
CHESS:
Analysis and Testing of
Concurrent Programs

Sebastian Burckhardt, Madan Musuvathi, Shaz Qadeer

Microsoft Research

Joint work with

Tom Ball, Peli de Halleux, and interns

Gerard Basler (ETH Zurich),

Katie Coons (U. T. Austin),

P. Arumuga Nainar (U. Wisc. Madison),

Iulian Neamtiu (U. Maryland, U.C. Riverside)

What you will learn in this tutorial
 Difficulties of testing/debugging multithreaded

programs

 CHESS – verifier for multi-threaded programs
 Provides systematic coverage of thread interleavings
 Provides replay capability for easy debugging

 CHESS algorithms

 Types of concurrency errors, including data races

 How to extend CHESS
 CHESS monitors

Concurrent Programming is HARD
 Concurrent executions are highly nondeterminisitic

 Rare thread interleavings result in Heisenbugs
 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it

 Likelihood of interleavings changes, say, when you add printfs

 A huge productivity problem
 Developers and testers can spend weeks chasing a single

Heisenbug

CHESS in a nutshell
 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Guarantees:

 Every program run takes a different thread interleaving

 Reproduce the interleaving for every run

 Provides monitors for analyzing each execution

CHESS Demo

• Find a simple Heisenbug

CHESS Architecture

CHESS
Scheduler

Unmanaged
Program

Windows

Managed
Program

CLR

Windows
Kernel

Kernel Sync.

• Every run takes a different interleaving
• Reproduce the interleaving for every run

CHESS
Exploration

Engine

Win32
Wrappers

.NET
Wrappers

Concurrency
Analysis
Monitors

The Design Space for CHESS
 Scale
 Apply to large programs

 Precision
 Any error found by CHESS is possible in the wild
 CHESS should not introduce any new behaviors

 Coverage
 Any error found in the wild can be found by CHESS
 Capture all sources of nondeterminism
 Exhaustively explore the nondeterminism

 Generality of Specifications
 Find interesting classes of concurrency errors
 Safety and liveness

Comparison with other approaches to
verification

Model Checking Static Analysis CHESS

Scalability + ++ ++

Precision + + ++

Coverage ++ ++ +

Generality ++ + ++

Errors that CHESS can find
 Assertions in the code

 Any dynamic monitor that you run

 Memory leaks, double-free detector, …

 Deadlocks

 Program enters a state where no thread is enabled

 Livelocks

 Program runs for a long time without making progress

 Dataraces

 Memory model races

CHESS Scheduler

Concurrent Executions are Nondeterministic

x = 1;
y = 1;

x = 2;
y = 2;

2,1

1,0

0,0

1,1

2,2

2,22,1

2,0

2,12,2

1,2

2,0

2,2

1,1

1,1 1,2

1,0

1,2 1,1

y = 1;

x = 1;

y = 2;

x = 2;

High level goals of the scheduler
 Enable CHESS on real-world applications

 IE, Firefox, Office, Apache, …

 Capture all sources of nondeterminism

 Required for reliably reproducing errors

 Ability to explore these nondeterministic choices

 Required for finding errors

Sources of Nondeterminism
1. Scheduling Nondeterminism

 Interleaving nondeterminism

 Threads can race to access shared variables or monitors

 OS can preempt threads at arbitrary points

 Timing nondeterminism

 Timers can fire in different orders

 Sleeping threads wake up at an arbitrary time in the
future

 Asynchronous calls to the file system complete at an
arbitrary time in the future

Sources of Nondeterminism
1. Scheduling Nondeterminism

 Interleaving nondeterminism

 Threads can race to access shared variables or monitors

 OS can preempt threads at arbitrary points

 Timing nondeterminism

 Timers can fire in different orders

 Sleeping threads wake up at an arbitrary time in the
future

 Asynchronous calls to the file system complete at an
arbitrary time in the future

 CHESS captures and explores this nondeterminism

Sources of Nondeterminism
2. Input nondeterminism

 User Inputs

 User can provide different inputs

 The program can receive network packets with different
contents

 Nondeterministic system calls

 Calls to gettimeofday(), random()

 ReadFile can either finish synchronously or
asynchronously

Sources of Nondeterminism
2. Input nondeterminism

 User Inputs

 User can provide different inputs

 The program can receive network packets with different
contents

 CHESS relies on the user to provide a scenario

 Nondeterministic system calls

 Calls to gettimeofday(), random()

 ReadFile can either finish synchronously or
asynchronously

 CHESS provides wrappers for such system calls

Sources of Nondeterminism
3. Memory Model Effects

 Hardware relaxations

 The processor can reorder memory instructions

 Can potentially introduce new behavior in a concurrent
program

 Compiler relaxations

 Compiler can reorder memory instructions

 Can potentially introduce new behavior in a concurrent
program (with data races)

Sources of Nondeterminism
3. Memory Model Effects

 Hardware relaxations

 The processor can reorder memory instructions

 Can potentially introduce new behavior in a concurrent
program

 CHESS contains a monitor for detecting such relaxations

 Compiler relaxations

 Compiler can reorder memory instructions

 Can potentially introduce new behavior in a concurrent
program (with data races)

 Future Work

Interleaving Nondeterminism: Example

void Deposit100(){

EnterCriticalSection(&cs);

balance += 100;

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread

init:

balance = 100;

final:

assert(balance = 100);

Invoke the Scheduler at Preemption Points

void Deposit100(){

ChessSchedule();

EnterCriticalSection(&cs);

balance += 100;

ChessSchedule();

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

ChessSchedule();

EnterCriticalSection(&cs);

t = balance;

ChessSchedule();

LeaveCriticalSection(&cs);

ChessSchedule();

EnterCriticalSection(&cs);

balance = t - 100;

ChessSchedule();

LeaveCriticalSection(&cs);

}

Withdraw Thread

Introduce Predictable Delays with Additional
Synchronization

void Deposit100(){

WaitEvent(e1);

EnterCriticalSection(&cs);

balance += 100;

LeaveCriticalSection(&cs);

SetEvent(e2);

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

SetEvent(e1);

WaitEvent(e2);

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread

Blindly Inserting Synchronization Can Cause Deadlocks

void Deposit100(){

EnterCriticalSection(&cs);

balance += 100;

WaitEvent(e1);

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

SetEvent(e1);

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread

CHESS Scheduler Basics
 Introduce an event per thread

 Every thread blocks on its event

 The scheduler wakes one thread at a time by enabling
the corresponding event

 The scheduler does not wake up a disabled thread

 Need to know when a thread can make progress

 Wrappers for synchronization provide this information

 The scheduler has to pick one of the enabled threads

 The exploration engine decides for the scheduler

CHESS Synchronization Wrappers
 Understand the semantics of synchronizations

 Provide enabled information

 Expose nondeterministic choices

 An asynchronous ReadFile can possibly return
synchronously

CHESS_EnterCS{

while(true) {

canBlock = TryEnterCS (&cs);

if(canBlock)

Sched.Disable(currThread);

}

}

CHESS Algorithms

x = 1;
…
…
…
…
…

y = k;

State space explosion

x = 1;
…
…
…
…
…

y = k;

…

n threads

k steps
each

 Number of executions

= O(nnk)

 Exponential in both n and k

 Typically: n < 10 k > 100

 Limits scalability to large
programs

Goal: Scale CHESS to large programs (large k)

x = 1;
if (p != 0) {

x = p->f;
}

Preemption bounding
 CHESS, by default, is a non-preemptive, starvation-free scheduler
 Execute huge chunks of code atomically

 Systematically insert a small number preemptions
 Preemptions are context switches forced by the scheduler
 e.g. Time-slice expiration

 Non-preemptions – a thread voluntarily yields
 e.g. Blocking on an unavailable lock, thread end

x = p->f;
}

x = 1;
if (p != 0) {

p = 0;

preemption

non-preemption

Polynomial state space
 Terminating program with fixed inputs and deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc . (n+c)!

= O((n2k)c. n!)

Exponential in n and c, but not in k

x = 1;
…
…
…
…
…

y = k;

x = 1;
…
…
…
…
…

y = k;

x = 1;
…
…
…
…

x = 1;
…
…
…

…
y = k;

…
…

y = k;

• Choose c preemption points

• Permute n+c atomic blocks

Advantages of preemption bounding
 Most errors are caused by few (<2) preemptions

 Generates an easy to understand error trace
 Preemption points almost always point to the root-cause of

the bug

 Leads to good heuristics
 Insert more preemptions in code that needs to be tested

 Avoid preemptions in libraries

 Insert preemptions in recently modified code

 A good coverage guarantee to the user
 When CHESS finishes exploration with 2 preemptions, any

remaining bug requires 3 preemptions or more

Finding and reproducing CCR Heisenbug

George Chrysanthakopoulos’ Challenge

Concurrent programs have cyclic state spaces

 Spinlocks
 Non-blocking algorithms
 Implementations of synchronization primitives
 Periodic timers
 …

L1: while(! done) {
L2: Sleep();

}

M1: done = 1;

! done
L2

! done
L1

done
L2

done
L1

A demonic scheduler unrolls any cycle
ad-infinitum

! done

done! done

done! done

done

while(! done)
{

Sleep();
}

done = 1;

! done

Depth bounding

! done

done! done

done! done

done! done

 Prune executions beyond a bounded number of steps

Depth bound

Problem 1: Ineffective state coverage

! done

! done

! done

! done

 Bound has to be large enough to
reach the deepest bug

 Typically, greater than 100
synchronization operations

 Every unrolling of a cycle
redundantly explores reachable
state space

Depth bound

Problem 2: Cannot find livelocks
 Livelocks : lack of progress in a program

temp = done;
while(! temp)
{

Sleep();
}

done = 1;

Key idea

 This test terminates only when the scheduler is fair

 Fairness is assumed by programmers

All cycles in correct programs are unfair
A fair cycle is a livelock

while(! done)
{

Sleep();
}

done = 1;
! done! done

donedone

We need a fair scheduler

 Avoid unrolling unfair cycles

 Effective state coverage

 Detect fair cycles

 Find livelocks

Concurrent
Program

Test
Harness

Win32 API

Demonic
Scheduler

Fair
Demonic
Scheduler

What notion of “fairness” do we use?

Weak fairness
 Forall t :: GF (enabled(t)  scheduled(t))

 A thread that remains enabled should eventually be
scheduled

 A weakly-fair scheduler will eventually schedule Thread 2

 Example: round-robin

while(! done)
{

Sleep();
}

done = 1;

Weak fairness does not suffice

Lock(l);
While(! done)
{

Unlock(l);
Sleep();
Lock(l);

}
Unlock(l);

Lock(l);
done = 1;
Unlock(l);

en = {T1, T2}

T1: Sleep()
T2: Lock(l)

en = {T1, T2}

T1: Lock(l)
T2: Lock(l)

en = { T1 }

T1: Unlock(l)
T2: Lock(l)

en = {T1, T2}

T1: Sleep()
T2: Lock(l)

Strong Fairness
 Forall t :: GF enabled(t)  GF scheduled(t)
 A thread that is enabled infinitely often is scheduled

infinitely often

 Thread 2 is enabled and competes for the lock infinitely
often

Lock(l);
While(! done)
{

Unlock(l);
Sleep();
Lock(l);

}
Unlock(l);

Lock(l);
done = 1;
Unlock(l);

Implementing a strongly-fair scheduler

 Apt & Olderog ’83

 A round-robin scheduler with priorities

 Operating system schedulers

 Priority boosting of threads

We also need to be demonic
 Cannot generate all fair schedules

 There are infinitely many, even for simple programs

 It is sufficient to generate enough fair schedules to

 Explore all states (safety coverage)

 Explore at least one fair cycle, if any (livelock coverage)

 Do it without capturing the program states

(Good) Programs indicate lack of progress

 Good Samaritan assumption:
 Forall threads t : GF scheduled(t)  GF yield(t)
 A thread when scheduled infinitely often yields the processor

infinitely often

 Examples of yield:
 Sleep(), ScheduleThread(), asm {rep nop;}
 Thread completion

while(! done)
{

Sleep();
}

done = 1;

Robustness of the Good Samaritan
assumption

 A violation of the Good Samaritan assumption is a
performance error

 Programs are parsimonious in the use of yields

 A Sleep() almost always indicates a lack of progress

 Implies that the thread is stuck in a state-space cycle

while(! done)
{

;
}

done = 1;

Fair demonic scheduler
 Maintain a priority-order (a partial-order) on threads

 t < u : t will not be scheduled when u is enabled

 Threads get a lower priority only when they yield

 Scheduler is fully demonic on yield-free paths

 When t yields, add t < u if
 Thread u was continuously enabled since last yield of t, or

 Thread u was disabled by t since the last yield of t

 A thread loses its priority once it executes

 Remove all edges t < u when u executes

Four outcomes of the semi-algorithm

 Terminates without finding any errors

 Terminates with a safety violation

 Diverges with an infinite execution

 that violates the GS assumption (a performance error)

 that is strongly-fair (a livelock)

 In practice: detect infinite executions by a very long
execution

Data Races & Memory Model Races

What is a Data Race?

 If two conflicting memory accesses happen
concurrently, we have a data race.

 Two memory accesses conflict if

 They target the same location

 They are not both reads

 They are not both synchronization operations

 Best practice: write “correctly synchronized“
programs that do not contain data races.

What Makes Data Races significant?

 Data races may reveal synchronization errors

 Most typically, programmer forgot to take a lock, use an
interlocked operation, or declare a variable volatile.

 Racy programs risk obscure failures caused by memory
model relaxations in the hardware and the compiler

 But: many programmers tolerate “benign” races

 Race-free programs are easier to verify

 if program is race-free, it is enough to consider
schedules that preempt on synchronizations only

 CHESS heavily relies on this reduction

How do we find races?

 Remember: races are concurrent conflicting accesses.

 But what does concurrent actually mean?

 Two general approaches to do race-detection

Lockset-Based
(heuristic)

Concurrent 
“Disjoint locksets”

Happens-Before-Based
(precise)

Concurrent =
“Not ordered by happens-

before”

Synchronization = Locks ???

 This C# code contains neither locks nor a data race:

 CHESS is precise: does not report this as a race. But does
report a race if you remove the ‘volatile’ qualifier.

data = 1;
flag = true;

while (!flag)
yield();

int x = data;

Thread 1 Thread 2

int data;
volatile bool flag;

Happens-Before Order [Lamport]

 Use logical clocks and timestamps to define a partial
order called happens-before on events in a concurrent
system

 States precisely when two events are logically
concurrent (abstracting away real time)

1

2

3

1

2

3

1

2

3

(0,0,1)
 Cross-edges from send

events to receive events

 (a1, a2, a3) happens before
(b1, b2, b3) iff a1 ≤ b1 and a2

≤ b2 and a3 ≤ b3

(2,1,0)(1,0,0)

(0,0,2)(2,2,2)(2,0,0)

(0,0,3)(2,3,2)(3,3,2)

Happens-Before for Shared Memory

 Distributed Systems:
Cross-edges from send to receive events

 Shared Memory systems:
Cross-edges represent ordering effect of synchronization

 Edges from lock release to subsequent lock acquire

 Edges from volatile writes to subsequent volatile reads

 Long list of primitives that may create edges
 Semaphores

 Waithandles

 Rendezvous

 System calls (asynchronous IO)

 Etc.

Example

Static Program Dynamic Execution Trace

1

2

1

2

3

(1,0)

(1,4)

data = 1;
flag = true;

while (!flag)
yield();

int x = data;

Thread 1 Thread 2

int data;
volatile bool flag;

data = 1;

flag = true;

(!flag)->true

yield()

(!flag)->false

4
x = data

 Not a data race because (1,0) ≤ (1,4)

 If flag were not declared volatile, we would not add a
cross-edge, and this would be a data race.

Basic Algorithm

 For each explored schedule,

 Execute code and timestamp all data accesses.

 Check if there were any conflicting concurrent accesses
to some location.

 This basic algorithm can be optimized in many ways

 On-the-fly checking, Memory management

 Lightweight alternatives to full vector clocks

 See [Flanagan PLDI 09]

Reduction for Race-Free Programs

 By default, CHESS preempts on synchronization
accesses only

 May miss bugs if program contains data race

 If we turn on race detection, CHESS can verify that the
reduction is sound by verifying absence of data races.

 Thus, for race-free programs, we get both:

 Full guarantee

 Reduction in the number of schedules

Preemption / Instrumentation Level

 Speed/coverage tradeoff : choose mode

Sync only Sync. + vol.
(Default)

Sync + vol.
+ Race
Detection

All accesses

Locks, Events,
Interlocked,
etc.

Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

Volatile
Accesses

- Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

All Data
Accesses

- - Instrumented Instrumented
& Preempted

Demos: SimpleBank / CCR

 Find a simple data race in a toy example

 Find a not-so-simple data race in production code

Bugs Caused By Relaxed Memory Models

 Programmers avoid locks in performance-critical code
 Faster to use normal loads and stores, or interlocked

operations

 Low-lock code can break on relaxed memory models
 Most multicore machines (including x86) do

not guarantee sequential consistency of memory
accesses

 Vulnerabilities are hard to find, reproduce, and
analyze
 Show up only on multiprocessors
 Often not reproduceable

 On an ideal (sequentially consistent) multiprocessor, this
code never executes foo() and bar() at the same time

 But on x86 (and almost all other multiprocessors), it may,
because of store buffers.

Example: Store Buffers Break Dekker

Thread 1

A = 1;
If (B == 0)
foo();

volatile int A;
volatile int B;

Thread 2

B = 1;
If (A == 0)
bar();

Memory Access Terminology

 Code using accesses marked red for synchronization
purposes is susceptible to store buffer bugs.

C++ Java C#

atomic volatile interlocked

low-level atomic - volatile

volatile - -

(regular) (regular) (regular)

Store Buffers

 Each processor buffers its
own writes in a FIFO store
buffer

 Remote processors do not
see the buffered write
until it is committed to
shared memory

 Local processor “snoops”
its own buffer when
reading from memory

 Important for hardware
performance

Processor 1

Shared Memory

stores

Processor 2

stores

How to Find Store Buffer Bugs?

 Naïve: simulate machine

 Too many schedules.

 Better: build a borderline monitor [CAV 2008].

Idea: While exploring schedules under CHESS, check
for stale loads.

 A stale load is a load that may return a value under TSO
that it could never return under SC.

 [Thm.] A program is TSO-safe if and only if all executions
are free of stale loads.

Demos: Dekker / PFX

 Basic test: Dekker

 Found 2 dekker-like synchronization errors in
production code
 “optimization” of signal-wait pattern

 Double-ended work-stealing queue

volatile bool isIdling;

volatile bool hasWork;

//Consumer thread

void BlockOnIdle(){

lock (condVariable){

isIdling = true;

if (!hasWork)

Monitor.Wait(condVariable);

isIdling = false;

}

}

//Producer thread

void NotifyPotentialWork(){

hasWork = true;

if (isIdling)

lock (condVariable) {

Monitor.Pulse(condVariable);

}

}

Store Buffer Bugs - Experience

 Relatively rare… found only 3 so far
 We expect to find more as we cover more code…

detection is on by default whenever race detection is on

 Found 1 false positive so far (i.e. “benign” stale load).

 Very common for certain algorithms,
e.g. work stealing queue
 We found one in PFX work-stealing queue

 Know of 4 other teams (inside & outside Microsoft) who
faced store buffer issues when implementing work-
stealing queue

Writing a CHESS Monitor

Specifications?

 We have not seen significant practical success of
verification methodology that requires extensive
formal specification.

 More pragmatic: monitor certain or likely indicators
automatically. Currently, we…

 …flag error on: Deadlock, Livelock, Assertion Violation.

 …generate warnings for: Data races, Stale loads.

More Monitors Find More Bugs

 Use runtime monitors for ‘typical programmer
mistakes’

 Data Races, Stale Loads ()

 Atomicity violations, High-level Data Races

 Incorrect API usage (for all kinds of APIs), e.g. Memory
Leaks

 Much existing research on runtime monitors

 CHESS SDK provides infrastructure,
you write your own monitor.

Monitors Benefit from Infrastructure

 Instrumentation
 For both C# and C/C++

 Abstraction
 Threads, synchronization & data variables, events

 Sequential schedule
 Monitors need not worry about concurrent callbacks

 Repro capability
 Any errors found can be reproduced deterministically

 Schedule enumeration
 Enumerates schedules using reductions & heuristics

 turns runtime monitors into verification tools

Chess <-> Monitor interface

 Each monitor gets called by CHESS repeatedly

… at beginning and end of each schedule

… on relevant program events
 Synchronization operations

 Data variable accesses

 User-defined instrumentation

 Callbacks abstract many low-level details
 Handle plethora of synchronization APIs and

concurrency constructs under the covers

Abstractions Provided

 Thread id = integer
 Chess numbers threads consecutively 1, 2, 3, ….

 Event id = integer x integer
 Chess numbers events in each thread consecutively

1.1, 1.2, 1.3, …. 2.1., 2.2., 2.3, …

 Syncvar = integer
 Abstractly represents a synchronization object (lock,

volatile variable, etc.)

 SyncvarOp = { LOCK_ACQUIRE, LOCK_RELEASE, RWVAR_READWRITE,
RWVAR_READ, RWVAR_WRITE, TASK_FORK, TASK_JOIN, TASK_START,

TASK_RESUME, TASK_END, …}
 Represents synchronization operation on syncvar

ConcurrencyExplorer View of Schedule

Event IDs

SyncVar

SyncVarOp

Some Callbacks

 At beginning & end of schedule
virtual void OnExecutionBegin(IChessExecution* exec)
virtual void OnExecutionEnd(IChessExecution* exec)

 Right after a synchronization operation:
virtual void OnSyncVarAccess(EventId id, Task tid,

SyncVar var, SyncVarOp op, size_t sid)

 Right after a data access:
virtual void OnDataVarAccess(EventId id, void* loc, int

size, bool isWrite, size_t pcId)

 Right before a synchronization operation:
virtual void OnSchedulePoint(EventId id, SyncVar var,

SyncVarOp op, size_t sid)

Happens-before information

 Can query ‘character’ of a sync var op

static bool IsWrite(SyncVarOp op)

static bool IsRead(SyncVarOp op)

 Get happens-before edges between two sync-var ops

 To the same variables

 At least one of which is a write

 Note: most syncvarops are considered to be both
reads & writes

Reduction-Compatible Monitors

 Different schedules may produce same hb-execution

 Call such schedules hb-equivalent

 Program behaves identically under hb-equivalent
schedules

 Thus, reductions are sound (sleep-sets, data-race-free)

 But: some monitors may not behave equivalently

 E.g. naïve race detection may require specific schedule

 For coverage guarantees, monitor must be reduction-
compatible: must detect error on all hb-equivalent schedules

 Our Race Detection and Store Buffer Detection are
Reduction -Compatible

Refinement Checking

Concurrent Data Types

 Frequently used building blocks for parallel or
concurrent applications.

 Typical examples:
 Concurrent stack

 Concurrent queue

 Concurrent deque

 Concurrent hashtable

 ….

 Many slightly different scenarios, implementations,
and operations

 Written by experts… but the experts need help

Correctness Criteria

 Say we are verifying concurrent X
(for X  queue, stack, deque, hashtable …)

 Typically, concurrent X is expected to behave like
atomically interleaved sequential X

 We can check this without knowing the semantics of X

 Implement easy to use, automatic consistency check

Observation Enumeration Method
[CheckFence, PLDI07]

 Given concurrent test, e.g.

 (Step 1 : Enumerate Observations)
Enumerate coarse-grained interleavings and record
observations

1. b1=true i1=1 b2=false i2=0

2. b1=false i1=0 b2=true i2=1

3. b1=false i1=0 b2=false i2=0

 (Step 2 : Check Observations)
Check refinement: all concurrent executions must look
like one of the recorded observations

Stack s = new ConcurrentStack();

s.Push(1); b1 = s.Pop(out i1);

b2 = s.Pop(out i2);

Demo

 Show refinement checking on simple stack example

Conclusion
 CHESS is a tool for

 Systematically enumerating thread interleavings

 Reliably reproducing concurrent executions

 Coverage of Win32 and .NET API

 Isolates the search & monitor algorithms from their
complexity

 CHESS is extensible

 Monitors for analyzing concurrent executions

 Future: Strategies for exploring the state space

