
Network Aware Applications: A Background Transfer
Service

Peter Key, Laurent Massoulié

Microsoft Research
Roger Needham Building
7 J J Thomson Avenure

Cambridge, CB3 0FB, U.K.
{peterkey, lmassoul} @microsoft.com,

Bing Wang

Computer Science Department
Computer Science Building
University of Massachusetts
Amherst, MA 01003-4610

bing@cs.umass.edu

Abstract

Network aware applications react to changing network conditions, offering potential
quality of service differentiation without network support. We describe an application
level approach to designing a low priority service — one that is ‘lower than best-effort’
in the context of the Internet. Such applications are appropriate for background file trans-
fers, such as OS updates. We use a receive window control to limit the transfer rate of the
application, and the optimal rate is determined by detecting a change-point. We motivate
this joint control-estimation problem by considering a fluid-based optimisation framework,
and describe practical solutions, based on stochastic approximation and binary search tech-
niques. Simulation results demonstrate the effectiveness of the approach.

1 Introduction

Network aware applications offer a way of introducing service differentiation into the cur-
rent internet without requiring changes to the current infrastructure. By reacting to changes in
underlying network conditions, applications can seek to assure their own desired quality of ser-
vice. The least contentious type of service is one that is ‘lower than best effort’, i.e. lower than
the current base-line quality offered. In this paper we focus on a background transfer service,
where the objective is to transfer the data as quickly as possible, but without affecting other
‘foreground’ applications. Thus we aim to fully utilise the available network resources (those
‘spare’) whilst ensuring that background traffic is low priority compared to the foreground.
Examples of background transfer include large file backup, transferring updates to the current
operating system (e.g., Microsoft’s Background Intelligent Transfer Service, (BITS)), contents
prefetching [1] and distribution, storage management and caching in peer-to-peer systems [2].

One way to a achieve low-priority background transfer is to use priority queues at routers.
However, this is not currently practical due to lack of both consensus and router support. Two
alternative approaches, TCP Nice [3] and TCP-LP [4] require no support from the routers
but instead modify the congestion detection and avoidance in TCP to achieve a low-priority
transfer. They react both earlier and more aggressively than standard loss-based TCP (Reno).
End-to-end delays are used to trigger a congestion signal before loss occurs, while more ag-
gressive back-off mechanisms than those of standard TCP are used to give a lower share of
network resources. Although only sender-side modification is required, this modification of
TCP stack may still be difficult to deploy widely.



In this paper, we design an application-level approach for background transfers that uses
TCP as the underlying transport protocol. Two components are needed: to infer the available
capacity and to adjust the sending rate of the background transfer accordingly. There is a large
literature on available capacity inference, however most current work relies on probing the
end-to-end path, which requires coordination between sender and receiver. Furthermore, UDP
probes can be blocked by firewalls and also impose extra load on the network. Using TCP
directly to infer the available capacity, on the other hand, tends to cause overestimation [5].

In our application-level approach, we tightly couple the available capacity inference and
rate adjustment: the rate of the background transfer is controlled by adjusting the receiver-
advertised window size, which enforces a limitation on the rate used by the application. In
turn, the rate obtained for a given receiver window is used to infer whether that rate is above or
below the available capacity, which in turn triggers an adaptation of the receiver window.

The outline of this paper is as follows. We identify the relationship between receiver win-
dow and achieved rate in Section 2. In Section 3, we propose two application-level approaches
for background transfer: one is based on binary search and the other is based on stochastic
approximation. We evaluate the performance of the two approaches using ns simulation in
Section 4.

2 Relationship between receiver window and achieved rate

In this section, we investigate the relationship between the achieved rate and the receiver win-
dow advertised by the receiver. The findings of this section underpin the method to be described
in the next section. We investigate this relationship under two different assumptions: first, in
Section 2.1, we assume buffer space at all links is large enough to prevent any packet losses.
Secondly, in Section 2.2, we then consider the case where buffering is minimal and flows may
experience loss.

We consider a general network comprising a collection L of links, each link � having an
associated nominal capacity C�. There is a set R of foreground flows, each flow r ∈ R iden-
tifies a subset of L, the links it uses, and each foreground flows implements TCP’s congestion
control. Finally, the background flow of interest is denoted by b, also identified with a subset
of L.

2.1 The large buffers case

Under the assumption of sufficiently large buffers, all flows are controlled by a fixed window,
namely their receiver window. Denote by wr the receiver window of foreground flow r, and
by wb that of the background flow b, and let τr, τb denote the respective round-trip propagation
delays. Then under FIFO scheduling, Massoulié and Roberts [6] showed that achieved rates
x = (xr) and xb solve the optimisation problem

Maximise
∑
r∈R

wr log xr − xrτr + wb log xb − xbτb

subject to
∑
r:�∈r

xr + xb1�∈b ≤ C�, � ∈ L over (xr) ∈ R
R
+ , xb ≥ 0.

(1)

Let xr(wb) denote the corresponding unique optimal solution, where we have emphasised its
dependence on the parameter of interest, wb. The rates xr(0) correspond to the allocations



achieved when the background flow is absent. Hence the spare capacity available to b can be
written

x∗b = min
�∈b

(
C� −

∑
r:�∈r

xr(0)

)
.

We assume that x∗b < min�∈b(C�), so that foreground and background flows could interact. We
then have the following result:

Theorem 1. Let w∗
b := x∗bτb. In the present setting, foreground flows are affected by the

background flow if and only if wb > w∗
b . In addition, the function xb(wb) is linear on [0, w∗

b ]
with slope 1/τb, such that xb(wb) < wb/τb on (w∗

b ,+∞) and the function xb(wb)/wb is non-
increasing on R+.

Proof. By considering the Lagrangean for the optimisation (1), it is easily seen that for wb ∈
[0, w∗

b ], the problem is solved by taking xr(wb) = xr(0), and xb(wb) = wb/τb. Thus when
wb is in the range [0, w∗

b ], the background flow does not interfere with any other flows. When
wb > w∗

b , necessarily the Lagrange multiplier µ� associated with the capacity constraint C� for
some � ∈ b needs to be strictly positive, hence xb(wb), which equals wb/(τb +

∑
�∈b µb), is

indeed strictly less than wb/τb. The last statement is established by noticing that, if we perform
the optimisation in (1) first on the xr, and then on xb, the solution xb(wb) is identified with the
solution of the maximisation problem:

Maximise wb log xb − τbxb + ψ(xb) over xb ≥ 0,

where the function ψ is defined as

ψ(xb) = max
(xr)∈S(xb)

{∑
r∈R

wr log xr − xrτr

}

where S(xb) =
{
(xr) ∈ R

R
+ :
∑

r:�∈r xr ≤ C� − xb1�∈b

}
is the set of achievable foreground

flows given the background flow rate xb. It is easy to see that ψ is non-increasing and concave.
Assuming for simplicity that ψ is differentiable1, the function xb(wb) also reads f−1(wb), where
f(x) = x(τb − ψ′(x)). The function f−1(wb)/wb is non-increasing if and only if the function
f(x)/x is non-decreasing, that is if and only if −ψ′(x) is non-decreasing. The latter property
is implied by concavity of ψ. Finally, observing that f and hence f−1 are non-decreasing, it
can be seen that necessarily, for any wb > w∗

b , one has xb(wb) > x∗b . It then follows that for
wb > w∗

b , there must exist some foreground flow r such that xr(wb) < xr(0).

2.2 The small buffers case

We now assume that buffers are small, and hence congestion control relies on losses rather than
on buffering. Many studies have shown that the rates achieved by TCP flows in such a regime
may be interpreted as solving an implicit optimisation problem; see e.g. [8, 9, 10]. We follow
this approach, and assume that the rates (xr), xb are the solution to the problem:

Maximise
∑
r∈R

Ur(xr) + Ub(xb) −
∑

�

Γ�

(∑
r:�∈r

xr + xb1�∈b

)

subject to 0 ≤ xb ≤ wb

τb
over (xr) ∈ R

R
+ , xb ≥ 0.

(2)

1This is actually not the case; however a rigorous argument can be constructed along the same lines, based on
sub-differentials of convex functions (see Rockafellar [7], Chapter 23) rather than ordinary differentials.



The constraint captures the impact of the receiver window size wb. In the above, the so-called
utility functions Ur are assumed to be strictly concave and increasing. It has been suggested
(see [11], [8]) that adequate choices for modelling TCP capacity sharing could be Ur(x) =
−1/(τ 2

r x), or Ur(x) = τ−1
r arctan(τrx). The other key component in (2) is the penalty function

Γ�. It is related to the loss probability p�(x) at link � when it carries data at rate x via the
equation

Γ�(x) =

∫ x

0

p�(y)dy.

A special choice advocated in [8] consists in setting p�(y) = (y − C�)
+/y. The results below

rely solely on the assumption that the utility functions Ur, Ub are strictly convex increasing, and
that the loss rate functions p� are non-decreasing and continuous. As before, let (xr(wb)) and
xb(wb) denote the rates achieving the maximum in the optimisation problem (2). We also make
use of the notation π�(wb) := p�

(∑
r:�∈r xr(wb) + xb(wb)1�∈b

)
. The function π� is naturally

interpreted as the loss probability along link �. We shall also denote the goodput obtained by
the background flow as

yb(wb) := xb(wb)

(
1 −

∑
�∈b

π�(wb)

)
.

Again, xr(0) is the rate obtained by foreground flow r in the absence of background flows.
We define the spare capacity available to flow b as

x∗b := min
�∈b

inf

{
x > 0 : p�(x+

∑
r:�∈r

xr(0)) = 0

}
.

We assume that there exists a link � ∈ b and a flow r′, � ∈ r′ such that xr′(0) > 0 and
p�(x

∗
b +

∑
r:�∈r xr(0) + z) > 0 for all z > 0, so that background and foreground flows could

interact. In this context, similarly to Theorem 1, we have the following.

Theorem 2. Let w∗
b := x∗bτb. In the present setting, foreground flows are affected by the back-

ground flow if and only if wb > w∗
b . Moreover, the goodput yb(wb) received by the background

flow is linear in wb on the interval [0, wb], with slope 1/τb, is such that yb(wb)/wb < τ−1
b when

wb > w∗
b , and the function yb(wb)/wb is non-increasing in wb.

Proof. (sketched). We only provide those steps that differ significantly from those in the proof
of Theorem 1. It is readily seen that, for wb ∈ [0, w∗

b ], the optimisation problem (2) is solved
by setting xr(wb) = xr(0) and xb(wb) = wb/τb. The case where wb > w∗

b can be further
divided into two sub-cases, according to whether the constraint imposed by wb is binding or
not. Denote by ŵb the critical value for wb where the receiver window constraint ceases to be
binding. In the interval (w∗

b , ŵb), one has xb(wb) ≡ wb/τb. Similarly to the proof of Theorem
1, define

ψ(xb) := max
(xr)∈R

R
+

{∑
r∈R

Ur(xr) −
∑

�

Γ�

(∑
r:�∈r

xr + xb1�∈b

)}
.

This function is non-increasing and concave. The interval (w∗
b , ŵb) may then be alternatively

characterised as the one for which U ′
b(wb/τb)+ψ

′(wb/τb) > 0. In addition, it can be shown that
the derivative −ψ′(wb/τb) coincides with the loss rate

∑
�∈b π�(wb) over the range (w∗

b , ŵb).
By concavity of ψ, −ψ′ is non-decreasing. As a result, the normalised goodput function
yb(wb)/wb, which reads τ−1

b (1 −∑�∈b π�(wb)), is indeed non-increasing. Finally, in the range
wb > ŵb, one has yb(wb) ≡ yb(ŵb), and hence the normalised goodput is decreasing there as
well.



n0

Background flow

foreground
flows

.

.

.

Capacity: C
Buffer size: B

n1

Figure 1: The topology in ns: The link between node node n0 and n1 forms a bottleneck link.

In both contexts, we observe that goodput normalised by receiver window is constant over a
range [0, w∗

b ], and decreasing over (w∗
b ,+∞), where the critical window w∗

b is precisely the one
we should use to maximise background goodput while not interfering with foreground flows.

2.3 Experimental validation

Although we have analysed only two extreme cases, namely large buffers (no loss), and no
buffering but losses, we expect the same qualitative behaviour to hold in mixed situations
where there is both significant buffering and loss. We now confirm this expectation using
ns simulations. The topology used in ns is shown in Figure 1. The link between nodes n0
and n1 forms a bottleneck link with capacity C. The buffer size of node n0 is B. Here we
have a number N of foreground flows, each a long-lived TCP connection, with a round trip
propagation delay τf and a maximum window size of wf . The generic network optimisation
problem (1), specialised to the present situation, reads

Maximise N(wf log(xf ) − τfxf ) + wb log xb − τbxb (3)

subject toNxf +xb ≤ C. We would expect its solution to predict accurately the actual achieved
rates in the absence of losses, that is when the buffer size B is large.

We now report experiments for N = 8 foreground flows, each with characteristics wf = 20
packets and τf = 100 ms, a capacity C of 2000 packets per second. τb is set to 10 ms. The
packet size is fixed to 500 bytes. The maximum aggregate bandwidth usage of the foreground
TCP flows is then 1600 packets per second. The foreground TCP flows are started at time 0
and the background flow is started at the 10th second. The window size of the background flow
is initially 1 packet, and increases by 1 packet every 40 seconds. For each background flow
window size, we obtain the average background flow throughput every 1 second with a total of
40 samples. We then obtain the mean and the confidence interval from the 40 samples.

The solid line in Figure 2(a) shows the background flow throughput as a function of the
window size, with 95% confidence intervals, when B = 40 packets. The result from solving
the simple optimization problem (3) is also shown in the figure, which indicates that the optimal
window size for the background flow is 4 packets. From the simulation, the optimal value is
lower (3 packets). Packet losses start to occur when wb = 16 packets. Fig. 2 (b) shows
the background flow throughput versus the window size for a smaller buffer size at node n0
(B = 20 packets). Packet losses start to occur when wb = 8 packets. Note that, when loss
occurs, the variance in the background flow throughput increases dramatically; furthermore,
the throughput is not necessarily an increasing function of the window size.



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

← theoretical

Receiver window (packets)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s)

← simulation

(a) B = 40 packets.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

← theoretical

Receiver window (packets)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

← simulation

(b) B = 20 packets.

Figure 2: The throughput of the background flow versus the window size with 8 foreground
flows, when C = 2000 packets per second.

3 The joint control and estimation problem

The previous results suggest that one could adapt the receiver window wb of the background
flow, based on the observed achieved rates, so as to tune it to the critical value w∗

b at which
interference with foreground flows would start occurring. In what follows, we assume that
time is divided in control intervals, each of length T . In the nth interval, a receiver window of
size wn is applied2 and an amount Rn of data is received, both wn and Rn being expressed in
the same unit, which is a fixed number of bytes u.

Let ρn := Rn/wn. Based on the results of the previous section, we postulate the following
model for the observed quantities ρn:

ρn = φ(Wn) + Zn, (4)

where the Zn represent observation noise, assumed to be centred, and the function φ is the
normalised goodput function, which, in view of Theorems 1 and 2, is assumed to be non-
increasing, and such that:

φ(w)

{ ≡ ρ := T/τb, if w ∈ [0, w∗
b ],

< ρ if w > w∗
b .

In the special case where the parameter ρ is known, and there is no measurement noise, at the
end of the nth control interval, by comparing ρn to ρ one can directly infer whether wn ≤ w∗

b or
not. Based on such binary feedback, one can reduce the search interval in which the unknown
critical window lies. In this situation, binary search constitutes a very natural candidate strat-
egy. In fact, Karp et al. [12] address such a problem. They show (among other things) that,
if cost at each control interval is measured by the absolute difference between w∗

b and wn, and
the unknown critical window is uniformly distributed among the integers in [1, A], then binary
search is asymptotically optimal for both the worst and average cumulative cost in the limit
A→ ∞.

Our problem differs from that tackled in [12] mainly because the parameter ρ is unknown,
and the observations are noisy. Rather than trying to identify the ideal window w∗

b , we try
instead to find the window size w∗ solving

φ(w∗) = ρ− ε, (5)

2Subscripts now denote control intervals, and not flows as in the previous section.



where ε is some positive parameter. This makes the search problem easier, and alleviates
the impact of observation noise, although now w∗ > w∗

b , and hence overestimates the target
window size. We discuss the impact of using w∗ on foreground flows in Section 3.3.

In the two control methods we propose next, we maintain an Exponentially Weighted Mov-
ing Averge (EWMA) estimate ρ̂n of ρ,

ρ̂n =

{
(1 − δ)ρ̂n−1 + δρn if ρn ≥ ρ̂n−1 − ε′,
ρ̂n−1 otherwise.

(6)

This features two positive parameters δ ∈ (0, 1) and ε′, and can be initialised by taking ρ̂1 = ρ1.
We now describe our two candidate control methods.

3.1 The Binary Search Method

In this approach we maintain a search range [wmin, wmax] for the desired window w∗. The
lower limit wmin is intially set to 1, and the upper limit wmax set to a system dependent limit3.
At the beginning of a control interval, we set wn = �(wmin + wmax)/2�, where �·� denotes
integer part. At the end of the control interval, if ρn > ρ̂n−1 − ε, we let wmin = wn; otherwise
we let wmax = wn. Such standard binary search proceeds until the difference wmax −wmin is 0
or 1. In the absence of noise, and in a static environment we would then be guaranteed to have
reached the optimal window w∗, and the search could be stopped there.

These assumptions are not verified in practice, and we describe how we proceed when the
search interval has length at most 1. If ρn > ρ̂n−1 − ε, we make the change wmax = wmax + 2;
otherwise, we make the changes wmax = wmax − 1 and wmin = 1.

In view of the optimality properties of binary search derived in [12], we expect the above
approach to perform well. An interesting issue concerns how the presence of the measurement
noise terms Zn in (4) affect such optimality properties.

3.2 The Stochastic Approximation Method

Stochastic approximation is a general technique for finding solutions to an equation f(x) = 0,
given noisy measurements f(x) + Z, using

Xn = Xn−1 − γnθn,

where θn = f(Xn−1) + Zn is the noisy observation of f(Xn−1). Such algorithms are also
known as Robbins-Monro algorithms [13]. Conditions on the gain sequence γn, and on the
noise variables Zn, under which Xn converges almost surely to a desired solution are known4.

The control problem at hand can be cast in this framework. Indeed, the equation (5) we are
trying to solve is precisely of the form f(w) = 0, with f(w) = φ(w) − ρ + ε, and, ignoring
for now the fact that ρ is unknown, we do have access to noisy estimates of f(wn), namely
ρn − ρ− ε. This thus suggests to use updates of the form:

wn = wn−1 + γn(ε+ ρn−1 − ρ̂n−2). (7)

3Alternatively, a preliminary search for suitable value of wmax can be made, starting from w1 = 1, and
doubling wn at in each subsequent interval, until the condition ρn > ρ̂n−1 − ε fails, at which point we set
wmax = wn.

4Essentially requiring γn to converge slowly, e.g.
∑

n>0 γn unbounded but
∑

n>0 γ2
n finite, with Zn having

zero mean and finite variance.



Provided the estimates ρ̂n converge to ρ, we would expect the corresponding sequence wn to
converge to w∗ under mild assumptions on the observation noises Zn. However we have not
pursued this yet, and have instead experimented with the fixed gain version of the update rule
(7), where the γn are held constant to a common value γ. This is more appropriate in a dynamic
environment where the target w∗ itself might evolve over time.

3.2.1 Tradeoffs between the two approaches

In binary search, when the search interval is of length at most 1 and the receiver window size is
too large, it is decreased by half. This is in the same spirit as the change in congestion window
size in TCP, and ensures that binary search adapts quickly to the dynamic available capacity.
However, in a stable environment, the receiver window size may still fluctuate, which leads to
less efficient capacity utilization. The stochastic approximation algorithm can be tuned so that
the receiver window size converges in a stable environment. However, since the increment and
decrement in the receiver window size is linear (see (7)), it reacts more slowly to changes in
the available capacity.

3.3 Tuning ε: The interference impact on foreground flows

We next explore the interference of a background flow on TCP flows, caused by using the
window w∗ solving (5) rather than w∗

b . Here we consider only the same simple situation as
Section 2.3, with one background flow and N homogeneous TCP flows sharing a single link of
capacity of the C, with enough buffering to avoid any data loss. Suppose the window size of
the TCP flow is fixed and the background flow adapts its window as in the previous sections to
track ρ − ε, where ρ = T/τb. In equilibrium, denote the window size of the background flow
by wε

b. Then the equilibrium rates xε
f and xε

b are again characterised as the unique solution to
the optimisation problem (3). It is then straightforward to show

Theorem 3. In the case that the round-trip times are the same (τf = τb = τ ), the relative
reduction in the TCP rate in the presence of the background flow caused by using a positive
threshold ε is bounded above by

D =
τε

T
·

Proof. Outline: In the absence of the background flow, xf = min(wf/τ, C/N). Solving the
optimisation problem and using the fact that xε

bT = (ρ − ε)wε
b enables one to solve explicitly

for wε
b and xε

f , and show that the relative reduction in the TCP rate caused by the background
flow is indeed bounded above by D.

4 Results

We now give some illustrative simulation results of our algorithm. The simulation set-up is as
in Figure 1, with the capacity of C=10Mb/s (with the background flow having a 100Mb/s link
to the bottleneck). The round-trip propagation for the background flow is 44ms. The data unit
is u = 100 bytes, and we take ε = 1 and ε′ = 1. The EWMA parameter δ for ρn was set
to δ = 0.1, and the control time T varied. Figure 3 shows the reaction time to two different
types of background traffic. Figure 3(a) compares binary search and stochastic approximation
(with gain parameter γ = 1) for FTP background traffic, with a control interval of T = 0.5
seconds. The FTP foreground traffic uses 58% of the bottleneck (i.e. is window constrained),



0

50

100

150

200

20 40 60 80 100 120 140

R
ec

ei
ve

 w
in

do
w

 (
un

its
)

Time (sec)

binary search
stoch. approx.

(a) FTP foreground traffic

0

2

4

6

8

10

12

50 100 150 200 250 300 350

R
at

e 
(M

bp
s)

Time (sec)

background
UDP

(b) UPD on-off foreground

Figure 3: Reactivity of algorithms to FTP foreground traffic and UDP on-off foreground.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000

R
es

po
ns

e 
tim

e 
(n

or
m

al
iz

ed
)

File size of HTTP traffic (KB)

web & TCP
web only

web & background

Figure 4: Average response time for file dowloads with and without ftp and background traffic

and the utilisation raised to 95% (stochastic approximation) or 98%(binary search) when the
background flow is added, with a corresponding reduction of foreground throughput of 2% or
6% respectively. Note that both approaches do achieve the design goals, and the simulations
reflect the trade-off between the speed of reaction and variability discussed in the previous
section. Figure 3(b) shows the reactivity of the binary search method when the foreground
traffic is on-off UDP, with a peak of 6Mb/s and equal on/off periods of 50 seconds. The
background flow reacts well to changes in available capacity, and is indeed able to use around
90% of what is available.

We now examine the behaviour of the binary search algorithm in a more dynamic environ-
ment when there is Web traffic. Each web session contains several web pages, and each web
pages contains 10 objects. The inter-page and inter-object time distributions are exponential
with means of 1 sec and 1 msec respectively. The object size is distributed according to a
Pareto distribution with shape parameter of 1.2. Figure 4 plots the average response time of the
web pages versus the size of the web page when there is no background FTP flow, when the
FTP uses our algorithm (with T = 0.5 sec) and when the FTP uses TCP Reno. The response
times in the first two situations are similar and lower than those when the FTP uses TCP Reno.
When T = 0.5 sec, the average bandwidth usage of the background flow and the Reno TCP
flow is 0.32 Mbps and 0.69 Mbps respectively. In other words TCP Reno attempts to get a fair
share, and interferes with Web traffic by grabbing bandwidth, whilst our algorithm is able to
adapt dynamically and has little effect on the foreground Web traffic.



5 Concluding remarks

We have looked at the problem of creating a background transfer service using an application
layer reaction, adapting a receiver window to create a low-priority service. By phrasing the
idealised problem as an optimisation, we were able to characterise the solution as dual control
problem, where the aim is to control the window to a critical value which represents a change
point. We have given two ways of attacking this control problem, using binary search or
stochastic optimisation techniques. Simulations have given credence to our framework, and
initial results on the algorithms are encouraging.

References

[1] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The potential
costs and benefits of long term prefetching for content distribution. Computer Communi-
cation Journal, 25(4):367–375, 2002.

[2] Antony I. T. Rowstron and Peter Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In SOSP, pages 188–201, 2001.

[3] A. Kuzmanovic and E. Knightly. TCP-LP: A distributed algorithm for low priority data
transfer. In Proc. IEEE INFOCOM, 2003.

[4] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism for background
transfers. In Proc. Operating Systems Design and Implementation, December 2002.

[5] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement methodology,
dynamics, and relation with TCP throughput. In Proc. ACM SIGCOMM, 2002.

[6] Laurent Massoulié and James Roberts. Bandwidth sharing: Objectives and algorithms.
In Proc. IEEE INFOCOM, volume 3, pages 1395–1403, 1999.

[7] T.R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[8] S. Kunniyur and R. Srikant. End-to-end congestion control schemes: Utility functions,
random losses and ECN marks. In INFOCOM, 2000.

[9] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control.
Automatica, 35:1969–1985, 1999.

[10] F. P. Kelly, A. K. Maulloo, and D. K. H Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. J. Op. Res. Soc., 49:237–252, 1998.

[11] F. P. Kelly. Mathematical modelling of the Iinternet. In Proceedings of the Fourth Inter-
national Congress on Industrial and Applied Mathematics, 2000.

[12] Richard M. Karp, Elias Koutsoupias, Christos H. Papadimitriou, and Scott Shenker. Op-
timization problems in congestion control. In IEEE Symposium on Foundations of Com-
puter Science, pages 66–74, 2000.

[13] H. Robbins and S Munro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.


