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ABSTRACT

Much work has been devoted to supporting RDF data. But
state-of-the-art systems and methods still cannot handle
web scale RDF data effectively. Furthermore, many useful
and general purpose graph-based operations (e.g., random
walk, reachability, community discovery) on RDF data are
not supported, as most existing systems store and index data
in particular ways (e.g., as relational tables or as a bitmap
matrix) to maximize one particular operation on RDF data:
SPARQL query processing. In this paper, we introduce Trin-
ity.RDF, a distributed, memory-based graph engine for web
scale RDF data. Instead of managing the RDF data in triple
stores or as bitmap matrices, we store RDF data in its na-
tive graph form. It achieves much better (sometimes orders
of magnitude better) performance for SPARQL queries than
the state-of-the-art approaches. Furthermore, since the data
is stored in its native graph form, the system can support
other operations (e.g., random walks, reachability) on RDF
graphs as well. We conduct comprehensive experimental
studies on real life, web scale RDF data to demonstrate the
effectiveness of our approach.

1 Introduction

RDF data is becoming increasingly more available: The se-
mantic web movement towards a web 3.0 world is prolif-
erating a huge amount of RDF data. Commercial search
engines including Google and Bing are pushing web sites
to use RDFa to explicitly express the semantics of their
web contents. Large public knowledge bases, such as DB-
pedia [9] and Probase [37] contain billions of facts in RDF
format. Web content management systems, which model
data in RDF, mushroom in various communities all around
the world.

Challenges RDF data management systems are facing two
challenges: namely, systems’ scalability and generality. The
challenge of scalability is particularly urgent. Tremendous
efforts have been devoted to building high performance RDF
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systems and SPARQL engines [6, 12, 3, 36, 14, 5, 35, 27].
Still, scalability remains the biggest hurdle. Essentially,
RDF data is highly connected graph data, and SPARQL
queries are like subgraph matching queries. But most ap-
proaches model RDF data as a set of triples, and use RDBMS
for storing, indexing, and query processing. These approaches
do not scale as processing a query often involves a large num-
ber of join operations that produce large intermediate re-
sults. Furthermore, many systems, including SW-Store [5],
Hexastore [35], and RDF-3x [27] are single-machine systems.
As the size of RDF data keeps soaring, it is not realis-
tic for single-machine approaches to provide good perfor-
mance. Recently, several distributed RDF systems, such
as SHARD [29], YARS2 [17], Virtuoso [15], and [20], have
been introduced. However, they still model RDF data as a
set of triples. The cost incurred by excessive join operations
is further exacerbated by network communication overhead.
Some distributed solutions try to overcome this limitation
by brute-force replication of data [20]. However, this ap-
proach simply fails in the face of complex SPARQL queries
(e.g., queries with a multi-hop chain), and has a considerable
space overhead (usually exponential).

The second challenge lies in the generality of RDF sys-
tems. State-of-the-art systems are not able to support gen-
eral purpose queries on RDF data. In fact, most of them are
optimized for SPARQL only, but a wide range of meaningful
queries and operations on RDF data cannot be expressed in
SPARQL. Consider an RDF dataset that represents an en-
tity/relationship graph. One basic query on such a graph is
reachability, that is, checking whether a path exists between
two given entities in the RDF data. Many other queries
(e.g., community detection) on entity/relationship data rely
on graph operations. For example, random walks on the
graph can be used to calculate the similarity between two
entities. All of the above queries and operations require
some form of graph-based analytics [34, 28, 22, 33]. Unfor-
tunately, none of these can be supported in current RDF
systems, and one of the reasons is that they manage RDF
data in some foreign forms (e.g., relational tables or bitmap
matrices) instead of its native graph form.

Overview of Our Approach We introduce Trinity.RDF,
a distributed in-memory RDF system that is capable of han-
dling web scale RDF data (billion or even trillion triples).
Unlike existing systems that use relational tables (triple
stores) or bitmap matrices to manage RDF, Trinity.RDF
builds on top of a memory cloud, and models RDF data
in its native graph form (i.e., representing entities as graph
nodes, and relationships as graph edges). We argue that
such a memory-based architecture that logically and physi-



cally models RDF in native graphs opens up a new paradigm
for RDF management. It not only leads to new optimiza-
tion opportunities for SPARQL query processing, but also
supports more advanced graph analytics on RDF data.

To see this, we must first understand that most graph op-
erations do not have locality [23, 31], and rely exclusively
on random accesses. As a result, storing RDF graphs in
disk-based triple stores is not a feasible solution since ran-
dom accesses on hard disks are notoriously slow. Although
sophisticated indices can be created to speed up query pro-
cessing, they introduce excessive join operations, which be-
come a major cost for SPARQL query processing.

Trinity.RDF models RDF data as an in-memory graph.
Naturally, it supports fast random accesses on the RDF
graph. But in order to process SPARQL queries efficiently,
we still need to address the issues of how to reduce the num-
ber of join operations, and how to reduce the size of inter-
mediary results. In this paper, we develop novel techniques
that use efficient in-memory graph exploration instead of
join operations for SPARQL processing. Specifically, we de-
compose a SPARQL query into a set of triple patterns, and
conduct a sequence of graph explorations to generate bind-
ings for each of the triple pattern. The exploration-based
approach uses the binding information of the explored sub-
graphs to prune candidate matches in a greedy manner. In
contrast, previous approaches isolate individual triple pat-
terns, that is, they generate bindings for them separately,
and make excessive use of costly join operations to com-
bine those bindings, which inevitably results in large inter-
mediate results. Our new query paradigm greatly reduces
the amount of intermediate results, boosts the query perfor-
mance in a distributed environment, and makes the system
scale. We show in experiments that even without a smart
graph partitioning scheme, Trinity.RDF achieves several or-
ders of magnitude speed-up on web scale RDF data over
state-of-the-art RDF systems.

We also note that since Trinity.RDF models data as a
native graph, we enable a large range of advanced graph
analytics on RDF data. For example, random walks, regu-
lar expression queries, reachability queries, distance oracles,
community searches can be performed on web scale RDF
data directly. Even large scale vertex-based analytical tasks
on graph platforms such as Pregel [24] can be easily sup-
ported in our system. However, these topics are out of the
scope of this paper, and we refer interested readers to the
Trinity system [30, 4] for detailed information.

Contributions We summarize the novelty and advantages
of our work as follows.

1. We introduce a novel graph-based scheme for manag-
ing RDF data. Trinity.RDF has the potential to sup-
port efficient graph-based queries, as well as advanced
graph analytics, on RDF.

2. We leverage graph exploration for SPARQL process-
ing. The new query paradigm greatly reduces the
volume of intermediate results, which in turn boosts
query performance and system scalability.

3. We introduce a new cost model, novel cardinality es-
timation techniques, and optimization algorithms for
distributed query plan generation. These approaches
ensure excellent performance on web scale RDF data.

Paper Layout The rest of the paper is organized as fol-
lows. Section 2 describes the difference between join oper-
ations and graph exploration. Section 3 presents the archi-
tecture of the Trinity.RDF system. Section 4 describes how
we model RDF data as native graphs. Section 5 describes
SPARQL query processing techniques. Section 6 shows ex-
perimental results. We conclude in Section 8.

2 Join vs. Graph Exploration

Joins are the major operator in SPARQL query process-
ing. Trinity.RDF outperforms existing systems by orders of
magnitude because it replaces expensive join operations by
efficient graph exploration. In this section, we discuss the
performance implications of the two different approaches.

2.1 RDF and SPARQL

Before we discuss join operations vs. graph exploration, we
first introduce RDF and SPARQL query processing on RDF
data. An RDF data set consists of statements in the form
of (subject, predicate, object). Each statement, also known
as as a triple, is about a fact, which can be interpreted as
subject has a predicate property whose value is object. For
example, a movie knowledge base may contain the following
triples about the movie “Titanic”:

( T i t an i c , has award , B e s t P i c t u r e )
( T i t an i c , c a s t s , L D iCap r i o ) ,
( J Cameron , d i r e c t s , T i t a n i c )
( J Cameron , wins , Oscar Award )
. . .

An RDF dataset can be considered as representing a directed
graph, with entities (i.e. subjects and objects) as nodes, and
relationships (i.e. predicates) as directed edges. SPARQL
is the standard query language for retrieving data stored in
RDF format. The core syntax of SPARQL is a conjunctive
set of triple patterns called a basic graph pattern. A triple
pattern is similar to an RDF triple except that any compo-
nent in the triple pattern can be a variable. A basic graph
pattern describes a subgraph which a user wants to match
against the RDF data. Thus, SPARQL query processing is
essentially a subgraph matching problem. For example, we
can retrieve the cast of an award-winning movie directed by
a award-winning director using the following query:

Example 1.

SELECT ?movie , ?actor WHERE{
?director wins ?award .
?director directs ?movie .
?movie has_award ?movie_award .
?movie casts ?actor .}

SPARQL also contains other language constructs that sup-
port disjunctive queries and filtering.

2.2 Using Join Operations

Many state-of-the-art RDF systems store RDF data as a set
of triples in relational tables, and therefore, they rely exces-
sively on join operations for processing SPARQL queries. In
general, query processing consists of two phases [25]: The
first phase is known as the scan phase. It decomposes a
SPARQL query into a set of triple patterns. For the query
in Example 1, the triple patterns are ?director wins ?award,
?director directs ?movie, ?movie has award ?movie award,
and ?movie casts ?actor. For each triple pattern, we scan
tables or indices to generate bindings. Assuming we are pro-
cessing the query against the RDF graph in Figure 1. The



Figure 1: An example RDF graph

base tables that contain the bindings are shown in Table 1.
The second phase is the join phase. The base tables are
joined to produce the final answer to the query.

?director ?award
J Cameron Oscar Award

G Lucas Saturn Award

?director ?movie
P Haggis Crash

J Cameron Titanic

J Cameron Avatar

?movie ?movie award
Titanic Best Picture

Crash Best Picture

?movie ?actor
Crash D Cheadle

Titanic L Dicaprio

Avatar S Worthington

Star War VI M Hamill

Table 1: Base tables and bound variables.

Sophisticated techniques have been used to optimize the
order of joins to improve query performance. Still, the ap-
proach has inherent limitations: (1) It uses many costly join
operations. (2) The scan-join process produces large redun-
dant intermediary results. From Table 1, we can see that
most intermediary join results will be produced in vain. Af-
ter all, only Titanic directed by J Cameron matches the
query. Moreover, useless intermediary results may only be
detected in later stages of the join process. For example, if
we choose to join ?director directs ?movie and ?movie casts
?actor first, we will not know that the resulting rows related
to Avatar and Crash are useless until joining with ?director
wins ?award and ?movie has award ?movie award. Side-
ways Information Passing (SIP) [26] was proposed to allevi-
ate this problem. SIP is a dynamic optimization technique
for pipelined execution plans. It introduces filters on sub-
ject, predicate, or object identifiers, and passes these filters
to joins and scans in other parts of the query that need to
process similar identifiers.

2.3 Using Graph Explorations

In this paper, we adopt a new approach that greatly im-
proves the performance of SPARQL query processing. The
idea is to use graph exploration instead of joins.

The intuition can be illustrated by an example. Assume
we perform the query in Example 1 over the RDF graph in
Figure 1 starting with the pattern: ?director wins ?award.
After exploring the neighbors of ?award connected via the
wins edge, we find that the possible binding for ?director
is J Cameron and G Lucas. Then, we explore the graph
further from node J Cameron and G Lucas via edge directs,
and we generate bindings for ?director directs ?movie. In
the above exploration, we prune G Lucas because it does
not have a directs edge. Also, we do not produce useless
bindings as those shown in Table 1, such as the binding
(P Haggis, Crash). Thus, we are able to prune unnecessary
intermediate results efficiently.

The above intuition is only valid if graph exploration can
be implemented more efficiently than join. This is not true
for existing RDF systems. If the RDF graph is managed
by relational tables, triple stores, or disk-based key-value
stores, then we need to use join operations to implement
graph exploration, which means graph exploration cannot
be more efficient than join: With an index, it usually re-
quires an O(logN) operation to access the triples relating

to a subject/object1. In our work, we use native graphs to
model RDF data, which enables us to perform the same
operation in O(1) time. With the support of the underly-
ing architecture, we make graph exploration extremely effi-
cient. In fact, Trinity.RDF can explore as many as 2.3 mil-
lion nodes on a graph distributed over an 8-server cluster
within one tenth of a second [30]. This lays the foundation
for exploration-based SPARQL query processing.

We need to point out that the order of exploration is im-
portant. Starting with the highly selective pattern ?movie
has award ?movie award, we can prune a lot of candidate
bindings of other patterns. If we explore the graph in a dif-
ferent order, i.e. exploring ?movie cast ?actor followed by
?director directs ?movie, then we will still generate useless
intermediate results. Thus, query plans need to be carefully
optimized to pick the optimal exploration order, which is
not trivial. We will discuss our algorithm for optimal graph
exploration plan generation in Section 5.

Note that graph exploration (following the links) is to
certain extent similar to index-nested-loops join. However,
index-nested-loops join is costly for RDBMS or disk-based
data, because it needs a random access for each index lookup.
Hence, in previous approaches, scan-joins, which perform
sequential reads on sorted data, are preferred. Our ap-
proach further extends the random access approach in a dis-
tributed environment and minimizes the size of intermediate
join results.

3 System Architecture

In this section, we give an overall description of the data
model and the architecture of Trinity.RDF. We model and
store RDF data as a directed graph. Each node in the graph
represents a unique entity, which may appear as a subject
and/or an object in an RDF statement. Each RDF state-
ment corresponds to an edge in the graph. Edges are di-
rected, pointing from subjects to objects. Furthermore, edges
are labeled with the predicates. We will present the data
structure for nodes and edges in more detail in Section 4.

To ensure fast random data access in graph exploration,
we store RDF graphs in memory. A web scale RDF graph
may contain billions of entities (nodes) and trillions of triples.
It is unlikely that a web scale RDF graph can fit in the
RAM of a single machine. Trinity.RDF is based on Trin-
ity [30], which is a distributed in-memory key-value store.
Trinity.RDF builds a graph interface on top of the key-value
store. It randomly partitions an RDF graph across a cluster
of commodity machines by hashing on the nodes. Thus, each
machine holds a disjoint part of the graph. Given a SPARQL
query, we perform search in parallel on each machine. Dur-
ing query processing, machines may need to exchange data
as a query pattern may span multiple partitions.

Figure 2 shows the high level architecture of Trinity.RDF.
A user submits his query to a proxy. The proxy generates a
query plan and delivers the plan to all the Trinity machines,
which hold the RDF data. Then, each machine executes the
query plan under the coordination of the proxy. When the
bindings for all the variables are resolved, all Trinity ma-
chines send back the bindings (answers) to the proxy where
the final result is assembled and sent back to the user. As
we can see, the proxy plays an important role in the archi-
tecture. Specifically, it performs the following tasks. First,
it generates a query plan based on available statistics and
indices. Second, it keeps track of the status of each Trinity

1N is the total number of RDF triples



Figure 2: Distributed query processing framework

machine in query processing by, for example, synchronizing
the execution of each query step. However, each Trinity
machine not only communicates with the proxy. They also
communicate among themselves during query execution to
exchange intermediary results. All communications are han-
dled by a message passing mechanism built in Trinity.

Besides the proxy and the Trinity machines, we also em-
ploy a string indexing server. We replace all literals in RDF
triples by their ids. The string indexing server implements
a literal-to-id mapping that translates literals in a SPARQL
query into ids, and an id-to-literal mapping that maps ids
in the output back to literals for the user. The mapping can
be either implemented by a separate Trinity in-memory key-
value store for efficiency, or by a persistent key-value store
if memory space is a concern. Usually the cost of mapping
is negligible compared to that of query processing.

4 Data Modeling

To support graph-based operations including SPARQL queries
on RDF data more effectively, we store RDF data in its na-
tive graph form. In this section, we describe how we model
and manipulate RDF data as distributed graphs.

4.1 Modeling Graphs

Trinity.RDF is based on Trinity, which is a key-value store
in a memory cloud. We then create a graph model on top
of the key-value store. Specifically, we represent each RDF
entity as a graph node with a unique id, and store it as a
key-value pair in the Trinity memory cloud:

(node-id, 〈in-adjacency-list, out-adjacency-list〉) (1)

The key-value pair consists of the node-id as the key, and
the node’s adjacency list as the value. The adjacency list
is divided into two lists, one for neighbors with incoming
edges and the other for neighbors with outgoing edges. Each
element in the adjacency lists is a (predicate, node-id) pair,
which records the id of the neighbor, and the predicate on
the edge.

Thus, we have created a graph model on top of the key-
value store. Given any node, we can find the node-id of
any of its neighbors, and the underlying Trinity memory
cloud will retrieve the key-value pair for that node-id. This
enables us to explore the graph from any given node by
accessing its adjacency lists. Figure 3 shows an example of
the data structure.

4.2 Graph Partitioning

We distribute an RDF graph across multiple machines, and
this is achieved by the underlying memory cloud, which par-
titions the key-value pairs in a cluster. However, due to the

Figure 3: An example of model (1)

characteristics of graphs, we need to look into how the graph
is partitioned in order to ensure best performance.

Two factors may have impact on network overhead when
we explore a graph. The first factor is how the graph is
partitioned. In our system, sharding is supported by the
underlying key-value store, and the default sharding mech-
anism is hashing on node-id. In other words, the graph is
randomly partitioned. Certainly, sophisticated graph par-
titioning methods can be adopted for sharding. However,
graph partitioning is beyond the scope of this paper.

The second factor is how we model graphs on top of the
key-value store. The model given by (1) may have poten-
tial problems for real-life large graphs. Many real-life RDF
graphs are scale-free graphs whose node degrees follow the
power law distribution. In DBpedia [9], for example, over
90% nodes have less than 5 neighbors, while some top nodes
have more than 100,000 neighbors. The model may incur a
large amount of network traffic when we explore the graph
from a top node x. For simplicity, let us assume none of x’s
neighbors resides on the same machine as x does. To visit
x’s neighbors, we need to send the node-ids of its neighbors
to other machines. The total amount of information we need
to send across the network is exactly the entire set of node-
ids in x’s adjacency list. For the DBpedia data, in the worst
case, whenever we encounter a top node in graph explo-
ration, we need to send 800K data (each node-id is 64 bit)
across the network. This is a huge cost in graph exploration.

We take the power law distribution into consideration in
modeling RDF data. Specifically, we model a node x by the
following key-value pair:

(node-id, 〈in1, · · · , ink, out1, · · · , outk〉) (2)

where ini and outi are keys to some other key-value pairs:

(ini, in-adjacency-listi) (outi, out-adjacency-listi) (3)

The essence of this model is the following: The key-value
pair (ini, in-adjacency-listi) and the nodes in in-adjacency-listi
are stored on the same machine i. In other words, we parti-
tion the adjacency lists in model (1) by machine.

The benefits of this design is obvious. No matter how
many neighbors x has, we will send no more than k nids
(ini and outi) over the network since each machine i, upon
receiving nidi, can retrieve x’s neighbors that reside on ma-
chine i without incurring any network communication. How-
ever, for nodes with few neighbors, model (2) is more costly
than model (1). In our work, we use a threshold t to decide
which model to use. If a node has more than t neighbors, we
use model (2) to map it to the key-value store; otherwise,
we use model (1). Figure 4 gives an example with t = 1.
Furthermore, in our design, all triples are stored decentral-
ized at its subject and object. Thus, update has little cost
as it only affects a few nodes. However, update is out of the
scope of this paper and we omit detailed discussion here.



Figure 4: An example of model (2)

4.3 Indexing Predicates

Graph exploration relies on retrieving nodes connected by
an edge of a given predicate. We use two additional indices
for this purpose.

Local predicate indexing We create a local predicate in-
dex for each node x. We sort all (predicate, node-id) pairs in
x’s adjacency lists first by predicate then by node-id. This
corresponds to the SPO or OPS index in traditional RDF
approaches. In addition, we also create an aggregate in-
dex to enable us to quickly decide whether a node has a
given predicate and the number of its neighbors connected
by the predicate.

Global predicate indexing The global predicate index
enables us to find all nodes that have incoming or outgoing
neighbors labeled by a given predicate. This corresponds to
the PSO or POS index in traditional approaches. Specifi-
cally, for each predicate, machine i stores a key-value pair

(predicate, 〈subject-listi, object-listi〉)

where subject-listi (object-listi) consists of all unique sub-
jects (objects) with that predicate on machine i.

4.4 Basic Graph Operators

We provide the following three graph operators with which
we implement graph exploration:

1. LoadNodes(predicate, dir): Return nodes that have
an incoming or outgoing edge labeled as predicate.

2. LoadNeighborsOnMachine(node, dir, i): For a given
node, return its incoming or outgoing neighbors that
reside on machine i.

3. SelectByPredicate(nid, predicate): From a given par-
tial adjacency list specified by nid, return nodes that
are labeled with the given predicate.

Here, dir is a parameter that specifies whether the pred-
icate is an incoming or an outgoing edge. LoadNodes()
is straightforward to understand. When it is called, it uses
the global predicate index on each machine to find nodes that
have at least one incoming or outgoing edge that is labeled
as predicate.

The next two operators together find specific neighbors for
a given node. LoadNeighborsOnMachine() finds a node’s
incoming or outgoing neighbors on a given machine. But,
instead of returning all the neighbors, it simply returns the
ini or outi id as given in (2). Then, given the ini or outi
id, SelectByPredicate() finds nodes in the adjacency list
that is associated with the given predicate. Certainly, if the
node has less than t neighbors, then its adjacency list is not

distributed, and the two functions simply operate on the
local adjacency list.

We now use some examples to illustrate the use of the
above 3 operators on the RDF graph shown in Figure 4.
LoadNodes(l2, out) finds n2 on machine 1, and n3 on ma-
chine 2. LoadNeighborsOnMachine(n0, in, 1) returns the
partial adjacency list’s id in1, and SelectByPredicate(in1, l2)
returns n2.

5 Query Processing

In this section, we present our exploration-based approach
for SPARQL query processing.

5.1 Overview

We represent a SPARQL query Q by a query graph G. Nodes
in G denote subjects and objects in Q, and directed edges
in G denote predicates. Figure 5 shows the query graph
corresponding to the query in Example 1, and lists the 4
triple patterns in the query as q1 to q4.

• q1: (?director wins ?award)

• q2: (?director directs ?movie)

• q3: (?movie has award ?movie award)

• q4: (?movie casts ?actor)

Figure 5: The query graph of Example 1

With G defined, the problem of SPARQL query process-
ing can be transformed to the problem of subgraph match-
ing. However, as we pointed out in Section 2, existing RDF
query processing and subgraph matching algorithms rely ex-
cessively on costly joins, which cannot scale to RDF data of
billion or even trillion triples. Instead, we use efficient graph
exploration in an in-memory key-value store to support fast
query processing. The exploration is conducted as follows:
We first decompose Q into an ordered sequence of triple
patterns: q1, · · · , qn. Then, we find matches for each qi,
and from each match, we explore the graph to find matches
for qi+1. Thus, to a large extent, graph exploration acts as
joins. Furthermore, the exploration is carried out on all dis-
tributed machines in parallel. In the final step, we gather
the matchings for all individual triple patterns to the cen-
tralized query proxy, and combine them together to produce
the final results.

5.2 Single Triple Pattern Matching

We start with matching a single triple pattern. For a triple
pattern q, our goal is to find all its matches R(q). Let P
denote the predicate in q, V denote the variables in q, and
B(V ) denote the binding of V . If V is a free variable (not
bound), we also use B(V ) to denote all possible values V
can take. We regard a constant as a special variable with
only one binding.

We use graph exploration to find matches for q. There are
two ways of exploration: from subject to object (We first
try to find matches for the subject in q, and then for each
match, we find matches for the object in q. We denote this
exploration as −→q ) and from object to subject (We denote



this exploration as ←−q ). We use src and tgt to refer to the
source and target of an exploration (i.e., in −→q the src is the
subject, while in ←−q the src is the object).

Algorithm 1 MatchPattern(e)

obtain src, tgt, and predicate p from e (e = −→q or e =←−q )

// On the src side:
if src is a free variable then

B(src) =
⋃

∀p∈B(P ) LoadNodes(p, dir)

set Mi = ∅ for all i // initialize messages to machine i
for each s in B(src) do

for each machine i do
nidi = LoadNeighborsOnMachine(s, dir, i)
Mi = Mi ∪ (s, nidi)

batch send messages M to all machines

// On the tgt side:
for each (s, nid) in M do

for each p in B(P ) do
N = SelectByPredicate(nid, p)
for each n in N ∩B(tgt) do

R = R ∪ (s, p, n)
return R

Algorithm 1 outlines the matching procedure using the
basic operators introduced in Section 4.4. If src is a con-
stant, we only need to explore from one node. If src is
a variable, we initialize its bindings by calling LoadNodes,
which searches the global predicate index to find the matches
for src. Note that if the predicate itself is a free variable,
then we have to load nodes for every predicate. After src
is bound, for each node that matches src and for each ma-
chine i, we call LoadNeighborsOnMachine() to find the key
nidi. The node’s neighbors on machine i are stored in the
key-value pair with nidi as the key. We then send nidi to
machine i.

Each machine, on receiving the message, starts the match-
ing on the tgt side. For each eligible predicate p in B(P ),
we filter neighbors in the adjacency list by p by calling
SelectByPredicate(). If tgt is a free variable, any neigh-
bor is eligible as a binding, so we add (s, p, n) as a match
for every neighbor n. If tgt is a constant, however, only the
constant node is eligible. As we treat a constant as a spe-
cial variable with only one binding, we can uniformly handle
these two cases: we match a new edge only if its target is
in B(tgt).

Figure 6: Distribution of the RDF graph in Figure 1

We use an example to demonstrate how MatchPattern
works. Assume the RDF graph is distributed on two ma-
chines as shown in Figure 6. Suppose we want to find
matches for ←−q1 where q1 is “?director wins ?award”. In
this case, src is ?award. We first call LoadNodes(wins, in)
to find B(?award), which are nodes having an incoming
wins edge. This results in Oscar Award on machine 1, and

Saturn Award on machine 2. Next, on the target ?director
side, machine 1 gets the key of the adjacency list sent by
Saturn Award, and after calling SelectByPredicate(), it
gets G Lucas. Since the target ?director is a free variable,
any edge labeled with win will be matched. We add match-
ing edge (G Lucas, wins, Saturn Award) to R. Similarly
on machine 2, we get (J Cameron, wins, Oscar Award).

As Algorithm 1 shows, given a triple q, each machine
performs MatchPattern() independently, and obtains and
stores the results on the target side, that is, on machines
where the target is matched. For the example in Figure 6,
matches for ←−q1 where q1 is “?director wins ?award” are
stored on machine 1, where the target G Lucas is located.
Table 2 shows the results on both machines for q1. We use
Ri(q) to denote matches for of q on machine i. Note that
the constant column wins is not stored.

(a) R1(q1)
?director ?award
G Lucas Saturn Award

(b) R2(q1)
?director ?award
J Cameron Oscar Award

Table 2: Individual matching result of q1

5.3 Multiple Pattern Matching by Exploration

A query consists of multiple triple patterns. Traditional
approaches match each pattern individually and join them
afterwards. A single pattern may generate a large number
of results, and this leads to large intermediary join results
and costly joins. For the example of Figure 6, suppose we
generate the matchings for pattern q1, q2 separately. The
results are Table 2 for q1 and Table 3 for q2. We can see
although P Haggis has not won an award, we still generate
(Crash, P Haggis) in R(q2).

(a) R1(q2)
?movie ?director
Titanic J Cameron

Crash P Haggis

(b) R2(q2)
?movie ?director
Avatar J Cameron

Table 3: Individual matching result of q2

Instead of matching single patterns independently, we treat
the query as a sequence of patterns. The matching of the
current pattern is based on the matches of previous patterns,
i.e., we “explore” the RDF graph from the matches of pre-
vious patterns to find matches for the current pattern. In
other words, we eagerly prune invalid matchings by explo-
ration to avoid the cost of joining large sets of results later.

(a) R1(q2)
?movie ?director
Titanic J Cameron

(b) R2(q2)
?movie ?director
Avatar J Cameron

Table 4: Matching result of q2 after matching q1

We now use an example to illustrate the exploration and
pruning process. Assume we explore the graph in Figure
1 in the order of −→q1 , −→q2 , ←−q3 , −→q4 . Clearly, how the triple
patterns are ordered may have a big impact on the inter-
mediate results size. We discuss query plan optimization in
Section 5.5.

There are two different cases in exploration and pruning,
and they are examplified by matching −→q2 after −→q1 , and by
matching ←−q3 after −→q2 , repsectively. We describe them sepa-
rately. In the first case, the source of exploration is bound.
Exploring q2 after q1 belongs to this case, as the source
?director is bound by q1. So, instead of using LoadNodes()
to find all possible directors, we start the exploration from
existing bindings (J Cameron and G Lucas), so we won’t
generate movies not directed by award-winning directors.
Moreover, note that in Figure 1, G Lucas does not have



a directs edge, so exploring from G Lucas will not produce
any matching triple. It means we can prune G Lucas safely:
There is no need to send the key to its adjacency-list across
the network. The results are in Table 4, which contains
fewer tuples than Table 3.

In the second case, the target of exploration is bound. Ex-
ploring q3 after q2 belongs to this case, as ?movie is bound
to {T itanic, Avatar} by −→q2 . We only add results in this
binding set to the matching results, namely (Best P icture,
T itanic). Independently, (Best P icture, Crash) also saties-
fies the pattern, but Crash is not in the binding set, so
it is pruned. Furthermore, since the previous binding of
Avatar does not match any triple in this round, it is also
safely pruned from ?movie’s binding. Finally, we incorpo-
rate the matches of q3 into the result. As shown in Table 5,
it now has three bound variables ?movie, ?director, and
?movie award, and contains one row (T itanic, J Cameron,
Best P icture) on machine 1 where T itanic is located.

?movie ?director ?movie award
Titanic J Cameron Best Picture

Table 5: Results after incorporating q2 and q3

5.4 Final Join after Exploration

We used two mechanisms to prune intermediate results: a
binding is pruned if it cannot reach any bound target, or
it cannot be reached from any bound source. Furthermore,
once we prune the target (source), we also prune correspond-
ing values from the source (target). This greatly reduces the
size of the intermediary results, and does not incur much ad-
ditional communication, as shown in the previous example.

However, invalid intermediary results may still remain af-
ter the pruning. This is because the pruning of q’s interme-
diary results only affects the bindings of q and the immediate
neighbors of q. Bindings of other patterns are not considered
because otherwise we need to carry all historical bindings in
exploration, which incurs big communication cost.

After the exploration finishes, we obtain all the matches
in R. Since R is distributed and may contain invalid results,
we gather these results to a centralized proxy and perform
a final join to assemble the final answer. As we have ea-
gerly pruned most of the invalid results in the exploration
phase, our join phase is light-weight compared with tradi-
tional RDF systems that intensively rely on joins, and we
simply adopt the left-deep join for this purpose.

5.5 Exploration Plan Optimization

Section 5.3 described the query processing for an ordered
sequence of triple patterns. The order has significant impact
on the query performance. We now describe a cost-based
approach for finding the optimal exploration plan.

We define an exploration plan as a graph traversal plan,
and we denote it as a sequence 〈e1, · · · , en〉, where each
ei denotes a directed exploration of a predicate qi in the
query graph, that is, ei = −→qi or ei = ←−qi . The cost of
the plan is Σicost(ei), where cost(ei), the cost of matching
−→qi or ←−qi , is roughly proportional to the size of qi’s results
(Section 5.6 will describe cost estimation in more depth).
Clearly, the size of qi’s results depends on the matching of
some qj , j < i. Thus, the total cost depends on the order of
ei’s in the sequence.

Naive query plan optimization is costly. There are n! dif-
ferent orders for a query graph with n edges, and for each qi,
there are two directions of exploration. It is also tempting
to adopt the join ordering method in a relational query op-
timizer. However, there is a fundamental difference between

our scenario and theirs. In the relational optimizer, later
joins depend on previous intermediary join results, while
for us, later explorations depend on previous intermediary
bindings. The intermediary join results do not depend on
the order of join, while the intermediary bindings do depend
on the order of exploration. For example, consider two plans
(1) {−→q1 , −→q2 , ←−q3 , −→q4} and (2) {−→q2 ,−→q3 ,←−q1 ,−→q4}, where the first
3 elements are q1, q2, and q3, but in different order. For the
relational optimizer (ignore the direction of each qi), the join
results q1, q2, and q3 are the same no matter how they are
ordered. But in our case, plan (1) produces {Titanic} and
plan (2) produces {Titanic, Crash} for B(?movie), as shown
in Table 5. The redundant Crash will makes −→q4 in plan (2)
more costly than plan (1).

We now introduce our approach for exploration order op-
timization. For a query graph, we find exploration plans for
its subgraphs (starting with single nodes), and expand/com-
bine the plans until we derive the plan for the entire query
graph. There are two ways to grow a subgraph: expansion
and combination. Figure 7(a) depicts an example of expan-
sion: we explore to a free variable or a constant and add
an edge to the subgraph. The subgraph {q1} is expanded
to a larger graph {q1, q2}. Another way to grow a subgraph
is that we combine two disjoint subgraphs by exploring an
edge starting from one subgraph to the other. Figure 7(b)
shows such an example: we combine the subgraph with one
edge q1 with the subplan of q3 by exploring ←−q2 . This way,
we construct a larger subgraph from two smaller subgraphs.

(a) Expansion

(b) Combination

Figure 7: Expansion and combination examples

Now, we introduce heuristics for exploration optimization.
Let E denote a subgraph, R(E) denote its intermediary join
results, and B(E) denote the bindings of variables in E . Note
that in our exploration, we compute B(E) only, but not
R(E). Furthermore, bindings for some variables in E may
contain redundant values. We define a variable ?c as an
exploration point if it satisfies B(c) = ΠcR(E). Intuitively,
node ?c is an exploration point if it does not contain any
redundant value, in other words, each of its values must
appear in the intermediary join results R(E). We then adopt
the following heuristics in subgraph expansion/combination.

Heuristic 1. We expand a subgraph from its exploration
point. We combine two subgraphs by connecting their explo-
ration points.

The reason we want to expand/combine at the exploration
point is because the exploration points do not contain redun-
dant values. Hence, they introduce fewer redundant values
for other variables in the exploration.



After the expansion/combination, we need to determine
the exploration points of the resulting graph. Heuristic 1
leads to the following property:

Property 1. We expand a subgraph or combine two sub-
graphs through an edge. The two nodes on both ends of the
edge are valid exploration points in the new graph.

Proof. For expansion from subgraph E , we start from an
exploration point c that satisfies B(c) = ΠcR(E) and explore
a new predicate q = c ; c′. Based on our algorithm, we
have ΠcR(e) ⊆ ΠcR(E). Since q /∈ E and c′ /∈ E , we get
R(E ∪ q) = R(E) ./c R(q). Thus:

Πc′R(E ∪ q) = Πc′(R(E) ./c R(q))

= Πc′R(q) = B(c′)

which means c′ is an exploration point of E ∪ q. After B(c′)
is obtained, the algorithm uses it to prune B(c) so that c’s
new binding satisfies B(c) = ΠcR(q). Thus:

ΠcR(E ∪ q) = Πc(R(E) ./c R(q))

= ΠcR(E) ./c ΠcR(q) = ΠcR(q) = B(c)

which means c is a valid exploration point of E∪q. Similarly,
we can show Property 1 holds in subgraph combination.

We use dynamic programming (DP) for exploration opti-
mization. We use (E , c) to denote a state in DP. We start
with subgraphs of size 1, that is, subgraphs of a single edge
q = u ; v. The states are ({q}, u) and ({q}, v). For their
cost, we consider both explorations ←−q and −→q to obtain the
minimal cost of reaching the state.

After computing cost for subgraphs of size k, we perform
expansion and combination to derive subgraphs of size ≥
k+1. Specifically, assuming we are expanding (E , c) through
edge q = c ; v, we reach two states:

(E ∪ {q}, v) and (E ∪ {q}, c) (4)

Let C denote the cost of the state before expansion, and C′

the cost of the state after expansion. We have:

C′ = min{C′, C + cost(−→q )} (5)

Note that: i) We may reach the expanded state in different
ways, and we record the minimal cost of reaching the state;
ii) C is the cost of state of size ≤ k, which is determined
in previous iterations; iii) If q is in the other direction, i.e.,
q = v ; c, then cost(−→q ) above becomes cost(←−q ).

For combining two states (E1, c1) and (E2, c2) where E1 ∩
E2 = ∅ through edge q = c1 ; c2, we reach two states:

(E1 ∪ E2 ∪ q, c1) and (E1 ∪ E2 ∪ q, c2) (6)

Let C1 and C2 denote the cost of the two states before com-
bination. We update the cost of the combined state to be:

C′ = min{C′, C1 + C2 + cost(−→q )} (7)

We now show the complexity of the DP:

Theorem 1. For a query graph G(V,E), the DP has time
complexity O(n · |V | · |E|) where n is the number of connected
subgraphs in G.

Here is a brief sketch-proof: There are n · |V | states in the
DP process (each subgraph E can have |E| ≤ |V | nodes),
and each update can take at most O(|E|) time.

Theorem 2. Any acyclic query Q with query graph G is
guaranteed to have an exploration plan.

We give a brief sketch-proof. Our optimizer resembles the
idea of semi-joins although we do not perform join. Bern-
stein et al. proved [10] that for any relation in an acyclic
query, there exists a semi-join program that can fully reduce
the relation by evaluating each join condition only once. By
mapping each node in G to a relation, and an edge in G to
a join condition, we can see that our algorithm can find an
exploration plan that evaluates each pattern exactly once.

Discussion. There are two cases we have not considered
formally: i) G is cyclic, and ii) G contains a join on predi-
cates. For the first case, our algorithm may not be able to
find an exploration plan. However, we can break a cycle in
G by duplicating some variable in the cycle. For example,
one heuristic to pick the break point is that we break a cy-
cle at node u if it has the smallest cost when we explore
u’s adjacent edges uv1 and uv2 from u; and in the case of
many cycles, we repeatedly apply this process. The result-
ing query graph G′ is acyclic. We can apply our algorithm
to search for an approximate plan. For the second case, con-
sider a join on predicate (?s ?p ?u), (?x ?p ?y). Here, we
cannot explore from the first pattern from bound variables
?s or ?u because they are not connected with the second
pattern. To handle this case, after we explore an edge with
a variable predicate, we iterate through all unvisited pat-
terns sharing the same predicate variable ?p, i.e. (?x ?p ?y),
and use LoadNodes to create an initial binding for ?x and
?y. This enable us to contine the exploration.

5.6 Cost Estimation

SPARQL selectivity estimation is a challenging task. Stocker
et al [32] assumes subject, predicate and object are indepen-
dent and the selectivity of each triple is the product of the
three. The result is far from optimal. RDF-3X [25] uses
two approaches: One assumes independence between triples
and relies on traditional join estimation techniques. The
other mines frequent join pathes for large joins and main-
tains statistics for these pathes, which is very costly and
unfeasible for web-scale RDF data.

We propose a novel estimation method that captures the
correlation between triples but requires little extra statistics
and data preprocessing. Specifically, we estimate cost(e)
where e = −→q or ←−q . In the following, we estimate cost(−→q )
only, and the estimation of cost(←−q ) can be obtained in the
same way. Also, we use src and tgt to denote the source and
target nodes in e. The computation cost of matching q is
estimated as the size of the results, namely |R(q)|. Since we
operate in a distributed environment, we model communica-
tion cost as well. During exploration, we send bindings and
ids of adjacency lists across network, so we measure com-
munication cost as the binding size of the source node of
the exploration, i.e. |B(src)|. The final cost(−→q ) is a linear
combination of |R(q)| and |B(src)|.

Now, if we know |B(src)|, we can estimate |R(q)| and
|B(tgt)| as

|R(q)| = |B(src)| Cp

Cp(src)
, |B(tgt)| = |B(src)|Cp(tgt)

Cp(src)

where Cq, Cq(src), Cq(tgt) are the number of triples and con-
nected subject/object with predicate p, which can be ob-
tained from a single global predicate index look-up. If the
predicate of q is unknown, we consider the average case for
all possible predicates. For the case where the source or tar-
get of q is constant, we use the local predicate index to get
a more accurate estimation.



We then derive |B(src)|. For a standalone −→q , we can
derive |B(src)| from the global predicate index. When −→q is
not standalone, the binding size of src is affected by related
patterns already explored. To capture this correlation, we
maintain a two-dimensional predicate × predicate matrix2.
Each cell (i, j) stores four statistics: the number of unique
nodes with predicates pi, pj as its incoming/outgoing edges
(4 combinations). When no confusion shall arise, we simply
use Cpipj to denote the correlation.

As shown in Section 5.5, the query optimizer handles two
cases: expansion and combination. In the first case, assume
we expand through a new edge p2 from variable x which is
already connected with p1. Assume the original binding size
of x is Nx. We have the new binding size N ′

x as

N ′
x = Nx

Cp1p2

Cp1

(8)

The second case is combining two edges p1 and p2 on x.
Assume the original binding sizes of x with predicate p1 and
predicate p2 are Nx,1 and Nx,2 respectively. We have the
new binding size N ′

x as

N ′
x = Nx,1Nx,2

Cp1p2

Cp1Cp2

(9)

For more complex cases in expansion and combination
during exploration, e.g. expanding a new pattern from a
subgraph, or joining two subgraphs, we simply pick the most
selective pair from all pairs of involved predicates.

6 Evaluation

We evaluate Trinity.RDF on both real-life and synthetic
datasets, and compare it against the state-of-the-art central-
ized and distributed RDF systems. The results show that
Trinity.RDF is a highly scalable, highly parallel RDF engine.

Systems We implement Trinity.RDF in C#, and deploy it
on a cluster, wherein each machine has 96 GB DDR3 RAM,
two 2.67 GHz Intel Xeon E5650 CPUs, each with 6 cores and
12 threads, and one 40Gb/s InfiniBand Network adaptor.
The OS is 64-bit Windows Server 2008 R2 Enterprise with
service pack 1.

We compare Trinity.RDF with centralized RDF-3X [27]
and BitMat [8], as well as distributed MapReduce-RDF-3X
(a Hadoop-based RDF-3X solution [20]). We deploy the
three systems on machines running 64 bit Linux 2.6.32 using
the same hardware configuration as used by Trinity.RDF.
Just like Trinity.RDF, all of the competitor systems map
literals to IDs in query processing. But BitMat relies on
manual mapping. For a fair comparison, we measure the
query execution time by excluding the cost of literal/ID
mapping. Since all of these three systems are disk-based,
we report both their warm-cache and cold-cache time.

Datasets We use two real-life and one synthetic datasets.
The real-life datasets are the Billion Triple Challenge 2010
dataset (BTC-10) [1] and DBpedia’s SPARQL Benchmark
(DBPSB) [2]. The synthetic dataset is the Lehigh Univer-
sity Benchmark (LUBM) [16]. We generated 6 datasets of
different sizes using the LUBM data generator v1.7. We
summarize the statistics of the data and some exemplary
queries (LUBM queries are also published in [8]) in Table 6

2In many RDF datasets, there is a special predicate rdf:type
which characterizes the types of entities. Since the number
of entities associated with a certain type varies greatly, we
treat each type as a different predicate.

Dataset #Triples #S/O

BTC-10 3,171,793,030 279,082,615

DBPSB 15,373,833 5,514,599

LUBM-40 5,309,056 1,309,072

LUBM-160 21,347,999 5,259,588

LUBM-640 85,420,588 21,037,012

LUBM-2560 341,888,947 84,202,729

LUBM-10240 1,367,122,031 336,711,191

LUBM-100000 9,956,527,583 2,452,700,932

Table 6: Statistics of datasets used in experiments

BTC-10 S1 S2 S3 S4 S5 S6 S7
# of joins 7 5 9 12 6 9 7

DBPSB D1 D2 D3 D4 D5 D6 D7 D8

# of joins 1 1 2 3 3 4 4 5

LUBM L1 L2 L3 L4 L5 L6 L7
# of joins 6 1 6 4 1 3 6

Table 7: Statistics of queries used in experiments

and Table 7. All of the queries used in our experiments can
be found online3.

Join vs. Exploration We compare graph exploration (Trin-
ity.RDF) with scan-join (RDF-3X and BitMat) on DBPSB
and LUBM-160 datasets. The experiment results show that
Trinity.RDF outperforms RDF-3X and BitMat; and more
importantly, its superiority does not just come from its in-
memory architecture, but from the fact that graph explo-
ration itself is more efficient than join.

For a fair comparison, we set up Trinity.RDF on a single
machine, so we have the same computation infrastructure
for all three systems. Specifically, to compare the in-memory
performance, we set up a 20 GB tmpfs (an in-memory file
system supported by Linux kernel from version 2.4), and
deploy the database images of RDF-3X and BitMat in the
in-memory file system.

The first observation is that managing RDF data in graph
form is space-efficient. The database images of LUBM-160
and DBPSB in Trinity.RDF are of 1.6G and 1.9G respec-
tively, which are smaller or comparable to RDF-3X (2GB
and 1.4GB respectively), and are much more efficient than
BitMat (3.6GB and 19GB respectively even without liter-
al/ID mapping).

The results on LUBM-160 and DBPSB are shown in Ta-
ble 8 and 9. For RDF-3X and BitMat, both in-memory
and on-disk (cold-cache) performances are reported. Trin-
ity.RDF outperforms the on-disk performances of RDF-3X
and BitMat by a large margin for all queries: For most
queries, Trinity.RDF has 1 to 2 orders of magnitude per-
formance gain; for some queries, it has 3 orders of magni-
tude speed-up. The results from the in-memory performance
comparison are more interesting. Here, since all systems are
memory-based, the comparison is solely about graph explo-
ration versus scan-join. We can see that the improvement
is easily 2-5 fold, and for L4, Trinity.RDF has 3 orders of
magnitude speed-up. This also shows that, although SIP
and semi-join are proposed to overcome the shortcomings
of the scan-join approach, they are not always effective,
as shown by L1, L2, L4, D1, D7, etc. Moreover, we vary
the complexity of DBPSB queries from 1 join to 5 joins,
where Trinity.RDF achieves very stable performance gain.
It proves that our query algorithm can effectively find the
optimal exploration order even for complex queries with
many patterns.

We also show that in-memory RDF-3X or BitMat runs
slightly better than Trinity.RDF on L2, L3 and D2. This
is because L2, D2 have very simple structures and few in-
termediate results, and Trinity has the overhead due to its
C# implementation.

3http://research.microsoft.com/trinity/Trinity.RDF.aspx



L1 L2 L3 L4 L5 L6 L7 Geo. mean
Trinity.RDF 281 132 110 5 4 9 630 46
RDF-3X (In Memory) 34179 88 485 7 5 18 1310 143
BitMat (In Memory) 1224 4176 49 6381 6 51 2168 376
RDF-3X (Cold Cache) 35739 653 1196 735 367 340 2089 1271
BitMat (Cold Cache) 1584 4526 286 6924 57 194 2334 866

Table 8: Query run-time in milliseconds on the LUBM-160 dataset (21 million triples)

D1 D2 D3 D4 D5 D6 D7 D8 Geo. mean
Trinity.RDF 7 220 5 7 8 21 13 28 15
RDF-3X (In Memory) 15 79 14 18 22 34 68 35 29
BitMat (In Memory) 335 1375 209 113 431 619 617 593 425
RDF-3X (Cold Cache) 522 493 394 498 366 524 458 658 482
BitMat (Cold Cache) 392 1605 326 279 770 890 813 872 639

Table 9: Query run-time in milliseconds on the DBPSB dataset (15 million triples)

Performance on Large Datasets We experiment on three
datasets, LUBM-10240, LUBM-100000 and BTC-10, to study
the performance of Trinity.RDF on billion scale datasets,
and compare it against both centralized and distributed
RDF systems. The results are shown in Table 11, 12 and 13.
As distributed systems, Trinity.RDF and MapReduce-RDF-
3X are deployed on a 5-server cluster for LUBM-10240, a
8-server cluster for LUBM-100000 and a 5-server cluster for
BTC-10. And we implement the directed 2-hop guarantee
partition for MapReduce-RDF-3X.

BitMat fails to run on BTC-10 as it generates terabytes of
data for just a single SPO index. Similar issues happen on
LUBM-100000. For some datasets and queries, BitMat and
RDF-3X fail to return answers in a reasonable time (denoted
as “aborted” in our experiment results).

On LUBM-10240 and LUBM-100000, Trinity.RDF gets
similar performance gain over RDF-3X and BitMat as on
LUBM-160. Even compared with MapReduce-RDF-3X, Trin-
ity.RDF gives surprisingly competitive performance, and for
some queries, e.g. L4-6, Trinity.RDF is even faster. These
results become more remarkable if we note that all the LUBM
queries are with simple structures, and MapReduce-RDF-
3X specially partitions the data so that these queries can
be answered fully in parallel with zero network communica-
tion. In comparison, Trinity.RDF randomly partitions the
data, and has a network overhead. However, data partition-
ing is orthogonal to our algorithm and can be easily applied
to reduce the network overhead. This is also evidenced by
the results of L4-6. L4-6 only explore a small set of triples
(as shown in Table 14) and incur little network overhead.
Thus, Trinity.RDF outperforms even MapReduce-RDF-3X.
Moreover, MapReduce-RDF-3X’s partition algorithm incurs
great space overhead. As shown in Table 10, MapReduce-
RDF-3X indexes twice as many as triples than RDF-3X and
Trinity.RDF do.

LUBM-10240 LUBM-100000 BTC-10

#triple 2,459,450,365 20,318,973,699 6,322,986,673

Overhead 1.80X 2.04X 1.99X

Table 10: The space overhead of MapReduce-RDF-
3X compared with the original datasets

The BTC-10 benchmark has more complex queries, some
with up to 13 patterns. In specific, S3, S4, S6 and S7 are not
parallelizable without communication in MapReduce-RDF-
3X, and additional MapReduce jobs are invoked to answer
the queries. In Table 13, we list separately the time of RDF-
3X jobs and MapReduce jobs for MapReduce-RDF-3X. In-
terestingly, Trinity.RDF shows up to 2 orders of magnitude
speed-up even over the RDF-3X jobs of MapReduce-RDF-
3X. This is probably because MapReduce-RDF-3X divides

a query into multiple subqueries and each subquery pro-
duces a much larger result set. This result again proves
the performance impact of exploiting the correlations be-
tween patterns in a query, which is the key idea behind
graph exploration.

(a) LUBM group (I) (b) LUBM group (II)

Figure 8: Data scalability

(a) LUBM group (I) (b) LUBM group (II)

Figure 9: Machine scalability

L1 L2 L3 L4 L5 L6 L7

LUBM-160 397 173040 0 10 10 125 7125

LUBM-10240 2502 11016920 0 10 10 125 450721

Table 14: The result sizes of LUBM queries

Scalability To evaluate the scalability of our systems, we
carry out two experiments by (1) scaling the data while
fixing the number of servers, and (2) scaling the number
of servers while fixing the data. We group LUBM queries
into two categories according to the sizes of their results, as
shown in Table 14: (I) Q1, Q2, Q3, Q7. The results of these
queries increase as the size of the dataset increases. Note
that although Q3 produces an empty result set, it is more
similar to queries in group (I) as its intermediate result set
increases when the input dataset increases. (II) Q4, Q5,
Q6. These queries are very selective, and produce results of
constant size as the size of dataset increases.

Varying size of data: We test Trinity.RDF running on a
3-server cluster on 5 datasets LUBM-40 to LUBM-10240 of
increasing sizes. The results are shown in Figure 8 (a) and
(b). Trinity.RDF utilizes selective patterns to do efficient



L1 L2 L3 L4 L5 L6 L7 Geo. mean
Trinity.RDF 12648 6018 8735 5 4 9 31214 450
RDF-3X (Warm Cache) 36m47s 14194 27245 8 8 65 69560 2197
BitMat (Warm Cache) 33097 209146 2538 aborted 407 1057 aborted 5966
RDF-3X (Cold Cache) 39m2s 18158 34241 1177 1017 993 98846 15003
BitMat (Cold Cache) 39716 225640 9114 aborted 494 2151 aborted 9721
MapReduce-RDF-3X (Warm Cache) 17188 3164 16932 14 10 720 8868 973
MapReduce-RDF-3X (Cold Cache) 32511 7371 19328 675 770 1834 19968 5087

Table 11: Query run-times in milliseconds for the LUBM-10240 dataset (1.36 billion triples)

L1 L2 L3 L4 L5 L6 L7 Geo. mean
Trinity.RDF 176 21 119 0.005 0.006 0.010 126 1.494
RDF-3X (Warm Cache) aborted 96 363 0.011 0.006 0.021 548 1.726
RDF-3X (Cold Cache) aborted 186 1005 874 578 981 700 633.842
MapReduce-RDF-3X (Warm Cache) 102 19 113 0.022 0.016 0.226 51.98 2.645
MapReduce-RDF-3X (Cold Cache) 171 32 151 1.113 0.749 1.428 89 13.633

Table 12: Query run-times in seconds for the LUBM-100000 dataset (9.96 billion triples)

pruning. Therefore, Trinity.RDF achieves constant size of
intermediate results and stable performance for group (II)
regardless of the increasing data size. For group (I), Trin-
ity.RDF scales linearly as the size of the dataset increases,
which shows that the network overhead is alleviated by the
efficient pruning of intermediate results in graph exploration.

Varying number of machines: We deploy Trinity.RDF in
clusters with varying number of machines, and test its per-
formance on dataset LUBM-10240. The results are shown
in Figure 9 (a) and (b). For group (I), the query time of
Trinity.RDF decrease reciprocally w.r.t. the number of ma-
chines. which testifies that Trinity.RDF can efficiently uti-
lize the parallelism of a distributed system. Moreover, al-
though more partitions increase the amount of intermediate
data delivered across network, our storage model effectively
bounds this overhead. For group (II), due to selective query
patterns, the intermediate results are relatively small. Us-
ing more machines does not improve the performance, but
again the performance is very stable and is not impacted by
the extra network overhead.

7 Related Work

Tremendous efforts have been devoted to building high per-
formance RDF management systems [12, 36, 14, 5, 35, 27,
26, 8, 7, 17]. State-of-the-art approaches can be classified
into two categories:

Relational Solutions Most existing RDF systems use a
relational model to manage RDF data, i.e. they store RDF
triples in relational tables, and use RDBMS indexing to tune
query processing, which aim solely at answering SPARQL
queries. SW-Store [5] exploits the fact that RDF data has
a small number of predicates. Therefore, it vertically parti-
tions RDF data (by predicates) into a set of property tables,
maps them onto a column-oriented database, and builds
subject-object index on each property table; Hexastore [35]
and RDF-3x [27] manage all triples in a giant triple table,
and build indices of all six combinations (SPO, SOP, etc.).

The relational model decides that SPARQL queries are
processed as large join queries, and most prior systems rely
on SQL join optimization techniques for query processing.
RDF-3x [27], which is considered the fastest existing sys-
tem, proposed sophisticated bushy-join planning and fast
merge join for query answering. However, this approach
requires scanning large fraction of indexes even for very
selective queries. Such redundancy overhead quickly be-
comes a bottleneck for billion triple datasets and/or com-
plex queries. Several join optimization techniques are pro-
posed. SIP (sideways information passing) is a dynamic

optimization technique for pipelined execution plans [26]. It
introduces filters on subject, predicate, or object identifiers,
and passes these filters to other joins and scans in differ-
ent parts of the operator tree that need to process similar
identifiers. This introduces opportunities to avoid some un-
necessary index scans. BitMat [8] uses a matrix of bitmaps
to compress the indexes, and use lightweight semi-join op-
erations on compressed data to reduce the intermediate re-
sult before actually joining. However, these optimizations
do not solve the fundamental problem of the join approach.
In comparison, our exploration-based approach is radically
different from the join approach.

Graph-based Solutions Another direction of research in-
vestigated the possibility of storing RDF data as graphs [18,
7, 11]. Many argued that graph primitives besides pattern
matching (SPARQL queries) should be incorporated into
RDF languages, and several graph models for advanced ap-
plications on RDF data have been proposed [18, 7]. There
are several non-distributed implementations, including one
that builds an in-memory graph model for RDF data us-
ing Jena, and another that stores RDF as a graph in an
object-oriented database [11]. However, both of them are
single-machine solutions with limited scalability. A related
research area is subgraph matching [13, 40, 19, 39] but most
solutions rely on complex indexing techniques that are often
very costly, and do not have the scalability to process web
scale RDF graphs.

Recently, several distributed RDF systems [17, 15, 29,
20, 21] have been proposed. YARS2 [17], Virtuoso [15] and
SHARD [29] hash partition triples across multiple machines
and parallelize the query processing. Their solutions are
limited to simple index loop queries and do not support ad-
vanced SPARQL queries, because of the need to ship data
around. Huang et al. [20] deploy single-node RDF systems
on multiple machines, and use the MapReduce framework
to synchronize query execution. It partitions and aggres-
sively replicates the data in order to reduce network com-
munication. However, for complex SPARQL queries, it has
high time and space overhead, because it needs additional
MapReduce jobs and data replication. Furthermore, Husain
et at [21] developed a batch system solely relying on MapRe-
duce for SPARQL queries. It does not provide real-time
query support. Yang et al. [38] recently proposed a graph
partition management strategy for fast graph query process-
ing, and demonstrate their system on answering SPARQL
queries. However, their work focuses on partition optimiza-
tion but not on developing scalable graph query engines.
Further, the partitioning strategy is orthogonal to our so-



S1 S2 S3 S4 S5 S6 S7 Geo. mean
Trinity.RDF 12 10 31 21 23 33 27 21
RDF-3X (Warm Cache) 108 8407 27428 62846 32 260 238 1175
RDF-3X (Cold Cache) 5265 23881 41819 91140 1041 3065 1497 8101
MapReduce-RDF-3X (Warm Cache w/o MapReduce) 132 8 4833 6059 24 1931 2732 453
MapReduce-RDF-3X (Cold Cache w/o MapReduce) 2617 661 13755 18712 801 4347 7950 3841
MapReduce-RDF-3X (MapReduce) N/A N/A 39928 39782 N/A 33699 33703 36649

Table 13: Query run-times in milliseconds for BTC-10 dataset (3.17 billion triples)

lution and Trinity.RDF can apply their algorithm on data
partitioning to achieve better performance.

8 Conclusion

We propose a scalable solution for managing RDF data as
graphs in a distributed in-memory key-value store. Our query
processing and optimization techniques support SPARQL
queries without relying on join operations, and we report
performance numbers of querying against RDF datasets of
billions of triples. Besides scalability, our approach also has
the potential to support queries and analytical tasks that
are far more advanced than SPARQL queries, as RDF data
is stored as graphs. In addition, our solution only utilizes
basic (distributed) key-value store functions and thus can
be ported to any in-memory key-value store.
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