
Precomputing Search Features for Fast and Accurate
Query Classification

Venkatesh Ganti
Microsoft Research
One Microsoft Way

Redmond, WA 98052
vganti@microsoft.com

Arnd Christian König
Microsoft Research
One Microsoft Way

Redmond, WA 98052
chrisko@microsoft.com

Xiao Li
Microsoft Research
One Microsoft Way

Redmond, WA 98052
xiaol@microsoft.com

ABSTRACT
Query intent classification is crucial for web search and advertising. It is
known to be challenging because web queries contain less than three words
on average, and so provide little signal to base classification decisions on.
At the same time, the vocabulary used in search queries is vast: thus, clas-
sifiers based on word-occurrence have to deal with a very sparse feature
space, and often require large amounts of training data. Prior efforts to
address the issue of feature sparseness augmented the feature space using
features computed from the results obtained by issuing the query to be clas-
sified against a web search engine. However, these approaches induce high
latency, making them unacceptable in practice.

In this paper, we propose a new class of features that realizes the ben-
efit of search-based features without high latency. These leverage co-
occurrence between the query keywords and tags applied to documents in
search results, resulting in a significant boost to web query classification
accuracy. By pre-computing the tag incidence for a suitably chosen set
of keyword-combinations, we are able to generate the features online with
low latency and memory requirements. We evaluate the accuracy of our ap-
proach using a large corpus of real web queries in the context of commercial
search.

Categories and Subject Descriptors

H.3.1 [Information Search and Retrieval]: Indexing Methods;
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Measurement, Performance, Experimentation

1. INTRODUCTION
Query intent classification is crucial for a number of ap-

plications, including computational advertising [7], vertical
searches [19] or query reformulations [16]. One of the main
challenges for accurate query-intent classification is that web
queries contain – on average – less than three words of text, from a
very large vocabulary of terms. Text classification techniques, that
use the occurrence of specific words or word-combinations in a
query as features thus have to contend with a very large and sparse
feature space. The issue of feature sparseness is problematic as
classifiers relying on these features may require very large amounts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

of training data to produce accurate classification. To illustrate
this, consider the large number of labeled web queries required to
cover a significant fraction of the vocabulary used in web search
today. Given that manual labeling of queries is time-consuming
and potentially expensive, this constraint can be crucial.

One approach to overcome feature sparseness has been to aug-
ment the feature space with additional data sources. It has been
shown that approaches which augment word-based features by first
issuing the query against a (web) search engine and subsequently
extracting additional features from the search results can increase
the accuracy of query classification significantly (e.g., [5, 7, 23,
6]). We refer to such features as post-retrieval features. However,
these gains come at a significant cost: the retrieval of the result
web pages and (when necessary) their subsequent processing can
be very expensive and may not satisfy the latency-requirements of
realistic search architectures. It is known that latency is critical to
user satisfaction in web search (e.g., [8, 1]).

Ideally, we would like to realize the accuracy gains possi-
ble through post-retrieval features, yet with only small over-
head/latency (and memory requirements) for the online query clas-
sification component. We address this challenge in this paper.

1.1 Our Approach
We consider a new type of post-retrieval features, which are

based on the incidence of tags associated with the pages retrieved
in response to a search query. Generally, these tags express prop-
erties of the pages, such as its topic or which types of entities it
contains. The set of tags associated with search results is valuable
for query classification – for example, knowing the distribution of
topics retrieved in response to a query may allow us to determine
the query’s intent. As we will show, using various combinations of
tags and corpora allows us to improve accuracy in real-life query
classification tasks dramatically. Moreover, the number of tags is
usually much smaller (≤ 5K) than the number of all words in search
queries (with 106–107 relevant terms), reducing the size and spar-
sity of the feature space. This allows us to formulate features that
generalize better across queries and reduces the amount of training
data required.

We use the incidence of each tag within the search results (i.e.,
the number of tag occurrences as a fraction of the result size) to
compute features. This means that we need to compute the number
of search results for a query q and – for each distinct tag t – the
number of documents in the result tagged with t; we will refer to
the ratio between tagged pages and all result pages as the tag ratio

for a tag t and a query q. Using features based on tag ratios allows
us to overcome the challenge of feature sparsity as the number of
resulting features depends on the much smaller number of tags and
not on the extremely large vocabulary of words used in search.

We address the challenge of keeping the feature computation la-

tency low as follows. Instead of computing the tag ratios at query
time, we pre-compute them for suitably chosen sets of query key-
words; this set is sufficiently small so that we can then store and
index the tag ratios in main memory.

When a new search query q is posed, we look up the tag ratios for
keyword-combinations related to the query and use them to derive
the final features. As we will show, this approach results in signif-
icant improvements in classification accuracy even when we have
not pre-computed the tag ratios for the specific query to be classi-
fied. We will define the notion of relatedness we use in Section 3.3.
Our overall approach is depicted in Figure 1.

Document Corpus D Tag Corpus T

Indexed Tag Ratios

Offline

Online

Features

Online

Search Query

Figure 1: Our Architecture

1.2 Text Corpora and Tags
We now illustrate our approach using different text corpora.

Product Category Tags: An important query classification task
in search is identifying queries with product intent. Product-intent

means that the query refers to a specific product or a class of prod-
ucts and is intended to research, purchase or review these. A
property that we observed for this scenario is that (the categories
of) named entities, particularly commercial products, found in the
pages returned in response to a query are very indicative of this
query’s intent. For example, queries that have product intent for
a given category (e.g., consumer electronics) will commonly sur-
face pages containing related product entities (e.g., DVDs, music,

TVs). We can think of the occurrence of one or more entities from
a specific category within a page as a page tag. Now each tag in
T corresponds to a different product category; a page is tagged if
it contains an entity in the category. We then use the occurrence-
frequencies of such tags within the result documents as input fea-
tures to a query classifier.
Wikipedia Page Category Tags: Consider the task of identify-
ing queries with entertainment intent for which a search engine
may want to display picture galleries or videos in addition to
the search result. One approach here is to use a specific corpus
(e.g., Wikipedia) for which a rich set of page categories are avail-
able. Then, the page categories (e.g., Wikipedia-categories such as
American Actor, Film by Genre: Romance, Dance, etc.) are used
as the tags and their relative frequency in search results as features.

The use of Wikipedia tags has the advantage that large classes of
queries (e.g., names of famous actors) that have entertainment in-
tent are reduced to a small number of tags. This in turns allows our
technique to generalize much better across queries than classifiers
based on the query text alone.

Ad Domain Tags: Finally, consider the task of identifying queries
with retail intent, which is defined as product intent classification
across the range of all retail products. Query log analysis shows
that approximately 5%-7% of the distinct web search queries con-
tain retail intent, although this number varies with the date and
search-engine [19]. Obviously, we could use the tags introduced
in the context of product intent classification here as well (using a
larger range of product categories). A complementary approach is
to use the corpus of advertising bids used in sponsored search. In
sponsored search, each advertiser specifies which queries an ad is
potentially shown for using a set of bid-phrases. These bid-phrases
are matched against an incoming query to determine which ads to
display.

Now, each advertiser is interested in specifying bid-phrases to
capture those queries that have commercial intent for the prod-
ucts/services she is offering. Thus, the set of advertisers that have
submitted a bid-phrase matching a specific query is a good signal
to capture its retail intent. We can leverage this by treating the
corpus of bid phrases as a set of documents, where each document
is “tagged” with the advertiser who has submitted the bid.

Local vs. Web Corpora: The corpora we use to compute tag ra-
tios could either be web-corpora, or smaller, manually curated and
tagged text corpora with 106–107 documents. The advantage of us-
ing smaller corpora is threefold: first, if the set of tags is manually
created and maintained (such as in Wikipedia), this typically results
in more accurate tags than those generated automatically. Second,
we have more control on the set of documents and are able to avoid
issues such as spam. Finally, the pre-computation of the tag-ratios
itself becomes much less expensive.

1.3 Contributions
Overall, our paper makes the following salient contributions:

(1) Accuracy: We define a novel class of post-retrieval features
based on the incidences of tags in the documents containing search
terms. We show that such features can be derived from a variety
of corpora and result in a significant boost in accuracy for various
query classification tasks.
(2) Efficiency: Moreover, we show that these features are amenable
to off-line pre-computation; this allows us avoid latency problems
by pre-computing the tag ratios required for feature computation
and indexing them in main memory. Because the main memory
space is limited, we will define a subset of all tag ratios that re-
sults in sufficiently small main memory requirements without sig-
nificantly affecting classification accuracy.
(3) Scalability: We develop efficient algorithms that pre-compute
the relevant keyword-combinations and the associated tag ratios
from large text corpora.
(4) Evaluation: Finally, we demonstrate the applicability of our
approach to various query classification problems by showing the
accuracy improvements for three different real query classification
tasks. We also evaluate the scalability of the preprocessing steps
and the ability of our features to generalize.

2. RELATED WORK
The problem of feature sparseness described in Section 1 has re-

ceived significant attention recently. One related approach has been
the enrichment of query features using search engine results. Here,
the KDD 2005 Cup inspired the use of the World Wide Web and
in particular search results for feature enrichment. The winning so-
lution [23] leveraged search engine results, including page titles,
result snippets and the page text to enrich the feature space. How-
ever, the latency of this approach was not discussed in [23]; it may

not be efficient, as it requires the classifier to wait for the search
results to be computed and the result documents to be processed.

Other approaches that leverage similar techniques have been de-
scribed in the context of web search advertising [7, 6]. In both these
papers, web queries are first classified using the top K search result
documents returned to generate additional features. The system de-
scribed in [6] is based on an experimental system that crawls and
analyzes web search results at query time; the changes required to
make this approach efficient for a real-life system are only outlined
briefly, without any evaluation of the resulting latency. In [7], only
small numbers of search results are taken into account (the paper
reports optimal precision for K = 40 results); again, there is no
evaluation of the resulting latency. In contrast, our solution extends
to much larger result sizes, allowing for more robust estimates of
the incidence of tags in the result documents.

A different approach to address the issue of feature (and train-
ing data) sparsity has been the use of semi-supervised techniques
that leverage both labeled and unlabeled training data (e.g., [5]) or
approaches that – based on an initial seed set of labeled queries –
enrich the training corpus by leveraging the web click graph [19].
These techniques are orthogonal to our approach, which only ex-
pands the feature set, and can be combined with it. The same holds
for techniques that leverage NLP techniques to automatically ex-
tract training data from web sources [14]. As we will show in our
experiments, our approach results in significant increases in classi-
fication accuracy even in cases where very large amounts of train-
ing data (≈ 106 labeled examples) are available.

A related approach is also used in [11]; here the authors study the
use of post-retrieval features for the prediction of query difficulty
and expansion risk. Here, the authors also point out the costs asso-
ciated with post-retrieval processing and propose pre-computing a
low-dimensional summary of the documents to address this.

Vertical Selection, which can be thought of as a different, specific
query classification task, is studied in [2]. Here, the authors use ev-
idence from external resources, including corpora representative of
the vertical content. The main focus of this paper is the integra-
tion and modeling of different types of features derived from the
corpora; the performance of feature generation is not evaluated.

3. FEATURES
Notation: Throughout the paper we will use the following nota-
tion: Let D = {d1, . . . , dj} denote the document corpus. As illus-
trated in the earlier examples, this corpus may correspond to a set
of Wikipedia documents, advertisement bids or a web crawl. Given
a corpus D, we use V to denote the set of all distinct words in D
and 2V to denote the power-set of V . We denote the frequency of a
keyword v ∈ V as frq(v) := |{d ∈ D|v ∈ d}|. Similarly, we use
the notation frq(q) to denote the number of documents in D that
contain a set of keywords q ⊆ V . We define the set of all tags that
may be associated with documents in D as T = {t1, . . . tp}. If a
document d is tagged with a tag t, we also use the shorthand t ∈ d;
we denote the set of all documents tagged with t as Dt ⊆ D.
Query Semantics: To define the result of a keyword-search for a
query q, we will define result(q) ⊆ D as the set of all documents
retrieved as a response to a query q. In general, we can incorporate
varying search semantics, depending on the query and the corpus.
In this paper, we will primarily use containment-semantics, i.e.,
we model a query as a set of keywords q = {w1, . . . , wl} and
resultD(q) = {d ∈ D | d contains all wi ∈ q} – these semantics
have the advantage of decoupling our approach from any specific
search engine or algorithm. Note that under these semantics, q cor-
responds to an unordered set of words. We denote the number of
words in a query q as |q|.

Definition 1. Tag Ratios: given a set of documents D ⊆ D and
a tag t ∈ T , we define the tag-ratio of D with respect to t as
ratioD(t) = |{d ∈ D|d is tagged with t}|/|D|. If D corresponds
to the result of a query q, we also use the notation ratio(q, t) :=
ratioresult(q)(t). In the special case that a query result is empty,
we define ratio∅(t) = 0.

3.1 Using Tag Ratios in Classification
A straight-forward way to use tag ratios in query classification

would be to associate each query q with the feature vector formed
by q’s tag ratios: F = [ratio(q, t1), . . . , ratio(q, tp)]. However,
there are two important reasons to extend this approach to also con-
sider tag ratios associated with suitable queries q′ 6= q when clas-
sifying a query q.

First, it is often possible to improve classification accuracy for
a query q further when not only considering the tag ratios for q,
but also those of queries q′ ⊂ q. The main reason for this is
that longer queries may result in small (or even empty) result sets,
thereby making it hard to assess the correlation between the indi-
vidual tags and the words in q. By also considering the ratios for
subsets q′ we are often able to obtain additional estimates of tag
incidence, which – as we will show experimentally – result in im-
proved classification accuracy. For example, consider the query
q = {Canon Camera SD2} This query is likely surface an empty
(or very small) result set, as ’SD2’ is not a valid Canon camera
model (as opposed to SD5 or SD7). However, if we consider the
tag ratios surfaced by the query q′ = {Canon Camera} we are still
likely able to infer that q has commercial intent.

Second, as we have stated before, our approach relies on pre-
computing the tag ratios for queries and indexing these in memory
to derive features at run-time. For the indexing and retrieval of tag
ratios we use efficient and compact main-memory data structures
designed for retrieval of advertisements in sponsored search [18].

It is neither possible to pre-compute these tag ratios for all possi-
ble queries nor to store them, due to constraints on pre-processing
time and storage space. We therefore compute the ratios for an
appropriately chosen subset of all keyword combinations and tags.
This means that we will have to in some cases generate features for
queries q where the values of ratio(q, t) are not stored. We now
describe a more general scheme that derives features for a given
query q from the pre-computed tag ratios for subsets of q.

3.2 “Backoff” ratios and their benefits
The use of the query results for queries containing subsets of

the words in the query q to be classified is conceptually related to
“back-off models” used in language modeling ([20], p. 219). In
these models, the probability of a text n-gram is modeled “back-
ing off” to models with smaller histories under certain conditions,
i.e., the conditional probability of a n-gram (w1, . . . , wk) is not
modeled as Prob(w1|w2 . . . wk) but rather using a smaller history
w2+i . . . wk. Our idea is similar in that we – instead of using the
tag ratios for query q – “back off” to a combination of the tag ratios
from queries q′ ⊂ q. We refer to these tag ratios as back-off ratios

from now on.
To illustrate the significance of using these ratios, we consider

the following experiment. Note that this is just a motivating ex-
ample; we later give a more comprehensive explanation of how we
generate features from tag ratios. Consider the product intent clas-
sification task described in Section 1.1. We use a corpus D of 7.2
Million Wikipedia documents and define the set of tags T using a
list of 759K products from the area of consumer electronics; each
of these products has been categorized into one of 157 higher-level
categories such as CDs, cameras, and MP3-players, etc. We use

81.77%

93.16% 93.24% 93.32% 93.55%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

O
ve

ra
ll

 A
cc

u
ra

cy

81.77%

93.16% 93.24% 93.32% 93.55%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

result(q) only result(q'), |q'| =1 result(q'), |q'| =1,2 result(q'), |q'| =1,2,3 result(q'), |q'| =1,2,3 +

result(q)

O
ve

ra
ll

 A
cc

u
ra

cy

Ratios used for Training / Testing

Figure 2: Backoff ratios improve classification accuracy significantly.

78%

80%

82%

84%

86%

88%

90%

92%

94%

O
v

e
ra

ll
 A

cc
u

ra
cy

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

All Items Result-size > 0 Result-size > 10 Result-size > 100 Result-size > 200 Result-size > 500

O
v

e
ra

ll
 A

cc
u

ra
cy

Corpus used for Training / Testing

Figure 3: Accuracy for queries with different result-sizes.

this list of categories as T and tag each document with t ∈ T if it
contains a product belonging to the corresponding category.

To evaluate the impact of different feature sets, we use 30K real-
life search queries which have been manually labeled as either hav-
ing product-intent or not for consumer electronics products. This
data is separated into 20K training and 10K test examples, with the
baseline probability of label “no product intent” being 67.2%.

We compare the classification accuracy we obtain by using the
following feature sets. First, as a baseline feature set Fbase, we use
the tag ratios for all tags in T as the feature vector for a query q.
Second, we define additional feature sets in which we use the tag
ratios for all subsets q′ of q of sizes s = 1, 2, 3; here, each feature
set Fi contains the average tag ratios for all subqueries q′ of q for
|q′| ≤ i, grouped by t and |q′|. In addition, we use the union of
Fbase and F3 as the final feature set.

We have plotted the resulting classification accuracies in Fig-
ure 2. The baseline feature set results in a classification accuracy
of 81.8%, which is significantly better than the baseline probability,
but not on par with the accuracy of a classifier based on the query
text itself (see Section 6.1). In contrast, all feature-sets that incor-
porate back-off ratios result in significantly better accuracy; the ac-
curacy increases with the number of back-off features used. In fact,
using the back-off ratios for single keywords only already results
in significantly higher accuracy than the base feature set Fbase.

The main reason for these improvements is that using back-off
ratios allows us to more accurately assess the correlation between
query keywords and tags for queries with small result sizes. In
particular, a number of queries with product intent contain long
combinations of rare terms (such as model numbers) which do not
all co-occur in a single document within Wikipedia, in turn result-
ing in a completely empty feature-vector if we only use tag ratios
for the original query. To illustrate these effects, we ran a simi-
lar experiment using only the Fbase feature set, but included only
queries in the test and training data for which the corresponding
result-sizes surpassed a threshold ∆; here, we varied ∆ between 0
and 500. The accuracy for these subsets of the test data is plotted
in Figure 3.

As we can see, the accuracy we can achieve using Fbase only
for queries with large result sizes is more than 10% higher than

the accuracy over all queries. In fact, for the feature set where we
eliminated queries which have an empty result only, we already see
a classification accuracy of 88%, as well as higher gains for queries
with larger result sizes; however, the feature sets that incorporate
backoff ratios still perform better.

3.3 Features based on Backoff Ratios
As illustrated above, the set of backoff ratios is – on average – a

more robust representation of a query q’s intent than the tag ratios
for q itself. We can now define features that characterize the dis-
tribution of tag ratios in this set. One thing we have to account for
is the fact that the number of (backoff) ratios for a given tag/query
combination can vary depending on the number of keywords in the
query; at the same time, we require a constant number of features
in the classifier. To address this, we group the ratios associated with
a query into groups and compute features by aggregating over the
ratios in each group.

A simple example would be to – similarly to what the experi-
ment in the previous section – simply compute an aggregate (e.g.,
the average) over all ratios and use these aggregates for the different
t ∈ T as features. The one limitation of computing such aggregates
over all backoff ratios is that it does not differentiate between the
keyword combinations associated with the backoff ratios. How-
ever, a keyword combination q′ that shares 3 words with the query
q be classified is more likely to result in tag ratios characterizing the
intent of q than a combination q′′ that shares only 1 word. To lever-
age this, we first partition the backoff ratios into groups depending
on the “similarity” between the keyword combination q’ and the
query to be classified q. There are several possible techniques to
perform this partitioning: due to space-constraints, we only use a
simple grouping scheme in this paper that partitions keyword com-
binations q′ by the number of words they have in common with
the query q to be classified. However, our approach is also ap-
plicable to much more sophisticated partitioning schemes, such as
grouping the tag ratios based on different notions of query similar-
ity (e.g., [21, 26]).

For our simple partitioning scheme, we define a grouping opera-
tor π that – for an input query q and a vocabulary V groups subsets
q′ of q into groups Qs by the number of words they have in com-
mon with q:

π(q) = {{q′ ∈ 2V |q′ ⊆ q and |q′ ∩ q| = s}
︸ ︷︷ ︸

Qs

|s = 1, . . . |q|}.

In practice, we generally limit the length of the combinations q′ we
consider here to a small constant.

For each of the groups Qs created in this manner, we define fea-
tures that characterize the distribution of tag ratios in each group,
such as their average, sum, standard deviation, min, max etc. For
example, for the case of average we generate the features

Favg(Qs) := [

∑

q′∈Qs

ratio(q′, t)

|Qs|
|t ∈ T].

Moreover, we create one additional feature vector that contains the
(average) result sizes of the queries in each Qs:

Countavg(Qs) := [

∑

q′∈Qs

|result(q′)|

|Qs|
|t ∈ T].

These last set features allow the classifier to distinguish between
queries that do not co-occur with a specific tag and ones that have
empty result sets.

Our approach results in a feature set that (a) is much smaller than
the word-occurrence features commonly used in text classification
(as its dimensionality depends on |T | and not |V|) and (b) has a
constant number of features even for varying number of backoff
ratios.

3.4 Classification Model
The classification model we use is based on Multiple Additive

Regression-Trees (MART). MART is based on the Stochastic Gra-

dient Boosting paradigm described in [13] which performs gradi-
ent descent optimization in the functional space. In our experi-
ments, we used the log-likelihood as the loss function (optimiza-
tion criterion), used the steepest-decent (gradient descent) as the
optimization technique, and used binary decision trees as the fit-
ting function - a “non-parametric” approach that applies numerical
optimization in functional space. The details of the algorithm are
described in [25].

One reason behind the use of this technique is that – unlike the
sparse feature spaces common in text classification – the classi-
fication tasks resulting from the feature sets defined above typi-
cally have more training examples than distinct features; in addi-
tion to MART, we also tested different classification models (SVM-

models, logistic regression), none of which produced comparable
accuracy. We omit the details due to space considerations.

4. SELECTING TAG RATIOS
It is known that the size of vocabularies grows steadily with the

size of the underlying text corpus [3], in turn implying vocabulary-
sizes in excess of 107 (and often of 108) entries for the types of
corpora (106-107 documents) we are considering. Since we index
the pre-computed tag ratios in (a limited amount of) main mem-
ory, we are not able to store the tag ratios for all possible word-
combinations and tags, even when we restrict ourselves to short
queries. Therefore, the challenge is to select a subset of tag ratios
that we can index in main memory, but at the same time gives as
high classification accuracy as possible. We restrict the set of tag
ratios we pre-compute and store for a given tag t ∈ T as follows:

Short queries: As illustrated in Figure 2, it is often possible to
infer the correct category for a query q using the tag ratios
containing small subsets of the words in q only. As a con-
sequence, we limit the number of words in the queries q′ for
which we pre-compute tag ratios to a small constant wmax.

Informative Tag Ratios: Ideally, we want to preserve the tag ra-
tios that are of high value for classifying queries; specifi-
cally, we want to retain keyword combinations whose dis-
tribution exhibits significant correlation (either positive or
negative) to the tag. To characterize the importance of dif-
ferent tag ratios, we model the distribution of tags as a ran-
dom process that assigns a tag to page with the probability
p = |Dt|/|D|. Now, if the incidences of a tag are not corre-
lated with the occurrence of a set of words q, we can expect
ratio(q, t) ≈ p. In contrast, if the words in q have significant
positive/negative correlation, the corresponding ratio will be
significantly larger/smaller than p.

Therefore, we retain tag ratios that differ significantly from
p:

ratio(q, t) ≤ θlow
|Dt|
|D| , or

ratio(q, t) ≥ θhigh
|Dt|
|D |

[Correlation Condition]

for appropriately chosen θlow < 1, θhigh > 1. In the follow-
ing, we will refer to the required ratios of occurrences for a

tag t as βt
low = θlow

|Dt|
|D|

and βt
high = θhigh

|Dt|
|D|

.

No small results: For the tag ratios themselves to be statistically
meaningful, we need to also ensure that the underlying size
of result(q) is sufficiently large to allow us to robustly as-
sess the correlation between the occurrence of keywords and
tags:

|resultD(q)| ≥ α [Support Condition]

We refer to keyword combinations q that satisfy all three condi-
tions specified above for a tag t as indicative for t, since they are
indicative of correlation between the keywords and the tag.
Practical considerations: In practice, it often makes sense to set
different values for the parameters α, βt

low, and βt
high for different

sizes of the corresponding keyword combinations. In particular,
given the results of the experiments in Section 3.2, it makes sense
to materialize the ratios for all singe keywords in V and use the
above pruning for combinations of multiple keywords only. While
current servers can easily hold a vocabulary V of size |V| = 107

words and all single-word ratios (for moderately-sized tag-corpora,
e.g., |T | = 200) in main memory, the number of multi-word com-
binations grows rapidly as the number of words increases (e.g.,
see [10]), in turn requiring more stringent pruning.

4.1 Properties of Indicative Combinations
In order to justify the pruning conditions, our approach has to

satisfy two properties: (i) Using only indicative keyword combina-
tions does not reduce the resulting classification accuracy signifi-
cantly. We will experimentally evaluate this in Section 6. (ii) Ma-
terializing only indicative keyword combinations leads to a large
reduction in the overall storage space required. In the following,
we will give a formal justification of this property and illustrate it
with examples from real-life data sets. In the experimental evalua-
tion we will then quantify the reduction in space empirically.

Intuitively, we will show that the support and correlation condi-
tions can be expected to prune away a large fraction of word combi-
nations: because the distribution of words and word-combinations
in natural language documents can be expected to follow a power-
law, the support condition already removes the vast majority of key-
word combinations from consideration. Now, if you consider the
subset of the remaining word combinations and assume (most of)
these were uniformly distributed in D, then we expect the corre-
sponding tag ratios to be concentrated around their expectation, in
turn meaning that most of them will be pruned by the correlation
condition. In other words, if we think of the keywords co-occurring
with a tag t as partitioned into two groups – one group containing
keywords that have a semantic relationship to t and hence exhibit
correlation and the second group containing a large number of key-
words distributed at random, independently of t, then it is unlikely
that many keyword-combinations from the second set will satisfy
both the support and correlation conditions. We will now formalize
this argument.
Preliminaries: It is well-known that the frequency-distribution of
single keywords in natural language text follows a power-law [3];
similarly, our experiments regarding the frequency-distribution for
keyword-combinations indicate that this is true for the frequency-
distribution of sets of keywords in a natural-language document
corpus as well (see [10] (Figure 3) and [18] (Figure 2)). To describe
this distribution, we will use the following notation. Let N be the
total number of all pairs of words w ∈ V and documents d ∈ D
for which w ∈ d, and V = |V| be the number of distinct words in

0

200

400

600

800

1000

1200

1400

0 0.01 0.02 0.03 0.04

#
 O

cc
u

rr
e

n
ce

s

Tag Ratio

Expected

Incidence

Figure 4: Distribution of tag ratios for tag ’English-language Films’.

D. Due to the power-law, the frequency frq(w) of a word of rank
r can be modeled as

f(r) =
ζ

ra
N

where ζ is a normalizing constant smaller than 1 ensuring that
∑V

r=1 f(r) = N and a is a fitting parameter modeling the skew of
the distribution. For ease of exposition we set a equal to unity,
resulting in the standard harmonic probability distribution over
words.
Single indicative keywords: First, consider the case of all single-
keyword queries q and a specific tag t. The support condition thus
eliminates roughly |V| − ζ·N

α
(and thus the majority of) keywords

from consideration.
For the remaining keywords, we can use the following argument:

For a keyword v ∈ V of rank rv, we know that it occurs in f(rv)
documents in total. Now, consider the subset of keywords for which
the occurrence of t is independent of the occurrence of the keyword
(i.e., they have no semantic relationship).

For each of these f(rv) documents, the probability that it is
tagged with t is p = |Dt|/|D|. In order for the keyword v to
be indexed, either more than θhigh · p · f(rv) = βt

high · f(rv) or
less than θlow · p · f(rv) documents among the f(rv) documents v
occurs in need to be tagged with t. In the following, we will only
consider the case of more than βt

high ·f(rv) occurrences of t, the ar-
gument for the other case is analogous. Let the random variable X
denote the number of documents tagged with t in which v occurs.
For a keyword v which occurs independently of t, the probability
that this is the case corresponds to the probability of flipping f(rv)
biased coins that show head with probability p and obtaining more
than βt

high · f(rv) heads with these flips. Hence, the probability

Pr(X ≥ βt
high · f(rv))

= 1 −

⌊βt
high·f(rv)⌋
∑

j=0

(

f(rv)

j

)

(p)j · (1 − p)f(rv)−j
.

Rank of keyword

N
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

No keyword (combination)

can satisfy Support

Condition

Very few keyword (combinations)

satisfy Correlation Condition

α

ζ N⋅
−V

α
)(wrf

))(soccurrence tag#Pr(whigh rf⋅> β
2)(22 δwrf

e
−≤

Figure 5: Tight “concentration bounds” make it unlikely for combi-

nations of unrelated keywords to satisfy both conditions by chance.

0

200

400

600

800

1000

1200

1400

1600

0 0.01 0.02 0.03 0.04

#
 O

cc
u

rr
e

n
ce

s

Tag Ratio

Expected

Incidence

Figure 6: Distribution of tag ratios for tag ’American Film Actors’.

Let δ denote this difference in ratio: δ = βt
high − p. It is known

that the distribution of the random variable X as defined above is
tightly concentrated around its expectations as the number of coin
flips becomes larger. Using Chernoff’s bounds we obtain

Pr
(
X − p · f(rv) ≥ δ · f(rv)

)
≤ 2e−2·f(rv)·δ2

.

Here, the number of documents appears in the (negative) expo-
nent, illustrating the rapid decline in probability of a large deviation
from the expectation as f(rv) increases. Now, due to the support-
condition, all keywords with small frequencies (and correspond-
ingly small numbers of coin flips) for which the concentration is
more loose are pruned anyhow (see Figure 5). Given the power-law
distribution of the keyword frequencies, this means that by choos-
ing the parameter α to be sufficiently large, the tight concentration
bounds make it very unlikely for keywords whose occurrence is
independent of t to satisfy both constraints.
Keyword-combinations: Under the assumption that the
frequency-distribution of multi-keyword combinations follows
a power-law as well, the same argument can be made for keyword-
combinations, when scaling up N appropriately and modeling the
frequency distribution as a power-law over sets of keywords.
Examples: To illustrate this, consider the Wikipedia corpus intro-
duced in Section 3.2. This corpus contains a total of 34M distinct
keywords; setting α = 200 (i.e., we consider only keywords that
occur in at least 200 documents) eliminates all but 145K of them.
We then compute a frequency histogram of the corresponding tag
ratios, using a bucket-width of 10−4; here, we plot the range of tag
ratios on the x-axis and the number of ratios within this range on the
y-axis. Figures 4 and 6 show this distribution for the tags English-

language Films and American Film Actors; we can see that the dis-
tribution peaks near the expected rate of occurrence of |Dt|/|D|. At
the same time, the distribution is less concentrated than we would
expect for full independence between occurrences of the tags and
the keywords. The distributions shown in the graphs indicate a pos-
itive correlation between a non-trivial fraction of the keywords that
occur frequently in the same document as a tag t and occurrence
of t itself. Still, as we can see a drastic drop-off in the number
of occurrences with increasing tag-ratio, these graphs confirm the
effectiveness of the pruning conditions.
Extensions: For very large corpora, we can further reduce the
footprint by specifying a suitable set of “candidate” combinations
(e.g., a list of queries and their subsets from a search log) up-
front. Moreover, by carefully encoding the representation (similar
to [24]) we may be able to trade off rare errors in individual tag
ratios against a further reduction in memory footprint.

5. COMPUTING INDICATIVE KEYWORD-

COMBINATIONS
In this section, we describe efficient algorithms to compute all

indicative keyword combinations for a document corpus D and

a set of tags T . Our algorithms are targeted at large document
corpora such as Wikipedia containing on the order of 106–107

documents; this in turn means vocabularies V containing 108

distinct words, and consequently a very large space of possible
combinations of words.

Problem Statement: Given a corpus D, a set of tags T , compute the
tag ratios of all keyword-combinations q ∈ 2V that are indicative
of a tag t ∈ T with respect to D.

Recall that our architecture requires that the set of all indicative
keyword combinations as well as the corresponding counters/ratios
is sufficiently small to be stored in main memory. In particular,
this means that we are able to store the string associated with
each combination q we select as well as up to |T | + 1 counters
countq,i, i ∈ {0} ∪ T for each combination. Here, countq,0

records frq(q) and countq,t how many documents tagged with a
specific tag t ∈ T contain all keywords in q. We make no such as-
sumption about the the size of the document corpus D, which may
exceed the available memory.

Note that the storage requirements for these counters (as well as
any additional counters kept for keyword-combinations which are
filtered out during execution) are the key constraint regarding the
algorithm’s efficiency. If main memory were no concern, it is sim-
ple to solve this problem by scanning D once and explicitly keep-
ing track of the countq,i values for all candidate keyword combi-
nations in main memory. Unfortunately, this approach is clearly
unrealistic given the vocabulary sizes. Therefore, we will consider
approaches with significantly lower main memory requirements.
Baseline: The problem of finding all indicative keywords is simi-
lar to the problem of computing frequent itemsets, which has been
studied extensively in the literature (see [15] for a survey of effi-
cient approaches). Hence, as a baseline approach we first describe
a simple technique using pruning rules proposed in the context of
frequent itemsets, which leverages an inverted index on D. The
computation of inverted indexes for large document collections is
by now a standard operation provided by many IR and database en-
gines; moreover, once an inverted index is in place, the document
frequencies of each keyword in V are known, allowing us to only
consider the set Vα = {c ∈ V|frq(v) ≥ α} of keywords which in-
dividually satisfy the support condition. Because of the distribution
of word frequencies discussed in Section 4.1, this alone reduces the
search space very significantly. The algorithm then computes the
required counts for keyword-combinations by intersecting the in-
verted indexes in a bottom-up manner; whenever the size of an in-
tersection is known to be less than α, we terminate the processing
for this keyword combination and all supersets of it.

The advantage of this very simple algorithm is that is has very
small main memory requirements. At any point, we only need to
retain the posting lists of up to wmax words in main memory, which
should be small even for extremely large D. Unfortunately, it is
also very slow, even when discounting the initial cost of building
the inverted index. The main issue is that each posting list takes part
in up to (|V(α)| −wmax)wmax−1 index intersections and hence is
iterated over many times. To overcome this issue, we now describe
an approach that iterates over the document corpus directly, making
only a limited number (2·wmax) of passes over the data.
Combination-Filter: Our approach is based on ideas from the
area of data streams [4]. The computation of frequent items in
data streams with limited main memory and limited numbers of
passes over the data has received significant attention in recent
years (e.g., [9, 17, 12]); we will leverage an adaptation of the tech-
niques described in [12].

.

.

.

.

.

.

.

.

.

d

w

v

h1(v)

h2(v)

hd(v)

++

++

++

Figure 7: Structure of a CM-Sketch

The algorithm we propose scans the corpus D a total of 2 ·wmax

times; after the 2 · k-th scan, it outputs all indicative keyword com-
binations q′ (and their ratios) of length (in words) |q′| = i. This
computation proceeds by alternating between two stages: in the
first stage, we scan D to construct an estimator frq(q) of the fre-
quency frq(q) of word-combinations q of k words (the value of k
increasing every two scans). As we will show, this estimator only
over-estimates frequencies, i.e., ∀q ⊆ V : frq(q) ≥ frq(q).

In the 2nd phase we scan D again then and maintain the value of
countq,i for all k-word combinations q for which frq(q) ≥ α. At
the end of this scan, we can use these counts to determine all key-
word combinations for which the true frequency frq(q) ≥ α, as
well as compute all resulting ratios to validate the support and cor-
relation conditions. Because ∀q : frq(q) ≥ frq(q), this approach
will compute all required tag ratios for the set of indicative key-
word combinations, as well as some false positives. The amount
of main memory the algorithm consumes depends on the efficiency
of the estimator. In the following, we will discuss how we use a
modification of Count-Min Sketches porposed in [12] to construct
an efficient estimator for this task.
Count-Min Sketches: The basic structure we employ to construct
an estimator frq(q) is a modification of sketching technique
called Count-Min Sketch (CM-Sketch) [12]. A CM-Sketch is
a 2-dimensional array of counters with width w′ and depth
d′: f_count[1, 1] . . . f_count[d′, w′] and d′ hash functions
h1, . . . , hd′ : 2V 7→ {1, . . . , w′}. All counters are set to 0 initially.
Whenever a word combination q is inserted into the structure,
the basic CM-Sketch algorithm iterates over all hash functions
hi(q)i=1...d′ and increases f_count[i, hi(q)] by 1.

Using these counts, we estimate the frequency of a word com-
bination q as frq(q) := minj∈{1,...,d′} f_count[j, hj(q)]. Obvi-

ously, it must hold that ∀q : frq(q) ≥ frq(q), since each f_count
cell contains the sum of the frequency of all values hashed to it.
Modified CM-Sketches: Now, we leverage two observations to
improve this structure for our specific scenario: first, as dis-
cussed in Section 4.1, the frequency-distribution of words and
word-combinations roughly follows a power-law. This means that
only for a small fraction of word-combinations q does it hold that
frq(q) ≥ α. Hash-collisions between the other keyword combi-
nations in turn will result in a significant number of false positives
by the filter. Here, it is particularly important to filter out such false
positives – otherwise all of these keyword combinations have to be
tracked explicitly in the subsequent processing.

Second, for the purpose of constructing a filter, we don’t require
individual cells to contain the sum of the frequencies of all keyword
combinations hashed to them – instead, if we ensure that ∀q ∈
2V : f_count[i, hi(q)] ≤ frq(q) (i.e., we are able to keep an
upper bound on the maximum value in each counter), the filter will
produce the correct output.

We now combine these two observations to modify the orig-
inal CM-Sketch algorithm: consider the stream of keyword-
combinations that is (via the hash-functions) mapped to a specific

counter f_count[i, j]. Note that we are only interested in an
upper bound on the maximum frequency of a keyword combina-
tion mapped to this counter. This means that if we – when we
observe sequence of distinct keyword combinations mapped to
f_count[i, j] – only have to increase the counter once. Since
keeping track of all distinct values hashed to a particular bucket
is clearly not practical (due to the required space) we instead
use a small bitmap to approximately keep track of distinct val-
ues. We know that the distribution of keyword combinations
follows a power law, so we expect many counters to have many
low-frequency values mapped to them.

CM_UPDATE(q) // Update the modified CM-sketch with item q
// Input: Keyword-combination q
// Output: Updated f_count-array, s.t. ∀q : f_count[i, hi(q)] ≥
frq(q).

1: for i ∈ 1, . . . , d′ do

2: if b[i, hi(q)] & 2ĥi(q) = 2ĥi(q) OR f_count[i, hi(q)] = 0 then

3: b[i, hi(q)] := 2ĥi(q) // New sub-sequence
4: f_count[i, hi(q)] := f_count[i, hi(q)] + 1
5: else

6: b[i, hi(q)] := b[i, hi(q)] & 2ĥi(q) // Update bit-array

7: end if
8: end for

Algorithm 1: Updating CM-Sketch Counters

To implement this idea, we modify the original CM-Sketch struc-
ture as follows: with every counter f_count[i, j] we associate a
bit-array b[i, j] of width m, requiring a total of d′ · w′ · m bits.

We associate a second array of hash-functions ĥ1, . . . , ĥd′ : 2V 7→
{1, . . . , m} which map a set of keywords to one of the m posi-
tions. Now, when we first encounter a keyword-combination q that
is hashed to a specific f_count[i, j], we first test if b[i, j] is 0; if

so, we increment f_count[i, j] and set the ĥi(q)-th bit in b[i, j].
For every subsequent item q′ we see for this counter, we test if the

ĥi(q
′)-th bit in b[i, j] has already been set; if not, we know that q′

has not occurred since we last increased the counter, and only set

the ĥi(q
′)-th in the bit array, but do not increase the counter. Only

if we find that the corresponding bit had been set do we increase

the counter and set all bits (except for the ĥi(q
′)-th one) to zero.

The algorithm is shown in detail as Algorithm 1.
Putting it all together: We can now formulate the overall approach
in Algorithm 2 (showing the two stages only): we first iterate over
D to construct the filter frq(), which is then used in the subse-
quent scan to track highly frequent word-combinations. Hence, the
memory requirements of our approach depend on the quality of
this filter, and we’ll evaluate it in Section 6.4. In the next phase,
we iterate over D in a similar manner, enumerating all possible
high-frequency word combinations using frq. When encounter-
ing a document containing a keyword combination q for which
frq(q) ≥ α, we then use the tag-information stored with d to iden-
tify all tags for which we need to increment Countq,t.

6. EXPERIMENTS
In this section, we evaluate the accuracy resulting from the pro-

posed features, their ability to generalize and quality of the algo-
rithm proposed in Section 5. We evaluate our approach on three
different real-life query classification tasks:
Consumer Electronics Classification: This task is identical to
the classification of product intent described in Section 1.2 for the
product category of consumer electronics; as the corpus, we use
a 7.2 Million document Wikipedia snapshot tagged with the 157
product categories as described in the example in Section 3.2 and

// Stage I: Filter Construction for word-combinations of size k

// Invariant: Vk−1
α := {q ∈ 2V : |q| = k − 1 and frq(q) ≥ α}

// is known from earlier iterations.

1: for d ∈ D do
2: S = ∅
3: for i = 1, . . . |d| do

4: wi := i-th word in d.
5: if wi /∈ S then

6: for q′ ∈ 2S ∩ Vk−1
α do

7: CM_UPDATE({wi} ∪ q′)
8: end for
9: S := S ∪ wi

10: end if

11: end for
12: end for

// Stage II: Explicit tracking of the ratios for all q that pass the filter

13: for d ∈ D do

14: S = ∅
15: for i = 1, . . . |d| do

16: wi := i-th word in d.
17: if wi /∈ S then

18: for q′ ∈ 2S ∩ Vk−1
α do

19: q := {wi} ∪ q′

20: if frq(q) ≥ α then

21: Countq,0 = Countq,0 + 1
22: for t ∈ T with t ∈ d do
23: Countq,t = Countq,t + 1
24: end for

25: end if

26: end for
27: S := S ∪ wi

28: end if

29: end for
30: end for

Algorithm 2: Combination-Filter Approach

we use 30K web search queries (20K training and 10K test) to train
the classifier. The search queries were labeled manually.
Health Query Classification: Here, the classification task is to
identify queries that are related to health issues. As D we use a
corpus of 600 Million advertisement bids, and the 5000 most pro-
lific advertisers as the set of tags T ; each bid phrase is tagged with
the advertiser(s) who submitted this phrase to the corpus. Unlike
the previous classification task, the training/test data for this task
encompasses over 800K distinct labeled queries; the labels were
obtained using a combination of manual and automated labeling.
Retail Classification: This task is identical to the identification
of retail queries described in Section 1.2. For this task, we use
a combination of the advertiser tags described previously and the
Wikipedia category tasks described in Section 1.2: for the latter, we
again use Wikipedia as D and the 1K most frequent page categories
as T ; for the former, we use only the 1K most prolific advertisers.
For this task, we have training/test data of 330K labeled queries;
the labels were obtained using a combination of hand-labeling and
automated techniques [19].

6.1 Evaluation of Classifier Accuracy
To compare our approach to text-based classifiers, we used Max-

imum Entropy classifiers [22] (which perform well for very sparse
feature sets). These classifiers are trained on n-gram features ex-
tracted from the training-set queries. An n-gram feature is a binary
function that indicates the occurrence of a specific n-gram in an
input query. In our evaluation, we use n = 1, 2, 3 for all exper-
iments, extracting all n-grams found in the training data. As has
been shown in [19], n-gram features can lead to remarkable classi-
fication performance given abundant training data. As the training

data volume varies significantly between the different classification
tasks, we will be able to assess if this affects the relative perfor-
mance compared to our technique.

In addition, for the consumer electronics classification task, we
further sought to improve the (generalization) performance of the
text-based classifier by adding lexicon features. A lexicon feature
is a binary function indicating whether any n-gram that belongs
to a pre-defined lexicon appears in an input query. Such features
typically improve generalization performance, as they can be trig-
gered even by an n-gram that does not occur in the training data. A
lexicon is typically constructed as a cluster of semantically similar
words/phrases. Here we use four lexicons extracted from a prod-
uct database, representing brand, model, product type and product

attribute respectively. A lexicon feature is activated if the input
query contains a word that belongs to the corresponding lexicon.
The size of brand, model, product type and attribute lexicons are
3.8K, 91.3K, 3.1K, 2.8K entries, respectively.

In the experiments described in this section, we only used the
simplest form of backoff features, using the tag ratios for single-
word queries only. As the total number of distinct words occurring
in the corpora are 34 Millions (Wikipedia) and 12 Million (Adver-

tisements), this means that all tag ratios (even for relatively large
tag sets with more than 104 tags) can be stored in memory.

For each experiment, we evaluated both the accuracy resulting
from using the n-gram classifier and the classifier based on tag ra-
tio features only, as well as the accuracy resulting from combin-
ing both feature types. To asses the gain resulting from combin-
ing the two feature types; we combined the two classifier’s out-
put as follows. Given an input query, the MART and the MaxEnt
classifiers each produce a posterior probability. We then trained a
meta-classifier (based on MART) using additional, held-out labeled
queries, using the two posteriors as the two input features.

For the Consumer Electronics task, the n-gram features achieved
classification accuracy of 93.02%, which increased to 93.20%
when features based on the the various lexica were added. The
features based on tag ratios resulted in significant improvement in
accuracy: 95.64%. Combining the output of both classifiers im-
proved this to 96.5% accuracy. For the Health Query task, using
either the n-gram classifier or the classifier using only tag-ratios in
isolation resulted in (almost) identical classification accuracies of
98.2%. However, combining the two classifiers again resulted in
significantly improved accuracy of 98.8%. For for the Retail task,
the accuracy of the n-gram based classifier was 92.5%, the accu-
racy based on tag ratios was 93.3% and combining both classifiers
resulted in 94.2% accuracy.

In summary, the combination of tag ratios and n-gram features
consistently resulted in significant improvements in the classifica-
tion accuracy for each of the classification tasks.

6.2 Evaluation: Training Data Size
A second important characteristic of the features we propose is

that they can yield accurate classifiers even for very small amounts
of training data. This is important, as the acquisition of manually
labeled training data is often a bottleneck in real-life applications.

To illustrate this, we varied the size of the training data for each
of the studied classification tasks, and compared the resulting ac-
curacy for the both n-gram and tag ratio features described in Sec-
tion 6.1. We compared the accuracy for training data sizes corre-
sponding to 100%, 33%, 10%, 3% and 1% of the original training
examples. The results are shown in Figures 8–10.

As we can see, reducing the training data size to as little as 1%
of the original training data results in only a small reduction in
classification accuracy for the classifier based on tag ratio features,

95.64%
94.31%

93.04%
91.98%

87.23%

93.20%
91.28%

87.92%

84.08%

78.37%

93.02% 90.54%

86.53%

80.42%

73.25%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

20K Training

Queries

6.5K Training

Queries

2K Training

Queries

650 Training

Queries

200 Training

Queries

O
v

e
ra

ll
 A

cc
u

ra
cy

Tag Ratio Features

N-Gram + Lexicon Features

N-Gram Features

Figure 8: Generalization of Featuresets in Product Categorization.

93.30% 93.00%
92.70% 92.20%

91.40%

92.50%

90.90%

88.10%

84.20%

80.10%

75.00%

80.00%

85.00%

90.00%

95.00%

O
v

e
ra

ll
 A

cc
u

ra
cy

Tag Ratio Features

N-Gram Features

93.30% 93.00%
92.70% 92.20%

91.40%

92.50%

90.90%

88.10%

84.20%

80.10%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100% Training

Data

33% Training

Data

10% Training

Data

3.33% Training

Data

1% Training Data

O
v

e
ra

ll
 A

cc
u

ra
cy

Tag Ratio Features

N-Gram Features

Figure 9: Generalization of Featuresets in Retail Categorization.

whereas it significantly impacts the n-gram based one and also, to
a lesser degree, the classifier incorporating lexicon features.

6.3 Evaluation: Feature Sets
In this experiment we evaluate the impact of using indicative

keyword combinations only on classification accuracy and the
number of keyword combinations for which we need to store tag
ratios. We use the following set-up: for the Retail classification
task we compute the ratios for all sub-queries of length up to 3
which occur in the test training data. We then evaluate the accu-
racy resulting from using 3 different feature sets: (a) features based
on the full set of the computed ratios, (b) features based the ratios
for all single words and ratios for all indicative keyword combina-
tions (α = 50, βt

low = 0.8, βt
high = 1.2) and (c) the ratios for

all single word queries only. The accuracies obtained with these
three features sets are as follows: the full feature set had the best
accuracy at 93.47%, followed by the indicative features (93.38%)
and the single-word features (93.30%). As we can see, the differ-
ence between these features sets is not very pronounced. Moreover,
while the full feature set gives us the best accuracy overall, materi-
alizing all possible 3-word queries is not feasible in practice, even
for much smaller document sets (again, due to the power-law dis-
tribution). Here, the indicative features offer comparable accuracy
and even the choice of using single keywords does not result in a
big drop in classifier performance. We ran a similar experiment for
the Health classification task: here, the difference in accuracy be-
tween features based on (a) all ratios and (b) single words was even
smaller: less than 0.10%.

For the Retail classification task, we measured the fraction of
all generated keyword-combinations that were filtered out by the
support and correlation conditions: the set of indicative keyword
combinations contained only 0.8% of the set of all 3-word com-
binations in the training data. Here, the value of α has the most
impact on the number of combinations: setting α to 100 prunes all
but 0.3% of the combinations, whereas α = 20 retains 2.5%. Note
that these factors are likely to underestimate the reduction in size
we would obtain when considering all possible 3-word subqueries,

98.20% 98.10%
97.90%

97.50%
97.30%

98.20%
97.50%

96.50%

94.80%

92.10%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

O
v

e
ra

ll
 A

cc
u

ra
cy

Tag Ratio Features

N-Gram Features

98.20% 98.10%
97.90%

97.50%
97.30%

98.20%
97.50%

96.50%

94.80%

92.10%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

100% Training

Data

33% Training

Data

10% Training

Data

3.33% Training

Data

1% Training Data

O
v

e
ra

ll
 A

cc
u

ra
cy

Tag Ratio Features

N-Gram Features

Figure 10: Generalization of Featuresets in Health Categorization.

as we only use keywords that occur in the labeled training data,
which is more likely to contain relatively common words.

6.4 Evaluation: Indicative Keyword Mining
In this section we briefly evaluate the algorithms proposed in

Section 5. For this purpose, we used varying subsets of Wikipedia
ranging from 10K to 200K documents as well as varying values
of α ∈ {100, 200, 500, 1K} and evaluated the estimator quality
when using Algorithm 2 to compute all 2-keyword combinations
satisfying the support-condition. All experiments were run on an
2.21 Ghz Opteron 2214 PC with 16 GB memory.

For the (modified) CM-Sketches, we used 16-bit counters and
bit-array widths m ∈ {0, 2, 3, 4, 8} – the setting m = 0 corre-
sponds to the standard CM-Sketch. To allow for a fair compar-
ison, the space required for the bitmaps was subtracted from the
total space available for the counters. After initial experiments we
only used d′ = 1 hash functions; larger values always resulted in
reduced performance. Now, in each experiment, we set the total
size of the sketch as equivalent to storing 2% of |Vα|

2 (i.e. 2% of
all possible 2-keyword combinations satisfying the support thresh-
hold). We also used the total frequency of a word over all of D for
pruning, meaning, we considered – for each document – the same
set of keyword combinations we would have considered if we were
processing the entire corpus.

Comparing the different filters, we found that the modified CM-
Sketch performed best for m = 2 and m = 3, outperform-
ing the unmodified sketch (in terms of the number of keyword-
combinations retained during the 2nd scan) by between 2–17%.
The modified sketch using bit-arrays of width m = 4, 8 performed
worse than the original structure.

7. CONCLUSION AND OUTLOOK
In this paper we have proposed a new class of tag ratio features

for query classification based on co-occurrence between various
types of tags and query terms in large document corpora. These
features allow us to avoid sparse feature spaces, and result in signif-
icant improvements in overall classification accuracy. We proposed
the notion of backoff ratios which allow us to accurately classify
queries for which the corresponding tag ratios are not known, by
leveraging the ratios of smaller sub-queries. This in turn allows us
to set up a framework in which we pre-compute the tag ratios for
a small subset of all possible queries only. Because we can index
this subset in main memory, it becomes possible to realize the fea-
tures based on tag ratios with small latency, making the approach
attractive for use within the tight latency constraints of search en-
gines. Experiments using various real-life classification tasks and
different tag sets show that combining the proposed features with
n-gram based classifiers yields significant gains in accuracy over
using n-gram features alone, even when very large sets of labeled
examples are available.

8. REFERENCES
[1] http://blogs.zdnet.com/BTL/?p=3925.

[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of Evidence
for Vertical Selection. In ACM SIGIR, 2009.

[3] H. Baayen. Word Frequency Distributions, volume 18 of Text, Speech

and Language Technology. Kulver Academic Publishers, 2001.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.Widom. Models
and Issues in Data Stream Systems. In Proceedings of the ACM
PODS Conference, Madison, USA, pages 1–30, 2002.

[5] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis, A. Chowdhury,
and A. Kolcz. Improving Automatic Query Classification via
Semi-Supervised Learning. In ICDM Conf., pages 42–49, 2005.

[6] A. Z. Broder, P. Ciccolo, M. Fontoura, E. Gabrilovich, V. Josifovski,
and L. Riedel. Search Advertising using Web Relevance Feedback.
In CIKM, pages 1013–1022, 2008.

[7] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski,
and T. Zhang. Robust Classification of Rare Queries using Web
Knowledge. In ACM SIGIR, pages 231–238, 2007.

[8] J. Brutlag. Speed Matters for Google Web Search.
http://code.google.com/speed/files/delayexp.pdf, 2009.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent
Items in Data Streams. In ICALP, 2002.

[10] S. Chaudhuri, K. Church, A. C. König, and L. Sui. Heavy-Tailed
Distributions and Multi-Keyword Queries. In ACM SIGIR, 2007.

[11] K. Collins-Thompson and P. Bennett. Estimating Query Performance
using Class Predictions. In ACM SIGIR, 2009.

[12] G. Cormode and S. Muthukrishnan. An Improved Data Stream
Summary: the Count-Min Sketch and its Applications. In Journal of

Algorithms, 55(1), pages 58–75, 2005.

[13] J. Friedman. Greedy Function Approximation: a Gradient Boosting
Machine. Annals of Statistics, 29(5), 2001.

[14] A. Fuxman, A. Kannan, A. B. Goldberg, R. Agrawal, P. Tsaparas,
and J. Shafer. Improving Classification Accuracy using
Automatically extracted Training Data. In ACM SIKDD, pages
1145–1154, 2009.

[15] B. Goethals and M. J. Zaki. Advances in Frequent Itemset Mining
Implementations: report on FIMI’03. SIGKDD Explor. Newsl., 6(1),
2004.

[16] X. He, J. Yan, J. Ma, N. Liu, and Z. Chen. Query Topic Detection for
Reformulation. In WWW Conference, 2007.

[17] R. Karp, S. Schenker, and C. Papdimitriou. A Simple Algorithm for
Finding Frequent Elements in Streams and Bags. In ACM

Transactions of Database Systems, 28(1), pages 51–55, 2003.

[18] A. C. König, K. Church, and M. Markov. A Data Struture for
Sponsored Search. In IEEE ICDE, 2009.

[19] X. Li, Y.-Y. Wang, and A. Acero. Learning Query Intent from
Regularized Click Graphs. In In Proc. ACM of SIGIR, 2008.

[20] C. Manning and H. Schütze. Foundations of Statistical Natural

Language Processing. MIT Press, 1999.

[21] D. Metzler, S. T. Dumais, and C. Meek. Similarity Measures for
Short Segments of Text. In ECIR, 2007.

[22] K. Nigam. Using Maximum Entropy for Text Classification. In In

IJCAI-99 Workshop on Machine Learning for Information Filtering,
1999.

[23] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building Bridges for Web
Query Classification. In SIGIR, 2006.

[24] D. Talbot and T. Brants. Randomized Language Models via Perfect
Hash Functions. In Proceedings of ACL-08: HLT, 2008.

[25] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Ranking, Boosting,
and Model Adaptation. Technical report, Microsoft Research, 2008.

[26] W. Yih and C. Meek. Improving Similarity Measures for Short
Segments of Text. In AAAI, 2007.

