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Abstract 

We propose a new type of variable-parameter hidden Markov 

model (VPHMM) whose mean and variance parameters vary 

each as a continuous function of additional environment-

dependent parameters. Different from the polynomial-

function-based VPHMM proposed by Cui and Gong (2007), 

the new VPHMM uses cubic splines to represent the 

dependency of the means and variances of Gaussian mixtures 

on the environment parameters. Importantly, the new model 

no longer requires quantization in estimating the model 

parameters and it supports parameter sharing and 

instantaneous conditioning parameters directly. We develop 

and describe a growth-transformation algorithm that 

discriminatively learns the parameters in our cubic-spline-

based VPHMM (CS-VPHMM), and evaluate the model on 

the Aurora-3 corpus with our recently developed MFCC-

MMSE noise suppressor applied. Our experiments show that 

the proposed CS-VPHMM outperforms the discriminatively 

trained and maximum-likelihood trained conventional HMMs 

with relative word error rate (WER) reduction of 14% and 

20% respectively under the well-matched conditions when 

both mean and variances are updated.  

Index Terms: speech recognition, variable-parameter hidden 

Markov model, discriminative training, cubic spline, growth 

transformation 

1. Introduction 

Automatic speech recognition (ASR) under noisy 

environments continues to be an active research area. 

Recently, Cui and Gong [2] proposed a new model, named 

variable-parameter hidden Markov model (VPHMM), for 

robust ASR. Different from the conventional hidden Markov 

model (HMM), the means and variances of the Gaussian 

mixtures in the VPHMM change as functions of some 

environment-dependant conditioning parameters such as 

signal-to-noise ratio (SNR).  

In the conventional HMM, the continuous observation 

density function ,( )i r tb x for state i and acoustic observation 

,r tx  at frame t in the utterance r is 

 
, , , , , , , ,

1 1

( ) ( ) ( | , )
L L

i r t i l i l r t i l r t i l i l

l l

b w b w N
 

  x x x μ Σ , (1) 

where the probability is estimated using a mixture of L 

Gaussian components, , , ,( | , )r t i l i lN x μ Σ  is the l-th Gaussian 

mixture component with fixed ,i lμ  and ,i lΣ , ,i lw is a positive 

weight for the l-th Gaussian component, and ,1,...,
1i ll L

w


 . 

In the VPHMM, ,i lμ  and ,i lΣ become functions of some 

environment-dependent parameter set ζ , i.e.,  
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x ζ x μ ζ Σ ζ . (2) 

In this VPHMM, it is assumed that the parameter ζ  can be 

easily and reliably estimated and that the functions  ,i lμ ζ and 

 ,i lΣ ζ can be learned from the training data. 

While non-parametric methods might be used,  ,i lμ ζ and 

 ,i lΣ ζ are usually constructed with a parametric approach. 

For example, in the original work of [2], Cui and Gong used 

the polynomial regression function over the utterance SNR to 

represent  ,i lμ ζ and  ,i lΣ ζ , and used the maximum 

likelihood (ML) algorithm to estimate the parameters in the 

polynomial functions. Specifically, a diagonal covariance 

matrix is assumed in their model. The means and variances in 

the d-th dimension are determined by 
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where (1) ( )

, , , ,, , K

i l d i l d   and (1) ( )

, , , ,, , K

i l d i l d   are polynomial 

parameters for the means and variances, respectively, and 
(0)

, ,i l d is the original variance in the conventional  HMM. Note 

that (4) is chosen to guarantee  , , , , 0i l d r t d  . Cui and Gong 

[2] showed positive results on the Aurora-2 corpus using the 

polynomial-function-based VPHMM. 

Several questions remain to be answered following the 

work of [2].  First, is there an alternative functional form to 

(3) and (4) that can be used to represent the means and 

variances so that quantization is not needed in estimating the 

model parameters? Second, is it possible to use instantaneous 

SNR instead of utterance SNR as proposed in [2] as the 

conditioning parameter? Third, is it possible to train the 

VPHMM parameters using discriminative methods instead of 

the ML one as adopted in [2]? Fourth, is it possible to train 

VPHMM directly from a single conventional HMM instead of 

from a set of them trained under quantized SNR conditions as 

proposed in [2]? Fifth, can we share the VPHMM parameters? 

In this paper we aim to answer the above questions and to 

improve the earlier VPHMM. Specifically, we propose to 

approximate  ,i lμ ζ and  ,i lΣ ζ with a new, cubic-spline-

based parameterization form that supports parameter sharing 

and to train the parameters discriminatively. We show that 

instantaneous SNR can be used as the conditioning parameter. 

We demonstrate the effectiveness of our cubic-spline-based 

VPHMM (CS-VPHMM) on the Aurora-3 corpus with our 

recently developed Mel-frequency cepstral minimum mean 

square error (MFCC-MMSE) motivated noise suppressor [5] 

applied. Our experiments show that CS-VPHMM outperforms 

the discriminatively trained and ML trained conventional 

HMMs with relative word error rate (WER) reduction of 14% 

and 20% respectively under the well-matched conditions 

when both mean and variances are updated. 

The rest of the paper is organized as follows. In Section 2, 
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we introduce the parameterization form used in CS-VPHMM. 

In Section 3, we discuss the estimation of the environment 

conditioning parameters. In Section 4, we describe the 

discriminative training algorithm for CS-VPHMM. We report 

our experimental results in Section 5 and conclude the paper 

in Section 6. 

2. Cubic-Spline-Based VPHMM 

In this section, we introduce a new, cubic-spline-based 

parameterization form for VPHMM. We assume that 

covariance matrices are diagonal and each dimension d of the 

mean and variance vector can be approximated with a cubic 

spline   as 
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are the spline knots that can be shared across different 

Gaussian components, and  , ,i l d is the regression class. 

Note that (6) is different from (4) and can lead to a 

significantly simplified re-estimation formula. 

Given K knots 
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  in the 

cubic spline, the value of a data point x can be estimated by 
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are interpolation parameters, and 
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where the point x falls. If 
 j
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and natural spline is used, (7) can be rewritten as 
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It follows that 
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Since , , ,a b c d are functions of x , 
xE and 

xF are also 

functions of x . However, -1
C D  is independent of x. So it can 

be pre-calculated, stored, and shared across different splines, 

making it attractive computationally. Cubic spline comes with 

several other favorable features. First, the interpolation is 

smooth up to the second-order derivative. Second, the 

interpolation value depends only on the nearby data points 

(knots). Third, the interpolation accuracy can be improved by 

increasing the number of knots. 

By noting 
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the parametric form (5) and (6) can be rewritten succinctly as 
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3. Estimation of Conditioning Parameters 

The environment-conditioning parameter used in our model 

and system is the instantaneous posterior SNR in the cepstral 

domain:  
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where ,d ia is the inverse discrete cosine transformation (IDCT) 

coefficient, 2

,i y  and 2

,i n  are the power of noisy signal and 

noise from the i-th Mel-frequency filter, respectively. The 

noise power 2

,i n is estimated using a minimum-controlled 

recursive moving-average noise tracker similar to the one 

described in [1] and is estimated with the procedure 

developed in our MFCC-MMSE noise suppresser as reported 

in [5].  

The cubic spline is appropriate for interpolation but not 

for extrapolation. For this reason, we need to determine the 

start and end points for the spline knots. In our CS-VPHMM, 

we have assumed that each dimension of the conditioning 

parameter follow a Gaussian distribution whose mean 
d



and standard deviation 
d

 can be estimated from the training 

data. We then set  2 , 2
d d d d           as the range for 

spline interpolation. 

4. Discriminative Training of VPHMM 
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In this section, we describe a growth-transformation (GT) 

based discriminative training algorithm [1][4] for the CS-

VPHMM. In the initialization stage, (0)

, ,i l d  and (0)

, ,i l d  are 

copied from the conventional HMM,    
(1) ( )

, , , ,
, , K

i l d i l d 
   are 

set to zero, and 
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, , , ,
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  at their initial values, 

CS-VPHMM becomes equivalent to the conventional HMM. 

In each discriminative training iteration, we first reestimate  
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Before presenting the training algorithm, we denote 
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where  is the current parameter set, ,r tq is the state at time t 

in the r-th utterance, s is the label sequence, and ( )d s is a 

parameter to control the convergence speed [1][4]. We denote 

the occupation probability of Gaussian mixture component l 

of state i, at time t in the r-th utterance as 
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which can be obtained through an efficient forward-backward 

algorithm. Further, we define 
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where ( )O  is the discriminative training criterion and ( )C s

is the weighting factor. For conciseness in presenting the re-

estimation formulas, in the rest of this section we simplify 

, ,r t d  as  ,  , ,i l d  as  , , ,r t dx as x , 
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 , ( , , , )i l r t as  , and ( , , , )d r t i l as d as long as no 

confusion is introduced. We have omitted the derivation of 

the following re-estimation formulas due to the space limit. 
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4.2. Reestimation of 
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 is a matrix whose element at the k-th row and 

the j-th column is  
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4.3. Reestimation of 
 , ,i l d

  

 , ,i l d
 is trained using the Newton method 
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where  , ,i l d
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is a matrix whose element at the k-th row and 

the j-th column is  
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5. Experiments 

We have evaluated our CS-VPHMM on the Aurora-3 corpus. 

In this section, we describe the experimental setting and 

results. 

5.1. Experimental Setup  

The Aurora-3 corpus contains noisy digit recordings under 

realistic automobile environments. In the Aurora-3 corpus, 

each utterance is labeled as coming from either a high, low, or 

quiet noise environment, and as being recorded using  a close-

talk microphone or a hands-free, far-field microphone.  

The Aurora-3 corpus consists of four separate digit 

recognition sub-tasks based on the languages. For each 

language, three experimental settings are defined for the 

evaluation: In the well-matched condition both the training 

and the testing sets contain all combinations of noise 

environments and microphones. In the mid-mismatched 

condition, the training set contains quiet and low noise data 

recorded using the far-field microphone, and the testing set 

contains the high noisy data recorded using the far-field 

microphone. In the high-mismatched condition, the training 

set contains close-talk data from all noise classes, and the 

testing set contains high noise and low noise far-field data. In 

the mid-mismatched condition, the mismatch is mainly caused 

by the additive noise, while in the high-mismatched condition 

both channel distortion and additive noise exist. 

In this paper we report two baselines: the conventional 

HMM trained using the ML criterion and that trained using 

the minimum classification error (MCE) criterion. The ML 

baseline system was trained in the manner prescribed by the 

scripts included with the Aurora-3 task. On top of the ML 

baseline, 8 iterations of MCE training were conducted and the 

best system was selected on the development set reserved 

from 10 percent of the training data. The system was then 

retrained using the full set of training data with the same 

number of iterations as the best system selected. The resulting 

system is the MCE-trained baseline.  

The HMMs used in our experiments consist of 6-mixture 

16-state whole-word models for each digit in addition to the 

“sil” and “sp” models. The 39-dimensional features used in 

our experiments contain the 13-dimension (with energy and 

without C0) static MFCC features and their delta and delta-
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delta features. The parameters (such as smoothing factors and 

the size of the minimum tracking windows) used for noise 

tracking is exactly the same as that used in [5]. 

The CS-VPHMMs were discriminatively trained (also 

using the MCE criterion) upon the MCE-trained conventional 

HMM. Due to the time complexity, we only ran four 

iterations of training and we report the result after the fourth 

iteration. In our experiments, the number of knots in the cubic 

spline is set to be four. To show how the parameter sharing 

may affect the result, we have run two sets of experiments 

with none of the parameters shared (no share) and with all the 

spline parameters shared (share all), respectively. In the no 

share setting, the number of total parameters is four times as 

many as the conventional HMM, while in the share all 

setting, the total number of parameters is only 1.008 times.  

5.2. Experimental Results  

Tables 1-4 summarize the experimental results on the Aurora-

3 corpus with the MFCC-MMSE noise suppressor applied. 

Table 1 and Table 3 show the absolute WER without and with 

updating the variance parameters in the MCE training. Table 

2 and Table 4 summarize the relative WER reduction against 

the corresponding MCE-trained conventional HMM baseline. 

 

  Well Mid High Average 

Conventional HMM (ML) 5.08% 12.26% 23.26% 12.13% 

Conventional HMM (MCE) 4.93% 11.80% 23.15% 11.89% 

VPHMM (MCE) - Share All 4.71% 11.58% 22.94% 11.67% 

VPHMM (MCE) - No Share 4.12% 11.27% 22.31% 11.17% 

Table 1. Absolute WER on Aurora-3 corpus (no 

variance update) 

  Well Mid High Average 

VPHMM (MCE) - Share All 4.56% 1.93% 0.87% 1.85% 

VPHMM (MCE) - No Share 16.43% 4.49% 3.63% 6.05% 

Table 2. Relative WER reduction against the MCE 

trained conventional HMM (no variance update) 

  Well Mid High Average 

Conventional HMM (ML) 5.08% 12.26% 23.26% 12.13% 

Conventional HMM (MCE) 4.69% 11.67% 22.92% 11.69% 

VPHMM (MCE) - Share All 4.51% 11.43% 22.76% 11.49% 

VPHMM (MCE) - No Share 4.04% 11.20% 22.45% 11.15% 

Table 3. Absolute WER on Aurora-3 corpus (with 

variance update) 

  Well Mid High Average 

VPHMM (MCE) - Share All 3.84% 2.06% 0.70% 1.68% 

VPHMM (MCE) - No Share 13.86% 4.03% 2.05% 4.64% 

Table 4. Relative WER reduction against the MCE 

trained conventional HMM (with variance update) 

From these tables, we observe that if only Gaussian mean 

is updated in the MCE training, the MCE trained CS-

VPHMM reduced the WER by 6.05% relatively on average 

and by 16.43% relatively on the well-matched condition 

against the MCE trained conventional HMM, or 7.91% and 

18.9% respectively over the ML baseline which is better than 

SPLICE. If both the mean and variances are updated in the 

MCE training, the CS-VPHMM achieved 4.64% and 13.86% 

relative WER reduction on average and under the well-

matched condition respectively against the MCE trained 

conventional HMM. This translates to 8.08% and 20.47% 

relative WER reduction respectively over the ML baseline. 

All the improvements under well-matched condition are 

statistically significant at the significance level of 1%. 

To examine whether the CS-VPHMM can improve the 

recognition accuracy on different features, we have also run 

experiments without the MFCC-MMSE noise suppressor and 

gained a 6.11% relative WER reduction on average, and 

14.99% relative WER reduction on the well-matched 

condition over the MCE trained conventional HMM. 

Note that although the CS-VPHMM outperforms the 

conventional HMM under all conditions, the largest gain is 

observed under the well-matched condition. This is consistent 

with the intuition that some of the characteristics learned from 

the training set under mismatched conditions cannot be 

carried over to the test set.  

Also note that the CS-VPHMM with all spline parameters 

shared performs slightly better than the MCE-trained 

conventional HMM. A compromise can be made between the 

number of parameters shared and the performance. In our 

companion paper [6], we show that the same performance can 

be retained and even exceeded with only 1.13 times of 

parameters if proper parameter tying is conducted. 

6. Conclusions 

In this paper, we have presented a cubic-spline-based 

VPHMM and described the related discriminative training 

algorithm. We have shown that the CS-VPHMM can work 

effectively using the instantaneous SNR as the conditioning 

parameter. CS-VPHMM introduces no additional latency and 

can achieve significant accuracy improvement over the 

discriminatively trained conventional HMM. 

Compared with the conventional HMM, CS-VPHMM 

tends to use many more parameters. To reduce the number of 

parameters, we can tie the splines since some of the 

parameters change in the same direction. Our framework 

supports the spline parameter sharing naturally. We report the 

clustering algorithm for optimal tying and the corresponding 

experimental results in the companion paper [6].  
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