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Abstract

Primal (propositional) logic PL is the {A, —} fragment of intuitionistic
logic, and primal (propositional) infon logic PIL is a conservative extension
of PL with the quotation construct psaid. Logic PIL was introduced by
Gurevich and Neeman in 2009 in connection with the DKAL project. The
derivation problem for PIL (and therefore for PL) is solvable in linear time,
and yet PIL allows one to express many common access control scenarios.
The most obvious limitations on the expressivity of logics PL and PIL are
the failures of the transitivity rules
-y Yy —z pref x — vy pref y — 2

T =z pref z — 2
respectively where pref ranges over quotation prefixes p said ¢ said .. ..
Here we investigate the extension T of PL with an axiom z — = and the
inference rule (transo) as well as the extension qT of PIL with an axiom
pref z — z and the inference rule (trans).

(transp) (trans)

e [Subformula property] T has the subformula property: if I' - y then
there is a derivation of y from I' comprising only subformulas of
I'U{y}. qT has a similar locality property.

e [Complexity] The derivation problems for T and qT are solvable in
quadratic time.

e [Soundness and completeness] We define Kripke models for qT (resp.
T) and show that the semantics is sound and complete.

e [Small models] T has the one-element-model property: if I' I/ y then

there is a one-element counterexample. Similarly small (though not
one-element) counterexamples exist for qT.

1 Introduction

With the advent of cloud computing, the need arises to manage policies auto-
matically. In a brick-and-mortar setting, clerks learn unwritten policies from
their peers; and if they don’t know a particular policy, they know whom to
ask. In the cloud, the are no clerks. The policies have to be handled auto-
matically. The most challenging aspect is how to handle the interaction of the
policies of different institutions, especially in federated scenarios where there is
no central authority. Distributed Knowledge Authorization Language (DKAL)
was created to deal with such problems [12] [B]. The DKAL project led to the
introduction of infon logic [10]; here infons are pieces of information.



Propositional infon logic is a conservative extension of the {A, —} fragment
of propositional intuitionistic logic with the quotation construct p said. (Actu-
ally there were two quotation constructs, p said and p implied in [I0] but the
latter construct was later removed [I1].) Unfortunately the derivability problem
for infon logic is PSPACE-complete. Since an efficient algorithm for this problem
is necessary for practical purposes, a fragment of this logic, called primal infon
logic PIL was proposed. This fragment is decidable in linear time when a bound
in the quotation depth is provided. This entailed a remarkable result: the reduct
of PIL to propositional intuitionistic logic, named primal intuitionistic logic PL,
is also decidable in linear time. PL is still quite expressive, although the cost
for such an efficient fragment was high (The deduction theorem, among other
properties of intuitionistic logic, were sacrificed). But this traced a new path
for research: how to increase the expressive power of PL without considerably
affecting its computational efficiency?

Yury Savateev [21] devised an extension PL* of PL by adding the following
rules:

=y y—z ‘ (r—=vy)— 2z

(trans) T— (str) T

Savateev pointed out the existence of a polynomial-time algorithm for decid-
ing PL™. The most obvious is a natural extension of the algorithm for PL [I0].
This yields an algorithm of time O(n?). Somewhat surprisingly, if we strengthen
PL by extending its Hilbert calculus with rules

Tl — T2 Tg — T3 ... Thp—1 — Tk
Tl — Tk

(trans*)

we obtain a logic which has the subformula property and is decidable in time
O(n?). We called this new logic transitive primal logic T. Of course, we did
not forget about primal infon logic and asked ourselves if these observations
could be extended to PIL. This was easily done, giving rise to a logic we called
transitive primal infon logic qT.

In the next two sections, we give some preliminaries and a formal definition
of qT. Section |4 shows first that PIL with rules (trans*) has the subformula
property, which is the cornerstone for the correctness of the algorithm that
decides qT; next, the algorithm is presented. Section[5]explores two possibilities
for the semantics of qT. Finally, section [] presents T, which is the reduct of
gT to its intuitionistic fragment and presents all the properties that it inherits
from qT.

2 Preliminaries

Symbols vy, v1, ... are infon variables. We presume an infinite list of principal
constants. There is also an infon constant T which represents an infon (a piece
of information) known to all principals. Infon formulas are built, as usual,



from infon variables and an T by means of conjunction, implication and unary
constructs q said ¢ where ¢ ranges over principal constants.
For q1,q2, - .., qx principal constants, we call the string

q1 said g2 said ...qx said

a quotation prefiz. We regard the empty string € as a quotation prefix as
well.

The multiple derivability problem M D(L) for a logic L, is the problem of
deciding which formulas from a given set A are provable from another given set
r.

3 Transitive primal infon logic

We present a Hilbert calculus for infon formulas. Here pref ranges over quota-
tion prefixes, whereas x, x1, 2, ..., T, and y, over infon formulas.

Hilbert calculus H'

Axioms
(T) prefT (x2x) pref (z — x)

Inference rules

pref x pref y (he) pref (zAy) pref (z Ay)

(M)

pref (x Ay) pref x pref y
£
(1) pref y () pref x pref (z — y)
pref (z — y) pref y
(trans) pref (z — y) pref (y — 2)

pref (z — z)

For any rule, the formulas over the line are premises and the formula under
the line is the conclusion.

We call transitive primal infon logic the logic qT obtained from the set of
infon formulas and the Hilbert calculus H'.

For a set of formulas I', a proof of y from I" in qT is a finite rooted tree such
that each node u is labeled with a formula F'(u). The root node is labeled with
y. Each leaf node is labeled with either an axiom of H* or a formula in I'. If node
F(vy) F(ve) ... F(vy,)

F(u)
is an instance of an inference rule in #T. The size of the proof is the size of this

u has as children nodes vy, va, ..., v,, then



tree. Also, we will write u : z in order to indicate that formula z is the label of
node u. Finally, we say formula y is provable from I' in qT if there is a proof of
y from I" in qT.

For the sake of readability, we will use the terms leaf and hypothesis inter-
changeably. We will also say, in the context of a proof P, that node u is the
conclusion of an instance of L if F'(u) is the conclusion of an instance of L in

P.

Definition 1. We define qT, as the fragment of qT obtained by removing all
the formulas which have occurrences of T or * — =z for any formula z and
removing all the axioms in H'. We will refer to the formulas of this fragment
as qT-formulas. A

Lemma 1. For any formula z there is an equivalent formula 2’ that is either T
or a qT-formula. Further, such z’ can be computed in linear time.

Proof. By induction on the complexity of z.

e If 2 is a variable or constant T, then 2’ = z.

o If 2 = 21 A 29, we have to consider the following subcases:
—If2] =T and 25, =T, then 2/ = T.
— If 2{ =T and 2 # T, then 2’ = 24.
— If 21 # T and 25, = T, then 2’ = 2].

If 2] # T and 25 # T, then 2/ = 2] A 5.

o If z = 21 — 2o, again, there are several subcases:

— If 2y = 2, then 2’ = T.

— If 25 =T, then 2/ = T.

— If 2{ =T and 2§ # T, then 2’ = zo.

— If 2] # T and 2 # T, then 2/ = 2] — 2}.

o If 2 = pref z, and 2/ = T, then 2’ = T; otherwise, 2’ = pref 2.

By induction, it can be checked that 2z’ and z are equivalent in qT and that
Z' is computable in linear time. O

Theorem 2. A formula z is provable from I' in qT iff either 2/ = T or 2’/ is
provable from IV \ {T} in qT,,.

Proof. (=) By induction on the proof of z from I" in qT. If z is an axiom, then
' = T and we are done. If z is a hypothesis, then = € I"; which implies 2’ € T".
Again, if 2’ = T, we are done; otherwise, 2’ € IV \ {T}. Now, suppose that x
is the conclusion of an instance of some inference rule L. All cases for L are
similar. We present only two of them:



e Case L = (Ai). In this case, z = pref (z1 Axzz). By induction hypothesis,
for i = 1,2, either (pref .Z'i)/ = T or (pref .Z'i)/ is provable from IV \ T
for each 4. If both 2} are T then o’ = T. If 24 = T but af # T,
then ¢/ = pref %, which is provable from IV \ {T}. When 24 = T but
xh # T the situation is similar. Finally, if both (pref ;)" are provable
from IV \ {T}, then 2’ = pref (2} A z}) and by rule (Ai), 2’ is provable
from TV.

e Case L = (—e). In this case, suppose that © = pref x5 and that the
premises for L are pref x; and pref (z1 — ). If 23 = zg, then
pref x1 = pref zo; but since pref x; is a premise, the induction hy-
pothesis yields the result for pref x,. Suppose, then, that z; # zo. If
xh = T, then (pref ) = T, and we are done. Otherwise, if 25 # T but
x1 = T, then, by induction hypothesis, (pref (z; — )" = pref ) is
provable from IV \ {T}; but pref z}, = 2/, so ' is provable from I'"\ {T}.
Finally, if both 2] and % are different from T, then, by induction hypoth-
esis, both (pref z;)" and (pref (z; — 3))" are provable from I\ {T};
but (pref (x; — 23))’ in this case is equal to pref (z} — ). It is clear
from here, by an application of rule (—e), that pref z/, is provable from
I.

(<) First, I’ and z are equivalent to IV and z’ respectively; second, the
proof of &’ from I in qT is also a proof in qT. From these two observations
we conclude that x is provable from I' in qT. O

Corollary 3. There is a linear time reduction from M D (T) to M D (Ty).

Proof. Consider the problem of deciding which formulas in A follow from I’
in qT. Compute the qT, equivalents IV and A’ of T" and A respectively. By
theorem [2| for each § € A, either 6’ = T, or ¢’ is provable from IV \ {T}
iff 0 is provable from I". Therefore, mark as provable those § € A such that
4’ = T. The problem is now to decide which qT,-formulas in A’ \ {T} follow
from IV \ {T} in qT,. O

4 A quadratic-time algorithm for transitive pri-
mal infon logic

4.1 An auxiliary Hilbert calculus for qT

Definition 2. (Local formulas) Let z be a qTy-formula. The qT,-formulas
local to z are defined by induction:

e zis a qTy-formula local to z.
e If pref (z Ay) is local to z, then pref x and pref y are local to z.

e If pref (z — y) is local to z, then pref x and pref y are local to z.



Formula z is local to a set of qT-formulas I if it is local to a formula in T'.
A

If we remove rule (trans) from H ', we obtain the Hilbert calculus of primal
infon logic. This calculus has the locality property: Any formula in A that is
provable from I' can be derived using only formulas local to I' U A. Building
on this property, Gurevich and Neeman presented an algorithm for M D(PIL)
(i.e. the multi-derivability problem for primal infon logic) which works in linear
time [10]. We will extend their algorihtm so it decides M D(qT) in quadratic
time. The first obstacle we face is that H ' does not have the locality property.
For example, any proof of x — w from {z — y,y — 2,2 — w} requires either
xr — z or y — w. This difficulty is removed by using the following alternative
but equivalent Hilbert calculus.

Hilbert calculus H*

Axioms
(T) prefT

Inference rules

pref x pref y (he) pref (z Ay) pref (x Ay)

(A1)

pref (z Ay) pref x pref y
f
(—1) _ prery (—e) pref x pref (z — y)
pref (x — y) pref y
(trans*) pref (v1 — 72) pref (z2 — x3) ... pref (zi_1 — xg)

pref (x1 — xy)

Of course, H* and HT are equivalent. On one hand, axiom (x2x) and rule
(trans) are obtained from (trans*) when k& = 1 and k = 3 respectively. On the
other hand, (trans*) is obtained by repeated application of rule (trans).

The objective of this subsection is to prove that H* does have the desired
locality property: if a formula y is provable from I', then y can be derived from
I" using only formulas local to T'U {y}. We start with some auxiliary definitions
and lemmas:

Definition 3. (Normal and minimal normal proof) A proof P in qT is normal
if none of the following subtrees appear in P:



pref (1 — z2) pref (z2 — xz3) ... pref (zp_1 — k)

- (trans¥)
pref 1 pref (z1 — zk)
(=) pref zy
ref x;
. (—i) p i .
pref (z1 — z2) ... pref (z;—1 — ;) ... pref (zp_1 — 1)
(trans™*)

pref (z1 — )

A

P is minimal normal if, in addition, there is no normal proof with smaller
size than the size of P.

Lemma 4. Any proof in qT, can be converted to a normal proof.

Proof. Tt suffices to realize that the subtrees above can be rewritten in the
following way:

pref z; pref (z1 — z2)

(—e) pref 2 pref (z2 — x3)
(—e)
pref 3
—e : -
(—e) (—e) pref zp_1 pref (zr_1 — k)
pref
(—re) pref z; pref (z; = xiy1)
pref z;41
(—e) pref zp_q pref (zp_1 — k)
(—e)
pref xj

(=) pref (z1 — )

O

Definition 4. (Relevant components) Let z be a qT,-formula. The relevant
components of z are defined by induction:

e 2 is a relevant component of z.

e If pref (z Ay) is a relevant component of z, then pref x and pref y are
relevant components of z.



e If pref (z — y) is a relevant component of z, then pref y is a relevant
components of z.

A

Lemma 5. Let P be a minimal normal proof in qT,, whose hypothesis are in
I'. If a node u is the conclusion of an instance of L, and F'(u) is a relevant
component of some premise there, then F(u) is local to T

Proof. We prove this equivalent version of the lemma. For any node w in P,
either

e F(u) is local to T or

e v is the conclusion of an instance of an inference rule L, in which F(u) is
not a relevant component of any premise of that instance.

Let jo,71,-.-,Jn be a maximal sequence of nodes satisfying the following
conditions:

1. jo = Uu.
2. For i < n, j;41 is a child of j;,.
3. For i < n, x is a relevant component of F(j;).

If j, is a hypothesis, then, by requirement (3), F'(u) is local to F(j,) and
we are done. Now, let us suppose that j, is the conclusion of an inference rule
L. By the maximality of the sequence, L cannot be (Ae) nor (—e). If L = (AQ),
then the part of P where L occurs must have the following form:

pref y pref 2
Jn :pref (yAz)

L

Note that F'(u) must be pref (y A z); otherwise, by requirement (3), F(u)
must be a relevant component of pref y or pref z and that would allow to
extend the sequence to one of the premises, which would contradict the max-
imality of the sequence. Note also that, since P is a minimal normal proof, n
must be 0; otherwise, we could shorten P as follows:

I pref y pref z : :
Jn 1 pref (yAz) I pref y pref 2
Jo :pref (y Az)

Jjo :pref (yAz)




Thus, either F(u) is local to I' U {y}, or F(u) is the conclusion of (Ai) and
F(u) is not local to any premise of that instance. The other cases for L are
similar. O

Theorem 6. Let P be a minimal normal proof of y from I' in qT, then every
qT,-formula in P is local to I" U {y}.

Proof. For each node u in P, we will prove that F(u) is local to 'U{y}. For the
root, this is clear. Now, suppose that for u’ we have that F'(u’) is local and let u
be a child of u/. There are several cases for L, the inference rule used to obtain
F(u'). If L is either (Al) or (—1), then F(u) is local as well, because F'(u) is local
to F(u'). The other cases, (Ae), (—e) and (trans*) require a careful inspection:

e Case L = (Ae). In this case, the part of P where u and u’ appear has the
following form:

u:pref (zAy)

(Ne)

u' : pref x

We are assuming, without loss of generality, that F(u’) = pref z; the
argument for F(u') = y is similar. If u is a hypothesis, then, clearly,
pref (z Ay)islocal toI'. Now, suppose u is the conclusion of an instance
of an inference rule L. For each case for L, we will prove that F(u) is
a relevant component of some premise of that instance; this will imply
pref (z Ay) is local to I by lemma [5} This is easily done for L = (Ae)
and L = (—e). Now, by the form of F'(u), L cannot be (trans) nor (—1i).
Finally, L cannot be (Ai) either, otherwise we could shorten P in the
following way:

(M)
(Ae)

pref x pref y

/! : N
u:pref (x Ay) = u' : pref x

u' : pref x

o Case L = (—e). This is a twofold case; u may be either the right or the
left premise. Both cases are similar, so we will treat the left case only.
The part of P where u and v’ appear has the following form:



u: pref x v:pref (x —y)

u' : pref y

Again, we will use lemma [f] to show F(v) is local to I

We will show that for any case of L', F/(v) is a relevant component of some
premise of L'. This is easy for L' = (Ae) and L' = (—e). The case of L’
= (A i) is not possible because of the form of F(v). L’ cannot be (—i);
otherwise, we could shorten P in the following way:

L

L pref y
u:pref (z —y) = :
u' : pref y u' : pref y

- L = (=i
pref x (=)

L = (—e)

Finally, if L' = (trans*), then P would have the following form:

pref @ — pref =1 pref (z1 — =) ... pref (zp — y)

[/ (trans*)
LY et @ w : pret (z — y)

(—e)
’
u’ : pref y

But this contradicts our assumption that P is normal. We have success-
fully all possible cases for L’; hence, pref (z — y), and consequently,
pref x are local to I'.

e Case L = (trans*). In this case, the part of P where u and u’ appear has
the following form:

o Pref (z1—x2) ... u:pref (x;—1 — x;) ... pref (zp_1 — 1)
(trans™*)

u : pref (x1 — xg)

10



If w is a hypothesis, then we are done; otherwise, u is the conclusion of
some inference rule L’. Note L’ cannot be (Ai). If L' = (—1i), then P
would have the following form:

pref xz;

X i .
pref (z1 — x2) ... (=9 w:pref (z,—1 — x;) ... pref (zi_1 — xk)

(trans*)
!’
u' : pref (z1 — y)

But, this contradicts our assumption that P is normal. Lastly, L’ cannot
be (trans*) either; otherwise P would have the form

pref (ym — ;)

pref (z;_1 — y1) I
(trans*)

pref (z1 — ) ... jo i pref (z;_1 — x;) ... pref (zp_q — xTp)
(trans*)

u’ :pref (zq — zp)

and it could be shortened in the following way:

pref (z1 — ) ... pref (z;_1 — y1) ... pref (ym — x;) ... pref (zp_1 — xp)
(trans*)

w’ :pref (zq — zE)

Note that this is the one and only case where we take advantage of the
greater generality of (trans*) comparative to (trans). To summarise, there
are only two possible cases for L': (Ae) and (—e). For these two, F(u) is
a relevant component of some premise of L', therefore F(u) is local to T’
by lemma ] This completes the analysis when L = (trans*).

All cases for L have been exhausted; therefore, we conclude that every
qT,-formula in a minimal normal proof of y from I is local to T' U {y}.

O

11



4.2 The algorithm

The algorithm for M D (qT,) is an extension of the algorithm presented in [10]
for the multi-derivability problem for primal infon logic. We explain how the
algorithm in [I0] works. First, mark all formulas in I and insert them in a
queue. Let z be the first formula in the queue. Mark and insert in the queue
all those formulas in S that can be proved with the aid of z. Then, remove x
from the queue, and repeat this with the next formula in the queue. When this
queue empties, all the formulas in S that are provable from I'" will have been
marked. Finally, output those formulas in A that were marked.

Theorem 7. There is a quadratic-time algorithm for M D (qT,).

Proof. The parse-tree and homonymy-originals stages are the same as in the
algorithm for M D(PIL). In the preprocessing stage, each node has a record
T(u) with five fields S, (A, left), (A, right), (—, left) and (—, right). We need a
new record N (u), which is the ordinal number (among the homonymy originals)
in the depth-first traversal of the parse tree. A possible way to initialize N is
the following. Set a counter ¢ = 1 and set all N(u) = —1. Traverse the parse
tree in the depth-first manner and let u be the current node. If N(H (u)) = —1,
then set N(H (u)) = ¢ and increase i by 1.

We introduce here the auxiliary relations Suc and Pred. For nodes u, v and
quotation prefix pref (possible empty), we say that

pref (u — v) is local to T'U @ and

v Su U <= u Predyres v <=
Cpret pref {pref (u — v) is pending or processed.

For example, suppose

Fru@ = {p said ¢ said ¢ — y,q said p said y — z,p said ¢ said y — w}.

Assume also that all of them are raw, except p said ¢ said z — y and
p said ¢ said y — z which are pending. Then,

€ Pr@dp said ¢ said Y and 2z Sucq said p said Y-

Note it is not true that x Pred saia ¥y, because ¢ said (z — y) is not local
to T' U @Q; neither is w Sucp said q saia ¥, because p said ¢ said (y — w) is not
pending nor processed yet.

After the preprocessing stage comes the processing stage. This stage consists
of processing all pending homonymy originals. For each pending u in T, we
instantiate all rules in which v may act as premise. For each rule different
from (trans*), the instantiation works exactly as described in the algorithm for
MD(PIL). The presence of (trans*) in H* demands an additional step in the
processing of each pending node:

12



e Step (trans*) This requires L(u) has the form pref (L(v') — L(v")) for
some nodes v' and v”. Let @ be the descendant of u such that L(@) =
L(v") = L(v"). For each node w’ reachable from v’ by Sucpres and each
node w” reachable from v" by Predpres, if pref (w' — w”) is raw, then
make it pending. We will explain how to implement this:

1. Let m be the number of homonymy originals and let R, [1..m] and
Rpreq [1..m] be two auxiliary arrays whose values are initially set to
0.

2. Make a breadth-first search through the connected component of v’
in the graph generated by the homonymy originals and the relation
Sucpres. For each visited node w, set Ry, [N(w)] = 1.

3. Do the same for v”, but in this case, the graph is that generated by
the relation Predyres.

4. Traverse T and for each wu, if
— L(u) = pref L(w') — L(w"),
— Roue [N(H(w'))] = Rpreq [N (H(w"))] = 1 and
— S(u) =1 (i.e. uis raw),
then set S(u) = 2.

The rest of the processing stage is identical to that for M D(PIL).

Proof of correctness Let  be a formula local to I' U @ and let u be the
homonymy original such that L(u) = z. It suffices to show that u becomes
pending iff x is provable from I" in qT. The (=)-part is obtained by a straight-
forward inspection of the algorithm. We prove the (<=)-part by induction on P,
a normal proof of minimal size of x from I'. If pref z is a hypothesis, then u will
become pending at the preprocessing phase; otherwise, x is the conclusion of an
instance of an inference rule L. Several cases arise for L. All cases are similar, so
we will explain only when L = (trans*). Let us pressume that @ = pref (x; —
xy) and that S = {pref (z; — z3),pref (x2 — z3),...,pref (xx_1 — xx)} are
the premises of L in P. For some i < k, formula pref (z; — ;1) will be the
last among S in the processing queue. Let us inspect what the algorithm will do
when it processes pref (z; — x;41). By this time, we must have the following;:

T; SUCpres Ti—1 SUCpres Ti—2 SUCpret - - . SUCpres T2 SUCpret T1,

and

Tiy1 Predpres Tito Predores Tigs3 Predyres ... Predyres Tp—1 Predyres oy
This implies that when the algorithm evaluates (trans*) as a potential rule

for instantiation, it will obtain that Rgyc [N(z1)] = Rpred [N (zx)] = 1. Thus, u
will become pending if it was raw.

13



Time complexity An inspection of the algorithm shows that the parse-
tree, homonymy-originals and preprocessing stages take linear time. It suffices
to prove, then, that the processing stage takes time O(n?).

In [10], it is proved that the processing stage takes linear time by showing
that the total number of steps in the evaluation of all the rules for all the nodes is
O(n). Since our algorithm for qT, consists of one additional step for each node
in the processing stage; it is enough to verify that, for a homonymy original, the
additional time due to Step (trans*) is O(n). To explain this, note that this
step consists of the following substeps:

1. Initialization of Rpreq [1..m] and Ry [1..m].
2. Two breadth-first searches.
3. Traversal and updating of 7'

Each breadth-first search takes linear time. To see this, recall that a breadth-
first search in a graph where the edges are implemented by adjacency lists takes
time O(n + e), where e is the number of edges; but in our case, e = O(n). Then
each substep takes linear time, thus Step (trans*) takes altogether O(n). We
conclude that this algorithm works in time O(n?). O

5 Semantics for qT

Semantics for primal infon logic PIL uses a version of Kripke semantics in which
connectives psaid are interpreted as modal operators. The replacement of the
classical deduction theorem with the weaker rule (—i) gives rise to requirement:

e If y holds in w, then x — y must hold as well.
Also, rule (—e) gives rise to requirement:
e If x holds, but y does not; then, x — y does not hold.

But, what should happen if neither x nor y holds, should + — y hold or
not? This turns out to be irrelevant; models that satisfy only the previous two
requirements form a complete semantics for PIL.

The presence of (trans) and (x2x) in qT imposes additional constraints on
the validity of x — y in a world:

e z — z holds for every world.
e if r — y and y — 2 hold in w, then x — z must hold as well.

The obvious solution is to insert these new conditions in the definition of
semantics for qT, but this makes difficult to construct Kripke models for PIL,
for one has to be careful to be complying with all the requirements above. It
is much simpler if we define validity of a formula x in a world w by induction
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on the complexity of x, so we only set validity for variables and let this unfold
to all the formulas. The question is how to define validity of z — y in terms
of x and y; more specifically, when = and y does not hold in w. This is not
trivial anymore since we have to assure that the requirements forced by (trans)
and (x2x) are met. We solve this by equipping each world w with a quasi-order
on the formulas <,,. Validity of x — y in a world w is defined as usual except
when = and y does not hold, in this case z — y holds if and only if z <, y. The
purpose of this section is to show that these models form a complete semantics
for qT.

Definition 5. Let P be the set of all principal constants. A Kripke frame is a

structure <VV, <, (Sq)qep> such that:
e The pair (W, <) is a non-empty partially ordered set, whose elements are
called worlds.

e For ¢ a principal constant, S, is a binary relation on W such that for
u,v,w € W, if u <v and v S; w, then u S, w.

A Kripke model for qT is a triple MM = (F,Q, V) such that the first com-
ponent § is a Kripke frame, the second component @ is a function assigning a
quasi-order on the formulas <, to each world w in §, and the last component
V assigns to each variable v a subset V (v) of worlds of § such that:

if we V(v) and w < w', then w’ € V(v).

Let w be a world of a Kripke model 9 = (§,Q,V). For a formula z we
define the notion w E z by induction on z:

] wkE v iff w e V(v), where v is a variable.
] wkET.
[K-A] wET Ay iff wEzandwkEy.
] wkEx—y iff for any w’ such that w < w’,
(z <y yand W' E x) or w' Fy.
[K-said] wFg¢saidz iff w'Fa for all w such that w S, w'.

Definition [K-—] seems complicated. The following table will clarify what
it means.

w Ex ‘ w Ey ‘ w' E z implies w’ F y ‘ (x <y yand w' E x) orw Fy
T T T T
T F F F
F T T T
F F T T R Y
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This explains that [K-—] is almost exactly as the intuitionistic definition of
w E  — y. The only change is when in a future world w’, we have w’ ¥ x and
w’ ¥ y; in this case, we require in addition that z =<, .

Lastly, we say that x holds in w if w F x and that x fails in w otherwise.
Also, we say that I holds in w if = holds in every world of 9 for all z € I". A

5.1 Soundness and completeness

Theorem 8. Let I' be a finite set of formulas. A formula y is provable from I'
in qT iff for any Kripke model, y holds in every world in which I" holds.

Proof. (=) Let 9 be a Kripke model and let w be a world such that w F T.
We prove that w F y by induction on the proof of y from I'. For the base case
it suffices to prove three things:

e If y € T, then y holds in w; but this is obvious.

e w FE pref T for any quotation prefix pref. Suppose first that pref =
psaid. It is easy to see that w E p said T is always true because w’' E T
for every world w’, in particular, for those, if any, such that wS,w’. There-
fore, w F p said T. The argument is easily extended for any quotation
prefix pref.

e w F pref (z — x) for any quotation prefix pref and any formula z. Again,
we will explain this for the case pref = p said (x — z), since the argu-
ment presented can be easily extended to any quotation prefix. Note that
w' E x — z is always true for any world w’, because for any w” > w’, the
reflexitivy of <, allows to us to assert that:

(z <y and w” ¥ x) or w” E x.

This implies w’ F x — x. In particular, this is true for all w’, if any, such
that w S, w’. Hence, w F p said (z — x).

This concludes the base case. Now, suppose that y was obtained from
r1,T2,...,T, by an instance of an inference rule L and that for each i, we
have w E z;. An inspection of all the cases for L will show that w F y as well.
Since all cases are similar, we will explain only two of them:

e Case L = (—e). In this case, n = 2 and 23 = 21 — y. Since w F 1 — y,
either w F y or w ¥ x1; but the latter cannot be, for w E ;. We conclude
that w E y.

e Case L = (trans). In this case, n =2, 1 = y; — y2, T2 = Y2 — y3 and
y = y; — y3. 1o prove that w F y; — y3, we have to prove that for any
w > w,

(y1 = y3 and w' ¥ y1) or w' F ys. (1)
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So, let w’ > w. Recall we are assuming that w = y; — 52 and w E y3 — ys,
which implies that

(y1 2w Y2 and w’ ¥ y1) or w’' F yo, and
(y2 =w y3 and w' ¥ ya) or w' F ys

If w’ ¥ y; for all 4 < 3, then we must have y; <. ¥2 =w y3. This implies
that

(y1 2w y3 and w' ¥ yy),

which implies expression . Now, suppose w’ F y; for some ¢ < 3. If
w’ E y3, then we immediately have expression . If w’ F yp, then, since
w E y; — y2, we must have w’ F ys, and since w F y3 — y3, we must have
w’ E y3, which implies again expression . In a similar way it is checked
that w’ F yo implies ().

(<) We prove the counterpositive: if y is not provable from I in qT, then
there is a Kripke model 91 in which, at some world, I" holds but y does not.
First, we describe the underlying Kripke frame of :

e The set of worlds W is the set of quotation prefixes pref such that there
is a formula of the form pref z local to I' U {y}.

e Relation < is the identity relation on W.

e For pref,pref’ € W, define:
pref S, pref’ iff pref’ = pref ¢ said .

Next, we define the quasi-order for each world and the valuation for each
variable:

e For pref € W, define
% Zpret ¥ iff ' pref (z —y) (ie. pref (z — y) is provable from I').
e For pref € W and v a variable, define
pref € V (v) iff I' - pref v (i.e. pref v is provable from I).

We will show that for any formula pref z local to T U{y}, we have pref F z
iff I' - pref . We do this by induction on the complexity of z:

e Case z is a variable. This follows from the defintion.
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e Case x = T. Clearly, for any pref € W, we have that pref £ T and
I'Fpref T.

e Case = x1 A 2a.

pref F 1 A xy < pref F x1 and pref F x5
ST'kxand ' 2o Induction hypothesis.
STz Axe Rules (Al) and (Ae).

e Case r = 21 — x3. By the definitions and the induction hypothesis, we
have:

pref Fx; — xo
& for all pref’ > pref [(xl =pret’ T2 and pref’ ¥ xl) or pref’ F xg]
& (x1 =pret T2 and pref ¥ xl) or pref F x5
< (T'k pref (x1 — x2) and T' ¥ pref 1) or I' b pref zs.

So, we have to prove that:

(Tt pref (x1 — x2) and ' ¥ pref x1) or ' pref z,
< T'F pref (z1 — x2).

The (=) part follows easily by rule (—i). For the (<) part, suppose
'k pref (z; — x2). On one hand, if T' - pref z;, then by (—e) we have
I' F pref z9. On the other hand, if I' ¥ pref z;, then we immediately
have the result.

e Case v = ¢ said z'.

pref F ¢ said 2/
& pref’' F o’ Vpref (pref S, pref’)
& pref ¢ said Fa’ pref S, pref’ iff pref’ = pref ¢gsaid
&' pref ¢ said o’ Induction hypothesis.

All cases have been exhausted; therefore, if pref x is local to I' U @, then
pref F x iff I' - pref x. Applying this result with €, the empty prefix, we have
that e E ', but € ¥ y, which was what we wanted.

O

Lastly, a remark on the size of the model 9t built in this proof. For a formula
x, we define its size |z| in the natural way:
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e For a variable v, we have |v| = 1.

e For x and y formulas, we have

[z Ayl =l + |yl +1,
|z = y| = [x] +[y| + 1, and
lg said x| =2+ |z].

For a set of formulas A, we define its size as the sum of all the sizes of its
elements.

A prefix pref is said to be local to a formula z if there exists a formula z
such that pref x is local to z. A prefix is local to a set of formulas A if it is
local to some formula z € A.

Lemma 9. For a formula z, the number of non-empty prefixes local to x is less
than |z| /2.

Proof. Let LP(z) be the number of non-empty prefixes local to . This lemma
is easily proved by induction on the complexity of z. For the case x = ¢q said 2/,
note that the non-empty local prefixes of x are ¢said plus all the prefixes of
the form ¢ said pref, where pref is non-empty and local to z’. Hence,

LP(gsaid2’) =1+ LP(2') <1+|2'|/2=(2+|2'|) /2
=|q said 2’| /2.

O

It turns out that the model 9 built above is relatively small. Its size (i.e. the
number of worlds of the underlying Kripke structure) is less than |T' U {y}| /2+1.
To see this, recall that the worlds of the underlying Kripke structure of 9t are
all prefixes local to I" U {y}. The previous lemma implies that the number of
non-empty prefixes local to a set of formulas A is less than |A| /2; so the number
of prefixes local to A is less than |A] /2 + 1. Hence, the size of 90 is less than
[T U{y}|/2+ 1. The 1/2 bound cannot be improved. Consider the formula

2z = p1 said pg said ...py said v,

where v is a variable. Its size is 2k + 1 and the number of non-empty local
prefixes is k. So you can get as close as possible to 1/ |z|.

6 Transitive primal logic

If we forget about quotations in qT, we obtain a fragment of propostitional
intuitionistic logic decidable in quadratic-time.

19



Hilbert calculus Hp"

Axiom
() T (x2x) z—x

Inference rules

) Tl (e EA !
. Y Ty
(=) = 7 (—e) 7
=y y—z
(trans) T

Consider the set of formulas built only from propositional variables, A, —
and the constant T. This set and calculus ’HPT gives rise to a logic which we
call transitive primal logic and denote by T.

Since quotations do not exist in T, the formulas local to z are exactly the
subformulas of z. The following theorem is a direct consequence of theorem [6]

Theorem 10. A minimal normal proof of y from I' in T is composed only of
subformulas of I' U {y}.

Further, we can modify the algorithm presented in [7] so it solves M D (T).

Theorem 11. There is a quadratic-time algorithm for the multiple derivability
problem for T.

The semantics for T is a simplification of that for qT.

Definition 6. A Kripke model for T is a structure (W, <, @, V) such that:

e The pair (W, <) is a non-empty partially ordered set, whose elements are
called worlds.

e Function @ assigns to each world in W a quasi-order <,, on the infon
formulas.

e V is a function assigning to each infon variable a set of worlds in W.

Let w be a world of a Kripke model 9t = (W, <,Q, V). For a formula = we
define the notion w F x by induction on z:
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[K-Var] wkFw iff w € V(v), where v is a variable.
[K-T] wkET.
[K-A] wkaAy iff wEzandwky.
K-—] wkzx—y iff forallw >w,
(x <y yand w' E ) or w' Ey.

We say that x holds in w if w E z and that = fails in w otherwise. Also, we
say that I holds in w if x holds in every world of 2 for all z € T. A

Theorem 12. (Soundness and completeness) Let I' be a set of formulas and y
be a formula. The following are equivalent:

1. y is provable from I'.
2. For any Kripke model, y holds in every world in which I" holds.

3. For any Kripke model with only one world w, if I' holds in w, then so does
Y.

Proof. (1) = (2) Let w be a world in a Kripke world such that I" holds in w.
We prove that y holds in w by induction on a proof of y from I'. For the axioms,
we have to prove that w F T and w F x — x. The first one is obvious, and the
second follows from the following observation:

for all w' > w : (z <y x and W' ¥ x) or w' E .

Now, suppose ¥ is the conclusion of an inference rule L. It is easily proven
that w E y by case analysis of L. We present the case of L = (trans) only.
Suppose that the premises are y; — yo and yo — y3, so y = y1 — y3. By
induction hypothesis, we have that w F y; — y2 and w F y3 — y3. We have to
show that w F y; — y3, that is, for all w’ > w

(1 = y3 and w' ¥ y1) or w' F ys. (2)

So, let w’ > w. If w’ ¥ y; for i < 3, then we must have y; <. yo =S Y3.
Therefore,

Y1 = y3 and w' ¥y,

which implies expression ([2). Now, suppose w’ £ y; for some i < 3. If w’ E y3,
then clearly (2) follows. Since w F ys — y3, we have that if w’ F yso, then,
w’ E y3, and follows. Analogously, since w E 4, — 3o, we have that w’ F y;
implies ([2)).

(2) = (3) Obvious.

(3) = (1) We prove the counterpositive, if y does not follow from I" in T,
then there exists a Kripke model with exactly one world w in which I" holds but
y does not. Consider a one-element Kripke model in which < is the identity
relation and =, is defined by the following:
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3,y iff TFa —y.

In a Kripke model with exactly one world, V takes only two values: ) or
{w}. For a variable v, we define V as follows

V(v):{{w}, ifI'Fo

0, otherwise

Now, we show that for any formula x, we have w F x iff ' - 2. This is done
by induction on the complexity of x.

e Case z is either T or a variable. This is obvious from the definitions.
e Case © = x1 A xo. This follows from rules (Ai) and (Ae) and [K-A].

e Case © = x1 — x3. Since < is the identity relation. We have to prove
' Tl — To iff

(1 2 22 and w ¥ x1) or w E xs. (3)

Suppose I' F £1 — 9, then x7 <, 2 by definition. If, in addition, I' E z;
then I' F z5. By induction hypothesis, this means that if w F x1, then
w FE xg; in other words, either w ¥ x1 or w ¥ x5. We conclude that if
'+ 2y — 3, then holds. The converse follows easily.

Finally, we check this is the desired model. Clearly, for any = € I"; we have
w F x; and since I' ¥ y, we have w ¥ y. O

7 Related Work

The unary connectives “psaid” of primal logic can be viewed as necessity oper-
ators. Thus primal logic and transitive primal logic are multimodal extensions
of the primal fragment propositional intuitionistic logic. We refer the reader to
[25] for a presentation of intuitionistic modal logic and to Chapter 1 of [9] for a
presentation of multimodal logics.

Recall that the derivability problem for a logic is the problem of deciding
whether a given formula is provable from a given set of formulas, and the validity
problem is the problem of deciding whether a given formula is valid. Clearly,
the second is a particular case of the first, and these two problems are the same
when the deduction theorem holds for the logic.

There seems to be very few known natural fragments of intuitionistic logic,
let alone its modal extensions, with polynomial-time decidable validity problem.
But first let us mention some loosely related tractability results on modal and
description logics. Halpern proved that the validity problem for K,,, T,, S4,
and K45,, KD45,,, S5, can be decided in linear time if the nesting of modal
operators and propositional variables is restricted [13]. See articles [14}, [I5] for
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the analysis of fragments of description logic ££ (and some of its extensions)
whose validity problem can be solved in polynomial time.

Now let us turn attention to fragments of propositional intuitionistic logic.
The best known fragment with decidable derivability problem is the Horn frag-
ment. In fact, the derivability problem for the Horn fragment is solvable in
linear time [7, 8, [17]. Mints [I8] found another fragment whose validity problem
is decided in polynomial time.

The derivability problem for the primal fragment is linear-time decidable
as well [I0]. Propositional primal infon logic is an extension of the primal
fragment of intuitionistic logic with quotation connectives. Originally there were
two series of quotation connectives, “psaid” and “pimplied” where p ranges
over an infinite list of principal constants; the associated derivability problem
is linear-time decidable in the case of bounded quotation depth [I0]. Later the
implied series was removed. The derivability problem for the redefined logic is
decidable in linear time (with no restriction on the quotation depth) [I1].

Finally, let us consider the NNIL fragment of propositional intuitionistic
logic [23]. Recall that negation in intuitionistic logic is defined by the following:
- = ¢ — L. Also, recall that the implicational complexity p () of a formula
i is defined as follows:

e p(T)=p(L)=p(v) =0, where v is a variable.
e p(p1Aw2) =p(p1 V) =max{p(p1),p(p2)}-

e p(p1 — p2) =max{p(p1) +1,p(p2)}.

NNIL comprises the formulas with implicational complexity < 1. We say that
an NNIL formula ¢ is without premise disjunctions if, for every implication
subformula o — 8 of ¢, disjunction does not occur in a.

Theorem 13.
1. The validity problem for NNIL formulas without premise disjunction is
decidable in polynomial time [24].

2. The validity problem for NNIL is CONP-complete.
Proof.

1. Validity of NNIL formulas without premise disjunctions can be decided
inductively as follows:

e Constant T is valid, constant L is not valid and a variable is not
valid.

e A conjunction is valid iff both conjuncts are valid.
e A disjunction is valid iff at least one disjunct is valid.

e For an implication ¢; — 2, since ¢; does not have disjunctions, it
must have the form py A pa A ... A pr, where each p; is a variable.
Then, @1 — 2 is valid iff po [p1 1= T,p2 :=T,...,pg := T] is valid.
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This gives rise to a validity checking algorithm. It is easy to see that the
algorithm runs in polynomial time.

. A formula (1 V p2) — 9 is valid iff both ¢ — ¢ and 9 — 9 are valid.

Note that this doubles the amount of work. But if we guess one disjunct
@; and show that ¢; — 1 is not valid, then we have that (o1 V ¢2) — 9
is not valid. This idea leads to a non-deterministic algorithm for decid-
ing whether a NNIL formula ¢ is not valid. First, for every disjunction
occurring in a premise of some implication, make a guess and replace
the disjunction with one of the disjuncts. Then, apply the polynomial-
time procedure described in (1). Hence, the validity problem for NNIL is
CONP.

Now, we prove the CONP-hardness by a reduction from the non-three-
coloring problem. Given a graph G = (V, E), write a NNIL formula «
such that G is 3-colorable iff «v is not intuitionistically valid. Let A, B and
C' be unary relations and define & = f — (7 V d), where

8= /\{A(v) VB)VCw) : veV}
v=\A{(A@) A B()) vV (B(v) AC(v)) V (A(v) VC(v)) : v eV}
§=\/{(A(u) v A(v)) A (B(u) V B(v)) A (C(u) V C(v)) : (u,v) € E}.

Indeed, if G is 3-colorable then ( is true while v and § are false. So « is
not valid classicaly and, therefore, it is not valid intuitionistically. For the
converse, if « is not valid intuitionistically, then there is a Kripke model
with a world in which a does not hold. Hence, in this world, § is true while
~v and ¢ are false; which implies that A, B and C represents a 3-coloring
for G. Since the 3-coloring problem is NP-complete, we conclude that the
validity problem for NNIL is CONP-hard, and hence, it is CONP-complete.

O
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