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ABSTRACT
The advances in mobile computing and social networking services
enable people to probe the dynamics of a city. In this paper, we
address the problem of detecting and describing traffic anomalies
using crowd sensing with two forms of data, human mobility and
social media. Traffic anomalies are caused by accidents, control,
protests, sport events, celebrations, disasters and other events. Un-
like existing traffic-anomaly-detection methods, we identify anoma-
lies according to drivers’ routing behavior on an urban road net-
work. Here, a detected anomaly is represented by a sub-graph of a
road network where drivers’ routing behaviors significantly differ
from their original patterns. We then try to describe the detected
anomaly by mining representative terms from the social media that
people posted when the anomaly happened. The system for detect-
ing such traffic anomalies can benefit both drivers and transporta-
tion authorities, e.g., by notifying drivers approaching an anomaly
and suggesting alternative routes, as well as supporting traffic jam
diagnosis and dispersal. We evaluate our system with a GPS trajec-
tory dataset generated by over 30,000 taxicabs over a period of 3
months in Beijing, and a dataset of tweets collected from WeiBo, a
Twitter-like social site in China. The results demonstrate the effec-
tiveness and efficiency of our system.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-data min-
ing, Spatial database and GIS.

General Terms
Algorithms
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1. INTRODUCTION
The prevalence of mobile phones, GPS, and social networking

services has enabled people to probe the rhythm of the cities in
which they live, becoming both smart sensors as well as actuators.
The use of crowd sensing to capture the state of the city is a trans-
forming paradigm, allowing real-time analysis and improved un-
derstanding and planning. One area of increasing interests is to
understand the dynamics of urban traffic. Incidents and events can
cause anomalies resulting in traffic jams on road networks that oth-
erwise operate efficiently, costing time and money as well as in-
creasing urban pollution. Additionally, the life of the city is often
reflected in traffic patterns: popular sporting events draw crowds,
holidays create disruptions, protests may result in road closures,
etc. We propose to identify disruptions in the typical traffic patterns
– traffic anomalies – and to give semantic meaning to the anomalies
using two forms of crowd sensing, derived from GPS trajectories
and social media contents.

In this paper, we propose a method to detect and describe traf-
fic anomalies, which could be caused by traffic accidents, traffic
controls, celebrations, protests, disasters, etc., by using human mo-
bility data (such as GPS trajectories of vehicles) and social me-
dia data. Towards this end, we mine GPS trajectory data to detect
significant routing changes; the subgraph of the road network on
which an anomaly is found is then used to retrieve relevant so-
cial media to describe the anomaly. We envision two use cases
for our system, one is oriented toward an individual user travel-
ing around an anomaly and one is oriented toward city planners
and traffic controllers to facilitate monitoring and visual analysis.
Through the mobile user interface, our system provides services to
individual users: 1) real-time alerts showing the anomaly area (i.e.
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Figure 1: System Prototype
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represented by the red lines in Figure 1(a)) when users are nearby;
2) estimated features of the anomaly such as velocity and routing
changes; and 3) a semantic context to give meaning to the anomaly,
i.e. the social media terms that describe the event. Through a web-
based user interface, our system provides the transportation author-
ities with a global view of all the traffic anomalies in the city, as
shown in Figure 1(b). In this view, the anomalies are represented
as red dots, and the detailed anomaly areas for each event are shown
on the right column of the UI. Provided with such a service, trans-
portation authorities could efficiently monitor all the traffic anoma-
lies with detailed diagnoses of their impact regions and relevant
descriptive terms.

Our system uses a novel methodology to detect anomalies ac-
cording to drivers’ routing behavior, i.e. the topological variation
in traffic flow between points. This is different from related works
on traffic anomaly detection, which focus on traffic volume and ve-
locity on roads. Here, a detected anomaly is represented by a sub-
graph of a road network where people’s routing behaviors signifi-
cantly differ from their typical patterns. Figure 2 gives a concrete
example, where 200 drivers travel from an origin O to a destination
D in a period of day. As demonstrated in Figure 2 (a), normally,
80% of drivers go to D via route rt1 while 10% travel along route
rt2 and 10% via route rt3. Figure 2 (b) shows one kind of anomaly
in which the traffic volume decreased on each route. Figure 2 (c) il-
lustrates another kind of traffic anomaly where the total traffic flow
is the same as before but the routing behavior of drivers along these
routes has changed. Specifically, the percentage of drivers choos-
ing rt1 decreased from 80% to 25%, while the traffic on rt2 and
rt3 increases from 10% to 30%, respectively. At the same time, a
new route rt4 has emerged, attracting 15% of drivers.

D
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rt2: 10% 30%

rt3: 10% 30%

rt2: 20 (10%)

rt3: 20 (10%)

D

O
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Figure 2: Concrete Example

Our approach has the following advantages over the existing
methods. First, it provides a comprehensive view of the anoma-
lies, showing the affected road segments of the anomaly as well
as the relationships between these road segments. This is useful
for diagnosing an anomaly or planning for traffic dispersal. For
instance, traffic volume-based methods would only detect the road
segment on which an accident has occurred, while other routes such
as rt2 and rt3 would be overlooked. In fact, the traffic volume-
based method may not even be able to detect some extreme cases,
where the traffic volume does not change significantly on each road
segment. Second, by detecting a subgraph, we enable the retrieval
of relevant social media to describe the event. Without finding this
geographic constraint and its time span, determining what social
media is relevant to an anomaly would be far more costly, if not
impossible. We use the historical tweets associated with the spa-
tial region to represent the historical norm and report the terms that
occur more frequently during the timespan of the anomaly as com-
pared to their historical occurrences for this region.

The contributions of our paper are as follows:

• We present a novel method to detect traffic anomalies ac-
cording to the routing behavior, showing significant advan-

tages over traffic volume-based anomaly detection methods,
e.g., revealing the affected spatial regions and relations be-
tween individual road segments, displaying potential alter-
native routes, and detecting anomalies that do not disrupt the
traffic velocity or volume.

• We leverage social media to provide descriptions for the anoma-
lies. By doing so, we correlate disruptions in the traffic pat-
terns with their semantics, i.e. the urban events causing the
anomalies.

• We validated our system using a large-scale, real-world GPS
trajectory dataset generated by over 30,000 taxicabs over a
period of 3 months in Beijing, which constitutes approxi-
mately 20% of the traffic flow [16] on the road network. Our
results show that our method outperforms the baseline meth-
ods, including a traffic volume-based method.

The reminder of the paper is organized as follows. In Section 2,
we overview the system and introduce the preliminaries. In Sec-
tion 3, we explain our offline mining approach. In Section 4, we
detail our anomaly detection approach. In Section 5, we present
our system’s capability to analyze the detected anomalies. In Sec-
tion 6, we present the experimental setup and results. In Section 7,
we summarize the related work. And in Section 8, we conclude our
paper.

2. OVERVIEW
In this section, we define the terminologies used throughout the

paper and give an overview of the system.

2.1 Preliminaries
Definition 1 (Road Segment): A road segment r is a directed

edge in the road network graphs, with two terminal points r.s and
r.e. The vehicle flow on this edge is from r.s to r.e.

Definition 2 (Road Network): A road network G is a directed
graph, G = (V , E ), where V is a set of nodes representing the
terminal points of road segments, and E is a set of edges denoting
road segments.

Definition 3 (Path): A path p is a sequence of connected road
segments, i.e., p: r1 → r2 → ... → rn, where r(k+1).s = rk.e,
(1 ≤ k < n).

Definition 4 (Trajectory): A trajectory tr is a sequence of GPS
points created by a moving object. Each point consists of a longi-
tude, latitude and a time stamp (t).

In this work, we map-matched these GPS points onto a path in
the road network, thereby, each trajectory can be converted to a set
of time-ordered road segments, i.e., < t1, r1 > → < t2, r2 >
→ ... →< tn, rn >, where r(k+1).s = rk.e, and tk indicates the
arrival time on the road segment rk (1 ≤ k < n).

2.2 System Overview
Figure 3 shows the architecture of our system, which consists of

three parts: offline mining, anomaly detection, and anomaly analy-
sis.

Offline mining: As illustrated in the left column of Figure 3, this
step consists of identifying the normal routing behavior of drivers
which happens in general cases (detailed in Section 3.2). This step
accumulates historical mobility data (e.g., GPS trajectories from
vehicles) into a trajectory database and builds an index between
road segments and the trajectories traversing them in order to en-
able online anomaly detection (refer to Section 3.3). This step also
calculates the number and travel times of vehicles traversing each
road segment over the course of a day.
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Figure 3: System Architecture

Online anomaly detection: As shown in the middle column of
Figure 3, anomaly detection is an online inference step based on
the recently received GPS trajectories of vehicles and the behav-
ioral knowledge we obtained from offline mining. First, our system
maps the received GPS trajectories of vehicles onto a road network
using a map-matching algorithm presented in [13]. One copy of
these processed trajectories is sent to the trajectory database for of-
fline mining. Another copy is used for real-time routing behavior
analysis. Similar to offline mining, we analyze the current vehi-
cle flow and travel time for each road segment. By comparing the
real-time information with our historical routing behavior knowl-
edge, our system selects road segments with a certain deviation
from its normal pattern (we call such such road segments seed seg-
ments). Then, our system expands each seed segment to a complete
anomaly subgraph, over which drivers’ routing behavior changed
significantly (refer to Section 4 for details). Based on the offline
index, an online indexing structure between paths and trajectories
is built for efficient anomaly graph expansion.

Anomaly Analysis: On the right of Figure 3, the anomaly anal-
ysis step aims to analyze and explain the anomaly. One class of
analytic information is the anomaly’s impact in terms of the travel
time delay on each path of the detected anomaly graph. We ex-
tract the information from the recent GPS trajectories of vehicles
and the ordinary routing behaviors learned offline. Another class
of analytic information is the representative terms (such as ‘bridge
out’, ‘accident’, ‘sports’, etc.) that could describe or diagnose the
anomaly. Specifically, we retrieve the relevant social media, e.g.,
tweets, using the time span when the anomaly occurred and the
name of the roads covered by the anomaly. We then mine the rep-
resentative terms that occurred frequently in the time span of the
anomaly but rarely appeared otherwise. Finally, as a result, our sys-
tem creates visualizations for individual drivers showing the extent
of the anomaly as well as visualizations for more in-depth visual
analysis.

3. OFFLINE MINING

3.1 Modeling Taxi Trajectories
We first partition the GPS logs from each taxi into indepen-

dent trajectories representing individual trips, which is done using
the taxi’s transaction records. Next, we employ IVMM algorithm
[13], to map each GPS point onto a road segment. Due to the fact
that taxis normally report their GPS location every 1 to 2 minutes,
these mapped road segments may not be connected with each other.
Therefore, we connect each consecutive pair of GPS points with a
path calculated based on the method described in [11]. As the result
of this step, each trajectory has been converted to a directed path
composed by connected road segments. For each trajectory, we also
estimate the travel time on each road segment in its mapped path.
We assume the travel time between two GPS points is uniformly
distributed over the connecting path.

3.2 Modeling Routing Behavior
We model the routing behavior between two points as the distri-

bution of traffic flow across different connecting paths. The prelim-
inaries for this model are provided as follows:

Definition 5 (Original Edge and Destination Edge): For an
edge r in a graph G, if there are no incoming edges connected
with r.s, r is denoted as origin edge (rO). Similarly, if there is no
outgoing edges connected with r.e, r is denoted as destination edge
(rD).

Definition 6 (Routing Pattern) : For each pair of< rO, rD > in
road network graph G, at time t, its Routing Pattern(RP) is defined
as < f1, p1, f2, p2, ..., fm, pm >, where fi is the traffic volume
(i.e., number of vehicles) on the i-th path from rO to rD , and pi
is the percentage of the total flow (i.e., the sum of fi) between rO
and rD using the i-th path. Note that this definition can implicitly
reflect the high-level heading factor on the road network.

Consider the graph in Figure 2 as an example. Suppose the time
stamps for the three figures are t1, t2 and t3. The traverse flows
and the routing behavior (i.e., routing pattern) for these three cases
between O and D are shown in Table 1.

Time Routing Pattern (RP )
t1 <160, 0.8, 20, 0.1, 20, 0.1>
t2 <80, 0.8, 10, 0.1, 10, 0.1>
t3 <50, 0.25, 60, 0.3, 60, 0.3, 30, 0.15>

Table 1: Example of RPOD

To measure the differences of routing behavior at time t1 (RPt1 )
with another routing behavior (RPt2 ), we define the Mahalanobis
distance [3] as follows:

dM (RPt1 , RPt2) =

√
(RPt1 −RPt2)

TS−1(RPt1 −RPt2)
(1)

where S represents the covariance matrix between vectorRPt1 and
RPt2 . The reason why we choose Mahalanobis distance measure-
ment lies in its capability in correlation analysis, through which
different patterns in routing behavior can be identified. It differs
from Euclidean distance in that it takes into account the correla-
tions of the data set and is scale-invariant. Note that if the length of
two routing patterns are different (e.g., the routing patterns for t2
and t3 in Table 1), additional zeros will be appended to the shorter
vector to match the size of the longer one.

3.3 Index Building
We create two index structures, an offline index and online index,

for speeding up the anomaly detection process.
The offline index is a bi-directional index structure between the

trajectories and road segments. As stated in Section 3.1, each tra-
jectory is converted into a path of connected road segments. The
indexing in the forward direction is between each distinct trajec-
tory and all the road segments contained in the derived path. In the
reverse direction, each road segment is indexed by every trajectory
that traversed it. Consider the example on Figure 4(a), where solid
directed lines represent road segments, and the dash lines represent
the trajectories. The corresponding offline index is depicted in Fig-
ure 4(b). This index structure is built offline, but will be updated
online as new trajectories are received.

Our system also includes an online index. The online index is
a index structure created for each road segment r to index all the
ended paths and the trajectories along them. Note that ended paths
refers to the paths which include r as the last edge. The struc-
ture of the online index is depicted in Figure 4(c). To detect an
anomaly, we must efficiently find all the trajectories on the set of
road segments and examine their routing behaviors. However, if
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we index the trajectories on all possible combinations of road seg-
ments within the road network, the size of the index entries would
be exponential relative to the size of road network. Therefore, dur-
ing the anomaly detection process, we use the offline index to build
an additional index structure to expedite the searching process. The
details of construction and maintenance strategy will be discussed
in following section.

4. ANOMALY DETECTION
Problem Definition: Given a road network graph G composed

of a set of road segmentsR = {r1, r2, ..., rn}, a set of drivers U =
{u1, u2, ..., um}, and a set of trajectories TR = {tr1, tr2, ..., trh}
during [t0, t1], find a set of subgraphs, called traffic anomaly graphs,
{g1, g2, ...gk}, where each graph gi satisfies the following criteria:
(a) gi is a connected graph
(b) In gi, for each rO , there is at least one rD , such that the routing
pattern (RP) at t1 between rO and rD , satisfies the following:

dM (RPt1 , µ[t0,t1)) ≥ 3 ·
√

1

N

∑
t∈[t0,t1)

(RPt − µ[t0,t1))
2 (2)

where µ[t0,t1) denotes the median of all routing patterns calculated
during [t0, t1). Similarly, for each rD , there is at least one rO
satisfied the above constraint.

In (2), the left side is the Mahalanobis distance between the rout-
ing pattern at t1 and the regular routing pattern1. The right side is
three times of standard deviation from all routing patterns before t1.
Thereby, conceptually, we aim at detecting traffic anomalies with
routing pattern highly deviated from regular routing pattern. To-
wards this end, we select seed segments and expand them into sub-
graphs that satisfy the conditions described above. In the following
two sub-sections, we will discuss the two major steps, anomalous
seed selection and graph expansion.

4.1 Anomalous Seed Selection
Definition 7 (Anomalous Seed Segment): At time T, an anoma-

lous seed segment is a single road segment that is not in any exist-
ing anomaly subgraph and has a current flow (fT ) that satisfies the
following equation:

|fT − µ| ≥ 3 ·

√√√√ 1

N

tN∑
i=t1

(fti − µ)
2 (3)

where µ is the historical median flow on the road segments, and t1
to tN refer to all the time stamps before T .

At time T, all the road segments that satisfy the above definition
are put into a pool of anomalous seed candidates. During the selec-
tion procedure, we sort the road segments in the pool such that they
are ordered according to the scale of their flow variation, with the
1To calculate the regular route pattern, we first derive the median
traffic volume on each path, and then calculate the percentage based
on the sum of median volume.

segment with the greatest variation being first in the queue. To en-
sure the selected seeds are not in any existing anomaly graphs, we
select one seed at a time and expanding the corresponding anomaly
graph, then iterate the process. Intuitively, for several road seg-
ments with similar flow changes located near to each other, it is en-
tirely possible that their changes indicate they are part of the same
anomaly. Thereby, instead of identifying multiple seeds at once, we
select one seed and expand from it. After we finish expanding the
anomaly subgraph, all of its road segments that are existed in the
candidate pool are removed from the pool. The seed selection pro-
cess terminates when the pool is empty. Note that, to measure the
flow variation, we use relative variation rather than absolute varia-
tion, and in practice, we discard the road segments with extremely
low historical flow from seed candidate pool as too little is known
about them.

4.2 Anomalous Graph Expansion
With the selected anomalous seed segment, the next step is to

expand from the seed to find the complete anomaly graph. The
details of the expansion procedure are described in Algorithm 1.
In general, it is based on breadth first graph expansion algorithm,
with a verification step as pruning based on the criteria (b) in the
problem definition.

Algorithm 1 MSGDetector(seed, R, Tr, t, α, φ)
Output: Mobility Shift Graph: g
1: Let Graph g = InitGraph(seed)
2: Let Queue q = InitQueue();
3: q.enqueue(seed.neighbors(R));
4: while q 6= ∅ do
5: RoadSegment r = q.dequeue();
6: g.addEdge(r);
7: bool p = Verification(g, Tr,t, α, φ)
8: if p == true then
9: /// criteria (b) in problem definition is satisfied

10: q.enqueue(r.neighbors(R));
11: else
12: g.deleteEdge(r);
13: end if
14: end while
15: Return g

The verification step of Algorithm 1 is computationally costly,
because it first needs to retrieve all paths between all O-D pair in
the anomaly graphs (i.e., all combinations of rO and rD), and then
record the number of traversing vehicles both historically and at
present for each path to calculate the routing pattern. Specifically,
the most computational costly step is to find all the historical tra-
jectories traversing a path. Since a path is normally composed of
several road segments, the offline index on individual road segment
cannot help directly. Therefore, we use an online index structure
(depicted in Figure 4(c)) to reduce the complexity of retrieving the
trajectories, as described in the following paragraphs.

For each insertion of a new road segment, we need to update
the relevant paths and trajectories in the online index structure.
Consider a sample insertion sequence as depicted in step 1 to 4
in the Figure 5, the corresponding procedure of building the index
is shown in Figure 6. The complexity of each insertion is shown
in Table 2, where Trxyz indicates the trajectory group which is
indexed by the path rxryrz . The function F(A,r) returns all the tra-
jectories in set A that passed edge r, and TR refers to all historical
trajectories. There are three possible positions for the newly added
edge in a graph: as a destination edge(rD), an origin edge(rO), or
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Updated Index Complx.Edge Paths Trajectories
(1) r1 + r1 Tr1 = F(TR, r1) O(1)
(2) r2 + r1r2 Tr12=F(Tr1, r2) O(|Tr1|)

(3)

r3 + r3 Tr3= F(TR, r3) O(1)

r1
- r1 Tr31 =F(Tr1, r3) O(|Tr1|)+ r3r1

r2
- r1r2 Tr312 = F(Tr12, r3) O(|Tr12|)+ r3r1r2

(4)
r4 +r4 Tr4 = F(TR, r4) O(1)
r1 + r4r1 Tr41=F(Tr4, r1) O(|Tr4|)
r2 + r4r1r2 Tr412=F(Tr41, r2) O(|Tr41|)

Table 2: Computational Analysis of Update Procedure

an ordinary edge. The complexity regarding the insertion of new
rD and rO will be discussed in the following, while the complexity
of inserting an ordinary edge can be derived by a combination of
the other two.

Destination Edge Insertion: For the insertion of new rD , we
need to create its own index without updating any other edge in
the graph. For example, in step 2 (for the insertion of r2), first we
need find its incoming edges (i.e., {r1}) from the existing graph G.
Then, we need to append the new edge to the end of the paths from
r1 and retrieve all trajectories that pass through the new edge. In
this example, the complexity is O(|Tr1|).

Origin Edge Insertion: For the insertion of new rO , we need to
create rO’s index as well as update indexes for other relevant edges.
Here, the relevant edges refer to all edges reachable from rO . There
are two types of update operations depending on whether the new
edge replaced the previous origin edge or not. The steps 3 and 4 in
the above example illustrate the two situations respectively.

For the insertion of r3 in step 3, as shown in the Figure 5, it
replaces the existing origin edge of r1. In this case, we create an
index for r3 and update the existing indexes for r1 and r2. For r3,
we use the same strategy as in step 1. For r1 and r2, we need to in-
sert r3 before the existing paths in each of their indexes, and search
within their indexes to find trajectories that traverse r3. As the op-
erations for the three edges, r1, r2 and r3, are independent of each
other, thereby the updates can be accomplished in parallel. Hence,
in general, the complexity of insertion in such cases is the maxi-
mum number of trajectories stored in the index of reachable road

segments. For example, in this example, the overall complexity is
O(max(|Tr1|, |Tr21|).

For the insertion of r4 in step 4, since it does not replace any
existing origin edges, we do not need to update existing indexes.
Instead, we only need to add more entries in the index structure for
reachable edges, r1 and r2. As shown in Table 2, this step involves
the same three operations as step 3. However, the three operations
here cannot be executed in parallel because the operation in the next
step depends on the result from the previous step. For example, for
the second operation, generating the index entry of r1 relies on Tr4
as the input, which is the result of first operation. In this way, the
updates need to be executed sequentially. Therefore, the complex-
ity equals to the sum of updating costs from the insertion edge to
all of its reachable edges. In this example, the overall complexity
is the O(|Tr4|+ |Tr41|).

Origin Edge Insertion With Pruning: To reduce the number of
sequential operations, we propose a pruning strategy based on the
following intuition: if the routing behavior on a sub-path p does not
present much variation, the routing behavior on the complete path
containing p will not present much variation either. Thereby, in-
stead of completing the updating operations, we can first test on the
sub-path to see whether it satisfies the criteria for the verification,
if not, we will prune it from the updating sequence. Consider the
example depicted in Figure 5, if the path r4r1 does not passed the
verification step, the last operation in the Table 2 could be pruned.
Meanwhile, the updates of index of r2 could be pruned, as the red
edge shown in the step 5 in Figure 5. As the result, the overall
complexity for the insertion of r4 could be reduced to O(|Tr4|).

5. ANOMALY ANALYSIS

5.1 Impact Analysis
We evaluate the impact of traffic anomalies in terms of the to-

tal travel time delay on the detected anomalous graph. The travel
times for individual cars may have high variance, rather than stay-
ing around a static value, due to estimation error, different durations
of traffic lights, driver preferences, etc. To address this, we defined
the mean travel time (M ) for a road segment over the time interval
T as follows:

M(T ) =

∑
i∈T fi · ti∑

i∈T fi
(4)

where fi denotes the traffic flow along the road segment at time
interval i in T , and ti represents corresponding travel time for flow
fi. Using this, the travel time delay at time period T1 compared
with period T2 for a road segment r can be calculated as below:

Dr(T1, T2) = max{0,Mr(T1)−Mr(T2)} (5)

To evaluate the total travel time delay for the traffic anomaly graph,
we specify the T1 in the above definition as the occurrence time
period for the traffic anomaly and T2 as the corresponding time
period in the past. We then add up all the travel time delay (Dr) for
each road segment in the traffic anomaly graph. For the examples
in Figure 7, the sum of all the travel time delay on R1, R2 and R3

is used as the impact parameter of the anomaly.
By using this measure, we can further evaluate the severity of

the detected anomalies. For severe anomalies, not only does the
routing behavior changes, but drivers encounter large travel time
delays in the impact region. On the other hand, some anomalies
exist only as routing behavior changes without severe delays. In
general, we focus on severe anomalies as these incur a high cost to
both the drivers and the city. Therefore, by using the travel time, we
conduct a post selection step to filter out the non-severe anomalies.



Specifically, for a detected anomaly graph g, if the inequality (6) is
not satisfied, we consider the anomaly as not severe.

Dg(T1) ≥ 3 · std({t ∈ T2|Mg(t)}) (6)

where std refers to the standard deviation function, and the set
passed to this function consists of the M values at different time
intervals during historical period, T2. After this filtering step, the
selected anomalies not only present anomalous routing behavior,
but can also be considered as an anomaly in terms of travel time.
Note that, in the implementation of stand deviation function, we
actually use the median of M values rather than the mean as the
center.

5.2 Term Mining
The online social media (e.g., microblogging service) allow peo-

ple to post information (tweets) reflect what they are looking, hear-
ing, feeling. In other words, the people using such social media
services can be regarded as a human sensor of physical world. This
motivated us to retrieve the relevant information from the human
sensors to describe the traffic anomaly.

Towards this goal, we utilize the location and time information
obtained from the anomalous graph to eliminate the irrelevant posts,
in order to enhance the searching efficiency. However, the remain-
ing posts are still not necessarily relevant to the detected anomaly,
because they may include some posts referring to other phenomenon
which are commonly discussed all the time. For example, if an
anomaly happens near a famous restaurant, during the occurrence
time of the anomaly, not only will tweets discussing the traffic
anomaly be posted, but also the tweets regarding the famous dishes
in the restaurant. Thereby, to filter out the commonly discussed
terms, we propose a strategy based on comparing the frequency of
current tweets with historical tweets, to ensure the effectiveness of
the retrieved information. We detail our strategy by utilizing the
flow chart shown in Figure 7.
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Figure 7: Term Mining Overview

Figure 7 shows the flow chart of the online tweets selection strat-
egy for a sample traffic anomaly graph. As shown, the graph con-
tains three edges, R1, R2 and R3, and the corresponding time du-
ration [t1, t2]. As illustrated in this figure, we first get the loca-
tion information from the street names of each road segment in the
anomalous graph. We use these names to collect all the tweets over
a historical time interval (i.e., either the tweet is published at this
location, or the content of the tweet refers to the street names in this
location). We then use the time interval during which an anomaly
was detected (i.e., [t1, t2]) to separate from the historical context
the tweets that might relate to the anomaly. Here, we consider all
the tweets posted in one day during [t1, t2] as a document. For
examples, the set of all the current tweets is considered as one doc-
ument denoted as TC . In this way, the historical tweets (TH ) refers
to all the documents for each day in the past, as illustrated in Fig-
ure 7. Once we have both TH and TC , we analyze the relevance of

each term among them using the strategy similar with tf-idf in [7].
Here, we have one document for the collection of current tweets
(TC ). For historical tweets (TH ), we have a set of documents with
each representing the collections of the tweets data during [t1, t2]
within one day in the past. Specifically, for each term, we calculate
its relevance weights (wt) as in Equation (7).

wterm = tf(term, TC)× idf(term, TH)

s.t.

{
tf(t, d) = f(t,d)

max{f(w,d),∀w∈d}

idf(t,D) = log |D|
|{d∈D:t∈d}|

(7)

where tf is the function to calculate the frequency of the term in
the current tweet document (TC ), and idf refers to the calculation
of inverse document frequencies in all the historical tweets docu-
ments (TH ). A high weight in Equation 7 is reached by a high term
frequency (in the current tweets) and a low document frequency
of the term in the whole collection of historical tweets. By using
these weights, we can filter out the terms that frequently appear in
the historical tweets. In the end, we ranked all the terms according
to their weight to describe the anomalies. The term cloud in Figure
7, is one of our sample visualization based on the weights. The size
of the terms is proportional to their weights.

To conclude, by identifying this geographic constraint and its
time span, as well as guaranteeing the uniqueness of the terms, our
approach is able to retrieve relevant social media (e.g., tweets) that
offer description related to an anomaly. The efficiency and effec-
tiveness of our approach are shown in the experiment section.

5.3 Visualization
Our system presents a visual representation of the discovered

anomalies for users. We present a navigation view for use by
drivers and a analysis view for planners. Our design is informed
by work on stacked graphs [1], flow maps [10], and road network
visualization [12].

Figure 8: Example of analysis view.

Our visualization shows a depiction of the road network over-
laid on top of a satellite image. This serves to show the context
of anomaly both in terms of the roads that are involved as well as
the surrounding city geography. For the navigation view, seen in
Figures 12(b), 13(b), we display an anomaly as a colored subgraph.
The road segments of the anomaly are colored green, yellow, or red
if the travel time is less than 2x, less than 3x, or greater than 3x the
historical travel time, respectively. If travel time is not available,
the segments are colored red if there is a decrease in flow and yel-
low otherwise. At each downstream boundary of the anomaly, the
arrow represents the direction the traffic is flowing. For the anal-
ysis view, each road segment is additionally drawn with a width
corresponding to the current flow and a width corresponding to the
historical flow. The geometry representing the current flow is col-
ored red, yellow or green, while the historical flow is colored black.

To demonstrate the analysis view, consider Figure 8. Here, we
observe that the flow near the accident is less than the historical



flow, and the speed is over 3x slower. We can also see that the
flow on the offramp has increased and is moving at at least half
of the historical value. The flow has increased along some detour
routes, where the speed has remained at least half of the historical.
The speed on the onramp has dropped to less than a third of the
historical, raising the possibility that the traffic jam could extend
down the ramp and affect the crossing highway.

6. EXPERIMENTS

6.1 Dataset
Mobility Data: We use GPS trajectories as mobility data, with

statistics shown in Table 3. As about 20% of traffic on road surfaces
in Beijing is generated by taxicabs, the taxi trajectories represent a
significant portion of the traffic flow on the road network. While
we use taxi trajectory for validation, we believe our system and
method are general enough to accept trajectory data generated by
other sources, such as from public transit or location based check-in
data, as long as they reflect mobility on the road network.

Road Network: We have the road networks of Beijing, with
statistics shown in Table 3.

Traffic Anomaly Reports: We use the traffic anomaly reports pub-
lished by transportation agencies as the ground truth to evaluate the
effectiveness of our approach, the statistics is shown in Table 3.

data duration Mar-May, 2011

Trajectories

# of taxis 13,597
# of effective days 51
# of trips 19,455,948
avg. sampling interval (s) 70.45

Roads # of road segments 162,246
# of road nodes 121,771

Reports avg. # of reports per day 23

Table 3: Statistics of dataset

6.2 Evaluation Approach
In this study, we explore the effectiveness and efficiency of our

approach to traffic anomaly detection as well as the efficiency of
our approach to term mining to help analyze and describe the de-
tected anomalies. In this experiment, we consider the traffic anomaly
reported in last three weeks in the 3-month period as test data to
evaluate the overall accuracy of our approach. In this evaluation,
we study the performance of our method using a time discretiza-
tion of 30 minutes. In other words, we carry out our method for
anomaly detection every 30 minutes and consider the taxi trajecto-
ries collected during this time interval as current data, and all the
trajectories collected before as historical data to calculate the reg-
ular routing behavior. According the study in [2], the length of a
time interval is a trade-off between the computational load and the
timeliness of an application.

Measurement: To evaluate the effectiveness of our approach, we
consider the reported traffic incidents as a subset of ground truth,
because the reported incidents are not necessarily a complete set
of ground truth. We employ a parameter recall to measure the
accuracy of the detected anomalies. In our experiments, recall is
the fraction of the number of detected reported anomalies over the
number of all the anomalies reported. Note that, in this evaluation,
we did not use the precision measurement, since we consider the
reported incidents as a subset of ground truth. It is entirely possible
that some traffic anomaly, which resulted in the change of routing
behavior and travel time delay, is detected by our approach but not
reported by transportation authorities, such as the second case study
presented in the result section.

Baselines: To evaluate the accuracy of our approach, we use a
modified version of Principle Component Analysis (PCA) applied
in [2] as a baseline anomaly detection approach. Unlike our work,
this method focuses solely on traffic flow. The details of the imple-
mentation are as follows: we first applied PCA on a matrix of all
road segments to find the anomalous road segments during a spe-
cific time period; then, we aggregate the nearby road segments into
a connected graph as the anomalous graph. For the anomaly analy-
sis, we consider an anomaly detection algorithm purely using social
media similar with [8] as our baseline approach, which was initially
proposed to detect the location and the description of earthquakes
in real-time. This baseline approach uses keywords such as "earth-
quake" to filter the irrelevant tweets. However, in our case, there
is no indication of what terms might be relevant to the anomaly.
Therefore we cannot use pre-defined keywords to do the filtering.
As a result, we use this approach without keyword-filtering step as
our baseline.

6.3 Results

6.3.1 Effectiveness
To evaluate our approach, we show the result under two ‘rush

hour’ time intervals (i.e., 7-9AM and 4-6PM) on 5/12/2011 in Fig-
ure 9, where the caution label indicates the location of the anoma-
lies. Figure 9 (a) and (b) show all the reported anomalies during
the two time intervals; (c) and (d) show the anomalies detected by
the baseline approach; and (e) and (f) show the detected anomaly
by our approach.

As shown from Figure 9, in both time intervals, our approach de-
tects more anomalies than the baseline approach. In particular, for
7-9AM interval, our approaches detected all the reported anoma-
lies, but baseline only detects two of them. For 4-6PM, our ap-
proach detect 8 reported anomalies but baseline only detects 7 of
them. Specifically, in this particular experiments, the recall value
for our approach improves the baseline by 85.6%. In the evalu-
ation of over all the test data (i.e., all the anomalies occurred in
the last three weeks of the dataset), average recall value for our
approach is 86.7%, while that for baseline is around 46.7%. There-
fore, we claim our approach significantly outperforms the traffic-
volume approach. We believe this is due to the fact that our ap-
proach can detect the anomalies reflected not only from the traffic
volume change, but also from the change of routing behavior.

To further show the superiority of our approach, we choose a
particular anomaly detected using our approach during 8:30AM to
9:00AM, but NOT detected by baseline approach in this time inter-
val. In this case, based on our detected graph, there is a significant
routing behavior shift from the main road (denoted as M-routing)
to the auxiliary road (denoted as A-routing). In Figure 10, we vi-
sualize the change of overall flow (the sum of the flow on the two
routes) as well as the change of the routing behavior between the
main road and the auxiliary road over time.

According to the Figure 10(a), during the interval of 8:30AM to
9:00AM, the overall flow bypassing the two routes did not show
much difference compared with regular flow. However, during
9:00AM to 9:30AM, as people started to avoid the anomaly region,
the overall flow decreases. On the other hand, the routing percent-
age changes in a different manner compared with that of overall
flow. According to Figure10(b), people start to change their routes
immediately after the anomaly happens (i.e., in the interval between
8:30AM to 9:00AM). During 9:00AM to 9:30AM, the routing be-
havior starts to recover to normal, while the overall flow in this
region starts to behave abnormally. Therefore, in this case, when
the sliding window reaches the time interval 8:30AM to 9:00AM,



(a) 7-9AM: Reported incidents (b) 4-6PM: Reported incidents

(c) 7-9AM: Baseline results (d) 4-6PM: Baseline results

(e) 7-9AM: Our results (f) 4-6PM: Our results

Figure 9: Traffic anomalies reported to authorities, discovered
by the baseline PCA approach, and discovered by our method
from 7AM to 9AM and from 4PM to 6PM on 5/12/2011

the baseline approaches cannot detect the anomaly as the overall
traffic volume has not changed significantly. However, as our ap-
proach considers the change of routing behavior, it can identify the
anomaly in a more timely fashion than baseline approach.

6.3.2 Efficiency
In this set of experiments, we compare our anomaly detection

approach with the approach without online index structure. Both
approaches are implemented on a 64-bit server running Windows
Server 2008 (OS) using a single thread of a 2.66GHZ CPU with
16G memory. Figure 11 shows comparison result. As the size of
detected mobility graph grows, our approach performs increasingly
better than the approach without an index, due to the fact that no-
index approach spends a great amount of time in verifications for
all the O-D pairs during the expansion. However, our approach uses
the additional data structure to avoid scanning every path between
all the O-D pairs.

Table 4 shows the average processing times for major steps in
anomaly detection. The map matching procedure is always running
in the background as a pre-processor to convert each GPS trajectory
we collect online. The average processing time for map-matching
one trajectory is 0.085 seconds. Assuming the number of anoma-
lies is less than 10 per 30 minute period, our system can detect these
anomalies within 1 to 2 minutes. The efficiency of anomaly analy-
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Procedure Name Time (s)
Routing Behavior Analysis 1.2
Anomalous Seed Selection <1
Anomalous Graph Expansion 5.2

Table 4: Average processing time in anomaly detection

sis based on social media is evaluated through the case studies.

6.3.3 Case Studies
We further evaluate our approach using two case studies: one

is reported and detected by our system, another one is detected by
our system but is not reported. The reported anomaly is caused by a
traffic accident, and the un-reported anomaly is probably caused by
the wedding expo exhibition according to our analysis. The results
for the these case studies are depicted in Figure 12 and 13, respec-
tively. In these figures, (a) presents the detected anomalous graphs
by the baseline approach and (b) presents the anomaly detected by
our approach. On the anomalous graph, the red, yellow and green
lines indicate the travel time metric, as described in Section 5.3,
and the caution mark represents the location of the anomaly re-
ported by the transportation authorities. In addition to the detected
anomalous graphs, we also present the results from term analysis
in the sub-figure (c). We also compare some relevant results during
ordinary times versus during anomaly time in sub-table (d), such as
the number of tweets and the tf-idf value of important terms.



(a) Detected by baseline (b) Detected by our method

(c) Terms discovered

ordinary anomaly
#. of

1.6*102 1.9*102tweets
wtraffic 0.361 0.903
waccident 0.202 0.978

(d) Relevant results

Figure 12: Case study 1 – Anomaly detected

For the first case, according to the anomaly report, during 4PM-
4:30PM on 5/19/2011, a two-car accident occurred on the Lianhua
bridge in the north-bound direction. In the anomalous graph (i.e.,
Figure 12 (a)) detected by the baseline approach, only a small part
of the highway around Lianhua bridge is included. On the other
hand, in our detected graph (i.e., Figure 12 (b)), a more compre-
hensive view is provided in the following two aspects: 1) we detect
a larger and more complete region impacted by this anomaly 2)
by showing the yellow and green road segments, we can provide
end-users the routes (i.e., auxiliary lanes) to detour or avoid the re-
gions covered by red lines. These routing suggestions are implied
in our detected graph as many people change their routing behavior
to avoid or escape the anomaly.

In addition, we show the corresponding top 50 terms mined for
this cases in Figure 12(c). According to this figure, the most high-
lighted words are "traffic" and "accident", which is also consistent
with the anomaly reports from Beijing Transportation Bureau. In
addition, the result also reveals some other information relevant
to the anomaly. For example, the terms "two", "vehicles", "car",
which may indicate this accident is involved with two cars, also
shows the consistency with the anomaly reports. Also, the term
"north" indicates the direction of the lane where accident happens,
as well as "rainy" reveals the weather information at that time when
the anomaly happens. Figure 12(d) shows in the anomaly time,
there is no significant increase of tweets referring the anomaly lo-
cation, compare with that in ordinary times. However, the tf -idf
value of some terms changed significantly, such as "accident" and
"traffic". By using the idea of tf -idf , our method can successfully
identify the relevant terms.

In the second case, our approach detected an anomaly at 8:30AM
to 9AM on 5/27/2011 near the location of Beijing Exhibition Cen-
ter. There is no anomaly reports from transportation agencies at
this particular time and location, however, based on our analysis
through online social media, the 18th Beijing Wedding Expo is
opened at 9AM at Beijing Exhibition Center. According to the lo-
cal news, each year, the wedding expo attracts a lot of wedding

(a) Detected by baseline (b) Detected by our method

(c) Terms discovered

ordinary anomaly
#. of

2.0*102 5.6*102tweets
wwedding 0.121 0.447
wexpo 0.060 0.298

(d) Relevant results

Figure 13: Case study 2 – Anomaly detected
Baseline Our Approach

|TH | |TC | |TH | |TC |
Case 1 9.1× 107 1.7× 106 9.7× 103 1.9× 102

Case 2 8.5× 107 1.9× 106 3.4× 104 5.6× 102

Table 5: Comparison based on #. of Tweets Used

related companies to exhibit and sell their products as well as thou-
sands of young people as customers, which can be considered as
a significant shopping event. As shown in Figure 13, our detected
anomalous graph is also more comprehensive and informative than
the graph detected by baseline approach.

Different from previous case, there is no official transportation
reports for this detected anomaly. To understand the anomaly, we
further conduct the terms analysis from the online social media as
result shown in Figure 13(c). From this figure, the most frequent
mined terms are "wedding" and "expo", which implies the cause of
the detected anomaly. Also, the detected terms "promotions" and
"shopping", may suggest this event have great deals that may at-
tract a lot people to shop there. From these mined terms, we could
inference the traffic anomaly (i.e., significant travel time delay) is
caused by too many people attending the wedding expo at its open-
ing time at Beijing Exhibition Center. To conclude, our system can
not only detect the traffic anomalies reported by the transportation
agencies, but also, which is more important, detect the anomalies
that are not reported.

Table 5 shows a comparison of our approach with the baseline
based on the number of tweets used regarding the three cases stud-
ied above. Here, |TH | denotes the number of tweets published his-
torically at the time of the anomaly. For example, for the first case,
TH represents all the tweets posted during 4:30PM to 5PM at each
day before 05/19/2011 in the historical dataset. |TC | denotes the
number of tweets published at the time of the anomaly. As pre-
sented, for both two cases, the number of tweets we analyzed in
our approach is significantly reduced from that of the baseline (e.g.,
from the level of 106 to as low as 102). Since our approach focused
on the tweets that were relevant (i.e., both spatially and temporally)
to the detected anomaly graph, the search space of tweets is largely
reduced compared with the baseline approach.

7. RELATED WORK

7.1 Anomaly Detection using Traffic Data
The previous work on detecting anomalies using GPS data can

be divided into two categories: 1) the studies on trajectory anoma-
lies (e.g., [4, 14, 15]), and 2) the studies on traffic anomalies (e.g.,



our work and [2]). The works in the first category sought to find
a small percentage of drivers whose driving trajectories is differ-
ent compared with the broader population, which could result from
fraudulent taxi driving behavior or some other anomalous cause.
Our work belongs to the second category, and differs from the
above methods in the following aspects. First, we aim to detect
a large amount of drivers whose behavior is anomalous. Second,
for anomalous trajectory detection, the comparison between the tra-
jectories always happens between a small set of trajectories and the
remaining trajectories at the same time and location. For our work,
the traffic anomaly detection, the comparison happens between the
current behavior of drivers and the historical driving behavior.

The most relevant works to our study, in terms of both data types
and the definition of an "anomaly", are those focusing on traffic
anomaly detection using GPS data (e.g., [6], [2]). Among these
works, our paper can be distinguished in two ways. First, our ap-
proach is the first considering the change of routing behavior in
addition to the change in traffic volume. Therefore, we have found
that our approach has a higher detection rate as compared with an
approach that only uses traffic volume changes. Further, our tech-
nique can provide users with detour routes to avoid or escape the
congestion caused by a traffic anomaly, while the volume based
approaches can only detect the locations of the anomalies, with-
out revealing the whole extent throughout the road network. These
two advantages were evaluated in experiment section. Finally, the
granularity of our detected traffic anomaly is on the level of road
segments instead of spatial regions. For example, the anomalous
scenarios studied in [2] are inter-regions, making its results lim-
ited to very large scale events, such as marathon race, instead of
road-segment-level traffic anomalies, such as traffic accidents.

7.2 Anomaly Detection using Social Media
Another line of related work is anomaly detection via mining

social media content. Recently, microblogging services (e.g., twit-
ter) have received much research attention in the fields of anomaly
detection. Researchers consider the twitter posts (i.e., tweets) as
real-time social streams and focus on analyzing the features of key-
words in the specific context to detect events [8, 9, 5]. The key chal-
lenges in these works is to filter out the irrelevant contents in the
tweets, which requires computationally expensive filtering, such as
the Kalman filtering based model proposed by [8] and the Gibbs
Random Field defined probabilistic model in [5]. However, in our
work, by using the data collected from anomaly detection in addi-
tion to the social texts, we can narrow down the search space to a
specific time and location, tremendously reducing the search space
as compared with the traditional methods. We therefore only need
to conduct a simple filtering technique to separate out the irrelevant
contents, as discussed in anomaly analysis section.

8. CONCLUSION
We presented an approach that uses two forms of crowd sens-

ing, combining mobility data with social media, to understand one
aspect of urban dynamics. Specifically, we detected and described
traffic anomalies using a novel approach based on the routing be-
havior of drivers. Our approach enabled us to discover an entire
sub-graph of the road network associated with an anomaly. Subse-
quently, we proposed an approach to mine social media for terms
that are constrained to the sub-graph geographically and tempo-
rally and correlated with the anomaly. We evaluated our system
with a GPS trajectory dataset generated by over 30,000 taxis over 3
months in Beijing. We examined the effectiveness and efficiency of
our system and compared our approach with a baseline method us-
ing traffic volumes. We observed that our system can detect more

traffic anomalies than those of the baseline, identifying 86.7% of
the incidents reported to the transportation authority as compared
to the baseline’s detection of 46.7%. Unlike existing work, our
work can be utilized to provide individual drivers approaching an
anomaly with a display of the extent of the anomaly as well as
a timely alert. Our system can aid transportation authorities with
anomaly diagnosis and dispersal by providing the impact area of
an anomaly, the correlations between the traffic flow changes on
different roads, and descriptions of possible causes of the anomaly.
Our system can process an anomaly in approximately 6 seconds us-
ing a single core, allowing for effective, real-time detection. Fusing
social media with mobility data allows us to observe one aspect of
urban life in a finer granularity than previously possible, revealing
the geographic extents, dynamics, and semantic of traffic anoma-
lies. We plan to investigate the correctness and usefulness of the
social media for explaining traffic anomalies in the future.
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