## **Urban Computing With City Dynamics**

### Yu Zheng

#### Ph.D., Researcher Microsoft Research Asia



#### Students who have worked with me in urban computing



Yin Lou @ Cornell



C. Y. Zhang @ UNT



Jing Yuan @ USTC



Ling-Yin Wei @ NCTU



Kevin Zheng @ UQ



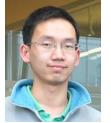
Darshan @ ETH



Wei Liu @ U. Sydney



Liuhang Zhang @ USTC



Yanchi Liu @ USTB



Hechen Liu @ U. Florida

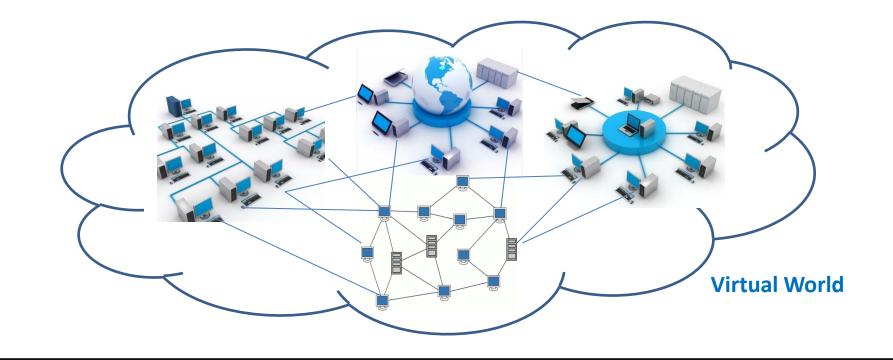
### Outline

- Background
- Fundamental algorithms
- Application scenarios for end users
  - Driving direction service
  - Taxi recommendations
  - Travel itinerary suggestion
  - Other social applications
- Application scenarios for governments
  - Anomaly detection
  - Glean the problematic urban planning
  - Discover regions of different functions

### Outline

#### Background

- Fundamental algorithms
- Application scenarios for end users
  - Driving direction service
  - Taxi recommendations
  - Travel itinerary suggestion
  - Other social applications
- Application scenarios for governments
  - Anomaly detection
  - Glean the problematic urban planning
  - Discover regions of different functions



#### **Physical World**



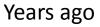
**Rural Spaces** 

**Urban Spaces** 

**Indoor Spaces** 

### Why Urban Computing

- 50% of people live in urban areas (just 0.4% of earth surface)
- The greatest wave of urbanization is coming











Shanghai



Traffic jams

**Energy consumption** 

**City renewal** 



Population

#### **City reconstruction**

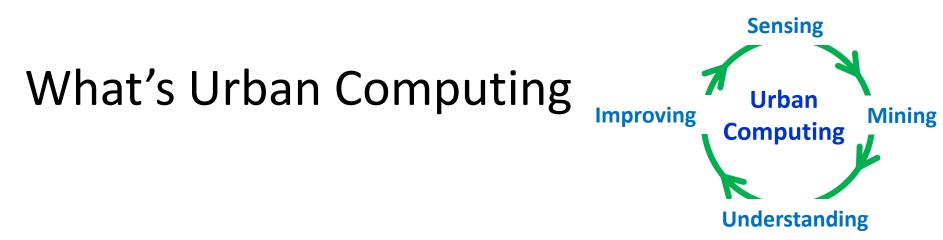
Pollution

### Why Urban Computing

Bigger cities do more with less – from Scientific American

- Productive: economy, sciences, and technology
- Greener: less energy consumption per person





Urban computing is emerging as a concept where every sensor, device, person, vehicle, building, and street in the urban areas can be used as a component to sense city dynamics to enable a city-wide computing to tackle the challenges in urban areas as so to serve people and cities.



# **Differences and Relations**

#### Smart Cities

- − Current cities  $\rightarrow$  Urban computing  $\rightarrow$  Smart cities
- Unobtrusively sensing (Leveraging what we already have)

#### Internet of IoT

- Infrastructure connecting objects
- Lack of human and social

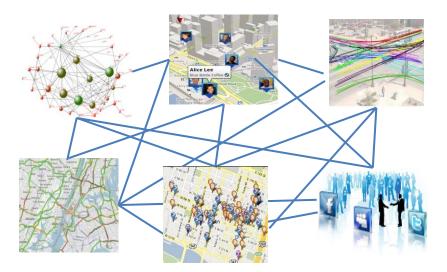
#### Cloud Computing

- Technology and platform
- Many urban computing scenarios can be built on the Cloud

### **City Dynamics**

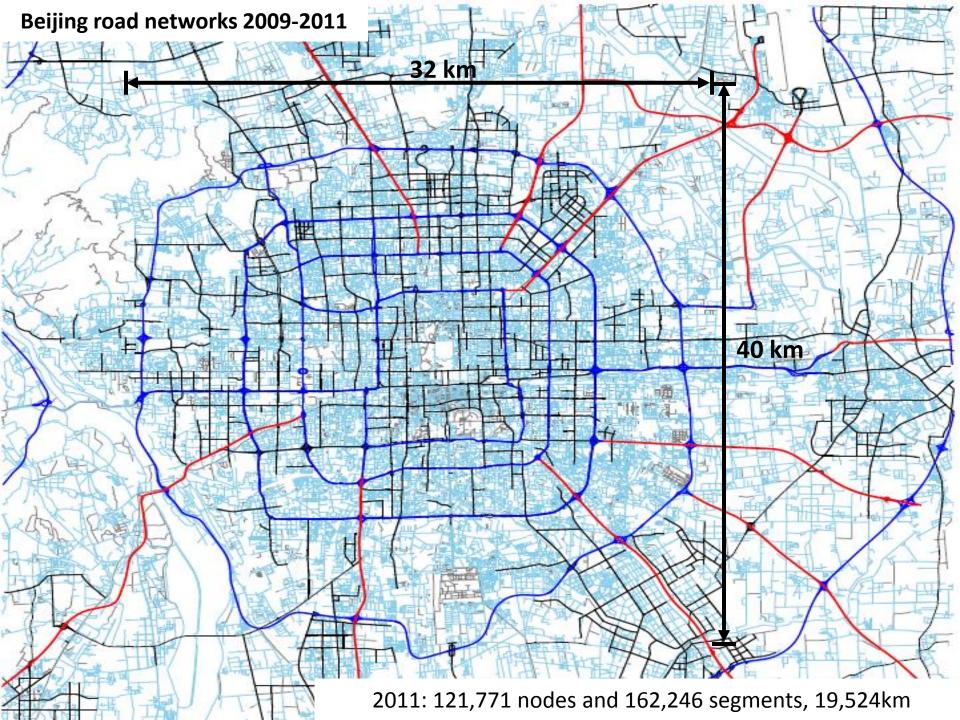
#### Scope

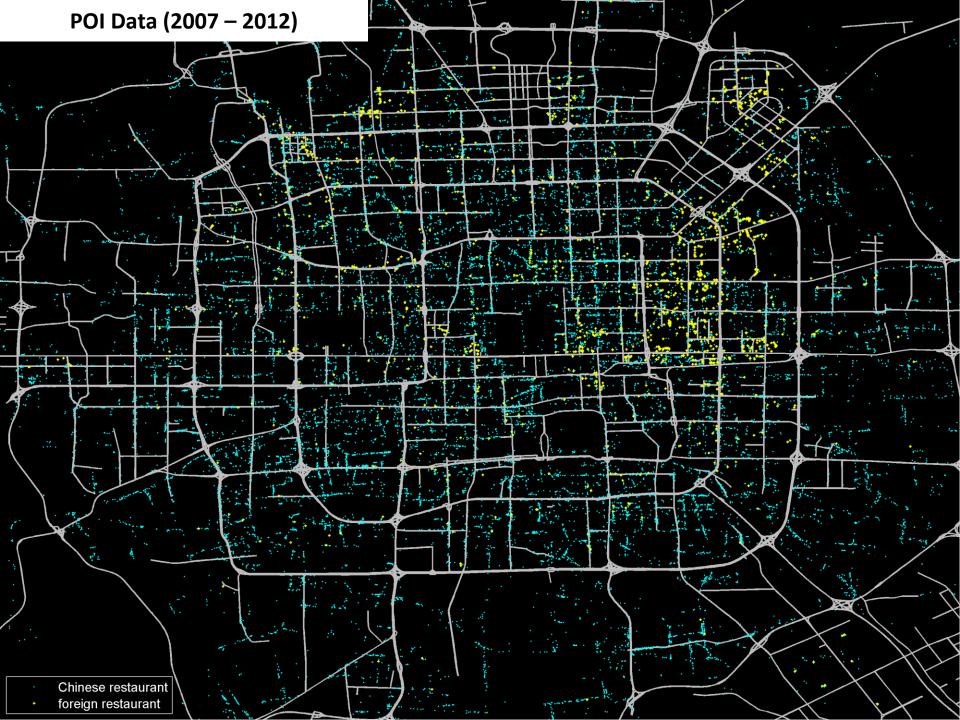
- Traffic flow
- Human mobility
- Energy consumption
- Environment
- Economic
- Populations
- .....



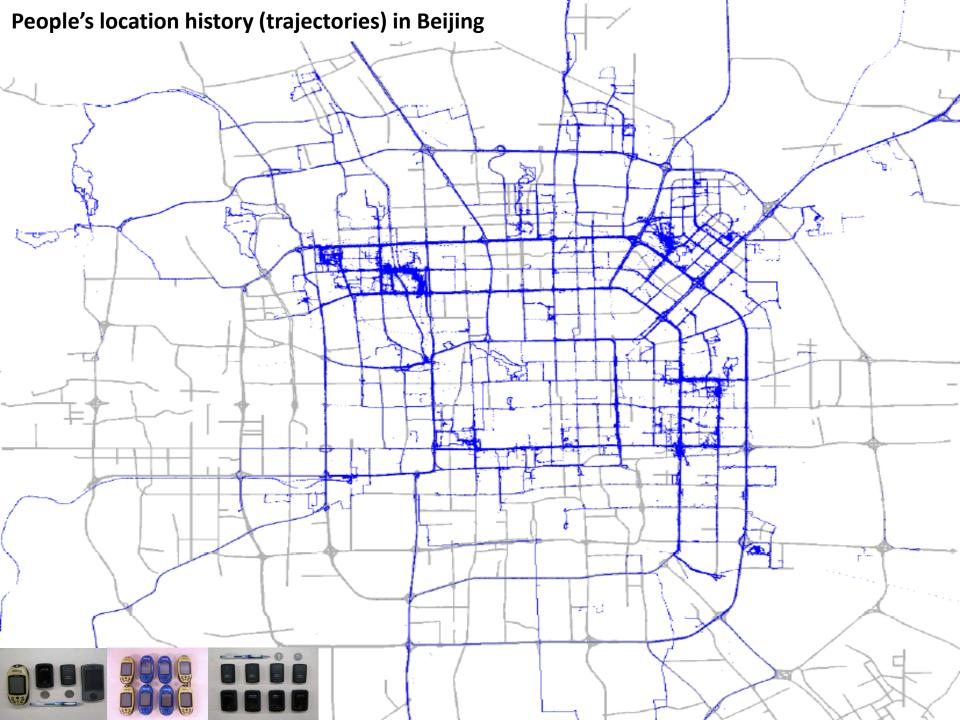
### Data available

- Mobile phone signal
- GPS traces of vehicles and people
- Ticketing data in public transportation systems
- User-generated content
- Transportation sensor networks
  - Camera and loop sensors
  - Parking lots
- Environmental sensor network
  - Air quality
  - Temperature
  - Radiation
- Transaction records of credit cards

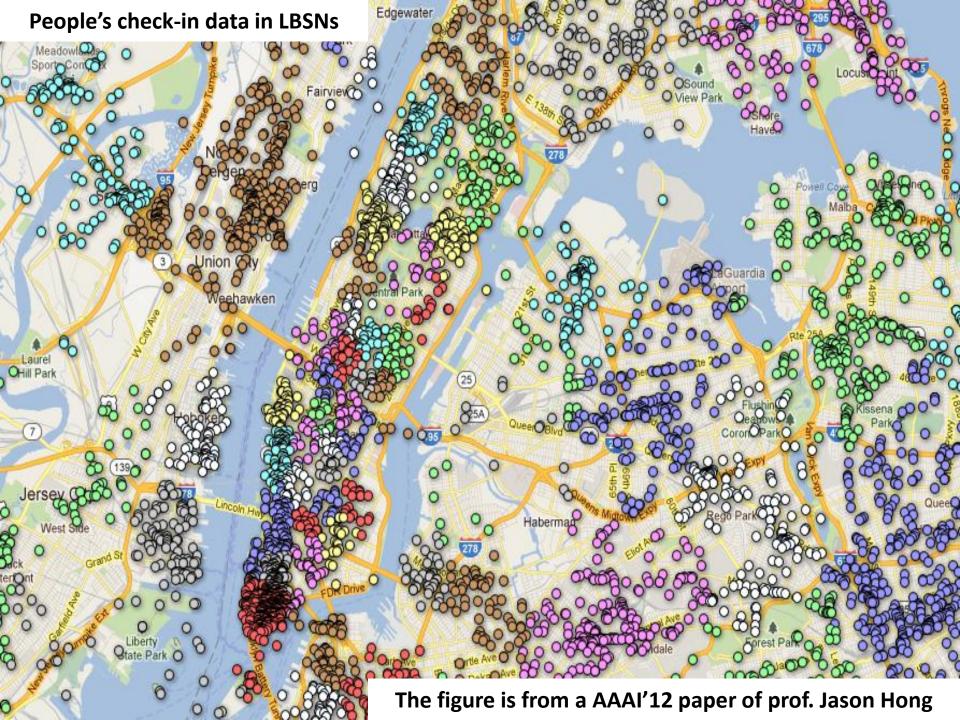














#### GPS-equipped taxis are mobile sensors

Images of Singapure 01 August 2009 www.SingaporeShots.com Occupied Taxis

Non-occupied Taxis

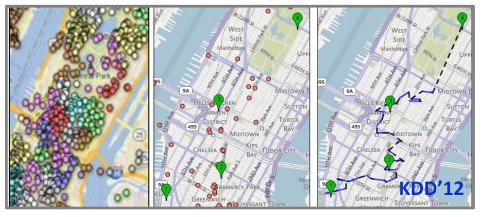
121

Parked Taxis

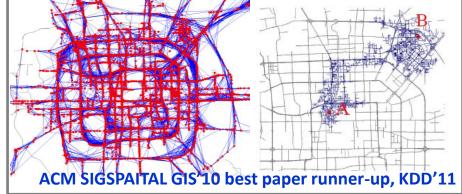
Total

12:00

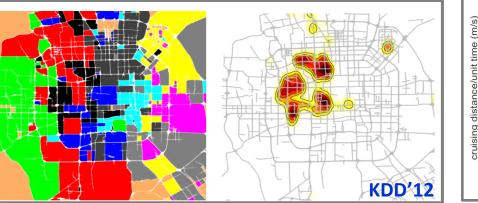
| Rank | Cities          | Countries/Regions | Taxicabs |
|------|-----------------|-------------------|----------|
| 1    | The Mexico city | Mexico            | 103,000  |
| 2    | Bangkok         | Thailand          | 80,000   |
| 3    | Seoul           | South Korea       | 73,000   |
| 4    | Beijing         | China             | 67,000   |
| 5    | Tokyo           | Japan             | 60,000   |
| 6    | Shanghai        | China             | 50,000   |
| 7    | New York City   | USA               | 48,300   |
| 8    | Buenos Aires    | Argentina         | 45,000   |
| 9    | Moscow          | Russia            | 40,000   |
| 10   | St.Paul         | Brazil            | 37,000   |
| 11   | Tianjin         | China             | 35,000   |
| 12   | Taipei          | Taiwan            | 31,000   |
| 13   | New Taipei City | Taiwan            | 23,500   |
| 14   | Singapore       | Singapore         | 23,000   |
| 15   | Osaka           | Japan             | 20,000   |
| 16   | Hong Kong       | China             | 18,000   |
| 17   | Wuhan           | China             | 18,000   |
| 18   | London          | England           | 17,000   |
| 19   | Harbin          | China             | 17,000   |
| 20   | Guangzhou       | China             | 16,000   |
| 21   | Shenyang        | China             | 15,000   |
| 22   | Paris           | France            | 15,000   |



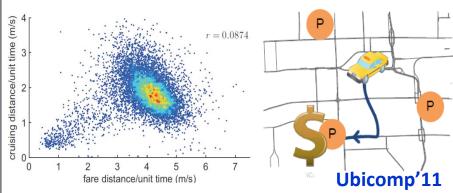
**Route Construction from Uncertain Trajectories** 



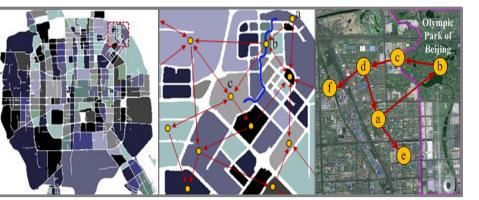
**Finding Smart Driving Directions** 



**Discovery of Functional Regions** 

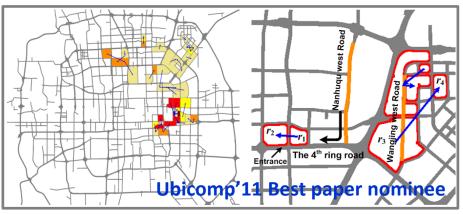


Passengers-Cabbie Recommender system



**Anomalous Events Detection** 

**KDD'11** 



**Urban Computing for Urban Planning** 

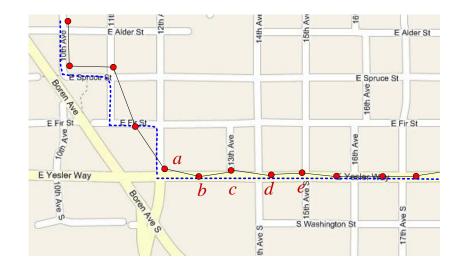
### Outline

- Background
- Fundamental algorithms
- Application scenarios for end users
  - Driving direction service
  - Taxi recommendations
  - Travel itinerary suggestion
- Application scenarios for governments
  - Anomaly detection
  - Glean the problematic urban planning
  - Discover regions of different functions

# **Fundamental Algorithms**

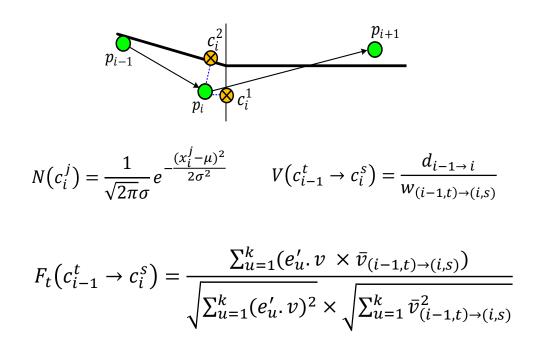
- Map-matching
- Map segmentation
- Stay point detection

- Project a trajectory onto a road network
- A fundamental step in many transportation applications
  - Navigation and driving
  - Traffic analysis
  - Taxi dispatching and recommendations



Yin Lou, Chengyang Zhang, Yu Zheng. Map-Matching for Low-Sampling-Rate GPS Trajectories. ACM SIGSPATIAL GIS 2009

- Challenges (low-sampling rate)
- Solution
  - Consider both local and global information
  - Incorporating both spatial and temporal features

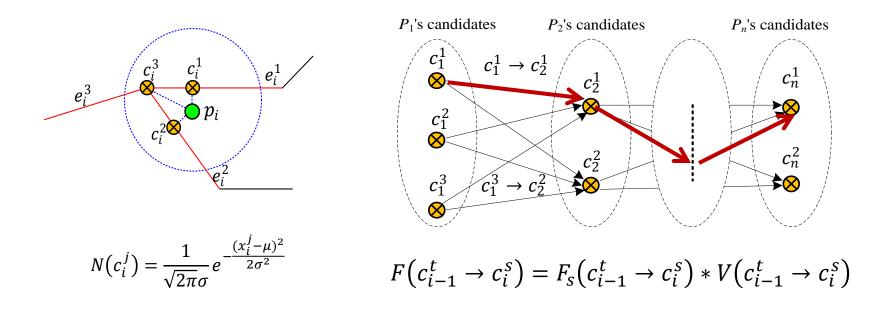




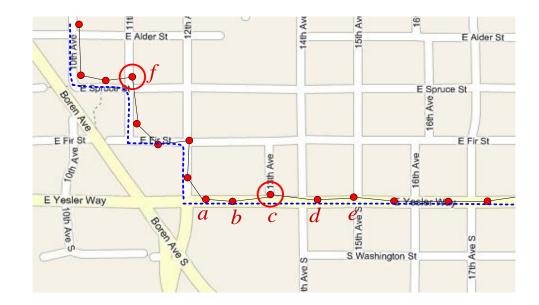


#### Yin Lou, Chengyang Zhang, Yu Zheng. Map-Matching for Low-Sampling-Rate GPS Trajectories. ACM SIGSPATIAL GIS 2009

- Basic Solution
  - Find candidate road segments for each GPS point
  - Calculate local and global features
  - Dynamic programing



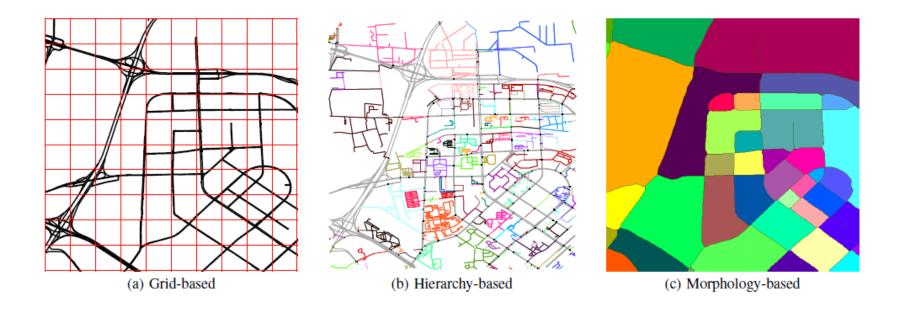
- Advanced solution
  - Mutual influence
  - Weighted influence



Jing Yuan, Yu Zheng, et al. <u>An Interactive-Voting based Map Matching Algorithm</u>. In MDM 2010.

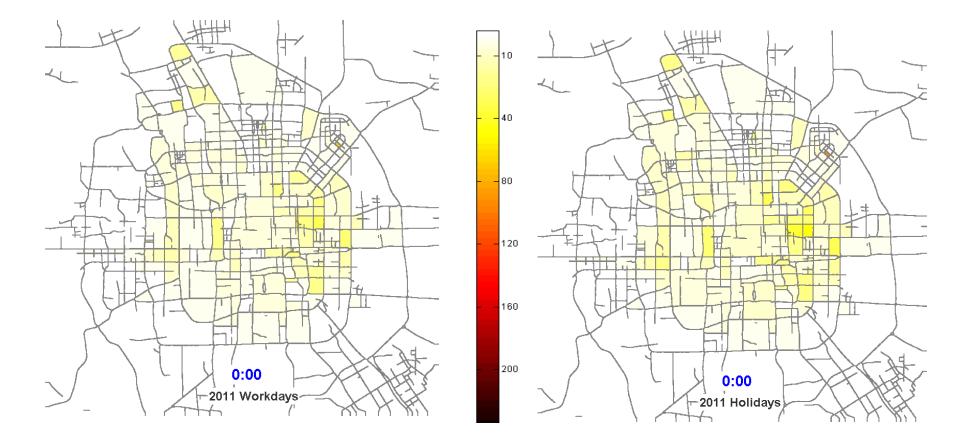
## Map Segmentation

- Partition a map into disjoint regions
- Three possible methods



Nicholas Jing Yuan, Yu Zheng, Xing Xie. <u>Segmentation of Urban Areas Using Road Networks</u>. MSR-TR-2012-65. 2012.

## Heat Maps of Beijing (2011)



Nicholas Jing Yuan, Yu Zheng, Xing Xie. <u>Segmentation of Urban Areas Using Road Networks</u>. MSR-TR-2012-65. 2012.

# Map Segmentation

• Morphology-based segmentation method

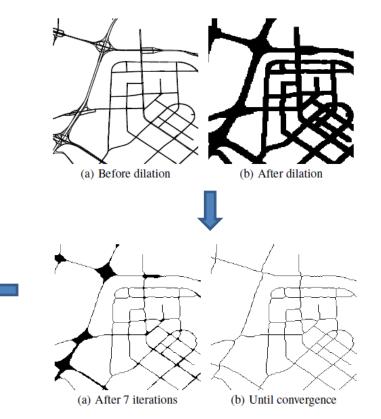
 $x_2$ 

х

 $\chi_{\varDelta}$ 

х

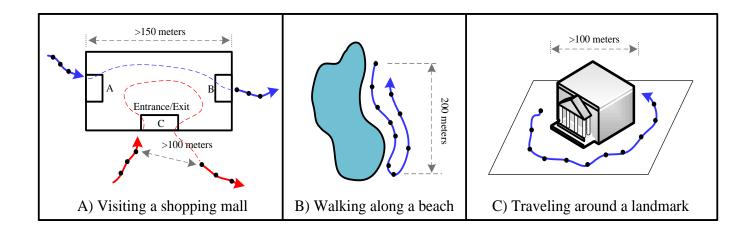
- Represent a road network with a raster model
- Dilation
- Thing
- Connected component labeling



# **Stay Point Detection**

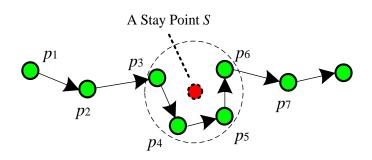
### • Stay point:

- A location where an individual has stayed for a while (t) within a distance threshold (d)
- Carry semantic meanings than other points
- Does not only mean remaining stationary



# **Stay Point Detection**

- Applications
  - Modeling human location history or human mobility
  - Parking place detection

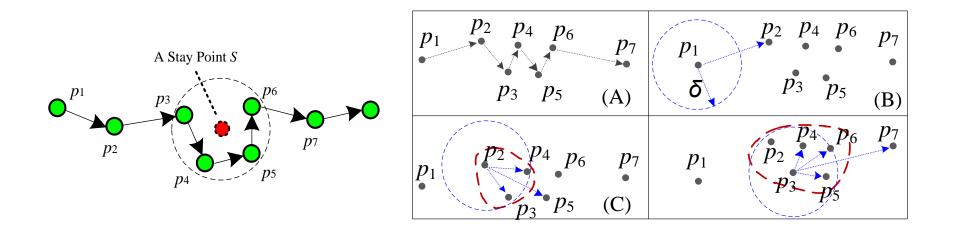




# **Stay Point Detection**

### Solution

- A sort of density based clustering
- Two thresholds: t and d
- Two version presented in two papers



Quannan Li, Yu Zheng, et al. Mining user similarity based on location history. ACM SIGSPATIAL GIS 2008 Jing Yuan, Yu Zheng, et al, Where to Find My Next Passenger?, UbiComp 2011

# References

#### Map matching

- Yin Lou, Chengyang Zhang, Yu Zheng, et al. Map-Matching for Low-Sampling-Rate GPS Trajectories. ACM SIGSPATIAL GIS 2009.
- Jing Yuan, Yu Zheng, et al. An Interactive-Voting based Map Matching Algorithm. In MDM 2010.
- Map segmentation
  - Nicholas Jing Yuan, Yu Zheng, Xing Xie. Segmentation of Urban Areas Using Road Networks. MSR-TR-2012-65. 2012
- Stay point detection
  - Quannan Li, Yu Zheng, et al. Mining user similarity based on location history.
     ACM SIGSPATIAL GIS 2008
  - Jing Yuan, Yu Zheng, et al, Where to Find My Next Passenger?, UbiComp 2011

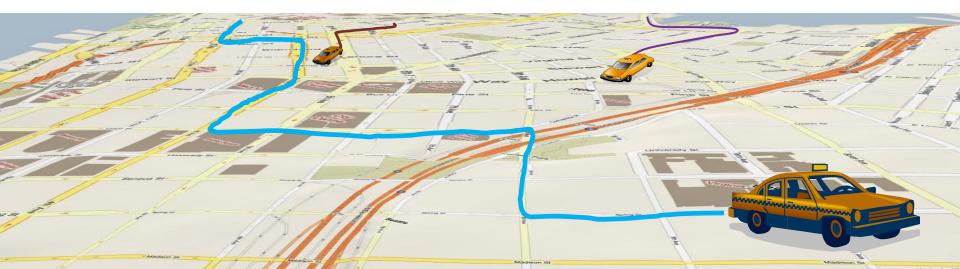
## Outline

- Background
- Fundamental algorithms

#### Application scenarios for end users

- Driving direction service
- Taxi recommendations
- Travel itinerary suggestion
- Other social applications
- Application scenarios for governments
  - Anomaly detection
  - Glean the problematic urban planning
  - Discover regions of different functions

# **Finding Smart Driving Directions**





#### Driving Direction Based on Taxi Trajectories

- A time-dependent, user-specific, and self-adaptive driving directions service using
  - GPS trajectories of a large number of taxicabs
  - GPS log of an end user



**Physical Routes** 

Traffic flows

Drive behavior

ACM SIGSPATIAL GIS 2010 best paper runner-up award and a publication on KDD 2011



### Driving Direction Based on Taxi Trajectories

Driver A



Driver A



Driver B





### Driving Direction Based on Taxi Trajectories

Driver B



Log user B's driving routes for 1 month

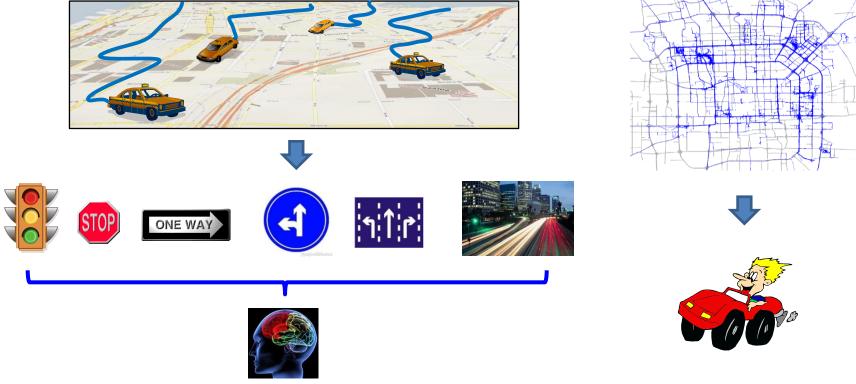
#### Driver B





### Motivation

- Taxi drivers are experienced drivers
- GPS-equipped taxis are mobile sensors
- GPS logs imply the drive behavior of a user

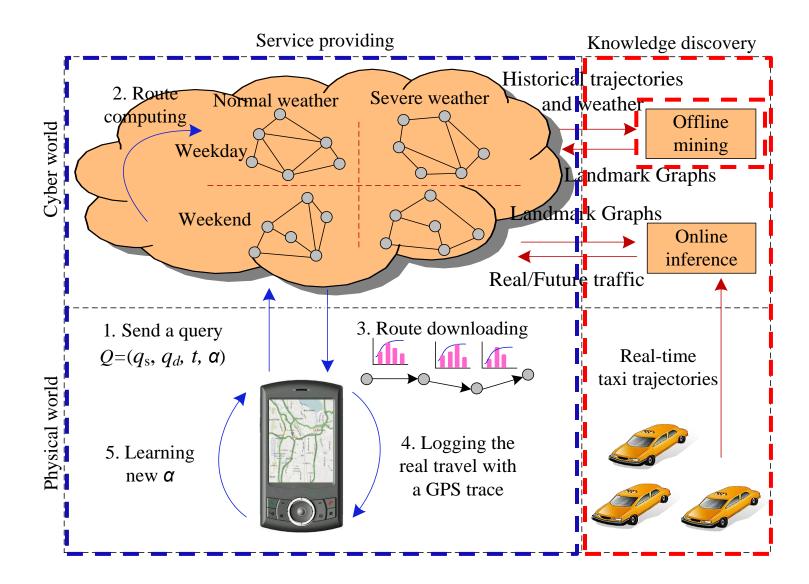


Human Intelligence + Traffic patterns

**Drive behavior** 



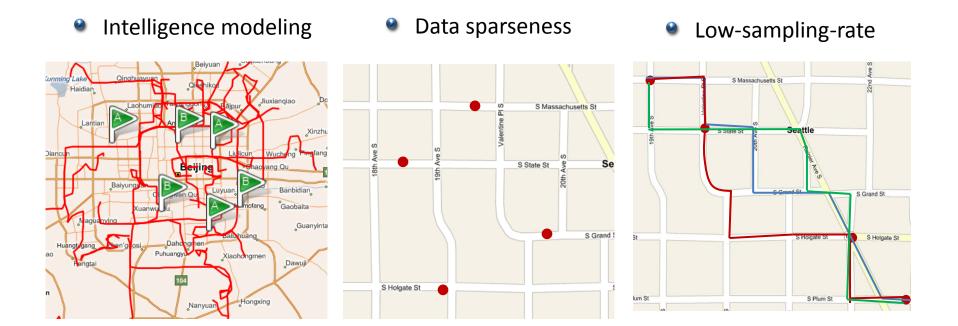
## System Overview





### Offline Mining

Challenges



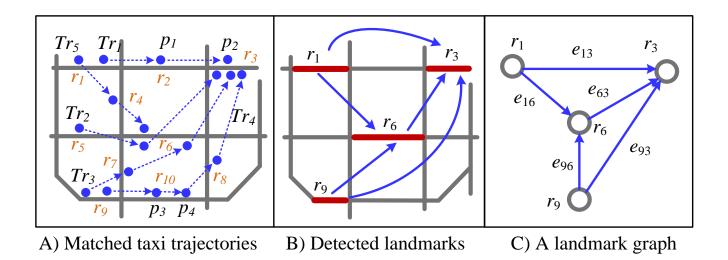


## Offline Mining

#### Detecting landmarks

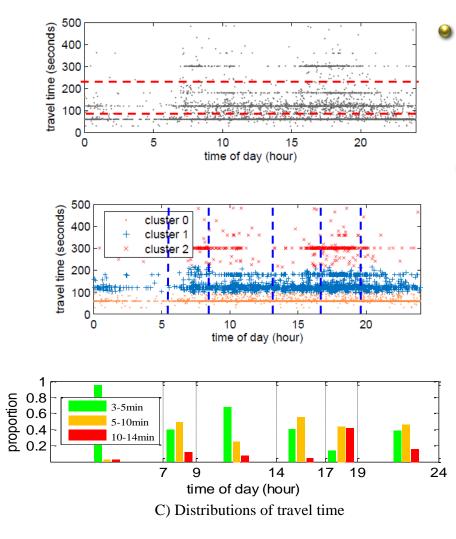
- A landmark is a frequently-traversed road segment
- Top k road segments, e.g. k=4
- Building landmark edges
  - Number of transitions between two landmark edges >  $\delta$

E.g., 
$$\delta = 1$$

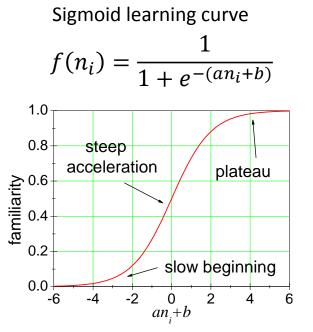




# Mining Taxi Drivers' Knowledge



- Learning travel time distributions for each landmark edge
  - Traffic patterns vary in time on an edge
  - Different edges have different distributions
- Differentiate taxi drivers' experiences in different regions

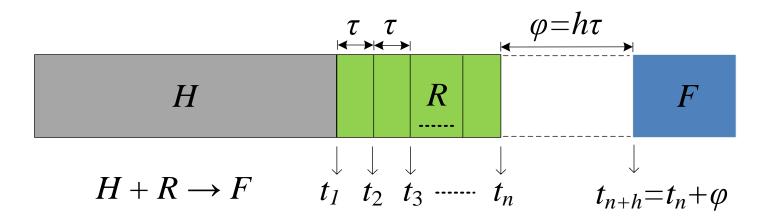




## **Online Inference**

Predict feature traffic conditions (F) on each landmark edge

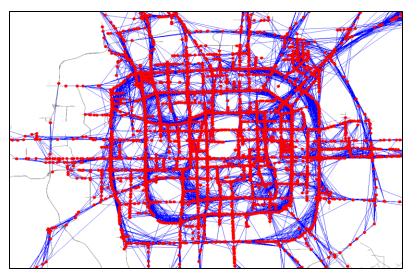
- based on the historical landmark graph (H) and
- the recent GPS trajectories of taxis (R)
- $\bullet$  using a *m*th-order Markov chain



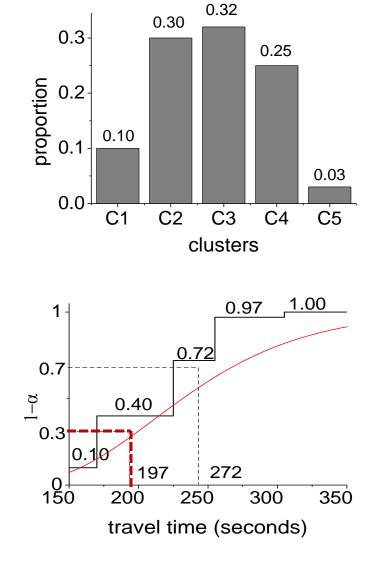
### **Route Computing**

#### Rough routing

- Given a user query  $(q_s, q_d, t, \alpha)$
- Search a landmark graph for a rough route: a sequence of landmarks
- Using a time-dependent routing algorithm



A landmark graph



### **Route Computing**

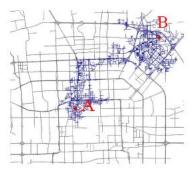
#### Refined routing

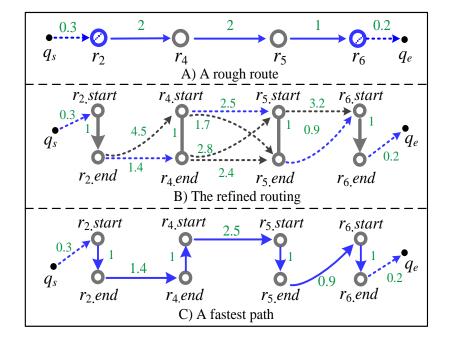
- Find out the fastest path connecting the consecutive landmarks
- Can use speed constraints
- Dynamic programming

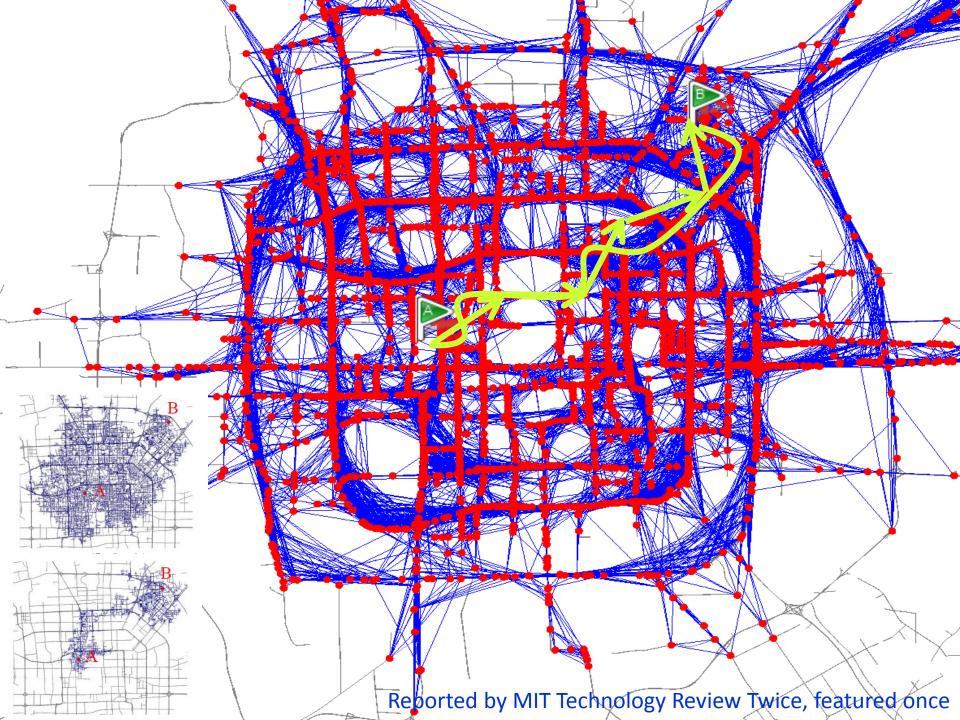
#### Very efficient

- Smaller search spaces
- Computed in parallel









### Learning an end user's drive behavior

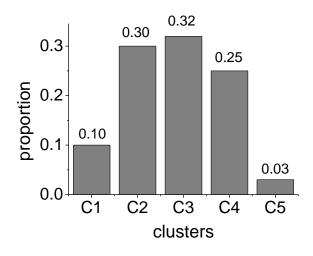
#### Drive behavior

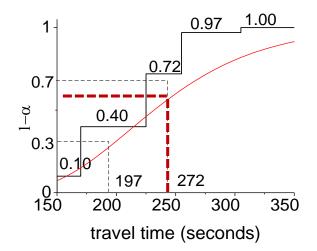
- Vary in persons and places
- Vary in progressing driving experiences
- Custom factor:  $\boldsymbol{\alpha} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$

$$\widetilde{\alpha_i}^{(M)} = CDF_i(T_i^{(M)})$$

Weighted Moving Average:

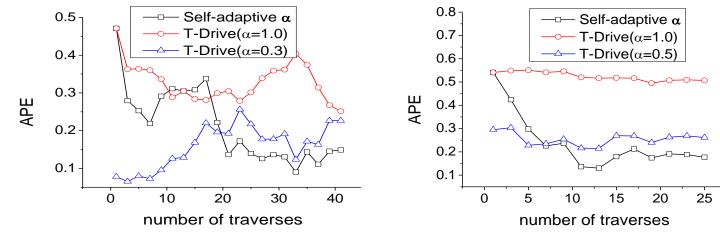
$$\alpha_i^{(M+1)} = \frac{\sum_{j=1}^n j \widetilde{\alpha_i}^{(M-n+i)}}{\sum_{j=1}^n j}$$
$$= \frac{2}{n(n+1)} \sum_{j=1}^n j \widetilde{\alpha_i}^{(M-n+j)}$$



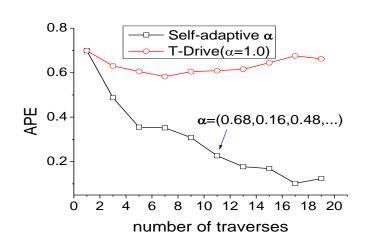


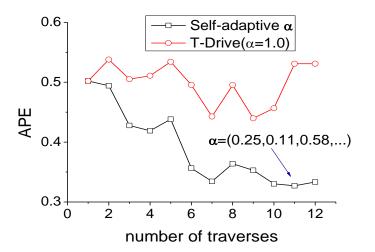
## **Evaluation on Routing**

User A on different routes



Two users





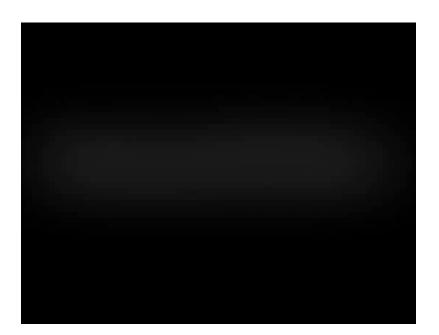


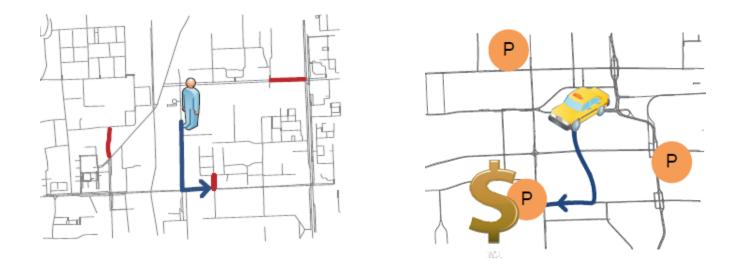
### Results

#### • More effective

- 60-70% of the routes suggested by our method are faster than Bing and Google Maps.
- Over **50%** of the routes are **20+%** faster than Bing and Google.
- On average, we save **5** minutes per 30 minutes driving trip.
- More efficient



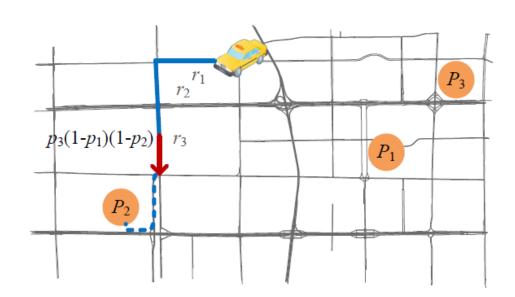




Jing Yuan, Yu Zheng, et al. <u>Where to Find My Next Passenger?</u>, UbiComp 2011

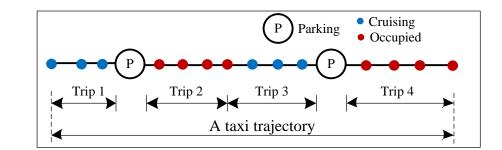
- Two-folder recommendations
  - Users: some road segments or parking places around them
  - Taxi drivers: top-k parking places and the trips



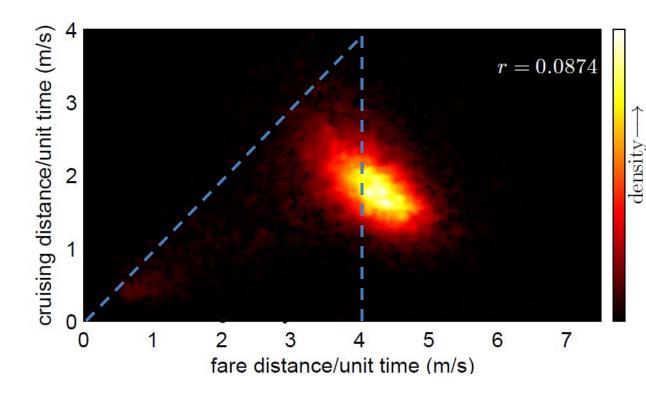


Jing Yuan, Yu Zheng, et al. Where to Find My Next Passenger? , UbiComp 2011

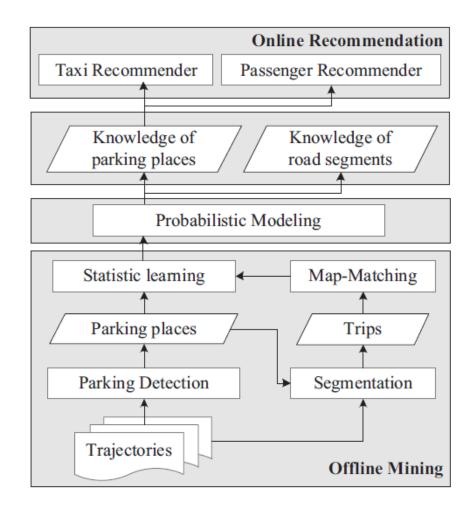
- Concepts
- Observations



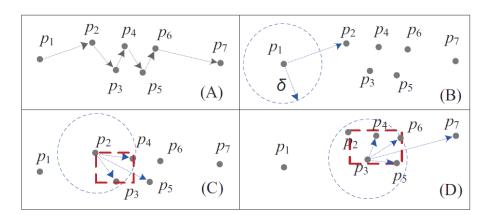
"Taxi drivers prefer to park at somewhere rather than cruising on streets when having no passengers"

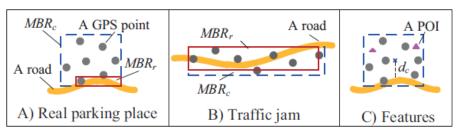


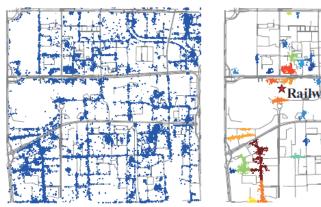
• Framework

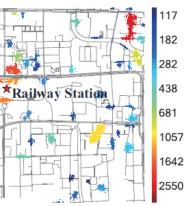


- Parking place detection
  - Stay points detection
    - Just candidates
    - Could be traffic jams/lights
  - Filtering
    - Supervised classification
    - Features
      - Spatio-temporal features
      - POIs
      - Collaborative features
  - Density-based clustering









- Statistic learning
  - Knowledge on road segments

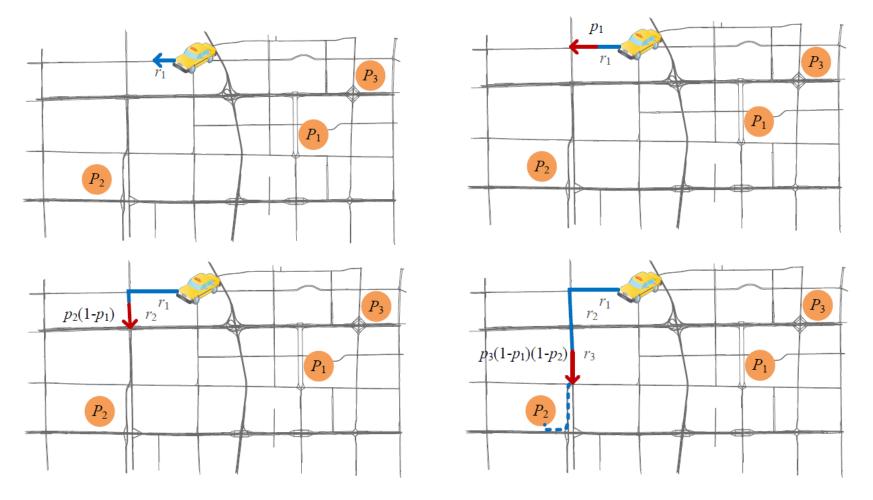
 $\Pr(\mathcal{C}; r|t) \qquad \Pr(\mathcal{O}; r|t) \qquad \Pr(\mathcal{C} \leadsto \mathcal{O}|r, t)$  $\Pr(d_a < D_N \le d_b | r, t)$ 

Knowledge in a parking place

 $\Pr(\mathcal{P}^{\underline{(t_a,t_b]}}) \mathcal{O} | T_P > 0, t)$ 

- Probability modeling
  - Taxi drivers
    - Maximum the profit of a taxi driver in a unit time
    - What is a good parking place
      - High probability to take a passenger in it and on the way towards it
      - Pick up the next passenger quickly
      - The fare distance/duration is big
  - Users
    - High probability to find a vacant taxi
    - A short waiting time

• Probability modeling for the taxi recommender



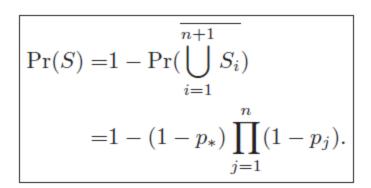
• Probability model for taxi recommender

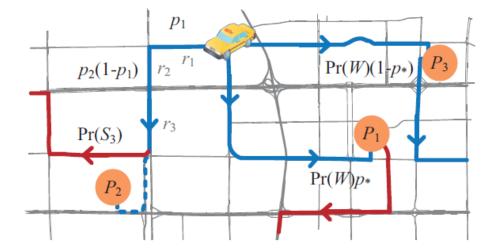
$$S = \bigcup_{i=1}^{n+1} S_i,$$

$$\Pr(S_i) = \begin{cases} p_1, & i = 1\\ p_i \prod_{j=1}^{i-1} (1-p_j), & i = 2, 3, \dots, n, \\ p_* \prod_{j=1}^n (1-p_j), & i = n+1. \end{cases}$$

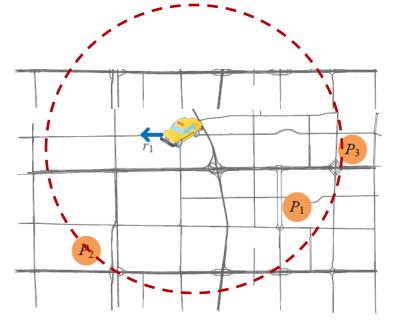
$$p_i = \Pr(\mathcal{C} \leadsto \mathcal{O} | r_i, T_0 + t_i)$$

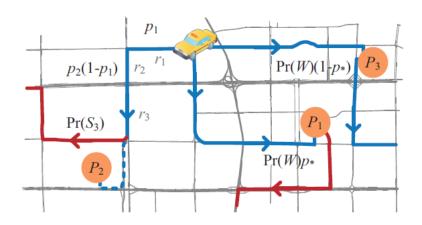
$$p_* = \Pr(\mathcal{P}^{\underbrace{(0, t_{max}]}{\longrightarrow}} \mathcal{O} | T_0 + t_n)$$





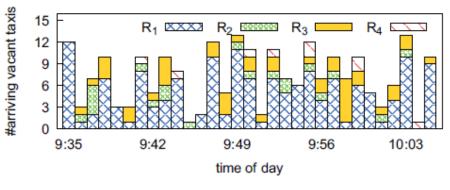
- NP hard problem (Approximation)
  - Select top k parking places close to a taxi
  - Find the shortest path to each parking place
  - Compute the probability of taking a passenger for each choice





- More challenges
  - Estimate the waiting time a passenger on a road segment
  - Duration that a taxi would wait in a parking place
- Main ideas
  - Suppose the arrival of taxis on a road segment follows a poison distribution
  - Estimate the average time interval between two arrivals

#### Evaluation



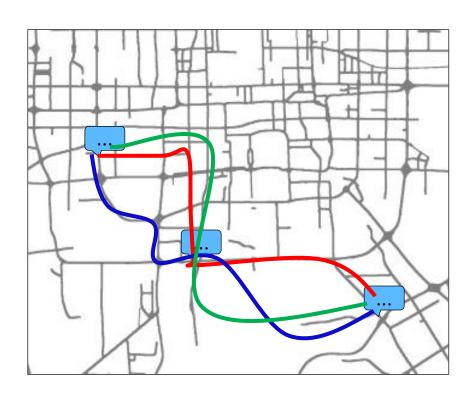
(a) weekday, Suzhou Street

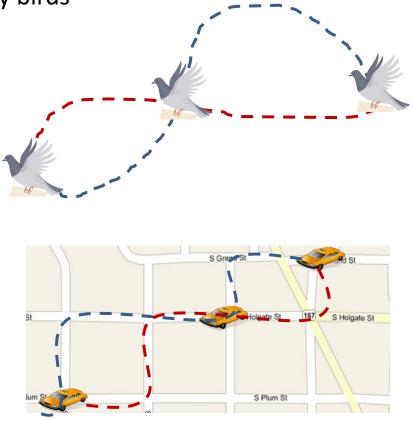
| area           | Zhichun Rd. |       |       |       | Suzhou St. |       |       |       |
|----------------|-------------|-------|-------|-------|------------|-------|-------|-------|
| time           | 8:40-9:10   |       |       |       | 9:35-10:05 |       |       |       |
| road           | $R_1$       | $R_2$ | $R_3$ | $R_4$ | $R_1$      | $R_2$ | $R_3$ | $R_4$ |
| #              | 20.8        | 3.3   | 0.8   | 0.8   | 128.3      | 35.0  | 16.7  | 7.5   |
| Rank           | 1           | 2     | 3     | 3     | 1          | 2     | 3     | 4     |
| $Rank_p^d$     | 2           | 1     | 4     | 3     | 1          | 3     | 2     | 4     |
| $Rank_t^d$     | 2           | 1     | 3     | 4     | 1          | 2     | 4     | 3     |
| $Rank_p^w$     | 1           | 3     | 2     | 4     | 1          | 3     | 2     | 4     |
| $Rank_t^{w}$   | 1           | 2     | 4     | 3     | 2          | 1     | 3     | 4     |
| $Rank_p^{d,w}$ | 1           | 2     | 3     | 4     | 1          | 3     | 2     | 4     |
| $Rank_t^{p}$   | 1           | 2     | 4     | 3     | 1          | 2     | 3     | 4     |



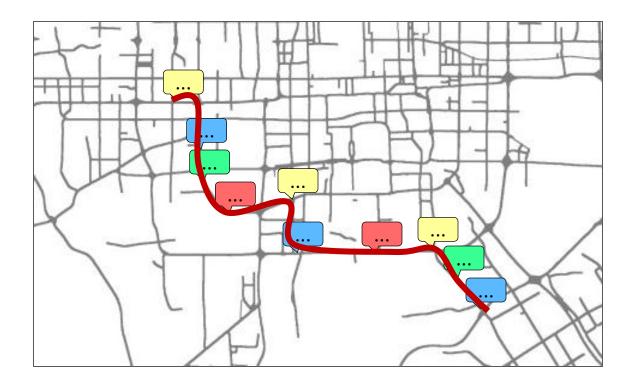
- What's the next
  - Large-scale real-time taxi ridesharing
    - Constraints: users, taxi drivers, government
    - NP complete problem
    - Approximation: search and optimization problem
  - On-site Discussion

- Uncertain trajectories
  - check-ins or geo-tagged photos
  - Taxi trajectories, trails of migratory birds

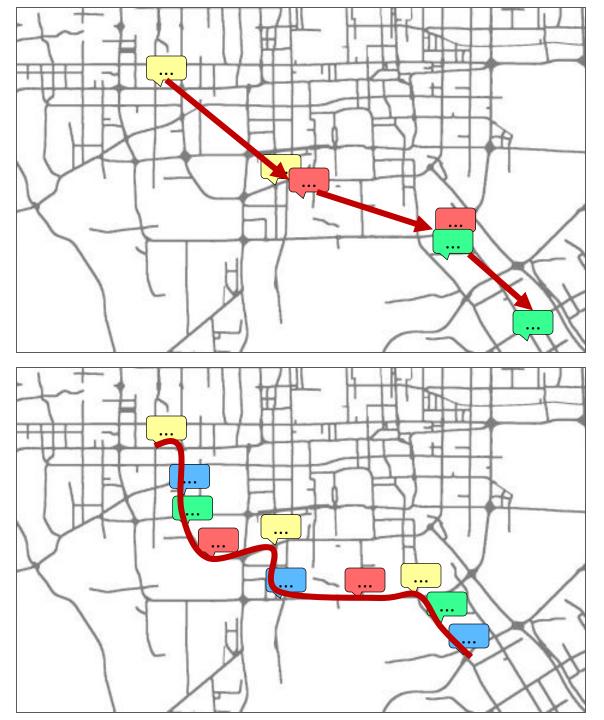




- Goal: Using collective knowledge: The route may not exist in the dataset
  - − Mutual reinforcement learning (*uncertain + uncertain → certain*)

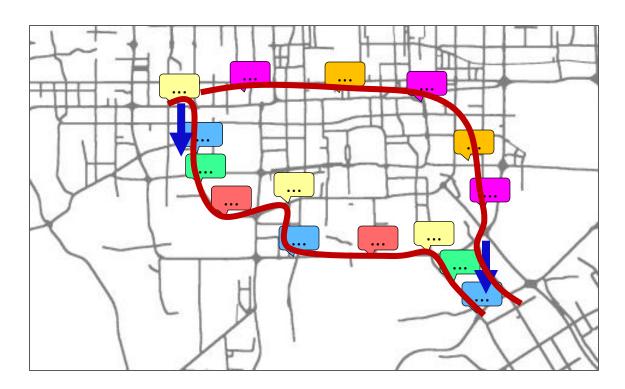






Mutual reinforcement construction

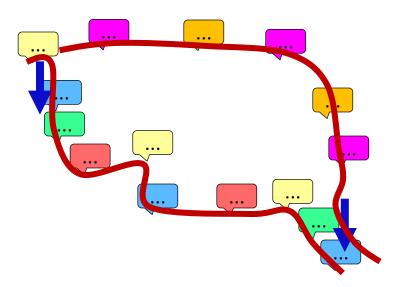
- Problem
  - Given a corpus of uncertain trajectories and
  - a user query: some point locations and a time constraint
  - Suggest the top k most popular routes



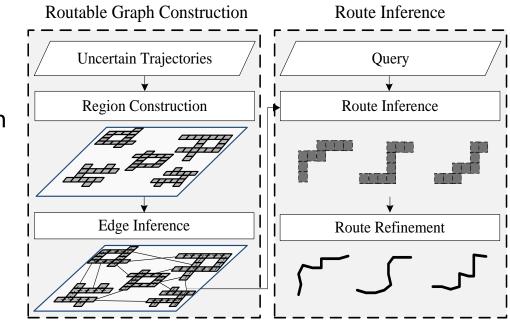
- In a road network
  - Accurate and relatively easy
  - Limited applications
  - Kai Zheng, Yu Zheng, et al.
     *Reducing Uncertainty of Low- Sampling-Rate Trajectories*.
     ICDE 2012.



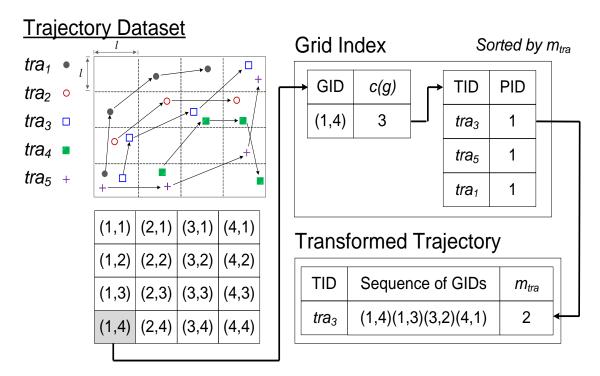
- In a free space
  - Coarse and difficult
  - Wide range of applications
  - Ling-Yin Wei, Yu Zheng, et al.
     Constructing Popular Routes from Uncertain Trajectories.
     KDD 2012.



- Framework (for free spaces)
  - Routable graph construction
    - Space partition and spatial indexing
    - Region construction
    - Edge inference
  - Route inference
    - Routing on the graph
    - Refinement

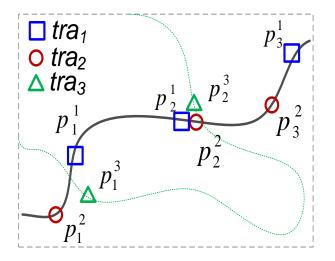


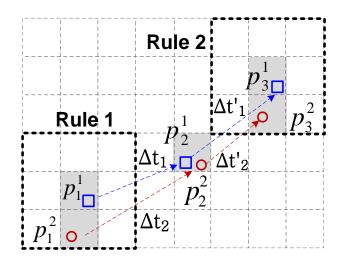
- Routable graph construction
  - Step 1: Space partition and spatial indexing
    - Approximation of an inferred route
    - Speed up the searching process



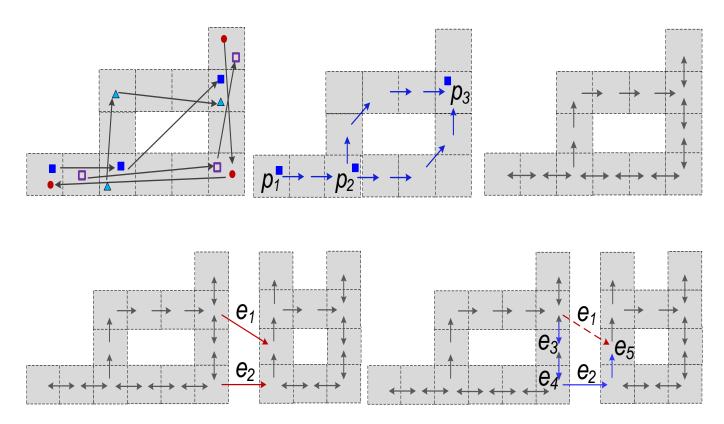
- Routable graph construction
  - Determine the correlated sub-trajectories
  - Using spatio-temporal correlations

$$\frac{|\Delta t_1 - \Delta t_2|}{\max\{\Delta t_1, \Delta t_2\}} \le \theta$$

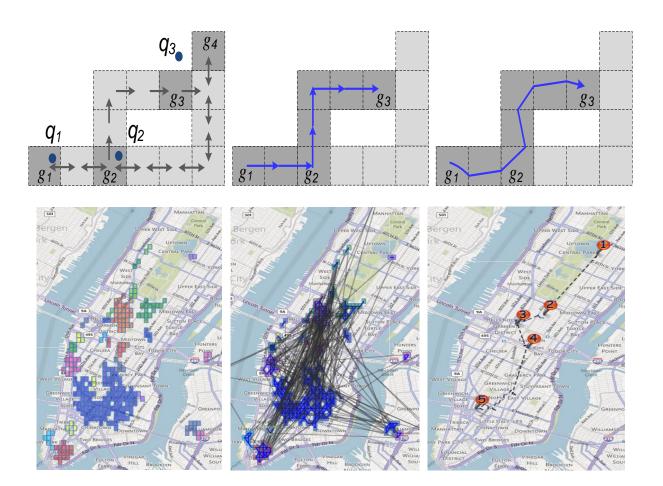




- Routable graph construction
  - Edge inference between grids in a region
  - Edge inference between grids from disconnected regions



• Route inference



## References

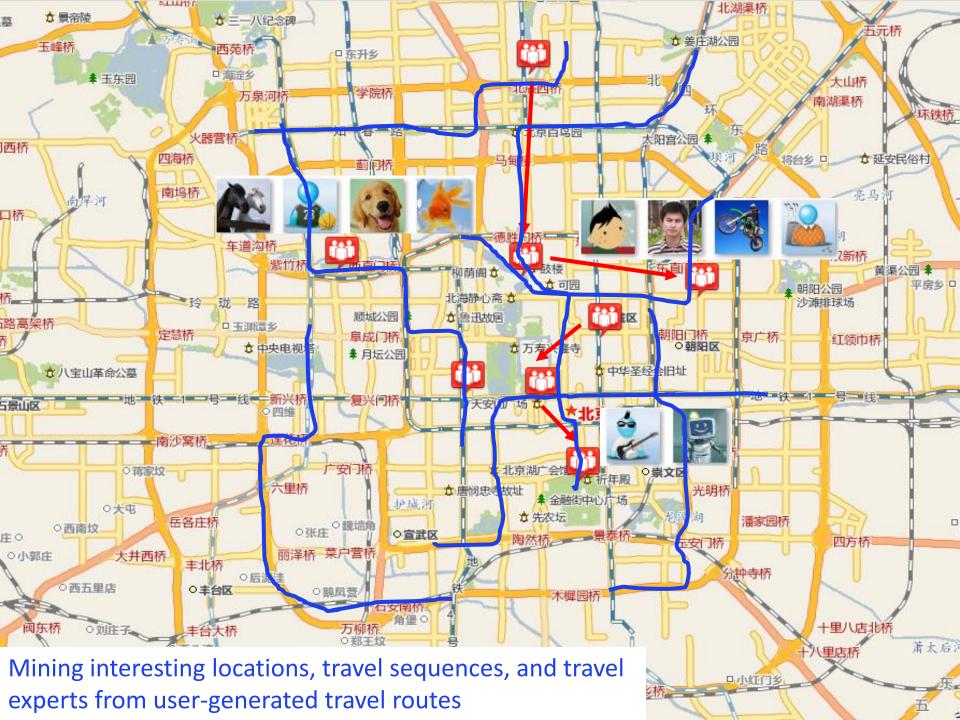
- Jing Yuan, Yu Zheng, et al. <u>T-Drive: Driving Directions Based on Taxi Trajectories</u>. ACM SIGSPATIAL GIS 2010.
- Jing Yuan, Yu Zheng, Xing Xie, Guangzhong Sun. <u>Driving with Knowledge from</u> <u>the Physical World</u>. KDD 2011.
- Jing Yuan, Yu Zheng, Xing Xie, Guangzhong Sun, <u>T-Drive: Enhancing Driving</u> <u>Directions with Taxi Drivers' Intelligence</u>. Transactions on Knowledge and Data Engineering.
- Jing Yuan, Yu Zheng, Liuhang Zhang, Xing Xie, Guangzhong Sun, <u>Where to Find</u> <u>My Next Passenger?</u>, UbiComp 2011.
- Nicholas Jing Yuan, Yu Zheng, Liuhang Zhang, Xing Xie. <u>T-Finder: A</u> <u>Recommender System for Finding Passengers and Vacant Taxis</u>. accepted by IEEE Transactions on Knowledge and Data Engineering.
- Ling-Yin Wei, Yu Zheng, Wen-Chih Peng, <u>Constructing Popular Routes from</u> <u>Uncertain Trajectories</u>. KDD 2012.
- Kai Zheng, Yu Zheng, et al. Reducing Uncertainty of Low-Sampling-Rate Trajectories. ICDE 2012.

### **Other Social Applications Using City Dynamics**

- Mining interesting locations and travel sequences
- Mining user similarity based on location history
- Location-activity recommendations

# Mining interesting locations and travel sequences from social media

[1] Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma. Mining interesting locations and travel sequences from GPS trajectories. In WWW 2009.



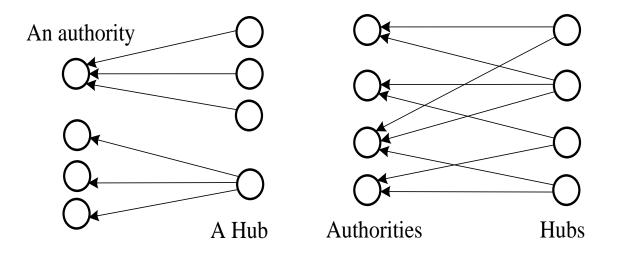


## Challenges

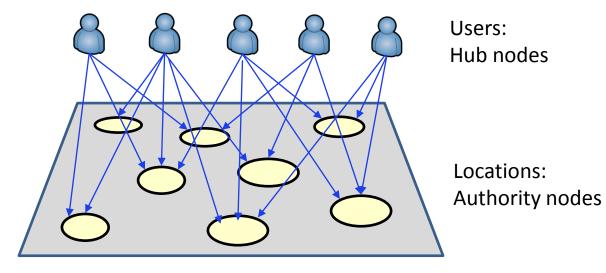
- What is a location? (geographical scales)
- The interest level of a location
  - does not only depend on the number of users who have visited this location
  - but also lie in these users' travel experiences
- How to determine a user's travel experience?
- The location interest and user travel
  - are region-related
  - are relative value (Ranking problem)

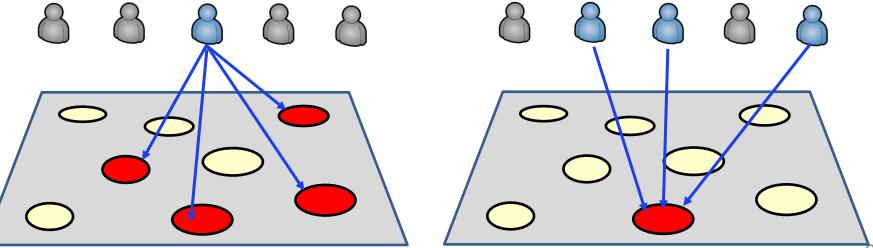
## Methodology

- HITS (hypertext induced topic search) model
  - Authority: a Web page with many in-links
  - Hub: is a page with many out-links
  - Mutual reinforcement relationship

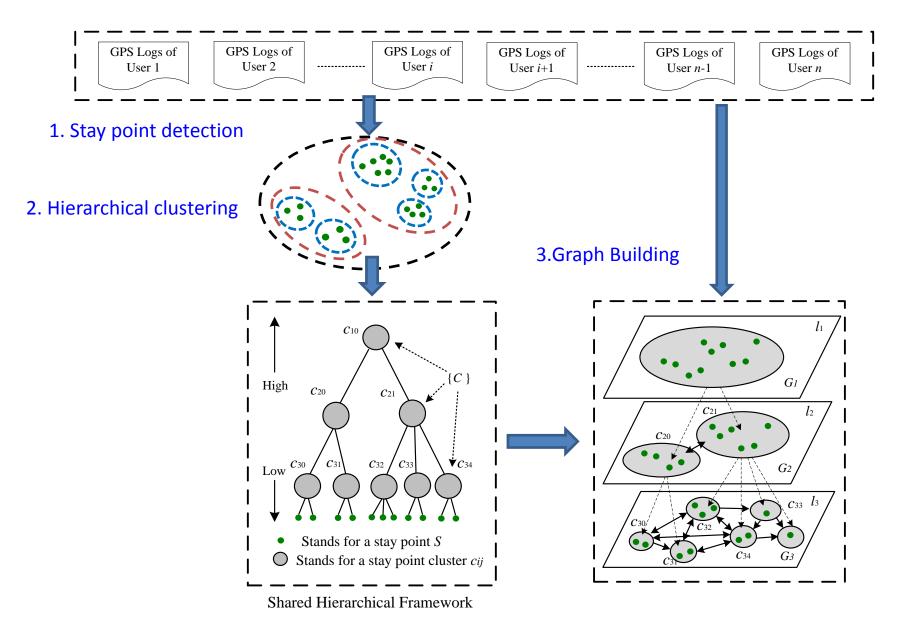


The HITS-based inference model





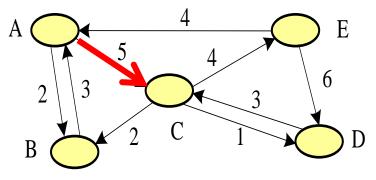
## Methodology



### **Detecting Interesting Travel Sequences**

Three factors determining the classical score of a sequence:

- Travel experiences (hub scores) of the users taking the sequence
- The location interests (authority scores) weighted by
- The probability that people would take a specific sequence



The classical score of sequence  $A \rightarrow C$ :

$$S_{AC} = 5 \times \left(\frac{5}{7} \times a_A + \frac{5}{8}a_C\right) + \sum_{u_k \in U_{AC}} h^k$$

 $a_A$  : Authority score of location A  $h^k$  : User k's hub score

 $a_{C}$  : Authority score of location C

References:

[1] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, Wei-Ying Ma. <u>Mining user</u> <u>similarity based on location history</u>. In ACM SIGSPATIAL GIS 2008. ACM Press: 1-10.



- Some naïve methods
  - Calculated the overlapped locations
  - The Cosine similarity
  - The Pearson similarity

$$U_1 = < m_1, m_2, \dots, m_j, \dots, m_N >$$
  
$$U_2 = < m'_1, m'_2, \dots, m'_j, \dots, m'_N >$$

$$M = \begin{array}{ccccc} & l_0 & l_1 & l_2 & l_3 & l_4 \\ u_0 & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ u_2 & & u_3 & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

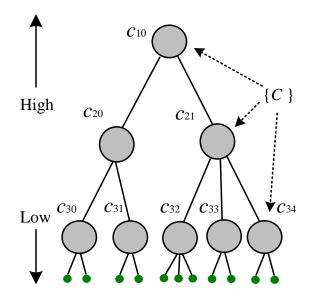
$$sim_{cosine}(u_1, u_2) = \frac{\sum_j m_j m_j'}{\sqrt{\sum_j m_j^2} \sqrt{\sum_j (m_j')^2}}$$

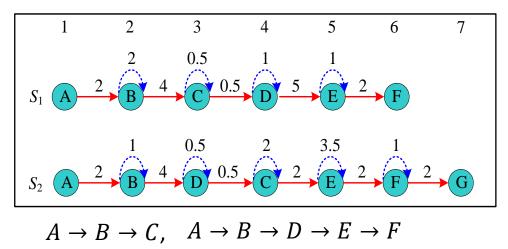
$$sim_{pearson}(u_1, u_2) = \frac{\sum_j (m_j - \overline{U}_1)(m'_j - \overline{U}_2)}{\sqrt{\sum_j (m_j - \overline{U}_1)^2 \sum_j (m'_j - \overline{U}_2)^2}}$$

### Computing user similarity

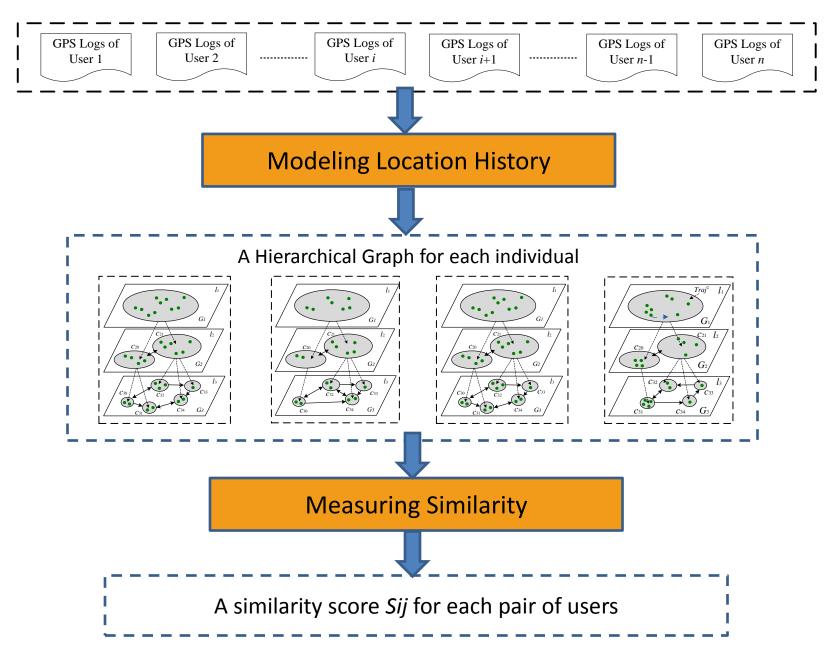
- Hierarchical properties
- Sequential properties
- Popularity of a location



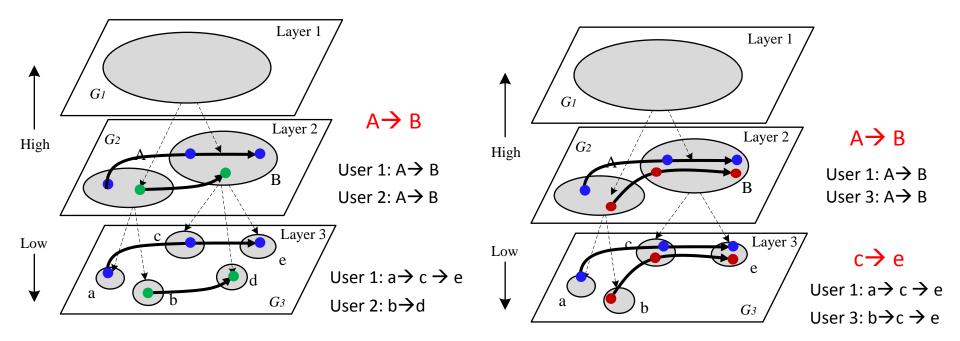




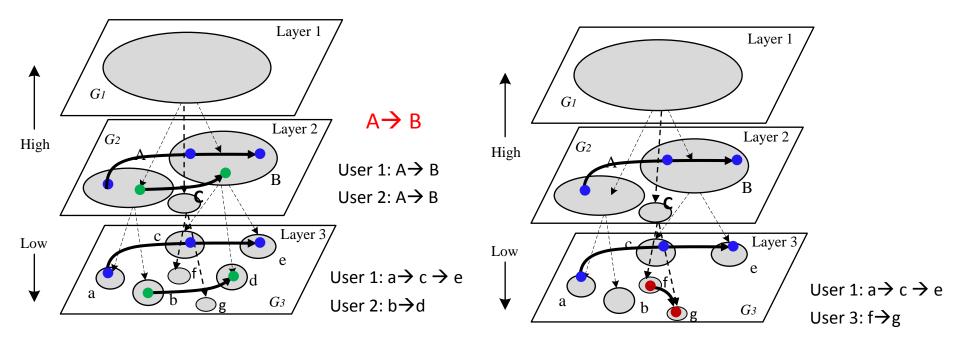
Part II: Understanding users



User 1 (●): User3 (●) > User 2 (●)



User 1 (●): User3 (●) < User 2 (●)



Part II: Understanding users

## Location-Activity Recommendation

 [1] Vincent Wenchen Zheng, Yu Zheng, Xing Xie, Qiang Yang. <u>Collaborative</u> <u>Location and Activity Recommendations With GPS History Data</u>. In WWW 2010), ACM Press: 1029-1038.

[2] Vincent W. Zheng, Yu Zheng, Xing Xie, Qiang Yang. <u>Learning from GPS</u> <u>Data for Mobile Recommendation</u>. Artificial Intelligence Journal.

Part II: Understanding locations – Generic recommendations

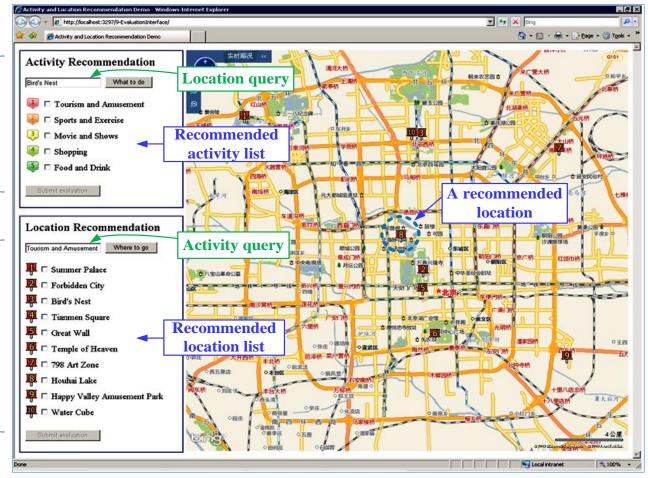
## Location-Activity Recommendation

## Q1: what can I do there if I visit some place?

(Activity recommendation given location query)

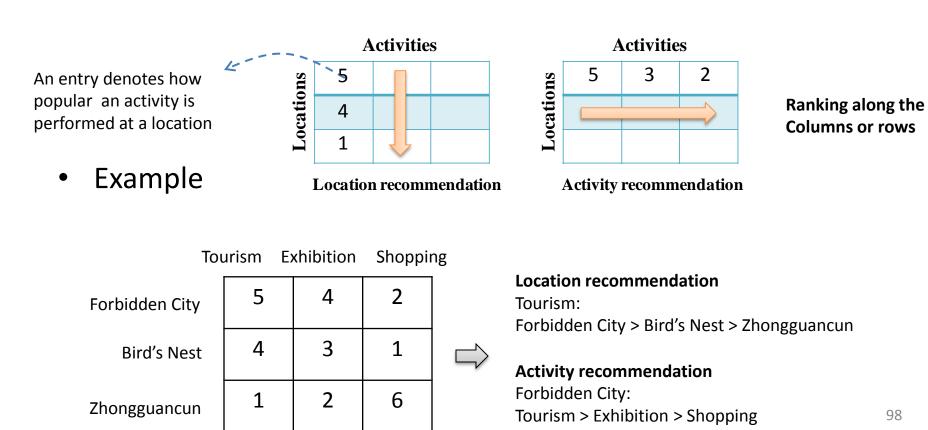
## Q2: where should I go if I want to do something?

(Location recommendation given activity query)



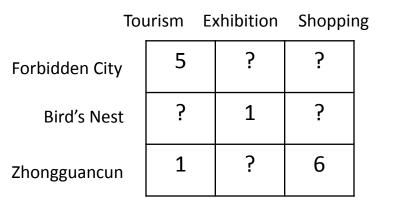
## **Problem Definition**

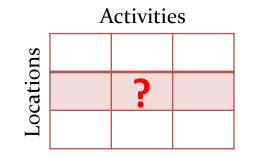
- How to well model the location-activity relation
  - Encode it into a matrix



## Location-Activity Recommendation

### Data sparseness (<0.6% entries are filled)

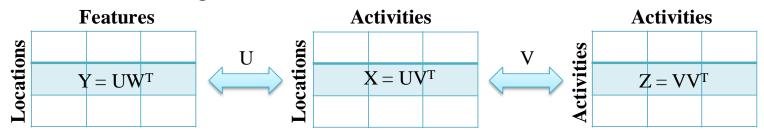




Part II: Understanding locations – Generic recommendations

## Solution: Collaborative Location and Activity Recommendation (CLAR)

• Collaborative filtering, with collective matrix factorization



Low rank approximation, by minimizing

$$\begin{split} L(U,V,W) &= \frac{1}{2} \parallel I \circ (X - UV^T) \parallel_F^2 + \frac{\lambda_1}{2} \parallel Y - UW^T \parallel_F^2 + \\ & \frac{\lambda_2}{2} \parallel Z - VV^T \parallel_F^2 + \frac{\lambda_3}{2} (\parallel U \parallel_F^2 + \parallel V \parallel_F^2 + \parallel W \parallel_F^2) \end{split}$$

where U, V and W are the low-dimensional representations for the locations, activities and location features, respectively. I is an indicatory matrix.

## References

- Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma. Mining interesting locations and travel sequences from GPS trajectories. In WWW 2009.
- Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, Wei-Ying Ma. <u>Mining user similarity based on location history</u>. ACM SIGSPATIAL GIS 2008.
- Vincent Wenchen Zheng, Yu Zheng, Xing Xie, Qiang Yang. <u>Collaborative</u> <u>Location and Activity Recommendations With GPS History Data</u>. In WWW 2010), ACM Press: 1029-1038.
- Vincent W. Zheng, Yu Zheng, Xing Xie, Qiang Yang. Learning from GPS Data for Mobile Recommendation. Artificial Intelligence Journal.

## Outline

- Background
- Fundamental algorithms
- Application scenarios for end users
  - Driving direction service
  - Taxi recommendations
  - Travel itinerary suggestion

### Application scenarios for government

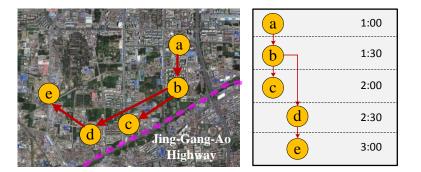
- Anomaly detection
- Glean the problematic urban planning
- Discover regions of different functions

- What is an anomaly in city dynamics
  - Traffic accidents, controls, under construction
  - Disasters: downpour, surface collapse, snow storms, fires
  - Celebrations, games, and big events
  - .....

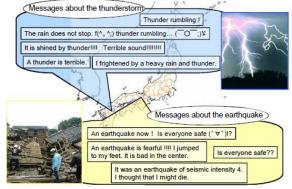
### • Data sources

- Transportation sensor data: GPS data, loop sensors
- Social media data: tweeters, weibo, foursquare
- Mobile phone data
- Web log data: query log

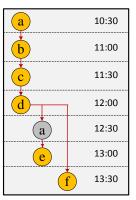
- Examples
  - Jing-Gang-Ao highway
  - Olympic park of Beijing
  - Earthquake in Japan
  - Singapore F-1 race







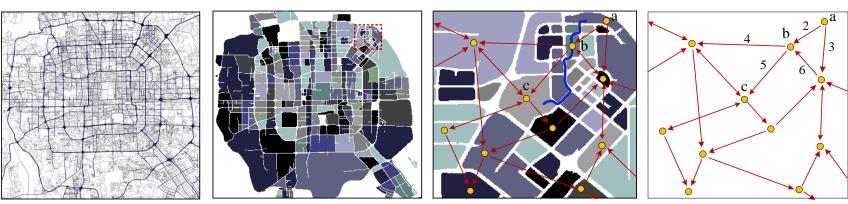




- Methods (depending on applications)
  - Spatio-temporal outlier detection methods
  - PCA, DP algorithms
- Publications
  - Wei Liu, Yu Zheng, et al. *Discovering Spatio-Temporal Causal Interactions in Traffic Data Streams*. KDD 2011

## Traffic modeling

- Map segmentation
- Building a region graph
- Identify three features for each  $< \#Obj, Pct_o, Pct_d >$



(a) Road network of Beijing

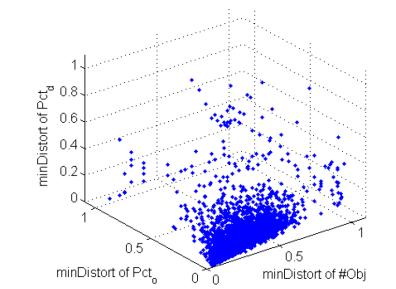
(b) Partitioned regions

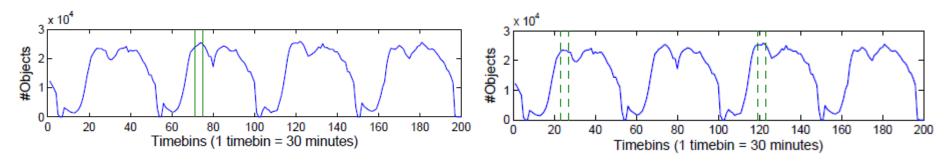
(c)Example of traffic among regions

(d) A graph of regions

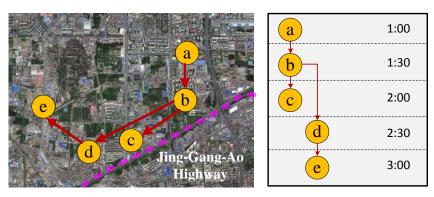
### Anomaly detection

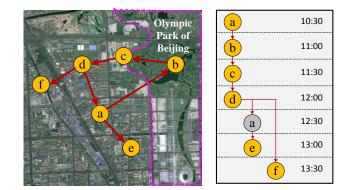
- Calculate the distance between the corresponding item in the feature vectors of two time bins
   <#Obj, Pct<sub>o</sub>, Pct<sub>d</sub>>
   <#Obj, Pct<sub>o</sub>, Pct<sub>d</sub>>
- Identify the minDistort
- Find out the outlier points as anomalies using Mahalanobis distance





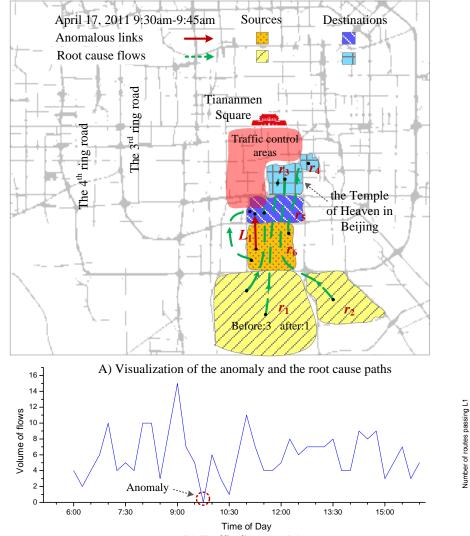
• Results

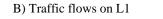


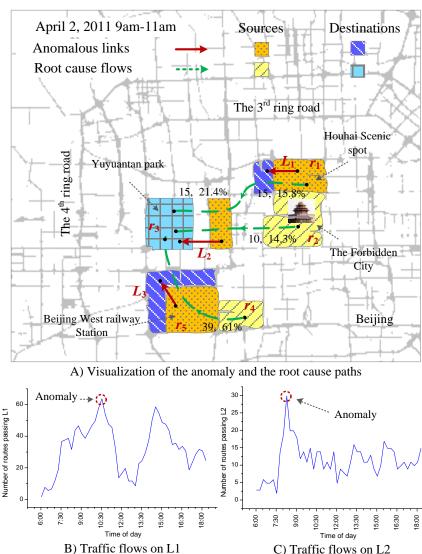


### Next step

- Identify the root cause of the problem
- From regions to road segments
- Estimate the impact of an anomaly and effective visualization







### **Urban Computing for Urban Planning**



## Urban Computing for Urban Planning

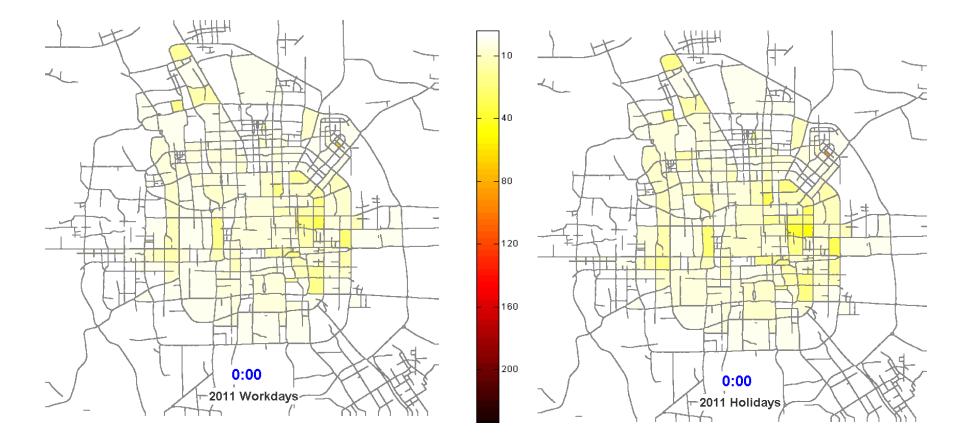
#### Goals

- City-wide traffic modeling
- Evaluate city configurations
- Suggest potential improvement to city planners
- Identify root causes of the problem

#### Datasets

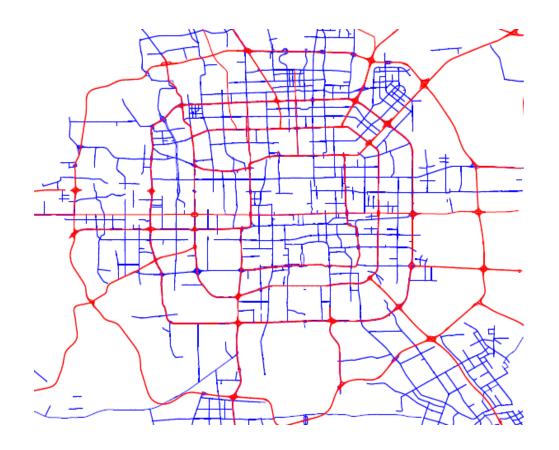
- Taxi trajectories: March to May, 2009, 2010, 2011
- Beijing maps 2009, 2010, 2011

## Heat Maps of Beijing (2011)



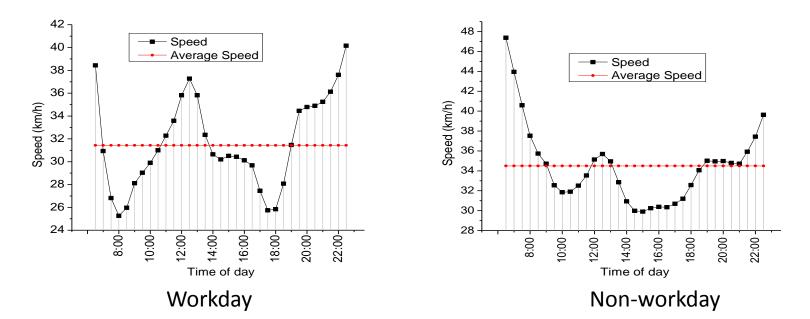
## City-Wide Traffic Modeling

- Partition a city into regions with major roads
- Regions are root causes of the problem



## City-Wide Traffic Modeling

Partition the dataset by time slots (a data-driven method)



| Time   | Work day       | Non-Workday    |
|--------|----------------|----------------|
| Slot 1 | 7:00am-10:30am | 9:00am-12:30pm |
| Slot 2 | 10:30am-4:00pm | 12:30pm-7:30pm |
| Slot 3 | 4:00pm-7:30pm  | 7:30pm-9:00am  |
| Slot 4 | 7:30pm-7:00am  |                |

## City-Wide Traffic Modeling

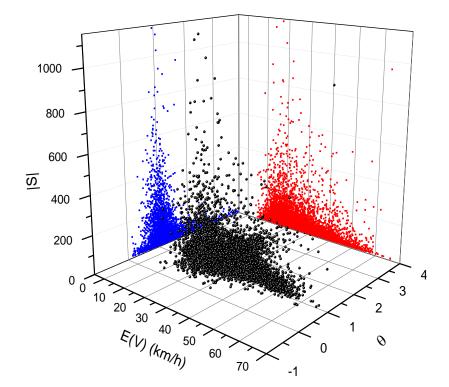
- Project taxi trajectories onto these regions
- Building a region graph for each time slot

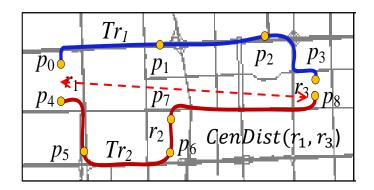


### Finding Problematic Edges

- Extracting features from each edge
  - IS: Number of taxis
  - E(v): Expectation of speed

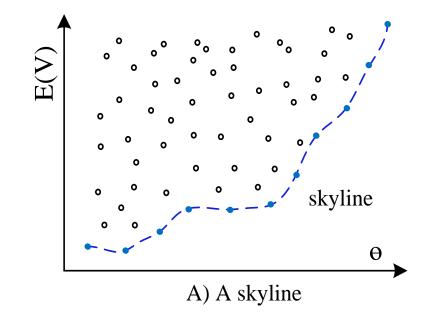
•  $\theta = E(D)/CenDist(r_1, r_3)$ 





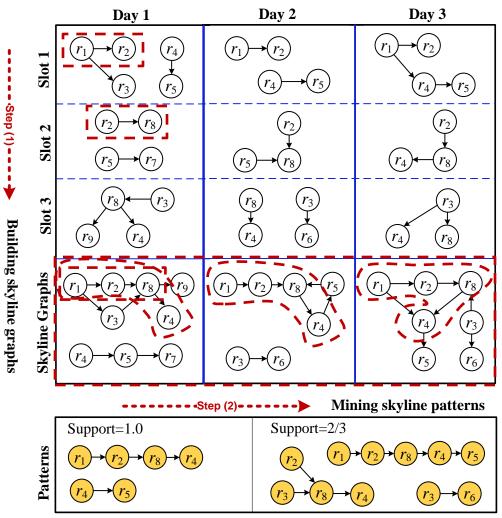
### Finding Problematic Edges

- Select edges with |S| above average
- Select edges with **big**  $\theta$  and **small** E(V),  $\theta > B$

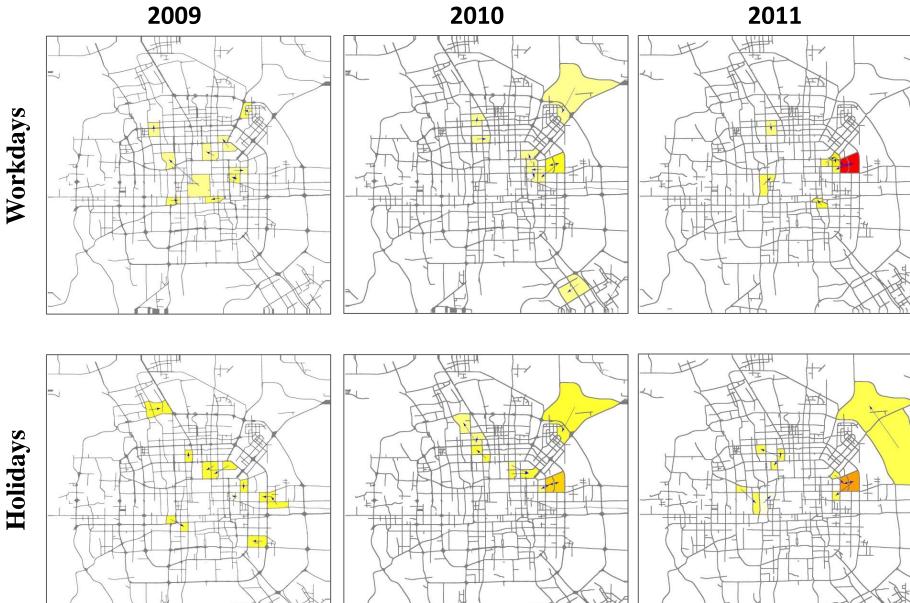


## Making Sense of Individual Problematic Edges

- Formulate skyline graphs for each day
- Mining frequent sub-graph patterns across days
  - To avoid false alert
  - Deep understanding



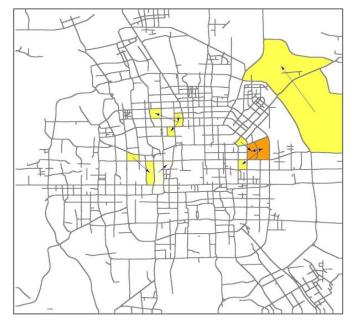
#### **Top 10 most frequent problematic edges**



#### **Top 10 most frequent problematic edges**

Workdays

Holidays

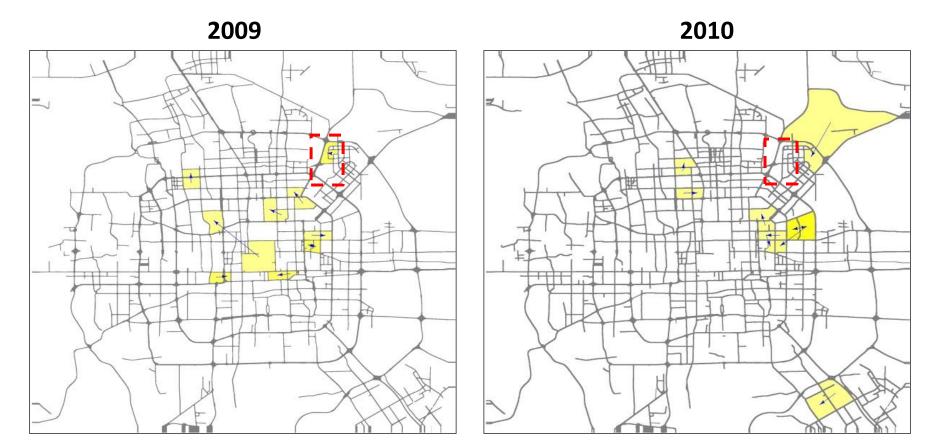


#### **Top 10 hottest regions**



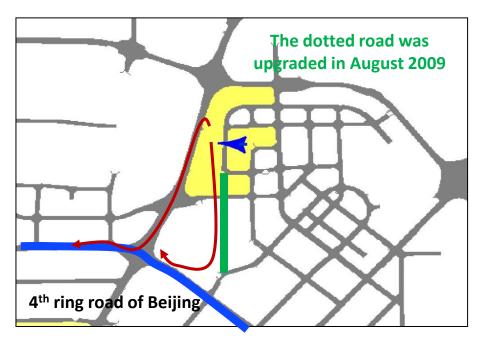


#### Example 1



Workdays

Workdays

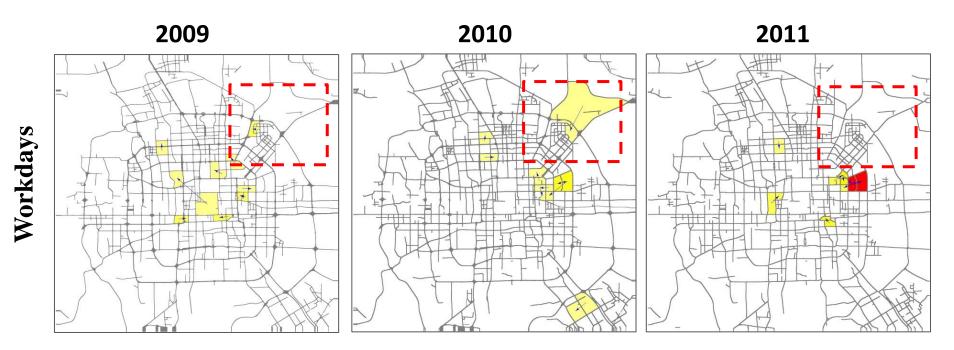








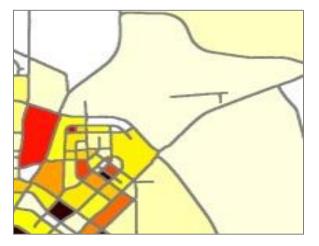
#### Example 2

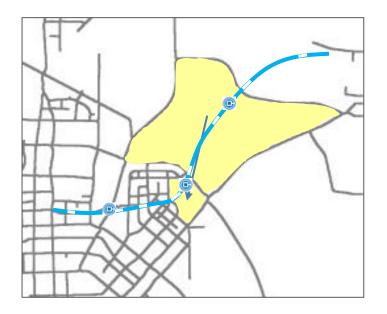


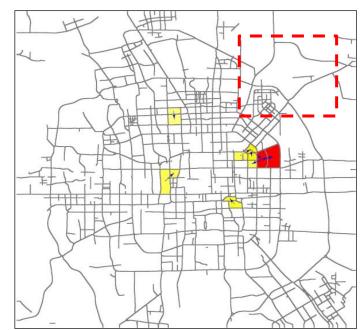








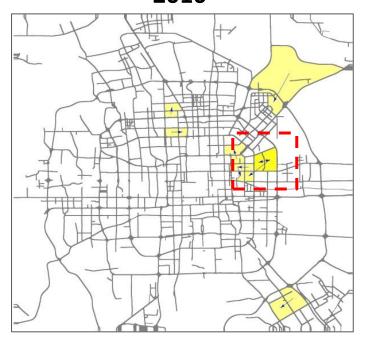


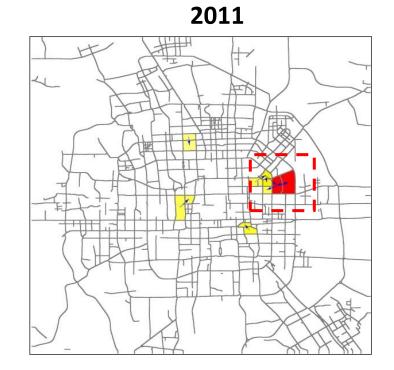




Dec. 2010 Subway Line 15 was launched

#### Example 3







### Statistics on the taxi data across years

#### Workday

|      | # of trips/per taxi/per day | average distance (km) | average time (min) | average speed (km/h) | Rd   | Rt   |
|------|-----------------------------|-----------------------|--------------------|----------------------|------|------|
| 2009 | 16.8                        | 6.72                  | 16.6               | 26.06                | 0.62 | 0.46 |
| 2010 | 15.9                        | 7.45                  | 18.1               | 25.13                | 0.65 | 0.47 |
| 2011 | 17.5                        | 7.97                  | 18.6               | 25.74                | 0.68 | 0.62 |

#### Holiday

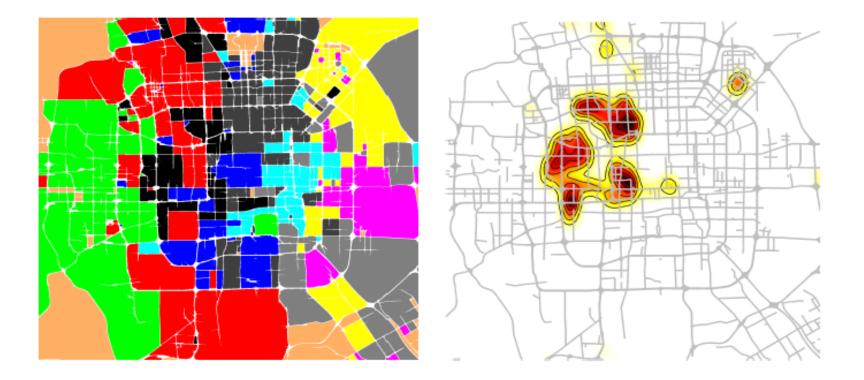
|      | # of trips/per taxi/per day | average distance (km) | average time (min) | average speed (km/h) | Rd   | Rt   |
|------|-----------------------------|-----------------------|--------------------|----------------------|------|------|
| 2009 | 13.70                       | 6.58                  | 15.35              | 27.63                | 0.61 | 0.43 |
| 2010 | 12.76                       | 7.35                  | 16.63              | 26.94                | 0.63 | 0.43 |
| 2011 | 13.20                       | 7.87                  | 17.23              | 27.33                | 0.67 | 0.60 |

### Discover Regions of Different Functions using Human Mobility and POIs

Jing Yuan, Yu Zheng, Xing Xie. Discovering regions of different functions in a city using human mobility and POIs. KDD 2012

### Goals

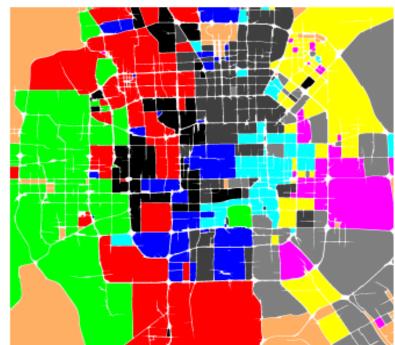
- Discovery regions of different functions
- Identify the function density in urban areas



### Applications

- Calibrating urban planning
- Business allocation
- Social recommendations





# **Motivation and Challenges**

- Why POIs
  - Features the function

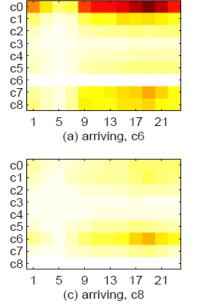


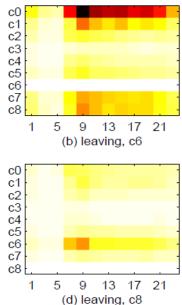
- But not enough
  - Compound
  - Quality



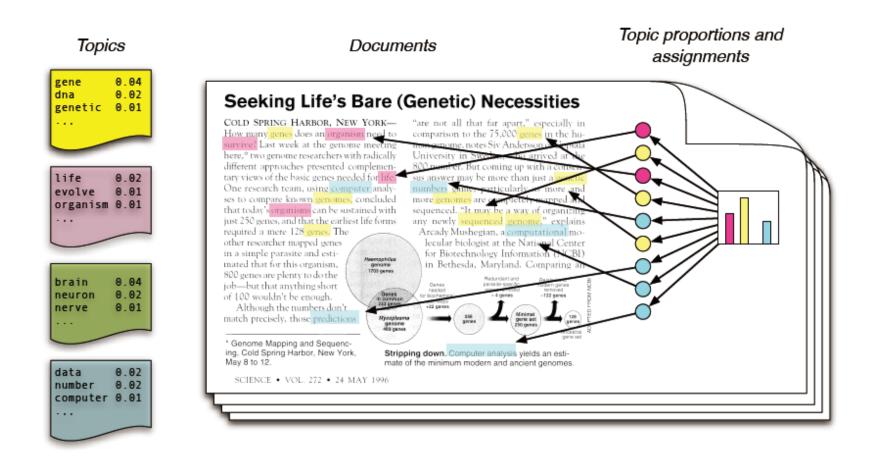


- Why human mobility
  - Differentiate between POIs of the same category
  - Feature the function of a region



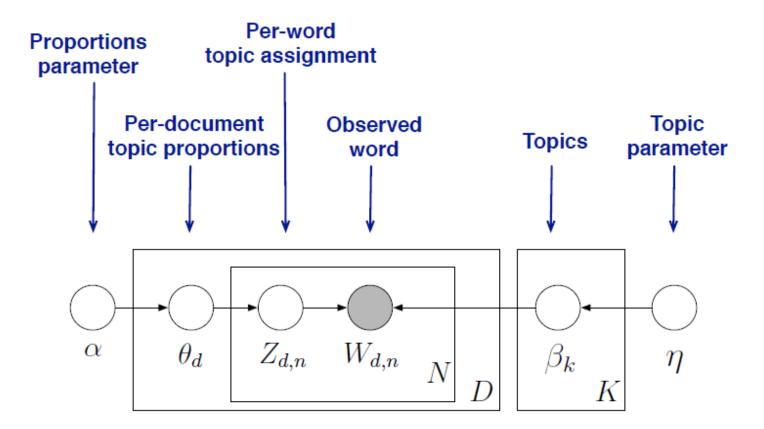


### **Generative model for LDA**



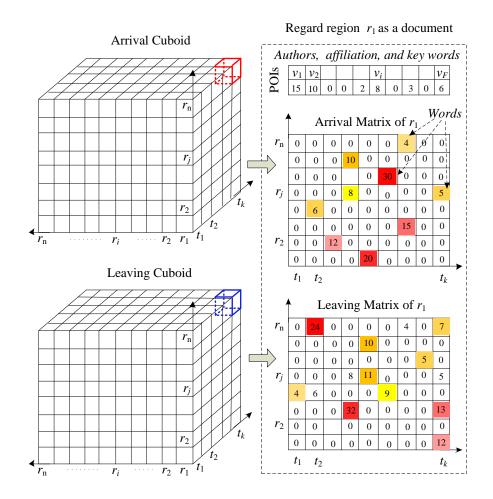
- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

#### LDA as a graphical model

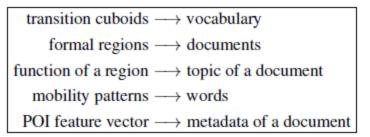


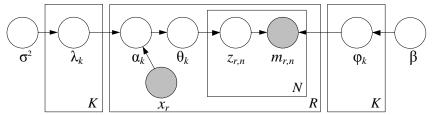
- Encodes our assumptions about the data
- Connects to algorithms for computing with data
- See Pattern Recognition and Machine Learning (Bishop, 2006).

### Methodology overview



#### Mapping from regions to documents





Infer the topic distribution using a topic model

## **Mobility Pattern Extraction**

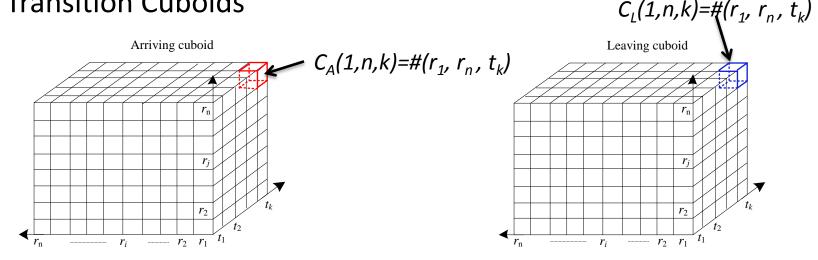
Transition

 $Tr = (Tr.r_{O'}, Tr.r_{D'}, Tr.t_{A'}, Tr.t_{L})$ 

Mobility Pattern

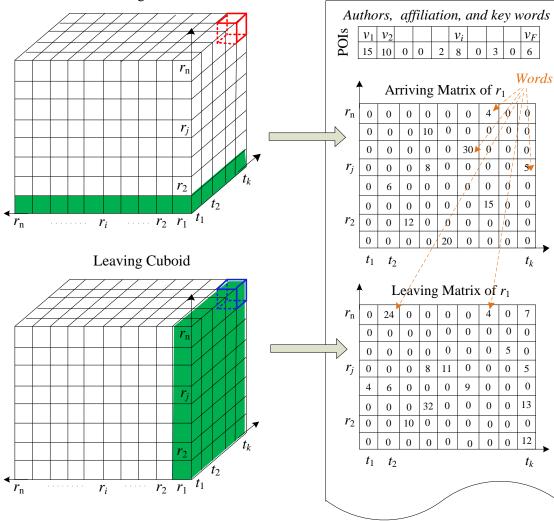
 $M_{L}=(Tr.r_{O_{J}} Tr.r_{D_{J}} Tr.t_{L})$  $M_{A}=(Tr.r_{O_{J}} Tr.r_{D_{J}} Tr.t_{A})$ 

• Transition Cuboids



## Analogy from regions to documents

Arriving Cuboid



Regard region  $r_1$  as a document

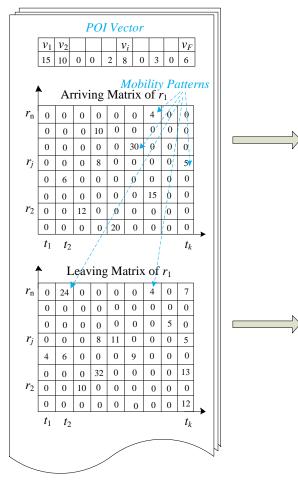
A region  $\rightarrow$  A document Mobility patterns  $\rightarrow$  words POI features  $\rightarrow$  meta data

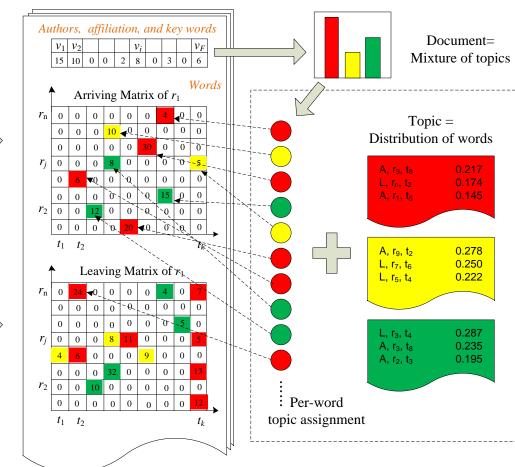
POI

Database

## Analogy from regions to documents

Regions

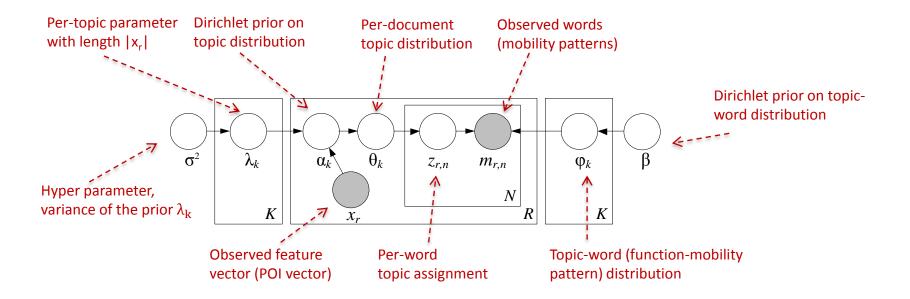




Documents

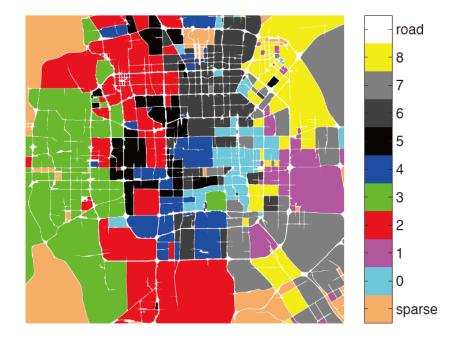
# **Discovery of Region Topics**

- Dirichlet–Multinomial-Regression(DMR)-Based Topic model (Mimno et al., 2008)
  - Variation of LDA
  - Generalized for incorporating metadata



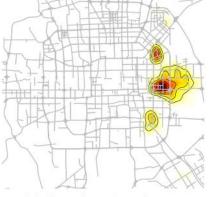
## **Territory Identification**

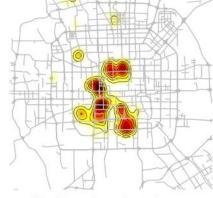
- Region aggregation
  - Regions with similar topic distributions are clustered
  - Aggregate big territories → functional regions



## **Territory Identification**

- Functionality intensity Estimation
  - Reason: degree of functionality vary spatially
  - Estimate the intensity for each function
  - Given  $x_1, x_2, ..., x_n$ , the intensity at location *s* is measured by





(a) functional region  $c_1$ 

(b) functional region  $c_4$ 



$$\lambda(s) = \sum_{i=1}^{n} \frac{1}{nr^2} K(\frac{d_{i,s}}{r}),$$

$$K(\frac{d_{i,s}}{r}) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{d_{i,s}^2}{2r^2}).$$

## **Territory Identification**

(4) human-labeled regions

#### Region annotation

- (1) POI configuration (2) frequent mobility patterns
- (3) Functionality density

 Table 5: Overall POI feature vector and ranking of functional regions by DRoF. FD: frequency density, IR: internal ranking

|           | c0    |    | c1    |    | c2    |    | c3    |    | c4    |    | c5    |    | c6    |    | c7    |    | c8    |    |
|-----------|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|
| POI       | FD    | IR |
| CarServ   | 0.046 | 25 | 0.016 | 23 | 0.052 | 26 | 0.044 | 18 | 0.060 | 17 | 0.028 | 25 | 0.056 | 24 | 0.091 | 13 | 0.053 | 21 |
| CarSale   | 0.009 | 28 | 0.005 | 27 | 0.061 | 24 | 0.006 | 27 | 0.009 | 27 | 0.005 | 28 | 0.021 | 27 | 0.015 | 26 | 0.006 | 27 |
| CarRepa   | 0.021 | 26 | 0.011 | 24 | 0.062 | 23 | 0.042 | 19 | 0.051 | 20 | 0.023 | 27 | 0.062 | 23 | 0.057 | 18 | 0.039 | 25 |
| MotServ   | 0.002 | 30 | 0.003 | 28 | 0.004 | 28 | 0.001 | 28 | 0.002 | 29 | 0.004 | 29 | 0.001 | 29 | 0.001 | 29 | 0.003 | 28 |
| Caf/Tea   | 0.226 | 14 | 0.121 | 9  | 0.226 | 12 | 0.066 | 15 | 0.113 | 13 | 0.252 | 6  | 0.237 | 13 | 0.052 | 19 | 0.153 | 10 |
| StaStor   | 0.135 | 17 | 0.037 | 20 | 0.127 | 17 | 0.037 | 20 | 0.058 | 18 | 0.080 | 19 | 0.100 | 19 | 0.073 | 15 | 0.072 | 17 |
| LivServ   | 1.289 | 1  | 0.581 | 2  | 1.322 | 2  | 0.399 | 1  | 0.698 | 1  | 0.780 | 2  | 1.345 | 2  | 0.430 | 2  | 0.886 | 1  |
| Sports    | 0.054 | 23 | 0.035 | 21 | 0.092 | 21 | 0.030 | 22 | 0.041 | 22 | 0.033 | 23 | 0.080 | 20 | 0.035 | 20 | 0.093 | 16 |
| Hospital  | 0.244 | 13 | 0.088 | 13 | 0.222 | 13 | 0.069 | 14 | 0.137 | 12 | 0.144 | 15 | 0.246 | 12 | 0.070 | 16 | 0.194 | 8  |
| Hotel     | 0.202 | 15 | 0.063 | 16 | 0.115 | 18 | 0.058 | 16 | 0.071 | 16 | 0.086 | 18 | 0.211 | 15 | 0.059 | 17 | 0.049 | 22 |
| SceSpo    | 0.048 | 24 | 0.007 | 26 | 0.032 | 27 | 0.012 | 25 | 0.016 | 25 | 0.029 | 24 | 0.044 | 25 | 0.012 | 27 | 0.031 | 20 |
| Residen   | 0.795 | 3  | 0.230 | 5  | 0.638 | 6  | 0.203 | 5  | 0.323 | 5  | 0.398 | 5  | 0.797 | 4  | 0.221 | 4  | 0.440 | 3  |
| Gov/Pub   | 0.442 | 7  | 0.103 | 11 | 0.276 | 11 | 0.094 | 10 | 0.188 | 9  | 0.169 | 12 | 0.375 | 7  | 0.177 | 6  | 0.150 | 1  |
| Sci/Edu   | 0.315 | 11 | 0.139 | 7  | 1.084 | 3  | 0.109 | 9  | 0.323 | 6  | 0.251 | 8  | 0.530 | 6  | 0.124 | 9  | 0.266 | 6  |
| TrasFac   | 0.459 | 6  | 0.115 | 10 | 0.397 | 7  | 0.091 | 11 | 0.150 | 11 | 0.191 | 11 | 0.364 | 8  | 0.113 | 10 | 0.257 | 7  |
| Bank/Fina | 0.376 | 9  | 0.128 | 8  | 0.383 | 8  | 0.078 | 13 | 0.107 | 14 | 0.197 | 10 | 0.320 | 10 | 0.083 | 14 | 0.135 | 12 |
| CopBusi   | 1.128 | 2  | 0.593 | 1  | 1.947 | 1  | 0.334 | 2  | 0.348 | 4  | 0.548 | 4  | 1.738 | 1  | 0.475 | 1  | 0.977 | 1  |
| StrFur    | 0.002 | 29 | 0.000 | 30 | 0.001 | 30 | 0.001 | 30 | 0.000 | 30 | 0.001 | 30 | 0.000 | 30 | 0.001 | 30 | 0.000 | 30 |
| Entr/Bri  | 0.296 | 12 | 0.065 | 14 | 0.210 | 14 | 0.081 | 12 | 0.160 | 10 | 0.160 | 14 | 0.228 | 14 | 0.133 | 7  | 0.097 | 15 |
| PubUti    | 0.405 | 8  | 0.101 | 12 | 0.285 | 9  | 0.112 | 8  | 0.238 | 7  | 0.209 | 9  | 0.314 | 11 | 0.132 | 8  | 0.132 | 13 |
| ChiRes    | 0.692 | 5  | 0.252 | 4  | 0.926 | 5  | 0.294 | 3  | 0.399 | 3  | 0.813 | 1  | 0.829 | 3  | 0.235 | 3  | 0.370 | 4  |
| ForRes    | 0.098 | 18 | 0.050 | 17 | 0.054 | 25 | 0.010 | 26 | 0.009 | 26 | 0.163 | 13 | 0.063 | 21 | 0.018 | 25 | 0.101 | 14 |
| FasRes    | 0.095 | 19 | 0.046 | 18 | 0.141 | 16 | 0.034 | 21 | 0.050 | 21 | 0.126 | 16 | 0.132 | 17 | 0.026 | 22 | 0.057 | 20 |
| ShopMal   | 0.724 | 4  | 0.268 | 3  | 0.929 | 4  | 0.242 | 4  | 0.476 | 2  | 0.559 | 3  | 0.734 | 5  | 0.203 | 5  | 0.306 | 5  |
| ConvStor  | 0.370 | 10 | 0.157 | 6  | 0.281 | 10 | 0.128 | 7  | 0.234 | 8  | 0.251 | 7  | 0.362 | 9  | 0.108 | 11 | 0.160 | 5  |
| E-Stor    | 0.056 | 21 | 0.017 | 22 | 0.107 | 20 | 0.029 | 23 | 0.037 | 23 | 0.037 | 22 | 0.063 | 22 | 0.018 | 24 | 0.040 | 23 |
| SupMar    | 0.055 | 22 | 0.008 | 25 | 0.065 | 22 | 0.020 | 24 | 0.025 | 24 | 0.042 | 21 | 0.040 | 26 | 0.021 | 23 | 0.040 | 24 |
| FurBuil   | 0.086 | 20 | 0.065 | 15 | 0.151 | 15 | 0.192 | 6  | 0.093 | 15 | 0.088 | 17 | 0.142 | 16 | 0.099 | 12 | 0.064 | 19 |
| Pub/Bar   | 0.179 | 16 | 0.043 | 19 | 0.114 | 19 | 0.044 | 17 | 0.053 | 19 | 0.060 | 20 | 0.120 | 18 | 0.031 | 21 | 0.071 | 18 |
| Theater   | 0.011 | 27 | 0.001 | 29 | 0.002 | 29 | 0.001 | 29 | 0.006 | 28 | 0.025 | 26 | 0.007 | 28 | 0.002 | 28 | 0.002 | 25 |

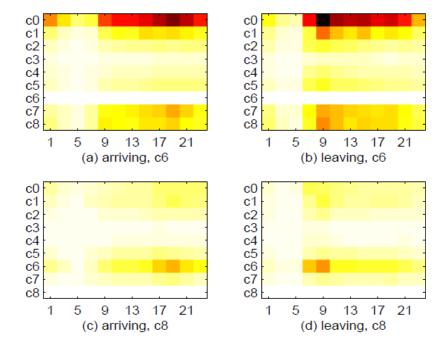
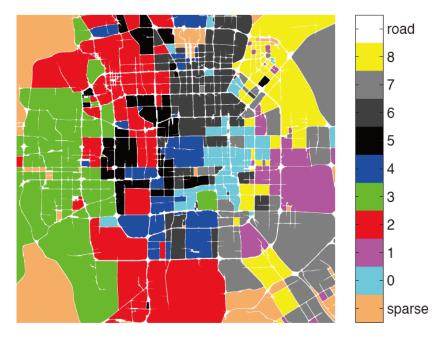


Figure 10: Transitions of c<sub>6</sub> and c<sub>8</sub>

## **Annotation of Territories**

- Diplomatic and embassy areas[c0]
- Education and science areas[c2]
- Developed residential areas[c6]
- Emerging residential areas[c8]
- Developed commercial/entertainment areas[c5]
- Developing commercial/business/entertainment areas [c1]
- Regions under construction[c7]
- Areas of historic interests[c4]
- Nature and parks[c3]



## Evaluation

• Datasets (2010 and 2011, Beijing)



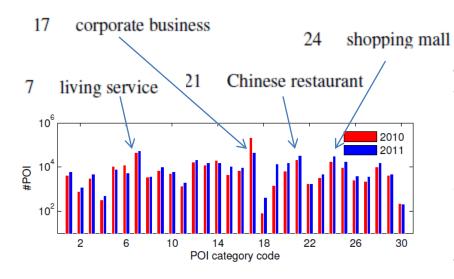
POI Data



Taxi trajectories



**Road Networks** 

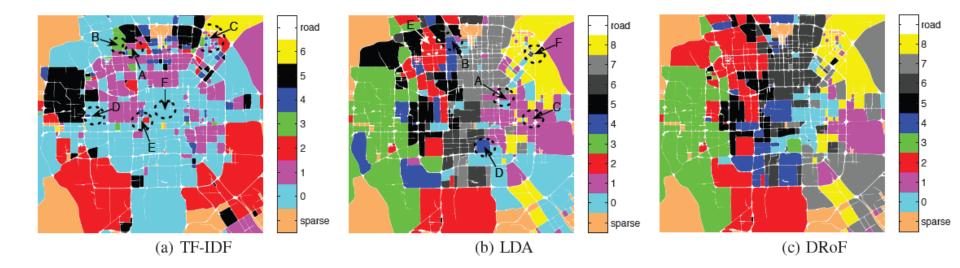


|              | 0                                  |            |           |
|--------------|------------------------------------|------------|-----------|
|              | year                               | 2010       | 2011      |
| SS           | #taxis                             | 12,726     | 13,597    |
| Trajectories | #occupied trips                    | 21,678,203 | 8,202,012 |
|              | #effective days                    | 112        | 92        |
|              | average trip distance(km)          | 7.22       | 7.47      |
| Ë            | average trip duration(min)         | 15.98      | 16.1      |
|              | average sampling interval(sec)     | 74.46      | 70.45     |
| \$           | #road segments                     | 150,357    | 162,246   |
| Roads        | percentage of major roads          | 18.9%      | 17.1%     |
|              | #segmented formal regions          | 565        | 554       |
|              | size of "vocabulary" (non-0 items) | 3,318,331  | 3,244,901 |

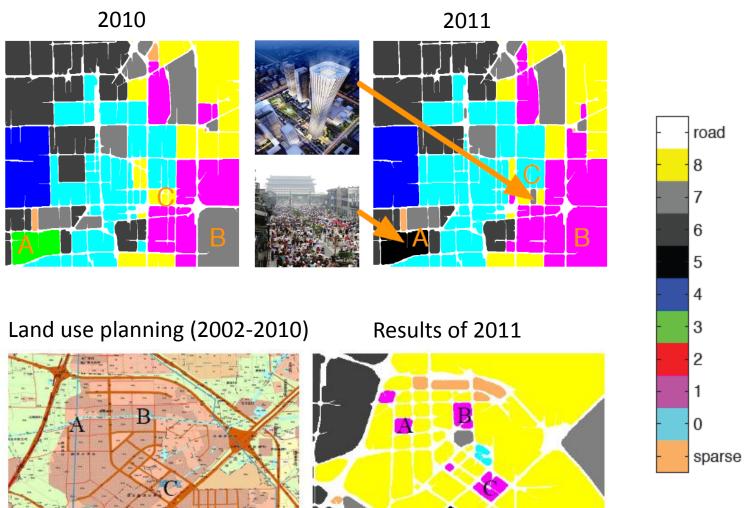
### Results

#### • Baselines

Only using POI data (TF-IDF) Only using mobility data (LDA-based method)



### Evaluation

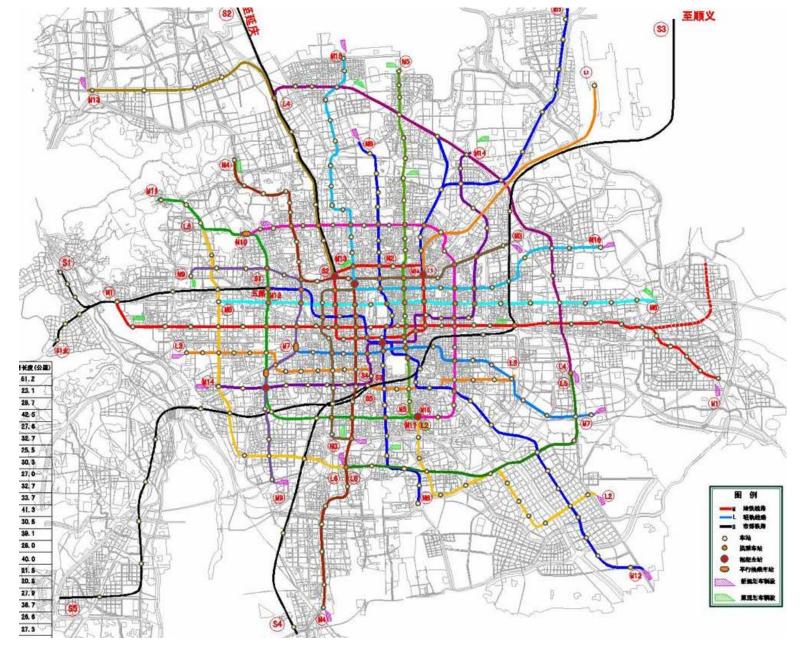


### References

- Wei Liu, Yu Zheng, et al. Discovering Spatio-Temporal Causal Interactions in Traffic Data Streams. KDD 2011
- Yu Zheng, Yanchi Liu, Jing Yuan, Xing Xie, Urban Computing with Taxicabs, UbiComp 2011(Best paper nominee)
- Jing Yuan, Yu Zheng, Xing Xie. Discovering regions of different functions in a city using human mobility and POIs. KDD 2012

### What's the Next

- Energy consumption
- Pollution monitoring and management
- Economy analysis



Beijing Subway by 2015: The city with the longest distance of subway (561km) Two times longer than that of Paris(221.6KM)

## **Datasets Released**

#### GeoLife GPS trajectories

- Generated by 178 users over 3 years
- With transportation mode labels: driving, walking, biking, bus...
- Annual release

#### T-Drive Taxi trajectories

- Generated by Over 10,000 taxis in one week in Beijing
- 15 million points
- Distance > 9 million km



#### Link to the data



#### Link to the data

#### **GeoLife Trajectory Dataset (1.2)**

#### Link to the data

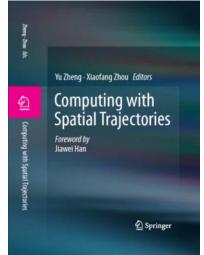


| Transportation<br>mode | Distance<br>(km) | Duration<br>(hour) |
|------------------------|------------------|--------------------|
| Walk                   | 10,123           | 5,460              |
| Bike                   | 6,495            | 2,410              |
| Bus                    | 20,281           | 1,507              |
| Car & taxi             | 32,866           | 2,384              |
| Train                  | 36,253           | 745                |
| Airplane               | 24,789           | 40                 |
| Other                  | 9,493            | 404                |
| Total                  | 14,0304          | 12,953             |

|                             | Version 1.1       | Version 1.2      | Incremental |  |
|-----------------------------|-------------------|------------------|-------------|--|
| Time span of the collection | 04/2007 – 10/2011 | 04/2007 – 8/2012 | +10 months  |  |
| Number of users             | 178               | 182              | +4          |  |
| Number of trajectories      | 17,621            | 18,670           | +1,049      |  |
| Number of points            | 23,667,828        | 24,876,978       | +1,209,150  |  |
| Total distance              | 1,251,654km       | 1,292,951km      | +41,297 km  |  |
| Total duration              | 48,203hours       | 50,176hours      | +1,973 hour |  |
| Effective days              | 10,413            | 11,129           | +716        |  |

## Miscellaneous

- International Workshop on Urban Computing
  - In conjunction with KDD 2012 at Beijing China
  - August 12, 2012
  - http://www.cs.uic.edu/~urbcomp2012/
- The special issue on Urban Computing at ACM TIST
  - Top-tier international journal
  - Submission Due: Oct. 7, 2012
  - <u>http://tist.acm.org/CFP.html</u>
- The 4th international workshop on location-based social networks (LBSN 2012)
  - In conjunction with UbiComp 2012 in CMU, USA
  - Sept. 8, 2012
- A related text book:
  - Computing with spatial trajectories
  - Free tutorial slides download (<u>here</u>)



## Thanks!



Yu Zheng

yuzheng@microsoft.com

<u>Homepage</u>

Homepage of Urban Computing: <u>http://research.microsoft.com/en-us/projects/urbancomputing/default.aspx</u>