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Abstract

Many of the basic principles governing the development and function of living organisms remain
poorly understood, despite the significant progress in molecular and cellular biology and the tremendous
breakthroughs in experimental methods, which allow the precise measurement and observations of the
underlying biological processes. The development of system-level, mechanistic, computational models
has the potential to become an indispensable foundation and tool for improving our understanding of
biological systems, enabling the integration of different processes into coherent and rigorous representa-
tions that can be simulated or analyzed and whose outcomes can be compared to laboratory data and
used to guide experimental work.

An intriguing property of biological systems is their ability to perform computation using information
processing mechanisms and thus ensuring robust development and survival under different environments.
Computational modeling has the potential to lay a foundational theory for this inherent biological com-
putation, allowing the study of questions like what cells compute, how do they perform computation, and
in what ways can such computation be modified or engineered, for example, to allow intervening with
abnormal behavior that can lead to disease or to design computational devices using biological principles.

Inspired by the study of other computational systems, the application of formal methods has recently
attracted attention in the context of biology as a strategy for automatic analysis from rich specifications,
leading to rigorously defined modeling languages that can be analyzed systematically and efficiently,
enabling proving of system properties and not relying only on simulation. However, such methods are
often implemented as stand-alone tools focused on specific problems, thereby hindering the reproducibility
of results and the collaborative improvement of methods.

Here we focus on several widely used formalisms for modeling biological systems and describe how
they can be encoded to allow analysis using Satisfiability Modulo Theories (SMT) based methods. This
leads to a framework that is expressive (can capture a variety of formalisms and specifications), scalable
(can handle models of practical interest) and extensible (additional models and analysis procedures can
be integrated). We implement the proposed translation procedures for the considered model classes,
produce an initial repository of models of genetic and signaling networks, developmental systems and
DNA computing circuits and demonstrate several analysis procedures for challenging examples.

We share all models and specifications from this study on our web site using the popular SMT-LIB
format, which allows a number of SMT solvers to be used on the same problems. In this report we
present results from the application of the Z3 solver, which provides an interactive online environment,
where the available models and analysis procedures can be explored or novel ones can be developed and
tested. By making our work accessible, we hope to stimulate interdisciplinary research on the application
of formal methods in biology allowing better understanding of the computational processes within living
organisms.

1 Introduction

Biology strives to describe and understand the different processes taking place in living organisms. One
strategy for dealing with the complexity of biological systems involves the construction and use of models
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to systematize observations, describe mechanisms and make predictions that can be tested experimentally.
Traditionally, mathematical (e.g. differential equation) models have been used in the field but, more recently,
computational models (where an executable algorithm is developed to capture the behavior of a system) have
gained popularity (see [33, 22] for reviews). The desire to establish more complete descriptions of biological
systems leads to increasingly larger models, requiring novel (automated) analysis techniques and tools to aid
in model development, testing and exploration.

In the past, biology has focused more on specific details rather than general laws and abstractions but the
study of biological computation attempts to understand biological mechanisms as information processing and
thus provide unified biological theories. Along this direction, it is natural to study biological computation
using methods developed for the analysis of other computational systems such as computer software and
hardware, where remarkable complexity can be engineered through the use of abstractions and automated
analysis and design methods. In this report we review (variants of) several popular formalisms used for
modeling biological systems, including Boolean networks [48] (or their extensions [22, 75]), chemical reaction
network models, statecharts [38] and scenario-based models. We show that all these model classes share a
common structure and can be represented by (finite) transition systems. Transition systems are also used
as models of computer hardware and software and their analysis has been studied extensively in the field of
formal verification, leading to the development of automated methods for reasoning about (the correctness
of) system behavior. Exploiting the similarities between the formalisms used for modeling biological and
other computational systems allows us to apply formal methods in the context of biology, with the potential
to impact the study of biological computation.

The field of formal verification has shown tremendous progress over the past years, and has produced
mature methods capable of dealing with industrial-sizes problems. Early automated verification (model
checking) techniques relied on explicit transition system representations and could not handle larger mod-
els. To deal with this, symbolic methods were developed to represent and manipulate finite transition
systems efficiently. The use of binary decision diagrams (BDDs) provides one such approach but the size of
BDD-based symbolic representations cannot be controlled easily. As an alternative, methods based on the
encoding of models and specifications as Boolean satisfiability (SAT) problems allowed the use of modern
SAT solvers, which can practically handle very large problem instances despite theoretical hardness results.
Such techniques have demonstrated great potential for certain applications such as the search for violating
behavior (“bugs”) using bounded model checking (BMC). In general, BDD and SAT-based techniques can
be complementary and better suited for different problems.

A major challenge to the adoption of SAT-based methods for novel application domains such as the anal-
ysis of biological computation comes from the difficulty of translating models and specifications to Boolean
satisfiability problems. Using theories richer than Boolean logic can offer a more natural framework by
allowing higher-level problem descriptions, provided that automatic reasoning procedures are still available.
For example, in the context of bounded model checking, the use of quantified Boolean formulas (QBF) has
enabled more compact problem encodings at the price of harder decision procedures [24, 44]. In this report
we demonstrate that, similarly to computer hardware and software, several formalisms used for the modeling
of biological systems can be encoded naturally using bit-vectors. The use of such theories is attractive due to
recently developed quantified bit-vector formula procedures [77]. An even more general framework can rely
on the set of theories supported by modern satisfiability modulo theories (SMT) solvers such as Z3 [23], which
include bit-vectors, integer and real arithmetic, arrays and other (possibly recursive) data types. There, the
choice of specific theories is guided by the trade-off between expressivity, which allows more compact and
straightforward model encodings, and decision procedure complexity.

In this report, we describe how a variety of biological models from several popular formalisms can be
encoded to enable SMT-based analysis. The richness of the SMT problem can accommodate analysis proce-
dures to address a diverse set of biological questions, while the availability of SMT solvers (which are being
improved actively [1]) allows the framework to benefit from ongoing progress in the field. We illustrate the
capacity of the proposed methods through the analysis of several challenging examples from a range of areas
including developmental biology, synthetic biology and DNA computing. By exploiting a unified represen-
tation, we focus on studying the computation performed by biological systems independently of the specific
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formalism used to model them. More practically, this allows models from different classes (or integrating
several formalisms) to be explored or compared efficiently to help researchers gain novel biological insight or
uncover modeling inconsistencies, while correctness guarantees are also provided.

The proposed methods depend on the availability of (quantified) bit-vectors reasoning procedures but are
not tied to a specific SMT solver. In fact, by using the widely adopted SMT-LIB format [8], we allow models
and analysis procedures to be exchanged across platforms. As an illustration, in the presented case studies
we use the Z3 solver [23] due to its performance in recent trials [1], its continuously ongoing development,
and its availability as part of an interactive online environment [2].

We believe that interdisciplinary research on the intersection of formal methods and biology can help
address many challenging problems such as the ones encountered in the study of biological computation.
We hope that an extensible and open framework can aid in the development of improved biological models
and analysis procedures through the combined effort of both communities, and improve the reproducibility
of results [43]. Towards this goal, in this report we review theoretical and experimental results from both
fields and demonstrate preliminary steps towards the encoding and analysis of several biological modeling
formalisms through formal, SMT-based methods. In addition, we compile an initial repository of models and
relevant specifications from literature and adopt the standard SMT-LIB format [8] to make them available
on our project web site. This will allow both experimenting with different available models and analysis
procedures or the development of novel ones, possibly using Z3’s interactive online environment [2].

2 Background

Let B = {0, 1} denote the set of Boolean (truth) values. A bit-vector b ∈ BN of size N is a vector of Boolean
variables b(0), b(1) . . . b(N − 1) where b(i) ∈ B for each 0 ≤ i < N .. We use the standard logic operations
on Boolean variables and bit-vectors1, the arithmetic operations + and − on (unsigned) bit-vectors and
functions defined on these types. All logical and arithmetic operations on Boolean variables and bit-vectors
used throughout the report are supported by the Z3 solver [23]. For b, b′ ∈ BN , we write b(i) = b(j) instead

of b(i)↔ b(j), b = b′ as a shorthand for
∧N−1

i=0 b(i) = b′(i), and use |b| = n to denote a cardinality constraint,
indicating that b(i) = 1 for exactly n distinct values of i.

3 Transition Systems

A transition system is a tuple T = (Q,Q0, T ) where Q is a set of states, Q0 ⊆ Q is a set of initial states
and T ⊆ Q × Q is a transition relation. Given states q, q′ ∈ Q a transition (q, q′) ∈ T is denoted by
T (q, q′). In this report only finite transition systems (where Q is finite) are considered - dealing effectively
with the unbounded state spaces which can arise when modeling certain biological systems remains an
open challenge and additional abstraction methods and theorem proving techniques may be needed. Finite
transition systems can be encoded naturally as logical formulas [10, 24] - here we represent system states as
bit-vectors Q ⊆ BN where2 N ≥ dlg(|S|)e.

A transition system is deterministic if for all q ∈ Q there exists at most one q′ ∈ Q such that T (q, q′). It is
deadlock-free if for all q ∈ Q there exists q′ ∈ Q such that q 6= q′ and T (q, q′) and otherwise, a deadlock state
violating this property can be identified. A path π is a sequence π = π(0)π(1)π(2) . . . such that π(0) ∈ Q0

and, for all i ≥ 0, π(i) ∈ Q and T (π(i), π(i+1)). A finite path of length k denoted by πk and can be encoded
by “unrolling” the transition relation [10], which results in the following quantifier-free bit-vector formula

[πk] :=

k−1∧
i=0

T (πk(i), πk(i+ 1)). (1)

Note that [πk] describes all valid systems paths of length k but a specific (instantiated) path can be obtained
e.g. using Z3. The path representation described above requires k copies of the transition relation T which,

1We use ∧bv and ∨bv to denote the bitwise AND and OR operations.
2|Q| is the cardinality of Q, and dxe denotes the ceiling of x.
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in general, is a large sub-formula. Equivalent path encodings that include only a single copy of the transition
relation (regardless of k) can be obtained through the use of quantifiers [24]:

[πk]q := ∀q, q′,

(
k−1∨
i=0

(q = πk(i)) ∧ (q′ = πk(i+ 1))

)
→ T (πk(i), πk(i+ 1)). (2)

A path without loops is called a simple path and can be encoded as

[πk]s := [πk] ∧

 ∧
0≤i<j≤k

πk(i) 6= πk(j)

 . (3)

This encoding is quadratic in the path length k but more compact (linear) encodings are possible through
the use of quantifiers [44].

The diameter d of a transition system is the length of the longest shortest path between any two reachable
states in the system while its recurrence diameter dr is the length of the longest simple path3. The diameter
of a transition system can be computed as the minimal d making the following quantified formula satisfiable
[10]

∀π(0) . . . π(d+ 1),∃π′(0) . . . π(d),

d∧
i=0

T (π(i), π(i+ 1))→(
π(0) = π′(0) ∧

d−1∧
i=0

T (π′(i), π′(i+ 1)) ∧
d∨

i=0

π′(i) = π(d+ 1)

)
, (4)

although some additional optimizations are possible [61]. The recurrence diameter can be computed as the
maximal dr for which the formula from Eqn. (3) is satisfiable or as the minimal dr making the following
formula satisfiable [10]

∀π(0), . . . , π(dr + 1),

dr∧
i=0

T (π(i), π(i+ 1))→
dr∨
i=0

π(i) = π(dr + 1). (5)

In bounded model checking (BMC), the diameters of a system provide (an over-approximation of) the com-
pleteness threshold - the minimal unrolling depth that must be considered in order to guarantee that infinite
paths of the system satisfy certain properties [10, 50]. When testing the existence of a path that eventually
reaches a state with given properties, which is equivalent to finding a counterexample to a specification
requiring that a state with these properties is never reached, the completeness threshold is less than the
(initialized) diameter d [16]. In contrast, when testing if a path exists along which certain behavior always
holds (i.e. a specification is satisfied by all states along the path), which corresponds to a counterexample
of the reachability of a state where the properties do not hold, dr can be used as a completeness threshold
[50, 16]. For both types of properties, the recurrence diameter provides an over-approximation of the com-
pleteness threshold. Identifying the recurrence diameter (e.g. using the procedure described in [50]) can be
challenging but some of the biological models we study have small recurrence diameters, which we compute
by testing the satisfiability of Eqn. (3) at increasing values of k.

4 Boolean Networks

In organisms, certain DNA sequences (genes) are expressed to produce proteins, which perform a variety of
biological functions. Proteins serving as transcription factors are capable of binding regulatory DNA segments
in order to affect (activate or repress) the expression of other genes. The expression of transcription factors

3In practice, the initialized diameters (defined by paths initialized in Q0) are often considered instead

4



can also be regulated, which gives rise to intricate gene regulation networks (GRNs) capable of producing
complex temporal patterns of gene expression. Similar activation/repression interactions are also observed in
cell signalling and, therefore, some of the computational methods developed to study these types of networks
are related.

Several formalism have been applied to model signalling and GRNs [22]. With limited experimental data,
discrete-state (qualitative) models are suitable for capturing the available knowledge about the system. Here,
we focus specifically on the Boolean network formalism, where species are considered as either present or
absent (genes are either activated or repressed). Finer-grained qualitative formalisms, where species have
multiple intermediate concentrations (e.g. low, medium, high), are also possible [75, 22] and the methods
we present can be extended naturally to such models but, for the sake of presentation, we consider only the
simplest formulation.

A wide variety of models have been constructed using the Boolean network formalism. Three different
signalling models including plant stomatal opening/closing regulation [57], T cell large granular lymphocyte
survival in leukemia [79], and respiratory immune response to bacterial infection [74] were gathered in [3].
In addition, seven Boolean network models were gathered in [27]. These include gene regulation models of
Arabidopsis flower morphogenesis [14] (which improves the model from [30] and reduces it to the Boolean for-
malism), T helper cell differentiation [59], fission yeast [20] and budding yeast [56] cell cycles, and Drosophila
development [4], as well as T-cell receptor signaling [49] and mammalian cell-cycle control [31]. The latter
set of models was studied in [27] where the numbers and lengths of attractors and network diameters were
computed.

In [19] a model of regulatory and metabolic networks in E. Coli was reconstructed from literature and
experimental data. This model was studied as a Boolean network in [68], where extensive simulation was
employed for analysis. However, due to the large state space of the system (583 genes, 96 external metabo-
lites, environmental conditions, etc) random simulations can only cover a small subset (and potentially miss
important behavior), but achieving more complete coverage through the application of explicit state explo-
ration procedures is infeasible. An argument based on the particular network structure was used in [68] to
demonstrate that the system stabilizes but such analysis is manual and case specific.

In the following, we describe SMT-based encodings of Boolean networks (Sec. 4.1) and procedures for
exploring system stability (Sec. 4.2) and studying the effects of gene knockouts (Sec. 4.3). We illustrate this
approach using the collection of models from [27] and demonstrate that the methods can handle challenging
systems, such as the ones from [19, 68].

4.1 SMT encoding of Boolean Networks

A Boolean network [48] can be viewed as a directed graph (Fig 1-a), where nodes are associated with Boolean
variables representing the states (available or not, active or inactive) of the various modeled species (e.g.
genes, proteins or chemicals). We treat a Boolean network with N nodes (equal to the number of species
in the model) as a transition system T = (Q,Q0, T ) where Q = BN and Q0 = Q (i.e. all states are initial
unless otherwise noted). Given a state q ∈ Q, q(i) = 1 iff species i is present (activated). The dynamics
of the system are defined by a set of total functions f0, . . . , fN−1, fi : BN → B. The state of node i is
updated according to function fi and usually depends on a small number of other nodes - these relationships
are represented by the edges of the graph (Fig 1-a). Both synchronous (where all nodes of the network are
updated at each time step) and asynchronous (where only a single node is updated per step) executions are
possible. We encode the dynamics of a Boolean network model by constructing a transition relation (Fig
1-b). Given states q, q′ ∈ Q which represent the current and updated state of the network, the transition
relation for a synchronous Boolean network (where all nodes are updated at each time step) is defined as

T (q, q′)↔

(
N−1∧
i=0

q′(i) = fi(q)

)
(6)
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Figure 1: A simple Boolean network with 3 nodes (A,B,C) representing different genes is shown in (a).
The state of the system is encoded as a single bit-vector b ∈ B3, indicating the activity of each gene.
The dynamics of the system are defined by the update functions f1(b) = ¬b(1),f2(b) = b(1) ∧ b(2), and
f3(b) = b(1)∨b(2) according to Eqn. (6) or (7). The state space of the system and its synchronous transition
relation representation are shown in (b), where the only attractor is highlighted.

For asynchronous updates, the transition relation is defined by

T (q, q′)↔
N−1∨
i=0

q′(i) = fi(q) ∧
N−1∧

j=0,j 6=i

q′(j) = q(j)

 (7)

Both the synchronous transition relation defined by Eqn. (6) and the asynchronous one defined by Eqn. (7)
result in a deadlock-free transition system T . However, for synchronous updates T is deterministic while, in
general, it is nondeterministic for asynchronous ones. Even when updates are synchronous, nondeterminism
can be introduced explicitly, for example, by allowing the choice between several possible update functions
f0
i , f

1
i . . . , f

K
i at a node i of the network

T (q, q′)↔
N−1∧
i=0

 K∨
j=0

q′(i) = f ji (q)

 . (8)

When asynchronous updates are considered, additional fairness requirements can be introduced (e.g. to
specify that each node of the network is eventually updated).

4.2 System stability

We are interested in defining and studying the stability of the biological models we consider by analyzing their
finite transition system representations. We focus on (nondeterministic) deadlock-free transition systems
where all states are initial. Since biological systems operate in noisy environments, it is unreasonable to
assume that a set of transitions is followed infinitely often when other possibilities exists - we capture this
intuition as fairness. In this setting, a system has the capacity to stabilize only if there exists a state with
a self loop but no other outgoing transitions - all other states will be left eventually. For example, a state
with a self loop and a transition to another state resembles an unstable fixed point of a dynamical system
(i.e. the system can remain in such a state for a period of time but will be forced to exit by environmental
perturbation). Similarly, the system has the capacity of oscillations only if a cycle that cannot be escaped
exists and, in some cases, both stabilization and oscillations are possible.

In the context of the deterministic transition systems resulting from Eqn. (6), stabilization is possible
only if formula T (q, q) is satisfiable (i.e. a state with a self loop exists). Given a path πk, the possibility of
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Model name N max(k) Behavior time (sec)

toy (Fig. 1) 3 2 oscil 0.015
arabidopsis [14, 27] 15 10 stabil 0.09

budding yeast [56, 27] 12 18 stabil 0.23
drosophila [4, 27] 52 34 stabil 7.5

fission yeast [20, 27] 10 6 stabil 0.03
mammalian [56, 27] 10 7 both 0.05

tcr [49, 27] 40 6 both 0.06
t helper [59, 27] 23 11 stabil 0.07

metabolic regulation [19, 68] 693 7 stabil 74.44

Table 1: Stability analysis and computation times for the set of Boolean network models available from [27]
and [68]. All computation is performed on a cluster of 2.5 Ghz Intel L5420 CPUs with a 2GB memory limit
per benchmark.

oscillations can be confirmed when formula πk(0) 6= πk(1) ∧ πk(0) = πk(k) is satisfiable for any k (i.e. πk
visits at least two different states and completes a cycle). While the procedure requires testing the existence
of cycles of lengths up to k = dr when no shorter cycles exist, a short recurrence diameter is characteristic of
some biological models. This is the case for the Boolean network models from [27] and [68] (Table 1), even
for large N (e.g. N = 693 and dr = 7 for the metabolic regulation network from [68]).

4.3 Gene knockouts

When analyzing biological models, we are often interested in understanding how certain perturbation to
the system affect its behavior. To illustrate this, we focus on studying how the inactivation of certain
nodes (corresponding to gene knockout experiments in the context of gene networks) affects the stability of a
Boolean network. To formalize these perturbations for a network with N nodes, we introduce the bit-vector
ko ∈ BN , where ko(i) = 1 indicates that gene i has been knocked out. We construct the modified transition
system T ′ = (Q′, Q′0, T

′) where q ∈ Q′ iff (q ∧bv ¬ko) = q (i.e. knocked out genes are never active), Q′0 = Q′

and

T ′(q, q′)↔

(
N−1∧
i=0

[q′(i) = (fi(q) ∧ ¬ko(i))]

)
. (9)

(i.e. for a given knockout ko(i) = 1, node i remains inactive (q′(i) = 0) regardless the system’s state q and
dynamics fi). We focus on deadlock-free, deterministic systems and consider paths πk and π′k of T and T ′,
defined by unrolling T (Eqn. (6)) and T ′ (Eqn. (9)), respectively. Similarly to the procedure from Sec.
4.2, we require that these paths are sufficiently long, thus k = d′r where d′r ≥ d is the recurrence diameter
of T ′ (i.e. the length of the longest simple path for all possible gene knockouts). We specify that, besides
inactivated nodes, the initial states of both paths are the same (i.e. (πk(0)∨bv ko) = (π′k(0)∨bv ko)) and the
stability of the network has been affected by the knockout:

T (πk(k), πk(k))↔ ¬T (π′k(k), π′k(k)) (10)

(i.e. πk led to stabilization while, after the perturbation, π′k leads to oscillations or vice versa). The required
number of knockouts can be controlled through cardinality constraints on ko (e.g. |ko| = 1 for a single
knockout). A ko satisfying the constraints described above identifies the gene knockouts that affect network
stability - this procedure is applied on the models from [27] and [68], where all satisfying single gene knockouts
are identified exhaustively (results are presented in Table 2).

5 Chemical Reaction Networks

In Sec. 4, we focused on a Boolean formalism for modeling the interaction networks involved in gene
regulation and signalling. Such systems can also be described at a finer level of detail by a set of species (DNA
sequences, proteins, chemicals, complexes), species concentrations (numbers of molecules of each species) and
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Figure 2: Inactivating gene B of the Boolean network from Fig. 1 as in (a) leads to stable behavior (b),
although the original system was oscillating. Inactivating gene A in the system as in (c) changes the structure
of the transition relation but not its stability (d).

Model N d′
r Identified genes Time (sec)

toy (Fig. 1) 3 5 A 0.14 (0.06)
arabidopsis [14, 27] 15 10 LFY, SEP 0.23 (0.12)

budding yeast [56, 27] 12 18 none 0.42 (0.27)
drosophila [4, 27] 52 43 HH2 63.33 (56.38)

fission yeast [20, 27] 10 6 none 0.09 (0.05)

mammalian [56, 27] 10 13
Rb,Cdc20,Cdh1,
CycD,E2F,CycA

0.32 (0.14)

tcr [49, 27] 40 22
CD8,CD45,TCRlig, TCRphos,

ZAP70 LCK, Fyn,
cCbl,PAGCsk,TCRbind

2.76 (1.51)

t helper [59, 27] 23 17 none 0.3 (0.22)
metabolic regulation [19, 68] 693 8 none 688.2 (62.7)

Table 2: Results for the identification of single gene knockouts that affect the system’s stability. The
times required for the computation of the diameter d′r (out of the total computation times) are shown in
parentheses.
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species interactions (reactions transforming certain species into others). Such Chemical Reaction Networks
(CRNs) can be used to model a variety of biological and chemical processes. For some applications (e.g.
modeling large metabolic networks), only the availability of species and the activity of reactions is captured
but exact species concentrations are ignored [67, 76]. This results in a formalism closely related to the one
discussed in Sec. 4 and in Sec. 5.2 we describe how such abstractions of CRNs can be encoded and studied
using SMT-based approaches.

In other domains, modeling the precise number of molecules of each species is important in order to
formalize certain specifications and analyze the system. This is the case in the emerging field of DNA
computing, where exact molecule numbers can be related to the correctness of computational operations [53].
Results in the field have demonstrated that large DNA computing systems can be constructed experimentally
[66], while the design of even more complicated systems is powered by domain specific programming languages
[64]. This outlines a need for analysis and verification frameworks [53] capable of handling more expressive
specifications and larger models.

In Sec. 5.1 we propose an encoding of CRNs suitable for DNA computing applications, where the exact
concentrations (molecule numbers) of all species are captured. While the (finite) number of states of such
representations can grow exponentially with the number of molecules, this strategy is targeted towards
systems where the number of molecules is relatively small, which is the case in some DNA computing
systems of practical interest [53] (we demonstrate such applications in Sec. 5.3). Despite the symbolic state
representation, additional strategies such as abstraction might be required for systems where many molecules
are present (one particular abstraction strategy is discussed in Sec. 5.2). In the proposed encoding, we ignore
the rates at which different reactions occur (see Sec. 9) but capture the reachability properties of the system,
which is sufficient to study certain correctness specifications in DNA computing [53](see Sec. 5.3).

5.1 SMT encoding of Chemical Reaction Networks

A Chemical Reaction Network (CRN) consists of a set of species S and a set of reactions R (Fig. 3-a). It can
be viewed as a bipartite graph (Fig. 3-b), where an edge from a species node s ∈ S to a reaction node r ∈ R
indicates that the species is a reactant (s is consumed by reaction r), while an edge from r to s indicates that
the species is a product of the reaction4. We are interested in tracking how the amounts of species change
as reactions take place and assume that the number of molecules of each species does not exceed a certain
upper bound. Such an assumption does not hold for general CRN models and, when it does, additional
analysis is required to confirm it. For some engineered CRNs as the ones discussed in Sec. 5.3, such bounds
can be established from the initial amounts of species present (e.g. see Fig. 3).

We encode the amount of species s ∈ S as a bit-vector of size dlg(M)e where, for notational simplicity,
M is the maximal number of molecules of any species. To simplify the subsequent definition of the system’s
dynamics as well as certain specifications in Sec. 5.3, we explicitly capture whether each reaction is active,
leading to Q ⊆ BN where N = |S|dlg(M)e+ |R| (see Fig. 3-c). Given a state q ∈ BN , we use q(s) ∈ Bdlg(M)e

and q(r) ∈ B to denote the amount of species s ∈ S (bit-vector extraction) and the status of reaction r ∈ R,
respectively.

The stoichiometry of reactions (i.e. the amounts of participating species) is denoted using the functions
react : S × R → N0 and prod : S × R → N0 (Fig. 3-a). For s ∈ S and r ∈ R, species s is a reactant of
reaction r when react(s, r) > 0, it is a product when prod(s, r) > 0, and react(s, r) (resp. prod(s, r)) is the
number of molecules of s consumed (resp. produced) through r. A reaction is active if there are enough
molecules of its reactants ∧

r∈R
(q(r)↔ (

∧
s∈S

q(s) ≥ react(r, s)), (11)

which defines the valid states of the system Q. The initial set Q0, which is often a singleton for the
applications we consider in Sec. 5.3, is specified for a particular system and describes the amounts of species

4In this representation, reversible reactions are treated as two separate non-reversible ones (e.g. see r1 and r2 in Fig. 3).
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Figure 3: A chemical reaction network (a) consists of a set of reactions (R = {r1, r2, r3}) and species
(S = {A,B,C,D}) and can be represented as a bipartite graph (b). The dynamics of the CRN can be
described by the transition system depicted graphically in (c), where the single initial state is shown in bold.
The number of molecules of each species does not increase above a certain bound (determined by the initial
state) and system states can be encoded using bit-vectors (c).

available initially. In a given time step, one of the active reactions takes place, which is captured by

T (q, q′)↔
∨
r∈R

[q(r) ∧
∧
s∈S

q′(s) = q(s)− react(s, r) + prod(s, r)]. (12)

5.2 Abstract Chemical Reaction Networks

The encoding described in Sec. 5.1 preserves information of the exact number of molecules of each species
and the resulting state space can be large, which can make analysis challenging. One possible strategy is to
abstract the exact species concentrations to a small number of qualitative values (e.g. low, medium, high).
Utilizing such an abstraction results in models closely related to the formalism discussed in Sec. 4.

Similarly to [67, 76] we consider a coarse-grained abstraction and model species as either available or
not. Given a species s ∈ S, the component b(s) ∈ B becomes a Boolean variable (rather than a bit-vector as
before) and represents the availability of s and overall state of the system is represented by a bit-vector of
size N = |S|+ |R|. As before, a reaction is active only if all of its reactants are available which, in this case,
is captured by the formula ∧

r∈R
q(r)↔

(∧
s∈S

react(r, s) > 0→ q(s)

)
(13)

A species s ∈ S is available at the next time step if and only if it is the product of a reaction that is active
in the current step, which defines the transition relation

T (q, q′)↔

(∧
s∈S

q′(s) =

(∨
r∈R

q(r) ∧ prod(r, s) > 0

))
. (14)
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gates 2 3 4 5 6 7 8 9 10
|S| 32 56 60 74 88 102 116 130 144
|R| 16 24 32 40 48 56 64 72 80

good
k 25 25 25 50 50 50 75 75 75

time 0.8 6.2 44.2 34.3 60.2 264.4 523.3 211.2 958.9

bad
k 10 10 10 10 10 10 10 10 10

time 0.3 0.5 0.6 0.95 1.4 1.6 1.5 2.5 2.3

Table 3: The reachability of bad (good) states within k = {10, 25, 50, 75, 100} steps is verified for systems of
2 to 10 transducer gates in series where M = 4 (up to 16 molecules of each species are captured, which is
sufficient to represent all devices. Only the computation times (in sec.) for the shortest tested path that led
to a solution are reported.

Species that are always present can be represented as being the products of “dummy” reactions with no
reactants.

As in [67], an additional modification can be introduced to capture the inactivation of reactions in the
presence of certain species acting as inhibitors. We define the relation inhib ⊂ R × S, where inhib(r, s)
indicates that reaction r is inhibited by species s. Then, the activation of reactions from Eqn. (13) is
modified as ∧

r∈R
q(r)↔

(∧
s∈S

react(r, s) > 0→ q(s) ∧ inhib(r, s) 6= q(s)

)
(15)

5.3 Verifying DNA circuits

In DNA computing, certain DNA sequences (species) are designed to interact (according to base-pairing
rules), which allows the construction of artificial CRNs and, in principle, can be used to implement arbitrary
computational procedures[54]. The feasibility of constructing large DNA computing circuits has been demon-
strated recently [66], while progress in the field has been stimulated by the development of tools such as
the DSD programming language [64], which enables the computational design and simulation of complicated
DNA computing circuits. However additional methods are required to analyze the behavior of these systems
[53]. Such an approach based on model-checking is proposed in [53] and is applied to study the correctness
of transducer gates. Here, we use the encoding from Sec. 5 to analyze these circuits and demonstrate that an
SMT-based approach can help uncover unwanted behavior in systems where such analysis was challenging
using previous methods.

A transducer gate is a simple computational device constructed from DNA, which is intended to convert
all molecules of a certain (input) species to a different (output) species [53]. Computation is initialized with
a given amount of each species (including input), which defines the initial state of the system (i.e. q0 ∈ Q0,
which is a singleton). Thus, the finite number of available DNA fragments limits the amount of species that
can be produced as computation proceeds and, therefore, the system admits the finite representation from
Sec. 5. Computation of a transducer gate terminates when no further reactions are possible. In addition,
certain reactive species (denoted by Sr ⊆ S) must be fully consumed throughout the computation, but for
some system designs this is not always the case. We distinguish between “good” and “bad” termination
states, where computation has proceeded successfully and all reactive species have been consumed, or some
reactive species from Sr remain and computation has failed. For a state q ∈ Q, we define

good(q) ↔
∧
r∈R
¬q(r) ∧

∧
s∈Sr

q(s) = 0

bad(q) ↔
∧
r∈R
¬q(r) ∧

∨
s∈Sr

q(s) > 0.

A ”bad” state is reachable if the following formula is satisfiable

k∨
i=0

bad(πk(i)) ∧
k∧

i=0

[T (πk(i), π(i+ 1)) ∨ bad(πk(i))] (16)
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and a similar procedure is used to search for reachable “good” states. If (16) if unsatisfiable, a “bad” (“good”)
state is not reachable by executing k reactions or less but increasing k might lead to the identification of
such states. Multiple transducers can be arranged in series, where the input signal must pass through each
gate to produce output. We analyzed a set of systems constructed from 2 to 10 transducer gates in series
using the specifications described above (see Table 3). Through the use an SMT-based procedure we showed
that, while successful termination is possible for all these circuits, in each case computation might also fail.

Besides increasing the number of gates, system complexity can also be controlled by including multiple
copies of each gate [53] - in this case the set of species and possible reactions remains the same but the
initial state changes (i.e. there are twice as many molecules of each species present initially for an N = 2
system compared to an N = 1). Although this makes analysis more challenging, once a reachable “bad”
state is identified in the simplest system (e.g. where there are N = 1 copies of each gate), it can be shown
that a state with the same properties is reachable for a systems with other gate copy numbers. Informally,
a system containing multiple gate copy numbers (e.g. N = 2) can be viewed as two systems (where N = 1)
and, from our previous analysis, each such system can independently reach a “bad” state which has been
identified. To show that a bad state is reachable for the N = 2 system it is sufficient to demonstrate that
doubling the molecule numbers5 for all species available in the “bad” state identified for N = 1 still results
in a state with the same property.

6 Statecharts

Statecharts [38] have been used to model various biological systems in the areas of immunology, develop-
mental biology and stem cell research [45, 29, 32, 70, 71]. A main advantage of this method is its appeal to
experimental biologists, allowing the use of concise visual representations to describe and reason about bio-
logical models. Similar diagrammatic representations are used to describe “models” in mainstream biological
articles and presentations, but they typically lack an agreed notation and semantics, which statecharts can
provide, thus opening the way to being able to execute and analyze such models. Among the main features
of statecharts are the hierarchy and orthogonal states that allow decomposing system behavior into modular
and concise representations, and integration within an object-oriented framework [39, 40]. Biocharts, an
extension and specialization of statecharts geared towards biological modeling is described in [52], which
allows linking high-level (e.g. intercellular) information with lower-level (e.g. intracellular) information.

A statechart can be viewed as a hierarchical, directed graph (Fig. 4), where a set Q of nodes6 and
super-nodes (higher level nodes containing several sub-nodes) are connected through edges, labeled by events
(or conditions) from a set E. We represent the overall state of the system as a bit-vector b ∈ BN of size
N = |Q| + |E|. A node q ∈ Q (resp. event e ∈ E) is active if and only if b(q) (resp. b(e)). A super-node
q̂ ⊆ Q is active if any of its sub-nodes are active (i.e. b(q̂) ↔

∨
q∈q̂ b(q)). Given a super-node q̂ ⊆ Q,

a XOR-type (exclusive or) decomposition (represented graphically by encapsulating several states within a
super-node) ensures that only one sub-node can be active (i.e.

∨
q∈q̂ b(q)∧

∧
q,q′∈Q ¬(b(q)∧b(q′))). Similarly,

in an AND-type decomposition (represented by separating sub-states with a dashed line), all sub-nodes are
orthogonal and must be active (i.e.

∧
q∈q̂ b(q)). An edge between nodes q, q′ ∈ Q labeled by event e ∈ E

indicates that the system can make a transition between states b, b′ ∈ Q where b(q) and b′(q′), provided
that e is active (i.e. b(e)). Similar conditions hold for edges between super-nodes, which defines the overall
transition relation T (b, b′). Note that the events from E might be defined as functions of nodes or as (non-
deterministic) external influences. There are many additional intricacies associated with the full semantics
of statecharts and a complete presentation of is beyond the scope of this report.

Part of a statechart modeling the behavior of a germ cell in the “Worm” C. elegans appears in Fig. 4.
Component Fig. 4-A describes the changes of the cell fate from a stem cell fate (Precursor) to a fertilized
egg (Zygote). This component runs in parallel to genetic components in relevant pathways (modeled here as
being either Active or Inactive) captured by component Fig. 4-B. In addition, the cell cycle is captured in
component Fig. 4-C and cell movement in Fig. 4-D. The translation to an SMT transition relation defines

5Here, the maximal number of molecules considered must be sufficient to represent the larger system.
6although “states” is a more standard term, here this leads to confusion with the overall system state
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Figure 4: Germ cell statechart model

variables for all orthogonal components and any hierarchal nodes, which allows capturing the overall state
of the system (the current active node for each component) and its dynamics.

7 Scenario-based models

Similarly to statecharts, scenario-based approaches offer an intuitive, visual framework for the construction
of biological models. We illustrate the use of scenario-based modeling and its encoding within an SMT solver
using the well studied system of cell fate specification in the vulva of the “worm” C. elegans [72]. This system
is of particular interest as it allows studying how a set of six cells, that initially have the same fate and are
thus called members of an equivalence group, acquire a specific pattern of fates during development. This
system has also been extensively modeled in the past few years, see e.g., [46, 32, 47, 55, 42].

We consider the VPC model shown in Fig. 5 - a more detailed description of this scenario-based
model is available in [47]. The model includes 5 charts (Start, Levels, Primary Z1 P6, Primary Z1 P5,
,Secondary Z1 P7, and Levels). Each chart includes a number of objects (e.g. chart Start includes objects
Start.Env and Start.Worm), which communicate through certain methods (e.g. Start, Hatching, L1, etc).
The model describes the development of the six vulval precursor cells (VPCs), named P3.p, P4.p, · · ·P8.p.
Two additional cells, named Z1.ppp, Z4.aaa play a role in pattern formation as one of these cells will signal
to the VPCs and contribute to the fate specification process. Figure 5-a shows the chart Start, with its two
objects, Env and Worm, describing the following behavior: after the occurrence of method Start sent by the
Env object to Worm, the Worm performs the following methods according to this ordering Hatching, L1, L2,
L3, corresponding to the hatching of the Worm and the different larval developmental stages. In general, the
behavior specified in the prechart (in this case Start) implies that the behavior specified in the main chart
(in this case Hatching, L1, L2, L3) eventually occurs. This can be viewed as a liveness property in temporal
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logic, see [51] for a study of the relationship between LSCs and temporal logic.
Figure 5-e shows a chart Levels, specifying that larval stage L3 implies sending of signals from cell

Z1.ppp to the VPC cells P5.p, P6.p and P7.p. Cell P6.p receives a High signal, whereas Cells P5.p and
P7.p receive Medium Signals. In Figure 5-b ,using separate charts PrimaryZ1P6 (Figure 5-b), SecondaryZ1P5
(Figure 5-c) and SecondaryZ1P7(Figure 5-d), cell P6.p adapts a Primary fate in response to the High signal
and cells P5.p, P7.p adopt a Secondary fate in response to a Medium signal.

The basic translation follows that of [41], which originally used BDD-based solvers to analyze the models.
Analysis of scenario-based models using Z3 and the theory of lists is briefly described in [60] - here our use
of bit-vectors can potentially lead to a more efficient implementation. An object can be in one of several
locations (numbered in Figure 5) and its state is represented by a bit-vector of sufficient length. The overall
state of the system is represented as a bit-vector containing all objects’ states, while methods are not
represented explicitly as part of the state. For the model from Figure 5, a state b is a bit-vector of size
N = 26, subject to the following constraints

b(Start.Env) ∈ 0 . . . 1 (1 bit)
b(Start.Worm) ∈ 0 . . . 5 (3 bits)
b(Levels.Worm) ∈ 0 . . . 1 (1 bit)
b(Levels.Z1.ppp) ∈ 0 . . . 4 (3 bits)
b(Levels.P5.p.ppp) ∈ 0 . . . 2 (2 bits)
b(Levels.P6.p.ppp) ∈ 0 . . . 2 (2 bits)
b(Levels.P6.p.ppp) ∈ 0 . . . 2 (2 bits)
b(Primary Z1 P6.P6.p) ∈ 0 . . . 2 (2 bits)
b(Primary Z1 P6.Z1.ppp) ∈ 0 . . . 1 (1 bit)
b(Primary Z1 P5.P5.p) ∈ 0 . . . 2 (2 bits)
b(Primary Z1 P5.Z1.ppp) ∈ 0 . . . 1 (1 bit)
b(SecondaryZ1P7.P7.p) ∈ 0 . . . 2 (2 bits)
b(SecondaryZ1P7.Z1.ppp) ∈ 0 . . . 1 (1 bit)

(17)

The transition of an object between locations coincides with the occurrence of methods, which provides a
synchronization mechanism and defines the transition relation T (b, b′). Although the occurrence of a methods
is not represented explicitly as part of the system’s state, here we label it to simplify the notation.

Start = b(Start.Env) = 0 ∧ b′(Start.Env) = 1
Hatching = b(Start.Worm) = 1 ∧ b′(Start.Worm) = 2
L1 = b(Start.Worm) = 2 ∧ b′(Start.Worm) = 3
L2 = b(Start.Worm) = 3 ∧ b′(Start.Worm) = 4
L3 = b(Start.Worm) = 4 ∧ b′(Start.Worm) = 5
High = b(Levels.Z1.ppp) = 1 ∧ b′(Levels.Z1.ppp) = 2
Medium1 = b(Levels.Z1.ppp) = 2 ∧ b′(Levels.Z1.ppp) = 3
Medium2 = b(Levels.Z1.ppp) = 3 ∧ b′(Levels.Z1.ppp) = 4
SetFatePrimary = b(Primary Z1 P6.P6.p) = 1 ∧ b′(Primary Z1 P6.P6.p) = 2
SetFateSecondary1 = b(Secondary Z1 P5.P5.p) = 1 ∧ b′(Secondary Z1 P5.P5.p) = 2
SetFateSecondary2 = b(Secondary Z1 P7.P7.p) = 1 ∧ b′(Secondary Z1 P7.P7.p) = 2

(18)
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The overall transition relation T (b, b′) is defined as

T0(b, b′) = [b(Start.Env) = 0 ∧ (b(Start.Env) = 0 ∨ b(Start.Env) = 1)]∨
[b(Start.Env) = 1 ∧ (b(Start.Env) = 0 ∨ b(Start.Env) = 1)]

T1(b, b′) = [¬Start ∧ b(Start.Worm) = 0 ∧ b′(Start.Worm) = 0]∨
[Start ∧ b(Start.Worm) = 0 ∧ b′(Start.Worm) = 1]∨
[b(Start.Worm) = 1 ∧ (b(Start.Worm) = 1 ∨ b(Start.Worm) = 2)]∨
[b(Start.Worm) = 2 ∧ (b(Start.Worm) = 2 ∨ b(Start.Worm) = 3)]∨
[b(Start.Worm) = 3 ∧ (b(Start.Worm) = 3 ∨ b(Start.Worm) = 4)]∨
[b(Start.Worm) = 4 ∧ b(Start.Worm) = 4]

T2(b, b′) = [¬L3 ∧ b(Levels.Worm) = 0 ∧ b′(Levels.Worm) = 0]∨
[L3 ∧ b(Levels.Worm) = 0 ∧ b′(Levels.Worm) = 1]

T3(b, b′) = [¬L3 ∧ b(Levels.Z1.ppp) = 0 ∧ b′(Levels.Z1.ppp) = 0]∨
[L3 ∧ b(Levels.Z1.ppp) = 0 ∧ b′(Levels.Z1.ppp) = 1]∨
[b(Levels.Z1.ppp) = 1 ∧ (b(Levels.Z1.ppp) = 1 ∨ b(Levels.Z1.ppp) = 2)]∨
[b(Levels.Z1.ppp) = 2 ∧ (b(Levels.Z1.ppp) = 2 ∨ b(Levels.Z1.ppp) = 3)]∨
[b(Levels.Z1.ppp) = 3 ∧ (b(Levels.Z1.ppp) = 3 ∨ b(Levels.Z1.ppp) = 4)]∨
[b(Levels.Z1.ppp) = 4 ∧ b(Levels.Z1.ppp) = 4]

T4(b, b′) = [¬L3 ∧ b(Levels.P5.p) = 0 ∧ b′(Levels.P5.p) = 0]∨
[L3 ∧ b(Levels.P5.p) = 0 ∧ b′(Levels.P5.p) = 1]∨
[¬Medium1 ∧ b(Levels.P5.p) = 1 ∧ b′(Levels.P5.p) = 1]∨
[Medium1 ∧ b(Levels.P5.p) = 1 ∧ b′(Levels.P5.p) = 2]∨
[b(Levels.P5.p) = 2 ∧ b′(Levels.P5.p) = 2]

T5(b, b′) = [¬L3 ∧ b(Levels.P6.p) = 0 ∧ b′(Levels.P6.p) = 0]∨
[L3 ∧ b(Levels.P6.p) = 0 ∧ b′(Levels.P6.p) = 1]∨
[¬High ∧ b(Levels.P6.p) = 1 ∧ b′(Levels.P6.p) = 1]∨
[High ∧ b(Levels.P6.p) = 1 ∧ b′(Levels.P6.p) = 2]∨
[b(Levels.P6.p) = 2 ∧ b′(Levels.P6.p) = 2]

T6(b, b′) = [¬L3 ∧ b(Levels.P7.p) = 0 ∧ b′(Levels.P7.p) = 0]∨
[L3 ∧ b(Levels.P7.p) = 0 ∧ b′(Levels.P7.p) = 1]∨
[¬Medium2 ∧ b(Levels.P7.p) = 1 ∧ b′(Levels.P7.p) = 1]∨
[Medium2 ∧ b(Levels.P7.p) = 1 ∧ b′(Levels.P7.p) = 2]∨
[b(Levels.P7.p) = 2 ∧ b′(Levels.P7.p) = 2]

T7(b, b′) = [¬High ∧ b(Primary Z1 P6.Z1.ppp) = 0 ∧ b′(Primary Z1 P6.Z1.ppp) = 0]∨
[High ∧ b(Primary Z1 P6.Z1.ppp) = 0 ∧ b′(Primary Z1 P6.Z1.ppp) = 1]

T8(b, b′) = [¬High ∧ b(Primary Z1 P6.P6.p) = 0 ∧ b′(Primary Z1 P6.P6.p) = 0]∨
[High ∧ b(Primary Z1 P6.P6.p) = 0 ∧ b′(Primary Z1 P6.P6.p) = 1]∨
[b(Primary Z1 P6.P6.p) = 1 ∧ (b′(Primary Z1 P6.P6.p) = 1 ∨ b′(Primary Z1 P6.P6.p) = 2)]

T9(b, b′) = [¬Medium1 ∧ b(Secondary Z1 P5.Z1.ppp) = 0 ∧ b′(Secondary Z1 P5.Z1.ppp) = 0]∨
[Medium1 ∧ b(Secondary Z1 P5.Z1.ppp) = 0 ∧ b′(Secondary Z1 P5.Z1.ppp) = 1]

T10(b, b′) = [¬Medium1 ∧ b(Secondary Z1 P5.P5.p) = 0 ∧ b′(Secondary Z1 P5.P5.p) = 0]∨
[Medium1 ∧ b(Secondary Z1 P5.P5.p) = 0 ∧ b′(Secondary Z1 P5.P5.p) = 1]∨
[b(Secondary Z1 P5.P5.p) = 1 ∧ (b′(Secondary Z1 P5.P5.p) = 1 ∨ b′(Secondary Z1 P5.P5.p) = 2)]

T11(b, b′) = [¬Medium2 ∧ b(Secondary Z1 P7.Z1.ppp) = 0 ∧ b′(Secondary Z1 P7.Z1.ppp) = 0]∨
[Medium2 ∧ b(Secondary Z1 P7.Z1.ppp) = 0 ∧ b′(Secondary Z1 P7.Z1.ppp) = 1]

T12(b, b′) = [¬Medium2 ∧ b(Secondary Z1 P7.P7.p) = 0 ∧ b′(Secondary Z1 P7.P7.p) = 0]∨
[Medium2 ∧ b(Secondary Z1 P7.P7.p) = 0 ∧ b′(Secondary Z1 P7.P7.p) = 1]∨
[b(Secondary Z1 P7.P7.p) = 1 ∧ (b′(Secondary Z1 P7.P7.p) = 1 ∨ b′(Secondary Z1 P7.P7.p) = 2)]

T (b, b′) ↔
∧i=9

i=1 Ti(b, b
′)

(19)

The system is always initialized with all objects in location 0 and all objects reach a location other than 0
if the prechart behavior occurs.

8 Synthetic Gene Circuits

In recent years, the application of engineering principles to biological systems has been pursued extensively
with the goal of taming biology as a technology. In the field of synthetic biology, novel biological systems
have been designed rationally for specific functions (see [5, 65] for reviews), outlining a variety of possible
applications areas from therapeutics to biofuel production. In particular, the design and re-design of gene
networks is a major focus of the field with the dream of automated compilation of such gene circuits from
high level designs or functional specifications to DNA sequences. Efforts along this direction include the
development of tools for checking the syntactic correctness of circuits [11], graphical tools for circuit design
[58], and programming languages for genetic engineering [63].

While research in synthetic biology has focused mostly on the construction of devices (relatively small
gene circuits) from parts (DNA segments with specific function), the construction of larger-scale systems
from devices can also be pursued [65]. This task is related to software engineering, where complicated
programs are constructed using well-characterized software components from libraries, possibly through the
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use of automated methods. For example, a constraint-based synthesis approach employing an SMT solver
was proposed in [37], but all components were assumed to have the same input/output type. The design of
gene networks also resembles the circuit layout problem in electrical engineering, where SAT-based solutions
have been developed [25]. However, while components within electrical circuits can be connected through a
common signal (electricity), in gene circuits various different species (chemicals, proteins, etc) might serve
as chemical “wires”, which must be matched to ensure proper function. In addition, due to diffusion specific
connections cannot be isolated and cross-talk between components might occur, although experimental
approaches based on the construction of separate, isolated compartments have been developed [73].

In the following, we consider the constraints specific to gene circuits (including circuits with multiple
compartments) and propose an encoding that enables the use of SMT methods to solve design problems.
While currently only basic connectivity and exclusivity constraints are handled, the SMT framework allows
more complicated design requirements to be incorporated. Such procedures can enable component-based
SMT synthesis as in [37] for synthetic biology, where gene circuits that are both structurally sound and
functionally correct are designed automatically.

For the design of gene circuits from separate, well-characterized components, we consider a device to be a
gene regulation network (see Sec. 4) where certain species (e.g. proteins or other chemicals) are designated as
inputs and outputs. When gene circuits are constructed by incorporating several devices, these input/output
species act as chemical wires to connect the separate components and must be matched properly, while other
constraints are also satisfied (e.g. if the same species is an output of two separate devices in a circuit,
cross-talk might occur). While the dynamic behavior of devices might also be characterized, here we focus
only on defining input/output connectivity and exclusivity constraints - considering functional specifications
is a direction of future work.

We assume that a library of previously constructed devices, denoted by D is available. Each device d ∈ D
is affected by certain proteins or chemicals, which act as its inputs and expresses certain genes to produce
proteins, which act as its outputs and can interact with other devices. We denote the set of all species (i.e.
the inputs and outputs of all devices) by S. We denote the inputs and outputs of a particular device using
in ⊆ S×D and out ⊆ S×D, respectively. As part of the design specification, we seek to construct a system
that is able to respond to given inputs denoted by I ⊆ S by producing certain outputs denoted by O ⊂ S.
We describe a set of states Q ⊆ B|D|+|S| where each q ∈ Q corresponds to a particular system design - for a
device d ∈ D, q(d) = 1 indicates that d is used as part of this system and for a species s ∈ S, q(s) indicates
that s is available (i.e. it is either produced by one of the enabled devices or is supplied as an input). This
restricts the set of valid states where, for q ∈ Q we have

∧
s∈S

q(s)↔

(
s ∈ I ∨

∨
d∈D

(q(d) ∧ out(s, d))

)
. (20)

In the following, we impose additional constraints on valid system states to capture various properties of the
design problem. For a device to be enabled, all its inputs must be available

∧
d∈D

b(d)→

(∧
s∈S

in(s, d)→ q(s)

)
. (21)

while, in addition, all required system outputs must be available (i.e.
∧

s∈O q(s)). To prevent device cross-
talk, we specify that no two devices that share the same output species can be enabled

∀d, d′ ∈ D,
∨
s∈S

(out(s, d) ∧ out(s, d′))→ ¬(q(d) ∧ q(d′)) (22)

Finally, to prevent the inclusion of devices that produce unnecessary species, we specify that a species is
available only if it is the output of the circuit or an input of an enabled device

∧
s∈S

q(s)→

(
s ∈ O ∨

∨
d∈D

(q(d) ∧ in(s, d))

)
(23)
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To overcome design limitations imposed by the constraints described above, recent experimental methods
propose distributing circuit components across different cells (compartments) [73]. We capture such func-
tionality by considering a transition relation T (q, q′) where q, q′ represent the enabled devices and available
species at two separate compartments and satisfy all constraints outlined so far, while additional constraints
can be introduced to capture the connections between compartments (e.g. the outputs of the q compartment
should match the inputs of the q′ one). In contrast to the encodings discussed in previous sections, here we
use T to encodes a transition between compartments in space rather than the progress of time.

To illustrate the proposed approach to the design of gene circuits, we consider a simple device library
consisting of devices 1 . . . 5 shown in Fig. 6, where the input and output species of each devices are also
specified (e.g. arabinose (ara) and the transcription factor NRI are the inputs of device 4 and its outputs are
the transcription factors CI and LacI). This sample library was constructed from components used frequently
in experimental projects in synthetic biology [65]. Our goal is to design a circuit that has ara as its input and
produces the green fluorescent protein (gfp) as an output signal (device 6). The only two possible solutions
satisfying all constraints described above are shown as devices 7 (constructed from devices 1 and 2) and
device 8 (constructed from devices 3,4 and 5).

9 Discussion and Related Literature

In this report, we used finite transition systems as a unifying representation for several biological modeling
formalisms, which allowed the development of analysis techniques that are more general and apply across
model classes. We showed that, for a number of applications, finite transition systems capture the behavior
that is relevant for analysis but there are certain modeling aspects which were restricted. In the following,
we outline these limitations and highlight related work.

While the formalization and analysis of biological systems has already received some attention (e.g. [13],
among others), a framework where various formalisms can be combined, analyzed and compared, together
with the set of benchmarks that can help drive future developments, has been missing. The application of
formal methods in biology has also been considered (e.g. [6, 9, 12]) but such studies are usually focused on
a specific technique (e.g. model checking) or the analysis of a specific system class (e.g. gene regulation
networks). To facilitate the development and integration of biological models and SMT-based analysis
procedures, in this report we considered several different formalisms, which led to a more expressive and
extensible framework.

In the modeling of biological systems, capturing individual molecules numbers can provide detailed and
biologically accurate system descriptions, which are often difficult to analyze. For such models, the rates at
which reactions occur can also be specified, which leads to models that can be studied through stochastic
simulation or analyzed using probabilistic model checking as in [53]. By constructing finite transition system
representations as in Sec. 5, we capture molecule numbers and reachability properties, which are crucial
in certain applications (e.g. DNA computing as in Sec. 5.3), but ignore all probabilistic aspects. At this
cost, we are able to apply SMT-based methods and analyze systems that were beyond the scope of previous
approaches. SMT reasoning procedures for probabilistic systems (e.g. [34]) can help address some of the
current limitations and extend our approach to other model classes (e.g. probabilistic Boolean networks).

When a sufficient number of molecules is present, species concentrations can be described as continuous
values ((e.g. using (non-linear) ODEs) [22]. Such systems, as well as other infinite-state, continuous and
hybrid models used in biology, can be encoded into SMT directly but might require expensive (or incomplete)
decision procedures. As an alternative, (conservative) finite transition system abstractions can be constructed
(e.g. as in [78]), enabling the analysis and integration of infinite state systems within the framework described
here. The application of formal methods to Petri Nets [15], which also describe chemical reaction networks,
has been studied extensively and can provide useful analysis procedures, which can then be extended to
all the formalisms we consider through their common representation. Chemical reaction networks have also
been studied at steady state using flux balance analysis (FBA) [62] but such methods cannot address certain
questions (e.g. as in DNA computation).

In the report, we illustrate a range of analysis problems important for the study of biological models.
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The DNA computing circuits we consider in Sec. 5.3 resemble more traditional computational systems and
the questions we pose are encountered often in the verification of hardware and software (e.g. reachability
of deadlock states). The identification of gene knockouts from Sec. 4.3 is closer to biology but is related to
the modification (synthesis) of systems to achieve certain behavior. The related problems of revising models
of GRNs and metabolic networks were considered in [18, 67].

The stability questions we study in Sec. 4.2 are inspired by dynamical systems theory but have also
attracted attention from other communities [17]. Compared to [17], we are interested in distinguishing
stability from oscillations rather then determining if all system executions converge to a single state - these
questions are related to local vs. global stability properties. The problem of identifying attractors in
Boolean networks, for which several approaches have been proposed, is closely related to studying the
system’s stability. A tool described in [3] focuses on simulating synchronous and asynchronous Boolean
networks but also offers some steady-state and cycle detection capabilities. In [27] a SAT-based algorithm
is proposed for the identification of all attractors in a synchronous Boolean network. The approach can
be applied to multi-valued (generalized Boolean) networks [28] but, due to non-determinism, cannot be
extended easily to asynchronous systems. A BDD-based algorithm capable of dealing with both synchronous
and asynchronous execution is proposed in [36, 35], while a BDD-based randomized traversal method is
studied in [7]. For more general formalisms, the search for steady-states only is formulated as a constraint
satisfaction problem (CSP) in [26], while a SAT-based steady-state identification method is proposed in [21]
for piecewise linear differential equations (PLDEs) through the construction of finite abstractions. In the
context of metabolic or chemical reaction networks, a SAT-based approach for the identification of steady-
state network configurations is discussed in [76]. This approach ignores exact species concentrations, as in the
abstraction strategy and encoding we outlined in Sec. 5.2. Exploiting the modularity of biological models to
allow the analysis of larger systems, a BDD-based approach for the identification of all recurrent (infinitely
visited) states is described in [69], while in [17] a method for the construction of modular stabilization proofs
is proposed. The application of modular analysis techniques to the formalisms discussed in this report (e.g.
chemical reactions in compartments) is a future research direction. For many biological applications, the
detection of all the system’s attractors is unnecessary but instead checking whether certain specifications
holds in these attractors is required - the SMT-based approaches we discuss in this report are particularly
suitable for the development of such analysis procedures.

The procedures from Sec. 4 rely on the computation of system diameters - a hard problem studied
in the context of bounded model checking [10, 50] which can also help uncover characteristics of biological
systems (e.g such systems might need to switch between states quickly, resulting in shorter diameters). When
identified, such biological properties can lead to specialized methods or improve existing procedures. In Sec.
5.3 we used similar insight about DNA circuits to restrict the system state space and to extend our analysis
results directly to more complex models in a modular fashion. A similar strategy of combining biological
intuition with powerful modular reasoning has also been pursued in [17] to address challenging analysis
problems for biological models in a spatial context. Considering the different formalisms we studied in this
report in a spatial context can lead to the development of more detailed models of biological systems (e.g.
by capturing multiple cells or compartments), which can be analyzed by exploiting modularity in [69, 17].
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Figure 5: VPC system scenario-based model.
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Figure 6: Several available devices (D = {1 . . . 5}) are specified by their input and output species (e.g.
arabinose (ara) and the protein NRI are the inputs of device 4, while CI and LacI are its outputs). We want
to design a gene circuit with an arabinose input and green fluorescent protein (gfp) output (as in 6), subject
to the constraints discussed in Sec. 8. Our procedure identifies solutions 7 (constructed from devices 1 and
2) and 8 (from 3,4, and 5), where all device inputs and outputs are matched.
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