the raw algorithm components.

3.5. Other Methods

Not all dense two-frame stereo correspondence algo-
rithms can be described in terms of our basic taxonomy
and representations. Here we briefly mention some ad-
ditional algorithms and representations that are not cov-
ered by our framework.

The algorithms described in this paper first enumer-
ate all possible matches at all possible disparities, then
select the best set of matches in some way. This is a use-
ful approach when a large amount of ambiguity may ex-
ist in the computed disparities. An alternative approach
is to use methods inspired by classic (infinitesimal) op-
tic flow computation. Here, images are successively
warped and motion estimates incrementally updated
until a satisfactory registration is achieved. These tech-
niques are most often implemented within a coarse-to-
fine hierarchical refinement framework (Quam, 1984;
Bergen et al., 1992; Barron et al., 1994; Szeliski and
Coughlan, 1997).

A univalued representation of the disparity map is
also not essential. Multi-valued representations, which
can represent several depth values along each line of
sight, have been extensively studied recently, especially
for large multiview data set. Many of these techniques
use a voxel-based representation to encode the recon-
structed colors and spatial occupancies or opacities
(Szeliski and Golland, 1999; Seitz and Dyer, 1999;
Kutulakos and Seitz, 2000; De Bonet and Viola, 1999;
Culbertson et al., 1999; Broadhurst et al., 2001). An-
other way to represent a scene with more complexity
is to use multiple layers, each of which can be repre-
sented by a plane plus residual parallax (Baker et al.,
1998; Birchfield and Tomasi, 1999; Tao et al., 2001).
Finally, deformable surfaces of various kinds have also
been used to perform 3D shape reconstruction from
multiple images (Terzopoulos and Fleischer, 1988;
Terzopoulos and Metaxas, 1991; Fua and Leclerc,
1995; Faugeras and Keriven, 1998).

3.6. Summary of Methods

Table 1 gives a summary of some representative
stereo matching algorithms and their corresponding
taxonomy, i.e., the matching cost, aggregation, and

optimization techniques used by each. The methods
are grouped to contrast different matching costs (top),
aggregation methods (middle), and optimization tech-
niques (third section), while the last section lists some
papers outside the framework. As can be seen from this
table, quite a large subset of the possible algorithm de-
sign space has been explored over the years, albeit not
very systematically.

4. Implementation

We have developed a stand-alone, portable C++ im-
plementation of several stereo algorithms. The imple-
mentation is closely tied to the taxonomy presented
in Section 3 and currently includes window-based al-
gorithms, diffusion algorithms, as well as global opti-
mization methods using dynamic programming, simu-
lated annealing, and graph cuts. While many published
methods include special features and post-processing
steps to improve the results, we have chosen to imple-
ment the basic versions of such algorithms, in order to
assess their respective merits most directly.

The implementation is modular and can easily be
extended to include other algorithms or their compo-
nents. We plan to add several other algorithms in the
near future, and we hope that other authors will con-
tribute their methods to our framework as well. Once a
new algorithm has been integrated, it can easily be com-
pared with other algorithms using our evaluation mod-
ule, which can measure disparity error and reprojection
error (Section 5.1). The implementation contains a so-
phisticated mechanism for specifying parameter values
that supports recursive script files for exhaustive per-
formance comparisons on multiple data sets.

We provide a high-level description of our code using
the same division into four parts as in our taxonomy.
Within our code, these four sections are (optionally)
executed in sequence, and the performance/quality
evaluator is then invoked. A list of the most important
algorithm parameters is given in Table 2.

4.1. Matching Cost Computation

The simplest possible matching cost is the squared or
absolute difference in color/intensity between corre-
sponding pixels (match fn). To approximate the effect
of a robust matching score (Black and Rangarajan,
1996; Scharstein and Szeliski, 1998), we truncate
the matching score to a maximal value match max.
When color images are being compared, we sum the
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Table 1. Summary taxonomy of several dense two-frame stereo correspondence methods. The methods are grouped to contrast
different matching costs (top), aggregation methods (middle), and optimization techniques (third section). The last section lists
some papers outside our framework. Key to abbreviations: hier.—hierarchical (coarse-to-fine), WTA—winner-take-all, DP—dynamic
programming, SA—simulated annealing, GC—graph cut.

Method Matching cost Aggregation Optimization

SSD (traditional) Squared difference Square window WTA

Hannah (1974) Cross-correlation (Square window) WTA

Nishihara (1984) Binarized filters Square window WTA

Kass (1988) Filter banks -None- WTA

Fleet et al. (1991) Phase -None- Phase-matching

Jones and Malik (1992) Filter banks -None- WTA

Kanade (1994) Absolute difference Square window WTA

Scharstein (1994) Gradient-based Gaussian WTA

Zabih and Woodfill (1994) Rank transform (Square window) WTA

Cox et al. (1995) Histogram eq. -None- DP

Frohlinghaus and Buhmann (1996) Wavelet phase -None- Phase-matching

Birchfield and Tomasi (1998a) Shifted abs. diff -None- DP

Marr and Poggio (1976) Binary images Iterative aggregation WTA

Prazdny (1985) Binary images 3D aggregation WTA

Szeliski and Hinton (1985) Binary images Iterative 3D aggregation WTA

Okutomi and Kanade (1992) Squared difference Adaptive window WTA

Yang et al. (1993) Cross-correlation Non-linear filtering Hier. WTA

Shah (1993) Squared difference Non-linear diffusion Regularization

Boykov et al. (1998) Thresh. abs. diff. Connected-component WTA

Scharstein and Szeliski (1998) Robust sq. diff. Iterative 3D aggregation Mean-field

Zitnick and Kanade (2000) Squared difference Iterative aggregation WTA

Veksler (2001) Abs. diff-avg. Adaptive window WTA

Quam (1984) Cross-correlation -None- Hier. Warp

Barnard (1989) Squared difference -None- SA

Geiger et al. (1992) Squared difference Shiftable window DP

Belhumeur (1996) Squared difference -None- DP

Cox et al. (1996) Squared difference -None- DP

Ishikawa and Geiger (1998) Squared difference -None- Graph cut

Roy and Cox (1998) Squared difference -None- Graph cut

Bobick and Intille (1999) Absolute difference Shiftable window DP

Boykov et al. (2001) Squared difference -None- Graph cut

Kolmogorov and Zabih (2001) Squared difference -None- Graph cut

Birchfield and Tomasi (1999) Shifted abs. diff. -None- GC + planes

Tao et al. (2001) Squared difference (Color segmentation) WTA + regions

squared or absolute intensity difference in each chan-
nel before applying the clipping. If fractional dispar-
ity evaluation is being performed (disp step < 1), each
scanline is first interpolated up using either a linear
or cubic interpolation filter (match interp) (Matthies
et al., 1989). We also optionally apply Birchfield and

Tomasi’s sampling insensitive interval-based match-
ing criterion (match interval) (Birchfield and Tomasi,
1998a), i.e., we take the minimum of the pixel match-
ing score and the score at ± 1

2 -step displacements, or
0 if there is a sign change in either interval. We apply
this criterion separately to each color channel, which
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Table 2. The most important stereo algorithm parameters of our implementation.

Name Typical values Description

disp min 0 Smallest disparity

disp max 15 Largest disparity

disp step 0.5 Disparity step size

match fn SD, AD Matching function

match interp Linear, Cubic Interpolation function

match max 20 Maximum difference for truncated SAD/SSD

match interval false 1/2 disparity match (Birchfield and Tomasi, 1998a)

aggr fn Box, Binomial Aggregation function

aggr window size 9 Size of window

aggr minfilter 9 Spatial min-filter (shiftable window)

aggr iter 1 Number of aggregation iterations

diff lambda 0.15 Parameter λ for regular and membrane diffusion

diff beta 0.5 Parameter β for membrane diffusion

diff scale cost 0.01 Scale of cost values (needed for Bayesian diffusion)

diff mu 0.5 Parameter µ for Bayesian diffusion

diff sigmaP 0.4 Parameter σP for robust prior of Bayesian diffusion

diff epsP 0.01 Parameter εP for robust prior of Bayesian diffusion

opt fn WTA, DP, SA, GC Optimization function

opt smoothness 1.0 Weight of smoothness term (λ)

opt grad thresh 8.0 Threshold for magnitude of intensity gradient

opt grad penalty 2.0 Smoothness penalty factor if gradient is too small

opt occlusion cost 20 Cost for occluded pixels in DP algorithm

opt sa var Gibbs, Metropolis Simulated annealing update rule

opt sa start T 10.0 Starting temperature

opt sa end T 0.01 Ending temperature

opt sa schedule Linear Annealing schedule

refine subpix true Fit sub-pixel value to local correlation

eval bad thresh 1.0 Acceptable disparity error

eval textureless width 3 Box filter width applied to ‖∇x I‖2

eval textureless thresh 4.0 Threshold applied to filtered ‖∇x I‖2

eval disp gap 2.0 Disparity jump threshold

eval discont width 9 Width of discontinuity region

eval ignore border 10 Number of border pixels to ignore

eval partial shuffle 0.2 Analysis interval for prediction error

is not physically plausible (the sub-pixel shift must be
consistent across channels), but is easier to implement.

4.2. Aggregation

The aggregation section of our test bed implements
some commonly used aggregation methods (aggr−fn):

• Box filter: use a separable moving average filter (add
one right/bottom value, subtract one left/top). This
implementation trick makes such window-based ag-
gregation insensitive to window size in terms of com-
putation time and accounts for the fast performance
seen in real-time matchers (Kanade et al., 1996;
Kimura et al., 1999).
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• Binomial filter: use a separable FIR (finite impulse
response) filter. We use the coefficients 1/16{1, 4,
6, 4, 1}, the same ones used in Burt and Adelson’s
Laplacian pyramid (Burt and Adelson, 1983).

Other convolution kernels could also be added later,
as could recursive (bi-directional) IIR filtering, which
is a very efficient way to obtain large window sizes
(Deriche, 1990). The width of the box or convolution
kernel is controlled by aggr window size.

To simulate the effect of shiftable windows (Arnold,
1983; Bobick and Intille, 1999; Tao et al., 2001), we
can follow this aggregation step with a separable square
min-filter. The width of this filter is controlled by the
parameter aggr minfilter. The cascaded effect of a box-
filter and an equal-sized min-filter is the same as evalu-
ating a complete set of shifted windows, since the value
of a shifted window is the same as that of a centered
window at some neighboring pixel (Fig. 3). This step
adds very little additional computation, since a moving
1-D min-filter can be computed efficiently by only re-
computing the min when a minimum value leaves the
window. The value of aggr minfilter can be less than
that of aggr window size, which simulates the effect of
a partially shifted window. (The converse doesn’t make
much sense, since the window then no longer includes
the reference pixel.)

We have also implemented all of the diffusion meth-
ods developed in Scharstein and Szeliski (1998) except
for local stopping, i.e., regular diffusion, the membrane
model, and Bayesian (mean-field) diffusion. While this
last algorithm can also be considered an optimiza-
tion method, we include it in the aggregation mod-
ule since it resembles other iterative aggregation algo-
rithms closely. The maximum number of aggregation
iterations is controlled by aggr iter. Other parameters

Figure 3. Shiftable window. The effect of trying all 3 × 3 shifted
windows around the black pixel is the same as taking the minimum
matching score across all centered (non-shifted) windows in the same
neighborhood. (Only 3 of the neighboring shifted windows are shown
here for clarity.)

controlling the diffusion algorithms are listed in
Table 2.

4.3. Optimization

Once we have computed the (optionally aggregated)
costs, we need to determine which discrete set of dis-
parities best represents the scene surface. The algorithm
used to determine this is controlled by opt fn, and can
be one of:

• winner-take-all (WTA);
• dynamic programming (DP);
• scanline optimization (SO);
• simulated annealing (SA);
• graph cut (GC).

The winner-take-all method simply picks the lowest
(aggregated) matching cost as the selected disparity
at each pixel. The other methods require (in addition
to the matching cost) the definition of a smoothness
cost. Prior to invoking one of the optimization algo-
rithms, we set up tables containing the values of ρd in
Eq. (6) and precompute the spatially varying weights
ρI (x , y). These tables are controlled by the parame-
ters opt smoothness, which controls the overall scale
of the smoothness term (i.e., λ in Eq. (3)), and the pa-
rameters opt grad thresh and opt grad penalty, which
control the gradient-dependent smoothness costs. We
currently use the smoothness terms defined by Veksler
(1999):

ρI (�I ) =
{

p if �I < opt grad thresh

1 if �I ≥ opt grad thresh,
(7)

where p = opt grad penalty. Thus, the smoothness
cost is multiplied by p for low intensity gradients to
encourage disparity jumps to coincide with intensity
edges. All of the optimization algorithms minimize the
same objective function, enabling a more meaningful
comparison of their performance.

Our first global optimization technique, DP, is a dy-
namic programming method similar to the one pro-
posed by Bobick and Intille (1999). The algorithm
works by computing the minimum-cost path through
each x, d slice in the DSI (see Fig. 2). Every point in
this slice can be in one of three states: M (match), L
(left-visible only), or R (right-visible only). Assuming
the ordering constraint is being enforced, a valid path
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can take at most three directions at a point, each associ-
ated with a deterministic state change. Using dynamic
programming, the minimum cost of all paths to a point
can be accumulated efficiently. Points in state M are
simply charged the matching cost at this point in the
DSI. Points in states L and R are charged a fixed occlu-
sion cost (opt occlusion cost). Before evaluating the
final disparity map, we fill all occluded pixels with the
nearest background disparity value on the same scan-
line.

The DP stereo algorithm is fairly sensitive to this
parameter (see Section 6). Bobick and Intille address
this problem by precomputing ground control points
(GCPs) that are then used to constrain the paths through
the DSI slice. GCPs are high-confidence matches that
are computed using SAD and shiftable windows. At
this point we are not using GCPs in our implementation
since we are interested in comparing the basic version
of different algorithms. However, GCPs are potentially
useful in other algorithms as well, and we plan to add
them to our implementation in the future.

Our second global optimization technique, scanline
optimization (SO), is a simple (and, to our knowledge,
novel) approach designed to assess different smooth-
ness terms. Like the previous method, it operates on
individual x, d DSI slices and optimizes one scanline
at a time. However, the method is asymmetric and does
not utilize visibility or ordering constraints. Instead, a
d value is assigned at each point x such that the over-
all cost along the scanline is minimized. (Note that
without a smoothness term, this would be equivalent to
a winner-take-all optimization.) The global minimum
can again be computed using dynamic programming;
however, unlike in traditional (symmetric) DP algo-
rithms, the ordering constraint does not need to be en-
forced, and no occlusion cost parameter is necessary.
Thus, the SO algorithm solves the same optimization
problem as the graph-cut algorithm described below,
except that vertical smoothness terms are ignored.

Both DP and SO algorithms suffer from the well-
known difficulty of enforcing inter-scanline consis-
tency, resulting in horizontal “streaks” in the computed
disparity map. Bobick and Intille’s approach to this
problem is to detect edges in the DSI slice and to lower
the occlusion cost for paths along those edges. This has
the effect of aligning depth discontinuities with inten-
sity edges. In our implementation, we achieve the same
goal by using an intensity-dependent smoothness cost
(Eq. (6)), which, in our DP algorithm, is charged at all
L-M and R-M state transitions.

Our implementation of simulated annealing supports
both the Metropolis variant (where downhill steps are
always taken, and uphill steps are sometimes taken),
and the Gibbs Sampler, which chooses among several
possible states according to the full marginal distri-
bution (Geman and Geman, 1984). In the latter case,
we can either select one new state (disparity) to flip
to at random, or evaluate all possible disparities at a
given pixel. Our current annealing schedule is linear,
although we plan to add a logarithmic annealing sched-
ule in the future.

Our final global optimization method, GC, imple-
ments the α-β swap move algorithm described in
Boykov et al. (2001) and Veksler (1999). (We plan to
implement the α-expansion in the future.) We random-
ize the α-β pairings at each (inner) iteration and stop
the algorithm when no further (local) energy improve-
ments are possible.

4.4. Refinement

The sub-pixel refinement of disparities is controlled
by the boolean variable refine subpix. When this is
enabled, the three aggregated matching cost values
around the winning disparity are examined to com-
pute the sub-pixel disparity estimate. (Note that if
the initial DSI was formed with fractional disparity
steps, these are really sub-sub-pixel values. A more
appropriate name might be floating point disparity
values.) A parabola is fit to these three values (the
three ending values are used if the winning dispar-
ity is either disp min or disp max). If the curvature
is positive and the minimum of the parabola is within
a half-step of the winning disparity (and within the
search limits), this value is used as the final disparity
estimate.

In future work, we would like to investigate whether
initial or aggregated matching scores should be used, or
whether some other approach, such as Lucas-Kanade,
might yield higher-quality estimates (Tian and Huhns,
1986).

5. Evaluation Methodology

In this section, we describe the quality metrics we
use for evaluating the performance of stereo corre-
spondence algorithms and the techniques we used
for acquiring our image data sets and ground truth
estimates.
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5.1. Quality Metrics

To evaluate the performance of a stereo algorithm or
the effects of varying some of its parameters, we need
a quantitative way to estimate the quality of the com-
puted correspondences. Two general approaches to this
are to compute error statistics with respect to some
ground truth data (Barron et al., 1994) and to evaluate
the synthetic images obtained by warping the refer-
ence or unseen images by the computed disparity map
(Szeliski, 1999).

In the current version of our software, we compute
the following two quality measures based on known
ground truth data:

1. RMS (root-mean-squared) error (measured in dis-
parity units) between the computed disparity map
dC (x , y) and the ground truth map dT (x , y), i.e.,

R =
(

1

N

∑
(x,y)

|dC(x, y) − dT (x, y)|2
) 1

2

, (8)

where N is the total number of pixels.
2. Percentage of bad matching pixels,

B = 1

N

∑
(x,y)

(|dC(x, y) − dT (x, y)| > δd), (9)

where δd (eval bad thresh) is a disparity error tol-
erance. For the experiments in this paper we use
δd = 1.0, since this coincides with some previously
published studies (Szeliski and Zabih, 1999; Zitnick
and Kanade, 2000; Kolmogorov and Zabih, 2001).

In addition to computing these statistics over the
whole image, we also focus on three different kinds of
regions. These regions are computed by pre-processing
the reference image and ground truth disparity map
to yield the following three binary segmentations
(Fig. 4):

• textureless regionsT : regions where the squared hor-
izontal intensity gradient averaged over a square win-
dow of a given size (eval textureless width) is below
a given threshold (eval textureless thresh);

• occluded regions O: regions that are occluded in the
matching image, i.e., where the forward-mapped dis-
parity lands at a location with a larger (nearer) dis-
parity; and

• depth discontinuity regions D: pixels whose neigh-
boring disparities differ by more than eval disp gap,
dilated by a window of width eval discont width.

These regions were selected to support the analysis
of matching results in typical problem areas. For the
experiments in this paper we use the values listed in
Table 2.

The statistics described above are computed for each
of the three regions and their complements, e.g.,

BT = 1

NT

∑
(x,y)∈T

(|dc(x, y) − dt (x, y)| < δd),

and so on for RT , BT̄ , . . . , RD̄.
Table 3 gives a complete list of the statistics we

collect. Note that for the textureless, textured, and
depth discontinuity statistics, we exclude pixels that
are in occluded regions, on the assumption that algo-
rithms generally do not produce meaningful results in
such occluded regions. Also, we exclude a border of
eval ignore border pixels when computing all statis-
tics, since many algorithms do not compute meaningful
disparities near the image boundaries.

The second major approach to gauging the quality
of reconstruction algorithms is to use the color images
and disparity maps to predict the appearance of other
views (Szeliski, 1999). Here again there are two major
flavors possible:

1. Forward warp the reference image by the computed
disparity map to a different (potentially unseen)
view (Fig. 5), and compare it against this new image
to obtain a forward prediction error.

2. Inverse warp a new view by the computed disparity
map to generate a stabilized image (Fig. 6), and
compare it against the reference image to obtain an
inverse prediction error.

There are pros and cons to either approach.
The forward warping algorithm has to deal with tear-

ing problems: if a single-pixel splat is used, gaps can
arise even between adjacent pixels with similar dispar-
ities. One possible solution would be to use a two-pass
renderer (Shade et al., 1998). Instead, we render each
pair of neighboring pixel as an interpolated color line in
the destination image (i.e., we use Gouraud shading).
If neighboring pixels differ by more that a disparity of
eval disp gap, the segment is replaced by single pixel
spats at both ends, which results in a visible tear (light
grey regions in Fig. 5).
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Figure 4. Segmented region maps: (a) original image, (b) true disparities, (c) textureless regions (white) and occluded regions (black),
(d) depth discontinuity regions (white) and occluded regions (black).

For inverse warping, the problem of gaps does not
occur. Instead, we get “ghosted” regions when pixels
in the reference image are not actually visible in the
source. We eliminate such pixels by checking for visi-
bility (occlusions) first, and then drawing these pixels
in a special color (light grey in Fig. 6). We have found
that looking at the inverse-warped sequence, based on
the ground-truth disparities, is a very good way to de-
termine if the original sequence is properly calibrated
and rectified.

In computing the prediction error, we need to decide
how to treat gaps. Currently, we ignore pixels flagged
as gaps in computing the statistics and report the per-
centage of such missing pixels. We can also option-
ally compensate for small misregistrations (Szeliski,
1999). To do this, we convert each pixel in the origi-
nal and predicted image to an interval, by blending the
pixel’s value with some fraction eval partial shuffle of
its neighboring pixels’ min and max values. This idea
is a generalization of the sampling-insensitive dissim-

ilarity measure of Birchfield and Tomasi (1998a) and
the shuffle transformation of Kutulakos (2000). The re-
ported difference is then the (signed) distance between
the two computed intervals. We plan to investigate these
and other sampling-insensitive matching costs in the
future (Szeliski and Scharstein, 2002).

5.2. Test Data

To quantitatively evaluate our correspondence algo-
rithms, we require data sets that either have a ground
truth disparity map, or a set of additional views that can
be used for prediction error test (or preferably both).

We have begun to collect such a database of im-
ages, building upon the methodology introduced in
Szeliski and Zabih (1999). Each image sequence con-
sists of 9 images, taken at regular intervals with a cam-
era mounted on a horizontal translation stage, with
the camera pointing perpendicularly to the direction
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Table 3. Error (quality) statistics computed by our eval-
uator. See the notes in the text regarding the treatment of
occluded regions.

Name Symb. Description

rms error all R RMS disparity error

rms error nonocc RŌ ” (no occlusions)

rms error occ RO ” (at occlusions)

rms error textured RT ” (textured)

rms error textureless RT̄ ” (textureless)

rms error discont RD ” (near discontinuities)

bad pixels all B Bad pixel percentage

bad pixels nonocc BŌ ” (no occlusions)

bad pixels occ BO ” (at occlusions)

bad pixels textured BT ” (textured)

bad pixels textureless BT̄ ” (textureless)

bad pixels discont BD ” (near discontinuities)

predict err near P View extr. error (near)

predict err middle P1/2 View extr. error (mid)

predict err match P1 View extr. error (match)

predict err far P+ View extr. error (far)

of motion. We use a digital high-resolution camera
(Canon G1) set in manual exposure and focus mode
and rectify the images using tracked feature points. We
then downsample the original 2048 × 1536 images to
512 × 384 using a high-quality 8-tap filter and finally
crop the images to normalize the motion of background
objects to a few pixels per frame.

Figure 5. Series of forward-warped reference images. The reference image is the middle one, the matching image is the second from the right.
Pixels that are invisible (gaps) are shown in light grey.

Figure 6. Series of inverse-warped original images. The reference image is the middle one, the matching image is the second from the right.
Pixels that are invisible are shown in light grey. Viewing this sequence (available on our web site) as an animation loop is a good way to check
for correct rectification, other misalignments, and quantization effects.

All of the sequences we have captured are made up
of piecewise planar objects (typically posters or paint-
ings, some with cut-out edges). Before downsampling
the images, we hand-label each image into its piece-
wise planar components (Fig. 7). We then use a direct
alignment technique on each planar region (Baker et al.,
1998) to estimate the affine motion of each patch. The
horizontal component of these motions is then used to
compute the ground truth disparity. In future work we
plan to extend our acquisition methodology to handle
scenes with quadric surfaces (e.g., cylinders, cones, and
spheres).

Of the six image sequences we acquired, all of which
are available on our web page, we have selected two
(“Sawtooth” and “Venus”) for the experimental study
in this paper. We also use the University of Tsukuba
“head and lamp” data set (Nakamura et al., 1996), a
5 × 5 array of images together with hand-labeled in-
teger ground-truth disparities for the center image. Fi-
nally, we use the monochromatic “Map” data set first
introduced by Szeliski and Zabih (1999), which was
taken with a Point Grey Research trinocular stereo
camera, and whose ground-truth disparity map was
computed using the piecewise planar technique de-
scribed above. Figure 7 shows the reference image
and the ground-truth disparities for each of these four
sequences. We exclude a border of 18 pixels in the
Tsukuba images, since no ground-truth disparity val-
ues are provided there. For all other images, we use
eval ignore border = 10 for the experiments reported
in this paper.
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Figure 7. Stereo images with ground truth used in this study. The Sawtooth and Venus images are two of our new 9-frame stereo sequences
of planar objects. The figure shows the reference image, the planar region labeling, and the ground-truth disparities. We also use the familiar
Tsukuba “head and lamp” data set, and the monochromatic Map image pair.
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In the future, we hope to add further data sets to our
collection of “standard” test images, in particular other
sequences from the University of Tsukuba, and the
GRASP Laboratory’s “Buffalo Bill” data set with reg-
istered laser range finder ground truth (Mulligan et al.,
2001). There may also be suitable images among the
CMU Computer Vision Home Page data sets. Unfortu-
nately, we cannot use data sets for which only a sparse
set of feature matches has been computed (Bolles et al.,
1993; Hsieh et al., 1992).

It should be noted that high-quality ground-truth data
is critical for a meaningful performance evaluation. Ac-
curate sub-pixel disparities are hard to come by, how-
ever. The ground-truth data for the Tsukuba images, for
example, is strongly quantized since it only provides
integer disparity estimates for a very small disparity
range (d = 5, . . . , 14). This is clearly visible when the
images are stabilized using the ground-truth data and
viewed in a video loop. In contrast, the ground-truth
disparities for our piecewise planar scenes have high
(subpixel) precision, but at the cost of limited scene
complexity. To provide an adequate challenge for the
best-performing stereo methods, new stereo test im-
ages with complex scenes and sub-pixel ground truth
will soon be needed.

Synthetic images have been used extensively for
qualitative evaluations of stereo methods, but they are
often restricted to simple geometries and textures (e.g.,
random-dot stereograms). Furthermore, issues arising
with real cameras are seldom modeled, e.g., aliasing,
slight misalignment, noise, lens aberrations, and fluc-
tuations in gain and bias. Consequently, results on
synthetic images usually do not extrapolate to images
taken with real cameras. We have experimented with
the University of Bonn’s synthetic “Corridor” data set
(Frohlinghaus and Buhmann, 1996), but have found
that the clean, noise-free images are unrealistically
easy to solve, while the noise-contaminated versions
are too difficult due to the complete lack of texture in
much of the scene. There is a clear need for synthetic,
photo-realistic test imagery that properly models real-
world imperfections, while providing accurate ground
truth.

6. Experiments and Results

In this section, we describe the experiments used to
evaluate the individual building blocks of stereo algo-
rithms. Using our implementation framework, we ex-
amine the four main algorithm components identified

in Section 3 (matching cost, aggregation, optimiza-
tion, and sub-pixel fitting). In Section 7, we perform
an overall comparison of a large set of stereo algo-
rithms, including other authors’ implementations. We
use the Tsukuba, Sawtooth, Venus, and Map data sets in
all experiments and report results on subsets of these
images. The complete set of results (all experiments
run on all data sets) is available on our web site at
www.middlebury.edu/stereo.

Using the evaluation measures presented in Sec-
tion 5.1, we focus on common problem areas for stereo
algorithms. Of the 12 ground-truth statistics we collect
(Table 3), we have chosen three as the most important
subset. First, as a measure of overall performance, we
use BŌ, the percentage of bad pixels in non-occluded
areas. We exclude the occluded regions for now since
few of the algorithms in this study explicitly model
occlusions, and most perform quite poorly in these re-
gions. As algorithms get better at matching occluded
regions (Kolmogorov and Zabih, 2001), however, we
will likely focus more on the total matching error B.

The other two important measures are BT̄ and
BD, the percentage of bad pixels in textureless ar-
eas and in areas near depth discontinuities. These
measures provide important information about the
performance of algorithms in two critical problem
areas. The parameter names for these three mea-
sures are bad pixels nonocc, bad pixels textureless,
and bad pixels discont, and they appear in most of the
plots below. We prefer the percentage of bad pixels
over RMS disparity errors since this gives a better in-
dication of the overall performance of an algorithm.
For example, an algorithm is performing reasonably
well if BŌ < 10%. The RMS error figure, on the other
hand, is contaminated by the (potentially large) dis-
parity errors in those poorly matched 10% of the im-
age. RMS errors become important once the percent-
age of bad pixels drops to a few percent and the
quality of a sub-pixel fit needs to be evaluated (see
Section 6.4).

Note that the algorithms always take exactly two
images as input, even when more are available. For
example, with our 9-frame sequences, we use the third
and seventh frame as input pair. (The other frames are
used to measure the prediction error.)

6.1. Matching Cost

We start by comparing different matching costs, in-
cluding absolute differences (AD), squared differences
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(SD), truncated versions of both, and Birchfield and
Tomasi’s (Birchfield and Tomasi, 1998a) sampling-
insensitive dissimilarity measure (BT).

An interesting issue when trying to assess a single
algorithm component is how to fix the parameters that
control the other components. We usually choose good
values based on experiments that assess the other algo-
rithm components. (The inherent boot-strapping prob-
lem disappears after a few rounds of experiments.)
Since the best settings for many parameters vary de-
pending on the input image pair, we often have to com-
promise and select a value that works reasonably well
for several images.

Figure 8. Experiment 1. Performance of different matching costs aggregated with a 9×9 window as a function of truncation values match max
for three different image pairs. Intermediate truncation values (5–20) yield the best results. Birchfield-Tomasi (BT) helps when truncation values
are low.

Experiment 1: In this experiment we compare the
matching costs AD, SD, AD + BT, and SD + BT using
a local algorithm. We aggregate with a 9 × 9 window,
followed by winner-take-all optimization (i.e., we use
the standard SAD and SSD algorithms). We do not
compute sub-pixel estimates. Truncation values used
are 1, 2, 5, 10, 20, 50, and ∞ (no truncation); these
values are squared when truncating SD.

Results: Figure 8 shows plots of the three evalua-
tion measures BŌ, BT̄ , and BD for each of the four
matching costs as a function of truncation values, for
the Tsukuba, Sawtooth, and Venus images. Overall,
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there is little difference between AD and SD. Trunca-
tion matters mostly for points near discontinuities. The
reason is that for windows containing mixed popula-
tions (both foreground and background points), trun-
cating the matching cost limits the influence of wrong
matches. Good truncation values range from 5 to 50,
typically around 20. Once the truncation values drop
below the noise level (e.g., 2 and 1), the errors be-
come very large. Using Birchfield-Tomasi (BT) helps
for these small truncation values, but yields little im-
provement for good truncation values. The results are
consistent across all data sets; however, the best trun-
cation value varies. We have also tried a window size
of 21, with similar results.

Figure 9. Experiment 2. Performance of different matching costs aggregated with a 9 × 9 shiftable window (min-filter) as a function of
truncation values match max for three different image pairs. Large truncation values (no truncation) work best when using shiftable windows.

Conclusion: Truncation can help for AD and SD, but
the best truncation value depends on the images’ signal-
to-noise-ratio (SNR), since truncation should happen
right above the noise level present (see also the discus-
sion in Scharstein and Szeliski (1998)).

Experiment 2: This experiment is identical to the pre-
vious one, except that we also use a 9 × 9 min-filter (in
effect, we aggregate with shiftable windows).

Results: Figure 9 shows the plots for this experiment,
again for Tsukuba, Sawtooth, and Venus images. As be-
fore, there are negligible differences between AD and
SD. Now, however, the non-truncated versions perform
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consistently the best. In particular, for points near dis-
continuities we get the lowest errors overall, but also
the total errors are comparable to the best settings of
truncation in Experiment 1. BT helps bring down larger
errors, but as before, does not significantly decrease the
best (non-truncated) errors. We again also tried a win-
dow size of 21 with similar results.

Conclusion: The problem of selecting the best trun-
cation value can be avoided by instead using a shiftable
window (min-filter). This is an interesting result, as
both robust matching costs (truncated functions) and
shiftable windows have been proposed to deal with out-
liers in windows that straddle object boundaries. The
above experiments suggest that avoiding outliers by
shifting the window is preferable to limiting their in-
fluence using truncated cost functions.

Experiment 3: We now assess how matching costs
affect global algorithms, using dynamic programming
(DP), scanline optimization (SO), and graph cuts (GC)
as optimization techniques. A problem with global
techniques that minimize a weighted sum of data and
smoothness terms (Eq. (3)) is that the range of match-
ing cost values affects the optimal value for λ, i.e., the
relative weight of the smoothness term. For example,
squared differences require much higher values for λ

than absolute differences. Similarly, truncated differ-
ence functions result in lower matching costs and re-
quire lower values for λ. Thus, in trying to isolate the
effect of the matching costs, we are faced with the prob-
lem of how to choose λ. The cleanest solution to this
dilemma would perhaps be to find a (different) optimal
λ independently for each matching cost under consid-
eration, and then to report which matching cost gives
the overall best results. The optimal λ, however, would
not only differ across matching costs, but also across
different images. Since in a practical matcher we need
to choose a constant λ, we have done the same in this
experiment. We use λ = 20 (guided by the results dis-
cussed in Section 6.3 below) and restrict the match-
ing costs to absolute differences (AD), truncated by
varying amounts. For the DP algorithm we use a fixed
occlusion cost of 20.

Results: Figure 10 shows plots of the bad pixel per-
centages BŌ, BT̄ , and BD as a function of truncation
values for Tsukuba, Sawtooth, and Venus images. Each
plot has six curves, corresponding to DP, DP + BT,
SO, SO + BT, GC, GC + BT. It can be seen that the

truncation value affects the performance. As with the
local algorithms, if the truncation value is too small (in
the noise range), the errors get very large. Intermediate
truncation values of 50–5, depending on algorithm and
image pair, however, can sometimes improve the per-
formance. The effect of Birchfield-Tomasi is mixed; as
with the local algorithms in Experiments 1 and 2, it
limits the errors if the truncation values are too small.
It can be seen that BT is most beneficial for the SO al-
gorithm, however, this is due to the fact that SO really
requires a higher value of λ to work well (see Experi-
ment 5), in which case the positive effect of BT is less
pronounced.

Conclusion: Using robust (truncated) matching costs
can slightly improve the performance of global algo-
rithms. The best truncation value, however, varies with
each image pair. Setting this parameter automatically
based on an estimate of the image SNR may be pos-
sible and is a topic for further research. Birchfield
and Tomasi’s matching measure can improve results
slightly. Intuitively, truncation should not be neces-
sary for global algorithms that operate on unaggregated
matching costs, since the problem of outliers in a win-
dow does not exist. An important problem for global
algorithms, however, is to find the correct balance be-
tween data and smoothness terms (see Experiment 5
below). Truncation can be useful in this context since
it limits the range of possible cost values.

6.2. Aggregation

We now turn to comparing different aggregation meth-
ods used by local methods. While global methods typi-
cally operate on raw (unaggregated) costs, aggregation
can be useful for those methods as well, for example to
provide starting values for iterative algorithms, or a set
of high-confidence matches or ground control points
(GCPs) (Bobick and Intille, 1999) used to restrict the
search of dynamic-programming methods.

In this section we examine aggregation with square
windows, shiftable windows (min-filter), binomial
filters, regular diffusion, and membrane diffusion
(Scharstein and Szeliski, 1998). Results for Bayesian
diffusion, which combines aggregation and optimiza-
tion, can be found in Section 7.

Experiment 4: In this experiment we use (non-
truncated) absolute differences as matching cost
and perform a winner-take-all optimization after the
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Figure 10. Experiment 3. Performance of different matching costs for global algorithms as a function of truncation values match max for three
different image pairs. Intermediate truncation values (∼20) can sometimes improve the performance.

aggregation step (no subpixel estimation). We compare
the following aggregation methods:

1. square windows with window sizes 3, 5, 7, . . . , 29;
2. shiftable square windows (min-filter) with window

sizes 3, 5, 7, . . . , 29;
3. iterated binomial (1-4-6-4-1) filter, for 2, 4, 6, . . . ,

28 iterations;
4. regular diffusion (Scharstein and Szeliski, 1998) for

10, 20, 30, . . . , 150 iterations;
5. membrane diffusion (Scharstein and Szeliski, 1998)

for 150 iterations and β = 0.9, 0.8, 0.7, . . . , 0.0.

Note that for each method we are varying the parame-
ter that controls the spatical extent of the aggregation

(i.e., the equivalent of window size). In particular, for
the binomial filter and regular diffusion, this amounts
to changing the number of iterations. The membrane
model, however, converges after sufficiently many it-
erations, and the spatial extent of the aggregation is
controlled by the parameter β, the weight of the orig-
inal cost values in the diffusion equation (Scharstein
and Szeliski, 1998).

Results: Figure 11 shows plots of BŌ, BT̄ , and BD as
a function of spatial extent of aggregation for Tsukuba,
Sawtooth, and Venus images. Each plot has five curves.
corresponding to the five aggregation methods listed
above. The most striking feature of these curves is the
opposite trends of errors in textureless areas (BT̄ ) and
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Figure 11. Experiment 4. Performance of different aggregation methods as a function of spatial extent (window size, number of iterations, and
diffusion β). Larger window extents do worse near discontinuities, but better in textureless areas, which tend to dominate the overall statistics.
Near discontinuities, shiftable windows have the best performance.

at points near discontinuities (BD). Not surprisingly,
more aggregation (larger window sizes or higher num-
ber of iterations) clearly helps to recover textureless
areas (note especially the Venus images, which contain
large untextured regions). At the same time, too much
aggregation causes errors near object boundaries (depth
discontinuities). The overall error in non-occluded re-
gions, BŌ, exhibits a mixture of both trends. Depending
on the image, the best performance is usually achieved
at an intermediate amount of aggregation. Among the
five aggregation methods, shiftable windows clearly
perform best, most notably in discontinuity regions,

but also overall. The other four methods (square win-
dows, binomial filter, regular diffusion, and membrane
model) perform very similarly, except for differences in
the shape of the curves, which are due to our (somewhat
arbitrary) definition of spatial extent for each method.
Note however that even for shiftable windows, the opti-
mal window size for recovering discontinuities is small,
while much larger windows are necessary in untextured
regions.

Discussion: This experiment exposes some of the
fundamental limitations of local methods. While large
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windows are needed to avoid wrong matches in regions
with little texture, window-based stereo methods per-
form poorly near object boundaries (i.e., depth discon-
tinuities). The reason is that such methods implicitly
assume that all points within a window have similar
disparities. If a window straddles a depth boundary,
some points in the window match at the foreground
disparity, while others match at the background dis-
parity. The (aggregated) cost function at a point near
a depth discontinuity is thus bimodal in the d direc-
tion, and stronger of the two modes will be selected
as the winning disparity. Which one of the two modes
will win? This depends on the amount of (horizontal)
texture present in the two regions.

Consider first a purely horizontal depth disconti-
nuity (top edge of the foreground square in Fig. 12).
Whichever of the two regions has more horizontal tex-
ture will create a stronger mode, and the computed
disparities will thus “bleed” into the less-textured re-
gion. For non-horizontal depth boundaries, however,
the most prominent horizontal texture is usually the
object boundary itself, since different objects typically
have different colors and intensities. Since the ob-
ject boundary is at the foreground disparity, a strong
preference for the foreground disparity at points near
the boundary is created, even if the background is
textured. This is the explanation for the well-known

Figure 12. Illustration of the “foreground fattening” effect, using the Map image pair and a 21 × 21 SAD algorithm, with and without a
min-filter. The error maps encode the signed disparity error, using gray for 0, light for positive errors, and dark for negative errors. Note that
without the min-filter (middle column) the foreground region grows across the vertical depth discontinuity towards the right. With the min-filter
(right column), the object boundaries are recovered fairly well.

“foreground fattening” effect exhibited by window-
based algorithms. This can be seen at the right edge of
the foreground in Fig. 12; the left edge is an occluded
area, which can’t be recovered in any case.

Adaptive window methods have been developed to
combat this problem. The simplest variant, shiftable
windows (min-filters) can be effective, as is shown in
the above experiment. Shiftable windows can recover
object boundaries quite accurately if both foreground
and background regions are textured, and as long as the
window fits as a whole within the foreground object.
The size of the min-filter should be chosen to match
the window size. As is the case with all local methods,
however, shiftable windows fail in textureless areas.

Conclusion: Local algorithms that aggregate support
can perform well, especially in textured (even slanted)
regions. Shiftable windows perform best, in particular
near depth discontinuities. Large amounts of aggrega-
tion are necessary in textureless regions.

6.3. Optimization

In this section we compare the four global optimization
techniques we implemented: dynamic programming
(DP), scanline optimization (SO), graph cuts (GC), and
simulated annealing (SA).
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Experiment 5: In this experiment we investigate the
role of opt smoothness, the smoothness weight λ in
Eq. (3). We compare the performance of DP, SO, GC,
and SA for λ = 5, 10, 20, 50, 100, 200, 500, and
1000. We use unaggregated absolute differences as the
matching cost (squared differences would require much
higher values for λ), and no sub-pixel estimation. The
number of iterations for simulated annealing (SA) is
500.

Results: Figure 13 shows plots of BŌ, BT̄ , and BD
as a function of λ for Tsukuba, Venus, and Map im-
ages. (To show more varied results, we use the Map im-
ages instead of Sawtooth in this experiment.) Since DP
has an extra parameter, the occlusion cost, we include

Figure 13. Experiment 5. Performance of global optimization techniques as a function of the smoothness weight λ (opt smoothness) for Map,
Tsukuba, and Venus images. Note that each image pair requires a different value of λ for optimal performance.

three runs, for opt occlusion cost = 20, 50, and 80. Us-
ing as before BŌ (bad pixels nonocc) as our measure
of overall performance, it can be seen that the graph-
cut method (GC) consistently performs best, while the
other three (DP, SO, and SA) perform slightly worse,
with no clear ranking among them. GC also performs
best in textureless areas and near discontinuities. The
best performance for each algorithm, however, requires
different values for λ depending on the image pair. For
example, the Map images, which are well textured and
only contain two planar regions, require high values
(around 500), while the Tsukuba images, which con-
tain many objects at different depths, require smaller
values (20–200, also depending on the algorithm). The
occlusion cost parameter for the DP algorithm, while
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not changing the performance dramatically, also affects
the optimal value forλ. Although GC is the clear winner
here, it is also the slowest algorithm: DP and SO, which
operate on each scanline independently, typically run
in less than 2 seconds, while GC and SA require 10–
30 minutes.

Conclusion: The graph-cut method consistently out-
performs the other optimization methods, although at
the cost of much higher running times. GC is clearly su-
perior to simulated annealing, which is consistent with
other published results (Boykov et al., 2001; Szeliski
and Zabih, 1999). When comparing GC and scanline
methods (DP and SO), however, it should be noted
that the latter solve a different (easier) optimization
problem, since vertical smoothness terms are ignored.
While this enables the use of highly efficient dynamic
programming techniques, it negatively affects the per-
formance, as exhibited in the characteristic “streaking”
in the disparity maps (see Figs. 17 and 18 below).
Several authors have proposed methods for increasing
inter-scanline consistency in dynamic-programming
approaches, e.g., (Belhumeur, 1996; Cox et al., 1996;
Birchfield and Tomasi, 1998b). We plan to investigate
this area in future work.

Experiment 6: We now focus on the graph-cut op-
timization method to see whether the results can be

Figure 14. Experiment 6. Performance of the graph-cut optimization technique with different gradient-dependent smoothness penalties
(p1, p2, p4) and with and without Birchfield-Tomasi (BT).

improved. We try both Birchfield-Tomasi matching
costs and a smoothness cost that depends on the in-
tensity gradients.

Results: Figure 14 shows the usual set of perfor-
mance measures BŌ, BT̄ , and BD for four different
experiments for Tsukuba, Sawtooth, Venus, and Map
images. We use a smoothness weight of λ = 20, ex-
cept for the Map images, where λ = 50. The matching
cost are (non-truncated) absolute differences. The pa-
rameters for the gradient-dependent smoothness costs
are opt grad thresh = 8 (same in all experiments), and
opt grad penalty = 1, 2, or 4 (denoted p1, p2, and p4
in the plots). Recall that the smoothness cost is mul-
tiplied by opt grad penalty if the intensity gradient is
below opt grad thresh to encourage disparity jumps
to coincide with intensity edges. Each plot in Fig. 14
shows 4 runs: p1, p1 + BT, p2 + BT, and p4 + BT. In
the first run, the penalty is 1, i.e., the gradient depen-
dency is turned off. This gives the same results as in
Experiment 5. In the second run, we add Birchfield-
Tomasi, still without a penalty. We then add a penalty
of 2 and 4 in the last two runs. It can be seen that the
low-gradient penalty clearly helps recovering the dis-
continuities, and also in the other regions. Which of
the two penalties works better depends on the image
pair. Birchfield-Tomasi also yields a slight improve-
ment. We have also tried other values for the threshold,
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with mixed results. In future work we plan to replace
the simple gradient threshold with an edge detector,
which should improve edge localization. The issue of
selecting the right penalty factor is closely related to se-
lecting the right value for λ, since it affects the overall
relationship between the data term and the smoothness
term. This also deserves more investigation.

Conclusion: Both Birchfield-Tomasi’s matching cost
and the gradient-based smoothness cost improve the
performance of the graph-cut algorithm. Choosing the
right parameters (threshold and penalty) remains diffi-
cult and image-specific.

We have performed these experiments for scanline-
based optimization methods (DP and SO) as well, with
similar results. Gradient-based penalties usually in-
crease performance, in particular for the SO method.
Birchfield-Tomasi always seems to increase overall
performance, but it sometimes decreases performance
in textureless areas. As before, the algorithms are
highly sensitive to the weight of the smoothness term
λ and the penalty factor.

6.4. Sub-Pixel Estimation

Experiment 7: To evaluate the performance of the
sub-pixel refinement stage, and also to evaluate the in-
fluence of the matching criteria and disparity sampling,
we cropped a small planar region from one of our im-
age sequences (Fig. 15(a), second column of images).
The image itself is a page of newsprint mounted on
cardboard, with high-frequency text and a few low-
frequency white and dark regions. (These textureless
regions were excluded from the statistics we gath-
ered.) The disparities in this region are in the order
of 0.8–3.8 pixels and are slanted both vertically and
horizontally.

Results: We first run a simple 9 × 9 SSD window
(Fig. 15(b)). One can clearly see the discrete dispar-
ity levels computed. The disparity error map (second
column of images) shows the staircase error, and the
histogram of disparities (third column) also shows the
discretization. If we apply the sub-pixel parabolic fit
to refine the disparities, the disparity map becomes
smoother (note the drop in RMS error in Fig. 15(c)), but
still shows some soft staircasing, which is visible in the
disparity error map and histogram as well. These results
agree with those reported by Shimizu and Okutomi
(2001).

In Fig. 15(d), we investigate whether using
the Birchfield-Tomasi sampling-invariant measure
(Birchfield and Tomasi, 1998a) improves or degrades
this behavior. For integral sampling, their idea does
help slightly, as can be seen by the reduced RMS value
and the smoother histogram in Fig. 15(d). In all other in-
stances, it leads to poorer performance (see Fig. 16(a),
where the sampling-invariant results are the even data
points).

In Fig. 15(e), we investigate whether lightly blurring
the input images with a (1/4, 1/2, 1/4) kernel helps sub-
pixel refinement, because the first order Taylor series
expansion of the imaging function becomes more valid.
Blurring does indeed slightly reduce the staircasing ef-
fect (compare Fig. 15(e) to Fig. 15(c)), but the overall
(RMS) performance degrades, probably because of loss
of high-frequency detail.

We also tried 1/2 and 1/4 pixel disparity sampling at
the initial matching stages, with and without later sub-
pixel refinement. Sub-pixel refinement always helps to
reduce the RMS disparity error, although it has negli-
gible effect on the inverse prediction error (Fig. 16(b)).
From these prediction error plots, and also from vi-
sual inspection of the inverse warped (stabilized) im-
age sequence, it appears that using sub-pixel refinement
after any original matching scheme is sufficient to re-
duce the prediction error (and the appearance of “jit-
ter” or “shearing”) to negligible levels. This is despite
the fact that the theoretical justification for sub-pixel
refinement is based on a quadratic fit to an adequately
sampled quadratic energy function. At the moment, for
global methods, we rely on the per-pixel costs that go
into the optimization to do the sub-pixel disparity es-
timation. Alternative approaches, such as using local
plane fits (Baker et al., 1998; Birchfield and Tomasi,
1999; Tao et al., 2001) could also be used to get sub-
pixel precision.

Conclusion: To eliminate “staircasing” in the com-
puted disparity map and to also eliminate the appear-
ance of “shearing” in reprojected sequences, it is nec-
essary to initially evaluate the matches at a fractional
disparity (1/2 pixel steps appear to be adequate). This
should be followed by finding the minima of local
quadratic fits applied to the computed matching costs.

7. Overall Comparison

We close our experimental investigation with an overall
comparison of 20 different stereo methods, including
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Figure 15. RMS disparity errors for cropped image sequence (planar region of newspaper). The reference image is shown in row (a) in
the “disp. error” column. The columns indicate the disparity step, the sub-pixel refinement option, Birchfield-Tomasi’s sampling-insensitive
matching option, the optional initial blur, and the RMS disparity error from ground truth. The first image column shows the computed disparity
map, the second shows the signed disparity error, and the last column shows a histogram of computed disparities.

5 algorithms implemented by us and 15 algorithms im-
plemented by their authors, who have kindly sent us
their results. We evaluate all algorithms using our fa-
miliar set of Tsukuba, Sawtooth, Venus, and Map im-
ages. All algorithms are run with constant parameters
over all four images. Most algorithms do not compute
sub-pixel estimates in this comparison.

Among the algorithms in our implementation frame-
work, we have selected the following five:

(1) SSD–21 × 21 shiftable window SSD,

(2) DP–dynamic programming,
(3) SO–scanline optimization,
(4) GC–graph-cut optimization, and
(5) Bay–Bayesian diffusion.

We chose shiftable-window SSD as best-performing
representative of all local (aggregation-based) algo-
rithms. We are not including simulated annealing here,
since GC solves the same optimization problem better
and more efficiently. For each of the five algorithms,
we have chosen fixed parameters that yield reasonably
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Figure 16. Plots of RMS disparity error and inverse prediction errors as a function of disp step and match interval. The even data points
are with sampling–insensitive matching match interval turned on. The second set of plots in each figure is with preproc blur enabled (1 blur
iteration).

good performance over a variety of input images (see
Table 4).

We compare the results of our implementation with
results provided by the authors of the following algo-
rithms:

(6) Max-flow/min-cut algorithm, Roy and Cox
(1998) and Roy (1999) (one of the first methods
to formulate matching as a graph flow problem);

(7) Pixel-to-pixel stereo, Birchfield and Tomasi
(1998b) (scanline algorithm using gradient-
modulated costs, followed by vertical disparity
propagation into unreliable areas);

(8) Multiway cut, Birchfield and Tomasi (1999) (al-
ternate segmentation and finding affine parame-
ters for each segment using graph cuts);

Table 4. Parameters for the five algorithms implemented by us.

SSD DP SO GC Bay

Matching cost
match fn SD AD AD AD AD
Truncation no no no no no
Birchfield/Tomasi no yes yes yes no

Aggregation
aggr window size 21 — — — —
aggr minfilter 21 — — — —
aggr iter 1 — — — 1000
diff mu — — — — 0.5
diff sigmaP — — — — 0.4
diff epsP — — — — 0.01
diff scale cost — — — — 0.01

Optimization
opt fn WTA DP SO GC Bayesian
opt smoothness (λ) — 20 50 20 —
opt occlusion cost — 20 — — —
opt grad thresh — 8 8 8 —
opt grad penalty — 4 2 2 —

(9) Cooperative algorithm, Zitnick and Kanade
(2000) (a new variant of Marr and Poggio’s al-
gorithm (Marr and Poggio, 1976));

(10) Graph cuts, Boykov et al. (2001) (same as our GC
method, but a much faster implementation);

(11) Graph cuts with occlusions, Kolmogorov and
Zabih (2001) (an extension of the graph-cut
framework that explicitly models occlusions);

(12) Compact windows, Veksler (2001) (an adaptive
window technique allowing non-rectangular win-
dows);

(13) Genetic algorithm, Gong and Yang (2002)
(a global optimization technique operating on
quadtrees);

(14) Realtime method, Hirschmüller (2002) (9 × 9
SAD with shiftable windows, followed by con-
sistency checking and interpolation of uncertain
areas);

(15) Stochastic diffusion, Lee et al. (2002) (a variant
of Bayesian diffusion (Scharstein and Szeliski,
1998));

(16) Fast correlation algorithm, Mühlmann et al.
(2002) (an efficient implementation of cor-
relation-based matching with consistency and
uniqueness validation);

(17) Discontinuity-preserving regularization, Shao
(2002) (a multi-view technique for virtual view
generation);

(18) Maximum-surface technique, Sun (2002) (a fast
stereo algorithm using rectangular subregions);

(19) Belief propagation, Sun et al. (2002) (a MRF for-
mulation using Bayesian belief propagation);

(20) Layered stereo, Lin and Tomasi (in prepara-
tion) (a preliminary version of an extension of
the multiway-cut method (Birchfield and Tomasi,
1999)).
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Some of these algorithms do not compute disparity
estimates everywhere, in particular those that explicitly
model occlusions (3 and 11), but also (16) which leaves
low-confidence regions unmatched. In these cases we
fill unmatched areas as described for the DP method in
Section 4.3.

Table 5 summarizes the results for all algo-
rithms. As in the previous section, we report BŌ
(bad pixels nonocc) as a measure of overall perfor-
mance, as well as BT̄ (bad pixels textureless), and BD
(bad pixels discont). We do not report BT̄ for the Map
images since the images are textured almost every-
where. The algorithms are listed roughly in order of
overall performance.

The disparity maps for Tsukuba and Venus images
are shown in Figs. 17 and 18. The full set of dispar-
ity maps, as well as signed and binary error maps
are available on our web site at www.middlebury.
edu/stereo.

Table 5. Comparative performance of stereo algorithms, using the three performance measures BŌ (bad pixels nonocc), BT̄
(bad pixels textureless), and BD (bad pixels discont). All algorithms are run with constant parameter settings across all images. The small
numbers indicate the rank of each algorithm in each column. The algorithms are listed roughly in decreasing order of overall performance,
and the minimum (best) value in each column is shown in bold. Algorithms implemented by us are marked with a star.

Tsukuba Sawtooth Venus Map

BŌ BT̄ BD BŌ BT̄ BD BŌ BT̄ BD BŌ BD

20 Layered 1.58 3 1.06 4 8.82 3 0.34 1 0.00 1 3.35 1 1.52 3 2.96 10 2.62 2 0.37 6 5.24 6

*4 Graph cuts 1.94 5 1.09 5 9.49 5 1.30 6 0.06 3 6.34 6 1.79 7 2.61 8 6.91 4 0.31 4 3.88 4

19 Belief prop. 1.15 1 0.42 1 6.31 1 0.98 5 0.30 5 4.83 5 1.00 2 0.76 2 9.13 6 0.84 10 5.27 7

11 GC + occl. 1.27 2 0.43 2 6.90 2 0.36 2 0.00 1 3.65 2 2.79 12 5.39 13 2.54 1 1.79 13 10.08 12

10 Graph cuts 1.86 4 1.00 3 9.35 4 0.42 3 0.14 4 3.76 3 1.69 6 2.30 6 5.40 3 2.39 16 9.35 10

8 Multiw. cut 8.08 17 6.53 14 25.33 18 0.61 4 0.46 8 4.60 4 0.53 1 0.31 1 8.06 5 0.26 3 3.27 3

12 Compact win. 3.36 8 3.54 8 12.91 9 1.61 9 0.45 7 7.87 7 1.67 5 2.18 4 13.24 9 0.33 5 3.94 5

14 Realtime 4.25 12 4.47 12 15.05 13 1.32 7 0.35 6 9.21 8 1.53 4 1.80 3 12.33 7 0.81 9 11.35 15

*5 Bay. diff. 6.49 16 11.62 19 12.29 7 1.45 8 0.72 9 9.29 9 4.00 14 7.21 16 18.39 13 0.20 1 2.49 2

9 Cooperative 3.49 9 3.65 9 14.77 11 2.03 10 2.29 14 13.41 13 2.57 11 3.52 11 26.38 17 0.22 2 2.37 1

*1 SSD + MF 5.23 15 3.80 10 24.66 17 2.21 11 0.72 10 13.97 15 3.74 13 6.82 15 12.94 8 0.66 8 9.35 10

15 Stoch. diff. 3.95 10 4.08 11 15.49 15 2.45 14 0.90 11 10.58 10 2.45 9 2.41 7 21.84 15 1.31 12 7.79 9

13 Genetic 2.96 6 2.66 7 14.97 12 2.21 12 2.76 16 13.96 14 2.49 10 2.89 9 23.04 16 1.04 11 10.91 14

7 Pix-to-pix 5.12 14 7.06 17 14.62 10 2.31 13 1.79 12 14.93 17 6.30 17 11.37 18 14.57 10 0.50 7 6.83 8

6 Max flow 2.98 7 2.00 6 15.10 14 3.47 15 3.00 17 14.19 16 2.16 8 2.24 5 21.73 14 3.13 17 15.98 18

*3 Scanl. opt. 5.08 13 6.78 15 11.94 6 4.06 16 2.64 15 11.90 11 9.44 19 14.59 19 18.20 12 1.84 14 10.22 13

*2 Dyn. prog. 4.12 11 4.63 13 12.34 8 4.84 19 3.71 19 13.26 12 10.10 20 15.01 20 17.12 11 3.33 18 14.04 17

17 Shao 9.67 18 7.04 16 35.63 19 4.25 17 3.19 18 30.14 20 6.01 16 6.70 14 43.91 20 2.36 15 33.01 20

16 Fast Correl. 9.76 19 13.85 20 24.39 16 4.76 18 1.87 13 22.49 18 6.48 18 10.36 17 31.29 18 8.42 20 12.68 16

18 Max surf. 11.10 20 10.70 18 41.99 20 5.51 20 5.56 20 27.39 19 4.36 15 4.78 12 41.13 19 4.17 19 27.88 19

Looking at these results, we can draw several conclu-
sions about the overall performance of the algorithms.
First, global optimization methods based on 2-D MRFs
generally perform the best in all regions of the image
(overall, textureless, and discontinuities). Most of these
techniques are based on graph-cut optimization (4, 8,
10, 11, 20), but belief propagation (19) also does well.
Approaches that explicitly model planar surfaces (8,
20) are especially good with piecewise planar scenes
such as Sawtooth and Venus.

Next, cooperative and diffusion-based methods
(5, 9, 15) do reasonably well, but often get the bound-
aries wrong, especially on the more complex Tsukuba
images. On the highly textured and relatively simple
Map sequence, however, they can outperform some
of the full optimization approaches. The Map se-
quence is also noisier than the others, which works
against algorithms that are sensitive to internal pa-
rameter settings. (In these experiments, we asked
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Figure 17. Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BŌ). Algorithms
implemented by us are marked with a star.

everyone to use a single set of parameters for all four
datasets.)

Lastly, local (1, 12, 14, 16) and scanline methods (2,
3, 7) perform less well, although (14) which performs
additional consistency checks and clean-up steps does
reasonably well, as does the compact window approach
(12), which uses a sophisticated adaptive window. Sim-
pler local approaches such as SSD + MF (1) generally
do poorly in textureless areas (if the window size is

small) or near discontinuities (if the window is large).
The disparity maps created by the scanline-based algo-
rithms (DP and SO) are promising and show a lot of
detail, but the larger quantitative errors are clearly a re-
sult of the “streaking” due to the lack of inter-scanline
consistency.

To demonstrate the importance of parameter set-
tings, Table 6 compares the overall results (BŌ) of al-
gorithms 1–5 for the fixed parameters listed in Table 4
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Figure 18. Comparative results on the Venus images. The results are shown in decreasing order of overall performance (BŌ). Algorithms
implemented by us are marked with a star.

with the “best” results when parameters are allowed to
vary for each image. Note that we did not perform a
true optimization over all parameters values, but rather
simply chose the overall best results among the en-
tire set of experiments we performed. It can be seen
that for some of the algorithms the performance can be

improved substantially with different parameters. The
global optimization algorithms are particularly sensi-
tive to the parameter λ, and DP is also sensitive to the
occlusion cost parameter. This is consistent with our
observations in Section 6.3. Note that the Map image
pair can virtually be “solved” using GC, Bay, or SSD,
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Table 6. Overall performance BŌ (bad pixels nonocc) for algo-
rithms 1–5, both using fixed parameters across all images, and best
parameters for each image. Note that for some algorithms signif-
icant performance gains are possible if parameters are allowed to
vary for each image.

Tsukuba Sawtooth Venus Map

fixed best fixed best fixed best fixed best

1 SSD 5.23 5.23 2.21 1.55 3.74 2.92 0.66 0.22

2 DP 4.12 3.82 4.84 3.70 10.10 9.13 3.33 1.21

3 SO 5.08 4.66 4.06 3.47 9.44 8.31 1.84 1.04

4 GC 1.94 1.94 1.30 0.98 1.79 1.48 0.31 0.09

5 Bay 6.49 6.49 1.45 1.45 4.00 4.00 0.20 0.20

since the images depict a simple geometry and are well
textured. More challenging data sets with many occlu-
sions and textureless regions may be useful in future
extensions of this study.

Finally, we take a brief look at the efficiency of
different methods. Table 7 lists the image sizes and
number of disparity levels for each image pair, and
the running times for 9 selected algorithms. Not
surprisingly, the speed-optimized methods (14 and
16) are fastest, followed by local and scanline-based
methods (1 − SSD, 2 − DP, 3 − SO). Our implemen-
tations of Graph cuts (4) and Bayesian diffusion (5)
are several orders of magnitude slower. The authors’
implementations of the graph cut methods (10 and
11), however, are much faster than our implemen-
tation. This is due to the new max-flow code by
Boykov and Kolmorogov (2002), which is available at

Table 7. Running times of selected algorithms on the four image
pairs.

Tsukuba Sawtooth Venus Map

Width 384 434 434 284

Height 288 380 383 216

Disparity levels 16 20 20 30

Time (seconds):

14–Realtime 0.1 0.2 0.2 0.1

16–Efficient 0.2 0.3 0.3 0.2

∗1–SSD + MF 1.1 1.5 1.7 0.8

∗2–DP 1.0 1.8 1.9 0.8

∗3–SO 1.1 2.2 2.3 1.3

10–GC 23.6 48.3 51.3 22.3

11–GC + occlusions 69.8 154.4 239.9 64.0

∗4–GC 662.0 735.0 829.0 480.0

∗5–Bay 1055.0 2049.0 2047.0 1236.0

www.cs.cornell.edu/People/vnk/software.
html.

In summary, if efficiency is an issue, a simple
shiftable-window method is a good choice. In partic-
ular, method 14 by Hirschmüller (2002) is among the
fastest and produces very good results. New imple-
mentations of graph-cut methods give excellent results
and have acceptable running times. Further research is
needed to fully exploit the potential of scanline meth-
ods without sacrificing their efficiency.

8. Conclusion

In this paper, we have proposed a taxonomy for dense
two-frame stereo correspondence algorithms. We use
this taxonomy to highlight the most important features
of existing stereo algorithms and to study important
algorithmic components in isolation. We have imple-
mented a suite of stereo matching algorithm compo-
nents and constructed a test harness that can be used to
combine these, to vary the algorithm parameters in a
controlled way, and to test the performance of these al-
gorithm on interesting data sets. We have also produced
some new calibrated multi-view stereo data sets with
hand-labeled ground truth. We have performed an ex-
tensive experimental investigation in order to assess the
impact of the different algorithmic components. The
experiments reported here have demonstrated the lim-
itations of local methods, and have assessed the value
of different global techniques and their sensitivity to
key parameters.

We hope that publishing this study along with our
sample code and data sets on the Web will encourage
other stereo researchers to run their algorithms on our
data and to report their comparative results. Since pub-
lishing the initial version of this paper as a technical
report (Scharstein and Szeliski, 2001), we have already
received experimental results (disparity maps) from 15
different research groups, and we hope to obtain more
in the future. We are planning to maintain the on-line
version of Table 5 that lists the overall results of the cur-
rently best-performing algorithms on our web site. We
also hope that some researchers will take the time to add
their algorithms to our framework for others to use and
to build upon. In the long term, we hope that our efforts
will lead to some set of data and testing methodology
becoming an accepted standard in the stereo correspon-
dence community, so that new algorithms will have to
pass a “litmus test” to demonstrate that they improve
on the state of the art.
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There are many other open research questions we
would like to address. How important is it to devise the
right cost function (e.g., with better gradient-dependent
smoothness terms) in global optimization algorithms
vs. how important is it to find a global minimum?
What are the best (sampling-invariant) matching met-
rics? What kind of adaptive/shiftable windows work
best? Is it possible to automatically adapt parameters
to different images? Also, is prediction error a useful
metric for gauging the quality of stereo algorithms? We
would also like to try other existing data sets and to pro-
duce some labeled data sets that are not all piecewise
planar.

Once this study has been completed, we plan to move
on to study multi-frame stereo matching with arbitrary
camera geometry. There are many technical solutions
possible to this problem, including voxel representa-
tions, layered representations, and multi-view repre-
sentations. This more general version of the correspon-
dence problem should also prove to be more useful for
image-based rendering applications.

Developing the taxonomy and implementing the al-
gorithmic framework described in this paper has given
us a much deeper understanding of what does and
does not work well in stereo matching. We hope that
other researchers will also take the time to carefully
analyze the behavior of their own algorithms using
the framework and methodology developed in this pa-
per, and that this will lead to a deeper understand-
ing of the complex behavior of stereo correspondence
algorithms.
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