
Fourth IEEE Workshop on Applications of Computer Vision, October 1998, Princeton, New Jersey, USA

1

Video Occupant Detection for Airbag Deployment
John Krumm and Greg Kirk

Intelligent Systems & Robotics Center
Sandia National Laboratories

Albuquerque, NM  87185

Abstract
When an airbag deploys on a rear-facing infant seat, it

can injure or kill the infant. When an airbag deploys on an
empty seat, the airbag and the money to replace it are
wasted. We have shown that video images can be used to
determine whether or not to deploy the passenger-side
airbag in a crash. Images of the passenger seat, taken from
a video camera mounted inside the vehicle, can be used to
classify the seat as either empty, containing a rear-facing
infant seat, or occupied. Our first experiment used a
single, monochrome video camera. The system was
automatically trained on a series of test images. Using a
principle components (eigenimages) nearest neighbor
classifier, it achieved a correct classification rate of 99.5%
on a test of 910 images. Our second experiment used a
pair of monochrome video cameras to compute stereo
disparity (a function of 3D range) instead of intensity
images. Using a similar algorithm, the second approach
achieved a correct classification rate of 95.1% on a test of
890 images. The stereo technique has the advantage of
being less sensitive to illumination, and would likely work
best in a real system.

1. Introduction
The increased safety afforded by automobile airbags

(2505 lives saved to date) has produced government
regulations and consumer demand that will have half of
all vehicles on the road in 2000 equipped with driver- and
passenger-side airbags[3]. All cars made after August 31,
1997 must have dual airbags[4].

The increased number of airbags will also magnify
their problems: airbags wastefully deploying on empty
passenger seats and dangerously deploying on rear-facing
infant seats (RFIS). The average cost of replacing an
airbag is $700, which has in part fueled more airbag
thefts[4]. A more serious unwanted airbag deployment
occurs on RFIS’s. Airbags deploy at speeds up to 200
mph. This force is blamed for 12 infant deaths since
1990[3].

This paper describes a research effort at Sandia
National Laboratories to develop a video sensor mounted
inside a vehicle to solve these problems. This occupant
detection system reliably classifies a vehicle’s passenger
seat as either empty, occupied by a RFIS, or occupied by a
regular person. The camera’s view of these three
situations is shown in Figure 1. Section 2 describes a
system based on principle components of images from a
single black-and-white video camera along with
conventional nearest-neighbor image classification. In
order to make the system less sensitive to illumination and
color, we implemented a simple dense stereo algorithm
that is described in Section 3. Section 4 describes how
these range images can be classified using an algorithm
similar to the one used for monocular intensity images.
On tests in a real vehicle, the intensity-based algorithm

    

Figure 1: Empty, infant, and occupied seats as seen by camera inside vehicle. Airbag should not deploy on
empty nor infant seat.
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correctly classified about 99% of test images, while the
range-based algorithm correctly classified about 95% of a
more challenging test set.

Alternative technologies for occupant sensing[5]
include a system from Mercedes Benz that senses the
presence of a RFIS with a special resonating device built
in. They also use a weight sensor to prevent the airbag
from deploying if the passenger seat is empty. Tests have
shown, however, that any non-zero reading from a weight
sensor in the seat can indicate a wide variety of
ambiguous situations, from a bag of groceries to a
tightened-down RFIS. Technologies for measuring the
presence of an occupant and his/her position include
infrared spots, ultrasound, capacitance, and a piezoelectric
sheet embedded in the seat to measure pressure
distribution. Although the ultimate occupant sensing
system will likely use multiple sensors, vision is attractive
because it is passive and can provide a multitude of cues
for determining how to deploy the airbag, e.g.
RFIS/empty/occupied, occupant size, and position. This
paper shows how we used video to classify the state of the
passenger seat.

2. Intensity Image Classification
Our first approach to the problem of occupant detection

was to use black & white intensity images taken from a
single video camera mounted inside a vehicle. We
gathered hundreds of images over several days from a
stationary vehicle parked outside our laboratory building.
Some of the images were used to train our program to
explicitly recognize the empty and RFIS classes based on
a nearest neighbor algorithm. In order to reduce the
amount of computation required, we used eigenvector
principle components to compress the image data. This
section describes the experimental setup, theory,
algorithm, and results of image classification using
intensity images.

2.1. Experimental Setup
We parked our test vehicle near our laboratory building

such that it would be shaded for part of the day. We
mounted a single video camera near the top of the driver’s
side “A” pillar using the driver’s-side sunvisor mount
points for attachment. The camera itself appears in Figure
2 along with a companion camera used for stereo
described in Section 3. Typical black & white images
from the camera are shown in Figure 1. The images were
digitized, stored, and processed on a general-purpose
workstation computer inside the laboratory.

Images were taken every five minutes during daylight
hours for six days. Three of the days were devoted to
images of the empty seat, with the three separate days
having the passenger seat adjusted to its most rearward,
middle, and most forward positions respectively. The seat
was similarly adjusted for the next three days of images of
a doll baby in a RFIS. Full days of imaging gave a good
variety of illumination as the sun moved overhead on the
typically cloudless days in Albuquerque, NM. We also
took ten images each of ten adult volunteers as they sat in
the passenger seat. In all, we took 638 images of the seat
empty, 576 of the RFIS, and 101 images of the seat
occupied.

In order to simulate an inexpensive video camera such
as might be used in real production, we reduced the
resolution of the images by averaging square regions of
pixels in the original images into single pixels in their
lower resolution counterparts. We varied the amount of
resolution reduction for testing.

After reducing the resolution, each image was
histogram equalized to help reduce the effects of
illumination variations. Histogram equalization was
particularly good at recovering acceptable images taken in
the darker conditions near sunrise and sunset.

Finally, each image was normalized by dividing each
pixel by the square root of the sum of the squares of all its
pixels. Mathematically, this means that the sum of the
squares of the pixels in each normalized image is one.
Practically, this helps factor out overall illumination
differences in images that are otherwise similar.

2.2. Theory of Image Matching
We classified the test images into three categories:

empty, RFIS, or other. We chose not to create an explicit
class for occupied seats, since the appearance of an
occupied seat is so variable. Any image that was not
explicitly classified as either empty or RFIS was
considered a case of an occupied seat.

In order to do the classification, we extracted every
sixth image from the “empty” and “RFIS” image sets to
make a set of prototype images taken 30 minutes apart.
Spacing the prototype images evenly over the day helped
the system work in spite of changing illumination and
shadows. The remaining 5/6 of the images were used as
tests, and they were classified by comparing each of them
to all the prototype images. If a test image was deemedFigure 2: Cameras used for monocular and

binocular images of vehicles’ interiors
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similar enough to a prototype image, it was given the
same class as the prototype.

To make the image comparison faster, we compressed
all the images using principle components computed from
the preprocessed (resolution reduction, histogram
equalization, normalization) prototype images. For a
given set of prototype images (either empty or RFIS), we

raster scan each image into a column vector ip . (In our

notation, a bar over a variable indicates a vector.) We

form a matrix P  containing all the column vectors ip

side-by-side in no particular order. The sample covariance
matrix is

[ ]apapapapP n −−−−= −1210 K , (1)

where n  is the number of prototype images in the
prototype set, and a  is the overall mean of all the

elements of all the ip  of the prototype set. For the empty

and RFIS classes, n  had the value 106 and 96,

respectively. The sample covariance matrix is TPPQ = .

The eigenvectors of Q  are je . Any of the ip  can be

reconstructed from the je  using
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where the ijc  are computed from

( ) jiij eapc ⋅−= . (3)

These ijc  coefficients serve as a representation of the

images. The values of the first two coefficients 0ic  and

1ic  for the empty and RFIS classes are shown in Figure 3.

Each dot in the plots represents one image in the
prototype set.

A preprocessed image v  with an unknown class can be
decomposed with the same eigenvectors into coefficients

jd  using

( ) jj eadd ⋅−= . (4)

It can be shown that the sum of squared differences

(SSD) between a prototype image ip  and the unknown

image v  is
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in terms of the two images’ coefficients. To the extent that
the images can be approximately reconstructed from the
first n′  coefficients (with nn ≤′ ) and corresponding
eigenvectors, the SSD can be approximated as

( )
21

0

2

∑
−′

=

−≈−
n

j
ijji cdpv . (6)

Based on our experiments, we used 18=′n . We justify
this choice in Section 2.4.

Once we have the ijc  (which are precomputed) and the

jd  (which are easy to compute from Equation (4)),

Equation (6) gives a fast way of approximating the SSD
between an unknown image and each of the prototypes.

These ideas of principle components and nearest
neighbor classification can be found in standard textbooks
such as Fukunaga’s[1].

Empty Seat Projections
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Figure 3: Coefficients 0ic  and 
1ic . Ellipses on top plot

show projections from seat in forward, middle, and
back positions. Points near the origin occurred in
darker conditions, while points farthest away
occurred around noon. Similar structure holds for
infant seat projections.
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2.3. Image Matching Algorithm
We compare each new unknown image to all the

prototypes as described above using Equation (6). For a
given unknown image, e∆  and r∆  are the SSD’s between

the image and the nearest neighbor in the empty and RFIS
prototype sets, respectively. We classify the image as
empty if the image is close enough to an empty prototype,
and likewise for RFIS.  Specifically, we decide what to do
with the airbag according to the following decision table
and experimentally determined thresholds et  and rt :

ee t≤∆ ee t>∆

rr t≤∆ tiebreaker
(retain airbag)

RFIS
(retain airbag)

rr t>∆ empty
(retain airbag)

occupied
(deploy airbag)

Unless the seat is explicitly recognized as either empty
or RFIS, the airbag is deployed. In the tiebreaker case, the
unclassified image looks similar to an image in both
prototype classes. By luck of the problem, however, the
action of the airbag should be the same in both cases
(retain airbag), so it makes no difference which of the two
classes the unknown image actually belongs in. We
discuss our choice of the thresholds et  and rt  in the next

section.

2.4. Experimental Results
In assessing the accuracy of our algorithm, we were

free to vary several parameters. We adjusted the
thresholds et  and rt , the resolution of the images, and the

number of eigenvectors used (n′ ). Our best results were

achieved with 029.0=et  and 019.0=rt , an image

resolution of 96x102, and 18=′n  eigenvectors.
The classifier was actually tested as two separate

classifiers, one for empty seats and one for RFIS’s. The
empty seat classifier failed to recognize three of 413
empty seat images as empty seats, and it misclassified one
of 101 occupied seats as empty seats. The RFIS classifier
failed to recognize one of 396 RFIS images as a RFIS,
and it misclassified none of the 101 occupied seats as a
RFIS. From the point of view of airbag actions, the results
are:

Airbag action Computed action/
correct action

Percent

Correct overall 905/910 99.5%
Fatal retention
(on occupied
seat)

1/101 1.0%

Fatal
deployment (on
RFIS)

1/396 0.3%

Unneeded
deployment (on
empty seat)

3/413 0.7%

We refer to the 99.5% figure as the “accuracy” of the
system. This is the percentage of images on which the
system directs the airbag to take the correct action. We not
that there were no cases where the system achieved extra
accuracy by merely confusing an empty seat with a RFIS
or vice versa.

We chose the thresholds by computing the percentage
of correct airbag actions as a function of the thresholds.
This data is plotted in Figure 4. By picking the thresholds
to correspond to the maxima of these plots, we maximized
the accuracy. Ideally, the plots would show broad peaks
near their respective maxima, which would indicate
relative insensitivity to the value of the thresholds. As the
thresholds increase, the accuracy reaches a constant value.
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Figure 4: Classification accuracy varies as a function
of the thresholds et  and rt  used on nearest neighbor
distances. We used this data to maximize the
algorithm’s performance.
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Figure 5: Percent of correct airbag actions as a
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accuracy increases until n′ = 18, which is the
number we used.
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At this point, the net action of the system is to retain the
airbag in every case, and the accuracy percentage simply
reflects the relative number of the three classes of images
in the test set.

We found that accuracy was not a strong function of
resolution in the range of resolutions that we tested. From
a minimum image size of 68x73 to a maximum size of
120x128, the accuracy varied by only 0.2%.

The final adjustable parameter was the number of
eigenvectors used, n′ . We optimized performance by
computing the accuracy as a function of n′ . The results of
this computation are shown in Figure 5, and the best value
was 18=′n .

3. Stereo Vision
One potential problem with classifying intensity

images, as described in the previous section, is that a class
with large intensity variations may be difficult to
characterize with a limited number of prototype images.
For instance, we would not expect our classifier to work
well if the seats of the test vehicle were temporarily
covered with a towel. Even more important, this limitation
prevented us from establishing a separate “occupied”
class, because the appearance of an occupied seat varies
significantly with what clothes the occupant is wearing.
We could not hope to capture enough variations in the
appearance of an occupied seat with a reasonable number
of prototype images.

This problem prompted us to consider using images
whose pixels represent range (distance to surface) rather
than intensity. Our justification is that range images are
ideally insensitive to the lightness of objects in the scene,
and that prototype range images of a given class will be
more similar to each other than prototype intensity
images. This is especially true for occupied seats, where
the range image is ideally independent of the color of the
occupant’s clothes.

Our technique for getting range images is binocular
stereo, which we describe in the next subsection. We used
essentially the same techniques for classifying range

images as we did for intensity images. Classification of
the range images is described in Section 4.

3.1. Experimental Setup
We used two cameras, mounted side-by-side, as shown

in Figure 2. The camera mount held the cameras nearly
parallel. We aligned the rows of the two cameras by
pointing the cameras at a horizontal edge. We rotated
them each around their respective roll axes until the edge
was as close as possible to being horizontal near the
center row of both images. This made the epipolar lines
correspond approximately to rows in the image, meaning
that a match for a point in the left image would fall on a
known row in the right image. Given that we reduced the
image resolution by four times before stereo matching
(480x512 down to 120x128), approximate alignment was
sufficient. A typical stereo pair from inside the vehicle is
shown in Figure 6.

3.2. Binocular Stereo
Measuring range from a stereo pair such as ours

reduces to measuring the disparity (shift) between
corresponding points in the left and right images. The
range is inversely proportional to disparity. In fact, we did
not compute range at all, using just the raw disparities for
classification.

For each point in the left image, we find a match in the
right image using a stereo correlation method described
by Matthies in [2]. This method extracts a small window
around each point in the left image and finds the best
match in the right image using correlation (SSD) search
along the epipolar line. For our reduced resolution stereo
images of size 120x128, we used windows of size 5x7.
Based on the geometry of the cameras and scene and the
resolution of the images, we limited the disparities to the
range [2,5] pixels. Following Matthies’ algorithm, we
computed subpixel disparities by fitting a parabola to the
SSD values at the minimum SSD and its neighbors on
either side. The subpixel disparity was taken as the
location of the minimum of this parabola. A typical
disparity image is shown in Figure 6. Note that we have
masked out the pixels on the window of the vehicle, as

    

Figure 6: Stereo (left/right) images taken inside test vehicle. Rightmost image shows computed disparity, with
lighter points having more disparity.
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they give no indication of the state of the passenger seat.

4. Disparity Image Classification
Our procedure for classifying disparity images is nearly

the same as that for classifying intensity images, as
described in Section 2. Besides the obvious difference of
using disparity instead of intensity, the other difference
was that we classified into three classes (empty, RFIS,
occupied) rather than just two (empty, RFIS) as we did
with intensity images. We felt that the intensity invariance
of the disparity images justified a separate class for
occupied seats that would be compact enough to give
accurate classifications.

We collected stereo images over a period of seven
days. For the empty and RFIS cases, we collected data in
the same way as for the first experiment using monocular
images (every five minutes, set in rearward, middle, and
forward positions for one day each for both empty and
RFIS).  We also took ten images of a different RFIS
(“minority RFIS) for testing. For the occupied class, we
took 439 stereo pairs of 22 regular occupants (20 images
of each person, with one bad image thrown out). The
occupants were asked to change positions during the
imaging. Of all the images, we used 76 empty seat pairs
and 68 RFIS pairs for training, taken at 30-minute
intervals. None of the 10 "minority" RFIS were used for
training. We used 220 of the occupied seat pairs for
training. All the stereo pairs that were not used for
training were used for testing. For the occupied seat, 11
pictured individuals were used for training, and 11 others
were used for testing. All the stereo pairs were subjected
to our stereo algorithm, and all subsequent processing was
done on the real-valued disparity images.

We processed the disparity images in the same was as
the intensity images, eliminating histogram equalization
and normalization. We approximated the SSD using the
top 20 eigenvectors and classified an unknown disparity
image with its nearest neighbor out of all the images in the
prototype sets. This method achieved a classification
accuracy of 93%.

We modified the classification program to give weights
to the three SSD’s for each of the three classes. After
computing the SSD between the projection of an
unclassified image and the projection of a training image,
it was scaled by a weighting factor for that prototype’s
class. The optimal weights for the empty, RFIS, and
occupied classes were 1.000, 1.016, and 0.792,
respectively. Using these weights brought the
classification accuracy up to 95%.

The following table shows the specific types of
classification errors. We note that two of the fatal
deployments (on RFIS) were due to misclassifying the
minority RFIS as an occupied seat. The minority RFIS
was correctly classified in the remaining eight images.
The weights could be adjusted to decrease the number of

fatal errors (fatal retention and fatal deployment) at the
expense of unneeded deployments.

Airbag action Computed action/
correct action

Percent

Correct overall 846/890 95.1%
Fatal retention
(on occupied
seat)

1/219 0.5%

Fatal
deployment (on
RFIS)

16/318 5.0%

Unneeded
deployment (on
empty seat)

27/353 7.6%

5. Conclusions
We have shown that video images can be successfully

used to determine whether or not to deploy the passenger-
side airbag. Images of the passenger seat taken from a
video camera mounted inside the vehicle can be used to
classify the seat as either empty, containing a RFIS, or
occupied. Our first experiment used a single video
camera. The system was automatically trained on a series
of test images. Using a principle components
(eigenimages) nearest neighbor classifier, it achieved a
correct classification rate of 99.5% on a test of 910
images. Our second experiment used a pair of video
cameras to compute stereo disparity (a function of 3D
range) instead of intensity images. Using a similar
algorithm, the second approach achieved a correct
classification rate of 95.1% on a test of 890 images. The
stereo technique has the advantage of being insensitive to
illumination, and would likely work best in a real system.
In addition, range data from stereo images could be used
to estimate the position of the occupant, giving important
information on how to deploy airbags in an advanced
system with multiple airbags and variable inflation rates.
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