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What you will learn in this tutorial
 Difficulties of testing/debugging multithreaded 

programs

 CHESS – verifier for multi-threaded programs
 Provides systematic coverage of thread interleavings
 Provides replay capability for easy debugging

 CHESS algorithms

 Types of concurrency errors, including data races

 How to extend CHESS
 CHESS monitors



Concurrent Programming is HARD
 Concurrent executions are highly nondeterminisitic

 Rare thread interleavings result in Heisenbugs
 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it 

 Likelihood of interleavings changes, say, when you add printfs

 A huge productivity problem
 Developers and testers can spend weeks chasing a single 

Heisenbug



CHESS in a nutshell
 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Guarantees:

 Every program run takes a different thread interleaving

 Reproduce the interleaving for every run

 Provides monitors for analyzing each execution



CHESS Demo

• Find a simple Heisenbug



CHESS Architecture
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The Design Space for CHESS
 Scale 
 Apply to large programs

 Precision
 Any error found by CHESS is possible in the wild
 CHESS should not introduce any new behaviors

 Coverage
 Any error found in the wild can be found by CHESS
 Capture all sources of nondeterminism
 Exhaustively explore the nondeterminism

 Generality of Specifications
 Find interesting classes of concurrency errors 
 Safety and liveness



Comparison with other approaches to 
verification

Model Checking Static Analysis CHESS

Scalability + ++ ++

Precision + + ++

Coverage ++ ++ +

Generality ++ + ++



Errors that CHESS can find
 Assertions in the code

 Any dynamic monitor that you run

 Memory leaks, double-free detector, …

 Deadlocks

 Program enters a state where no thread is enabled

 Livelocks

 Program runs for a long time without making progress

 Dataraces

 Memory model races



CHESS Scheduler



Concurrent Executions are Nondeterministic
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High level goals of the scheduler
 Enable CHESS on real-world applications

 IE, Firefox, Office, Apache, …

 Capture all sources of nondeterminism

 Required for reliably reproducing errors

 Ability to explore these nondeterministic choices

 Required for finding errors



Sources of Nondeterminism
1. Scheduling Nondeterminism

 Interleaving nondeterminism

 Threads can race to access shared variables or monitors

 OS can preempt threads at arbitrary points

 Timing nondeterminism

 Timers can fire in different orders

 Sleeping threads wake up at an arbitrary time in the 
future

 Asynchronous calls to the file system complete at an 
arbitrary time in the future



Sources of Nondeterminism
1. Scheduling Nondeterminism

 Interleaving nondeterminism

 Threads can race to access shared variables or monitors

 OS can preempt threads at arbitrary points

 Timing nondeterminism

 Timers can fire in different orders

 Sleeping threads wake up at an arbitrary time in the 
future

 Asynchronous calls to the file system complete at an 
arbitrary time in the future

 CHESS captures and explores this nondeterminism



Sources of Nondeterminism
2. Input nondeterminism

 User Inputs

 User can provide different inputs

 The program can receive network packets with different 
contents

 Nondeterministic system calls

 Calls to gettimeofday(), random()

 ReadFile can either finish synchronously or 
asynchronously



Sources of Nondeterminism
2. Input nondeterminism

 User Inputs

 User can provide different inputs

 The program can receive network packets with different 
contents

 CHESS relies on the user to provide a scenario

 Nondeterministic system calls

 Calls to gettimeofday(), random()

 ReadFile can either finish synchronously or 
asynchronously

 CHESS provides wrappers for such system calls 



Sources of Nondeterminism
3. Memory Model Effects

 Hardware relaxations

 The processor can reorder memory instructions

 Can potentially introduce new behavior in a concurrent 
program

 Compiler relaxations

 Compiler can reorder memory instructions

 Can potentially introduce new behavior in a concurrent 
program (with data races)



Sources of Nondeterminism
3. Memory Model Effects

 Hardware relaxations

 The processor can reorder memory instructions

 Can potentially introduce new behavior in a concurrent 
program

 CHESS contains a monitor for detecting such relaxations

 Compiler relaxations

 Compiler can reorder memory instructions

 Can potentially introduce new behavior in a concurrent 
program (with data races)

 Future Work



Interleaving Nondeterminism: Example

void Deposit100(){

EnterCriticalSection(&cs);

balance += 100;

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread

init: 

balance = 100;

final: 

assert(balance = 100);



Invoke the Scheduler at Preemption Points

void Deposit100(){

ChessSchedule();

EnterCriticalSection(&cs);

balance += 100;

ChessSchedule();

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

ChessSchedule();  

EnterCriticalSection(&cs);

t = balance;

ChessSchedule(); 

LeaveCriticalSection(&cs);

ChessSchedule(); 

EnterCriticalSection(&cs);

balance = t - 100;

ChessSchedule(); 

LeaveCriticalSection(&cs);

}

Withdraw Thread



Introduce Predictable Delays with Additional 
Synchronization

void Deposit100(){

WaitEvent( e1 );

EnterCriticalSection(&cs);

balance += 100;

LeaveCriticalSection(&cs);

SetEvent( e2 );

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

SetEvent( e1 );

WaitEvent( e2 );

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread



Blindly Inserting Synchronization Can Cause Deadlocks

void Deposit100(){

EnterCriticalSection(&cs);

balance += 100;

WaitEvent( e1 );

LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){

int t;

EnterCriticalSection(&cs);

t = balance;

LeaveCriticalSection(&cs);

SetEvent( e1 );

EnterCriticalSection(&cs);

balance = t - 100;

LeaveCriticalSection(&cs);

}

Withdraw Thread



CHESS Scheduler Basics
 Introduce an event per thread

 Every thread blocks on its event

 The scheduler wakes one thread at a time by enabling 
the corresponding event

 The scheduler does not wake up a disabled thread

 Need to know when a thread can make progress

 Wrappers for synchronization provide this information

 The scheduler has to pick one of the enabled threads

 The exploration engine decides for the scheduler



CHESS Synchronization Wrappers
 Understand the semantics of synchronizations

 Provide enabled information

 Expose nondeterministic choices

 An asynchronous ReadFile can possibly return 
synchronously

CHESS_EnterCS{

while(true) {

canBlock = TryEnterCS (&cs);

if(canBlock)

Sched.Disable(currThread);

}

}



CHESS Algorithms
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State space explosion

x = 1;
…
…
…
…
…

y = k;

…

n threads

k steps 
each

 Number of executions 

= O( nnk ) 

 Exponential in both n and k

 Typically:  n < 10   k > 100

 Limits scalability to large 
programs

Goal:  Scale CHESS to large programs (large k)



x = 1;
if (p != 0) {

x = p->f;
}

Preemption bounding
 CHESS, by default, is a non-preemptive, starvation-free scheduler
 Execute huge chunks of code atomically

 Systematically insert a small number preemptions
 Preemptions are context switches forced by the scheduler 
 e.g. Time-slice expiration

 Non-preemptions – a thread voluntarily yields
 e.g. Blocking on an unavailable lock, thread end 

x = p->f;
}

x = 1;
if (p != 0) {

p = 0;

preemption

non-preemption



Polynomial state space
 Terminating program with fixed inputs and deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc . (n+c)! 

= O( (n2k)c. n! )

Exponential in n and c, but not in k
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…  
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…
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• Choose c preemption points

• Permute n+c atomic blocks



Advantages of preemption bounding
 Most errors are caused by few (<2) preemptions

 Generates an easy to understand error trace
 Preemption points almost always point to the root-cause of 

the bug

 Leads to good heuristics
 Insert more preemptions in code that needs to be tested

 Avoid preemptions in libraries

 Insert preemptions in recently modified code

 A good coverage guarantee to the user
 When CHESS finishes exploration with 2 preemptions, any 

remaining bug requires 3 preemptions or more



Finding and reproducing CCR Heisenbug



George Chrysanthakopoulos’ Challenge



Concurrent programs have cyclic state spaces

 Spinlocks
 Non-blocking algorithms
 Implementations of synchronization primitives
 Periodic timers
 …

L1:  while( ! done) { 
L2:     Sleep();

}

M1: done = 1;

! done
L2

! done
L1

done 
L2

done
L1



A demonic scheduler unrolls any cycle 
ad-infinitum

! done

done! done

done! done

done

while( ! done)
{ 

Sleep();
}

done = 1;

! done



Depth bounding

! done

done! done

done! done

done! done

 Prune executions beyond a bounded number of steps

Depth bound



Problem 1: Ineffective state coverage 

! done

! done

! done

! done

 Bound has to be large enough to 
reach the deepest bug

 Typically, greater than 100 
synchronization operations

 Every unrolling of a cycle 
redundantly explores reachable 
state space

Depth bound



Problem 2: Cannot find livelocks
 Livelocks : lack of progress in a program

temp = done;
while( ! temp)
{ 

Sleep();
}

done = 1;



Key idea

 This test terminates only when the scheduler is fair

 Fairness is assumed by programmers

All cycles in correct programs are unfair
A fair cycle is a livelock

while( ! done)
{ 

Sleep();
}

done = 1;
! done! done

donedone



We need a fair scheduler

 Avoid unrolling unfair cycles

 Effective state coverage

 Detect fair cycles

 Find livelocks

Concurrent
Program

Test 
Harness

Win32 API

Demonic
Scheduler

Fair
Demonic
Scheduler



What notion of “fairness” do we use?



Weak fairness
 Forall t :: GF ( enabled(t)   scheduled(t) )

 A thread that remains enabled should eventually be 
scheduled

 A weakly-fair scheduler will eventually schedule Thread 2

 Example: round-robin

while( ! done)
{ 

Sleep();
}

done = 1;



Weak fairness does not suffice

Lock( l );
While( ! done)
{ 

Unlock( l );
Sleep();
Lock( l );

}
Unlock( l );

Lock( l );
done = 1;
Unlock( l );

en = {T1, T2}

T1: Sleep()
T2: Lock( l )

en = {T1, T2}

T1: Lock( l )
T2: Lock( l )

en = { T1 }

T1: Unlock( l )
T2: Lock( l )

en = {T1, T2}

T1: Sleep()
T2: Lock( l )



Strong Fairness
 Forall t :: GF enabled(t)   GF scheduled(t)
 A thread that is enabled infinitely often is scheduled 

infinitely often

 Thread 2 is enabled and competes for the lock infinitely 
often

Lock( l );
While( ! done)
{ 

Unlock( l );
Sleep();
Lock( l );

}
Unlock( l );

Lock( l );
done = 1;
Unlock( l );



Implementing a strongly-fair scheduler

 Apt & Olderog ’83

 A round-robin scheduler with priorities

 Operating system schedulers

 Priority boosting of threads 



We also need to be demonic
 Cannot generate all fair schedules

 There are infinitely many, even for simple programs

 It is sufficient to generate enough fair schedules to 

 Explore all states (safety coverage)

 Explore at least one fair cycle, if any (livelock coverage)

 Do it without capturing the program states



(Good) Programs indicate lack of progress

 Good Samaritan assumption:
 Forall threads t : GF scheduled(t)  GF yield(t)
 A thread when scheduled infinitely often yields the processor 

infinitely often

 Examples of yield:
 Sleep(), ScheduleThread(), asm {rep nop;}
 Thread completion

while( ! done)
{ 

Sleep();
}

done = 1;



Robustness of the Good Samaritan 
assumption

 A violation of the Good Samaritan assumption is a 
performance error

 Programs are parsimonious in the use of yields

 A Sleep() almost always indicates a lack of progress

 Implies that the thread is stuck in a state-space cycle

while( ! done)
{ 

;
}

done = 1;



Fair demonic scheduler
 Maintain a priority-order (a partial-order) on threads

 t < u  :  t will not be scheduled when u is enabled

 Threads get a lower priority only when they yield

 Scheduler is fully demonic on yield-free paths

 When t yields, add t < u if
 Thread u was continuously enabled since last yield of t, or

 Thread u was disabled by t since the last yield of t

 A thread loses its priority once it executes

 Remove all edges t < u when u executes



Four outcomes of the semi-algorithm

 Terminates without finding any errors

 Terminates with a safety violation

 Diverges with an infinite execution 

 that violates the GS assumption (a performance error)

 that is strongly-fair (a livelock)

 In practice: detect infinite executions by a very long 
execution



Data Races & Memory Model Races



What is a Data Race?

 If two conflicting memory accesses happen 
concurrently, we have a data race. 

 Two memory accesses conflict if

 They target the same location

 They are not both reads

 They are not both synchronization operations

 Best practice: write “correctly synchronized“ 
programs that do not contain data races.



What Makes Data Races significant?

 Data races may reveal synchronization errors

 Most typically, programmer forgot to take a lock, use an 
interlocked operation, or declare a variable volatile.

 Racy programs risk obscure failures caused by  memory 
model relaxations in the hardware and the compiler 

 But: many programmers tolerate “benign” races

 Race-free programs are easier to verify

 if program is race-free, it is enough to consider 
schedules that preempt on synchronizations only 

 CHESS heavily relies on this reduction



How do we find races?

 Remember: races are concurrent conflicting accesses.

 But what does concurrent actually mean?

 Two general approaches to do race-detection

Lockset-Based
(heuristic)

Concurrent 
“Disjoint locksets”

Happens-Before-Based
(precise)

Concurrent =
“Not ordered by happens-

before”



Synchronization = Locks  ???

 This  C# code contains neither locks nor a data race:

 CHESS is precise: does not report this as a race. But does
report a race if you remove the ‘volatile’ qualifier.

data = 1;
flag = true;

while (!flag)
yield();

int x = data;

Thread 1 Thread 2

int data;
volatile bool flag;



Happens-Before Order  [Lamport]

 Use  logical clocks and timestamps to define a partial 
order called happens-before on events in a concurrent 
system

 States precisely when two events are logically
concurrent (abstracting away real time)

1

2

3

1

2

3

1

2

3

(0,0,1)
 Cross-edges from send 

events to receive events

 (a1, a2, a3) happens before 
(b1, b2, b3) iff a1 ≤ b1 and a2

≤ b2 and a3 ≤ b3

(2,1,0)(1,0,0)

(0,0,2)(2,2,2)(2,0,0)

(0,0,3)(2,3,2)(3,3,2)



Happens-Before for Shared Memory

 Distributed Systems: 
Cross-edges from send to receive events

 Shared Memory systems:
Cross-edges represent ordering effect of synchronization

 Edges from lock release to subsequent lock acquire

 Edges from volatile writes to subsequent volatile reads

 Long list of primitives that may create edges
 Semaphores

 Waithandles

 Rendezvous 

 System calls (asynchronous IO)

 Etc.



Example

Static Program Dynamic Execution Trace

1

2

1

2

3

(1,0)

(1,4)

data = 1;
flag = true;

while (!flag)
yield();

int x = data;

Thread 1 Thread 2

int data;
volatile bool flag;

data = 1;

flag = true;

(!flag)->true

yield()

(!flag)->false

4
x = data

 Not a data race because (1,0) ≤ (1,4)

 If flag were not declared volatile, we would not add a 
cross-edge, and this would be a data race.



Basic Algorithm

 For each explored schedule,

 Execute code and timestamp all data accesses.

 Check if there were any conflicting concurrent accesses 
to some location.

 This basic algorithm can be optimized in many ways

 On-the-fly checking, Memory management

 Lightweight alternatives to full vector clocks

 See [Flanagan PLDI 09]



Reduction for Race-Free Programs

 By default, CHESS preempts on synchronization 
accesses only

 May miss bugs if program contains data race

 If we turn on race detection, CHESS can verify that the 
reduction is sound by verifying absence of data races. 

 Thus, for race-free programs, we get both:

 Full guarantee

 Reduction in the number of schedules



Preemption / Instrumentation Level

 Speed/coverage tradeoff : choose mode

Sync only Sync. + vol.
(Default)

Sync + vol.
+ Race 
Detection

All accesses

Locks, Events,
Interlocked,  
etc.

Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

Volatile 
Accesses

- Instrumented
& Preempted

Instrumented
& Preempted

Instrumented
& Preempted

All Data 
Accesses

- - Instrumented Instrumented
& Preempted



Demos:    SimpleBank / CCR

 Find a simple data race in a toy example

 Find a not-so-simple data race in production code



Bugs Caused By Relaxed Memory Models

 Programmers avoid locks in performance-critical code
 Faster to use normal loads and stores, or interlocked 

operations

 Low-lock code can break on relaxed memory models
 Most multicore machines (including x86) do 

not guarantee sequential consistency of memory 
accesses

 Vulnerabilities are hard to find, reproduce, and 
analyze
 Show up only on multiprocessors
 Often not reproduceable



 On an ideal (sequentially consistent) multiprocessor, this 
code never executes foo() and bar() at the same time 

 But on x86 (and almost all other multiprocessors), it may,
because of store buffers.

Example: Store Buffers Break Dekker

Thread 1 
--------
A = 1;
If (B == 0)
foo();

volatile int A; 
volatile int B;

Thread 2 
--------
B = 1;
If (A == 0)
bar();



Memory Access Terminology

 Code using accesses marked red for synchronization 
purposes is susceptible to store buffer bugs.

C++ Java C#

atomic volatile interlocked

low-level atomic - volatile

volatile - -

(regular) (regular) (regular)



Store Buffers

 Each processor buffers its 
own writes in a FIFO store 
buffer

 Remote processors do not 
see the buffered write 
until it is committed to 
shared memory

 Local processor “snoops” 
its own buffer when 
reading from memory

 Important for hardware 
performance

Processor 1

Shared Memory

stores

Processor 2

stores



How to Find Store Buffer Bugs?

 Naïve: simulate machine

 Too many schedules.

 Better: build a borderline monitor [CAV 2008].

Idea: While exploring schedules under CHESS, check 
for stale loads.

 A stale load is a load that may return a value under TSO 
that it could never return under SC.

 [Thm.] A program is TSO-safe if and only if all executions 
are free of stale loads.



Demos:   Dekker / PFX

 Basic test: Dekker

 Found 2 dekker-like synchronization errors in 
production code
 “optimization” of signal-wait pattern

 Double-ended work-stealing queue



volatile bool isIdling;

volatile bool hasWork;

//Consumer thread

void BlockOnIdle(){

lock (condVariable){

isIdling = true;

if (!hasWork)

Monitor.Wait(condVariable);

isIdling = false;

}

}

//Producer thread

void NotifyPotentialWork(){

hasWork = true;

if (isIdling)

lock (condVariable) {

Monitor.Pulse(condVariable);

}   

}



Store Buffer Bugs - Experience

 Relatively rare… found only 3 so far
 We expect to find more as we cover more code… 

detection is on by default whenever race detection is on

 Found 1 false positive so far (i.e. “benign” stale load).

 Very common for certain algorithms, 
e.g. work stealing queue
 We found one in PFX work-stealing queue

 Know of 4 other teams (inside & outside Microsoft) who 
faced store buffer issues when implementing work-
stealing queue



Writing a CHESS Monitor



Specifications? 

 We have not seen significant practical success of 
verification methodology that requires extensive 
formal specification.

 More pragmatic: monitor certain or likely indicators 
automatically. Currently, we…

 …flag error on: Deadlock, Livelock, Assertion Violation.

 …generate warnings for: Data races, Stale loads.



More Monitors Find More Bugs

 Use runtime monitors for ‘typical programmer 
mistakes’

 Data Races, Stale Loads () 

 Atomicity violations, High-level Data Races

 Incorrect API usage (for all kinds of APIs), e.g. Memory 
Leaks

 Much existing research on runtime monitors

 CHESS SDK provides infrastructure, 
you write your own monitor.



Monitors Benefit from Infrastructure

 Instrumentation
 For both C# and C/C++

 Abstraction
 Threads, synchronization & data variables, events

 Sequential schedule 
 Monitors need not worry about concurrent callbacks

 Repro capability
 Any errors found can be reproduced deterministically

 Schedule enumeration
 Enumerates schedules using reductions & heuristics

 turns runtime monitors into verification tools



Chess <-> Monitor interface

 Each monitor gets called by CHESS repeatedly

… at beginning and end of each schedule

… on relevant program events
 Synchronization operations

 Data variable accesses

 User-defined instrumentation

 Callbacks abstract many low-level details
 Handle plethora of synchronization APIs and 

concurrency constructs under the covers



Abstractions Provided

 Thread id = integer
 Chess numbers threads consecutively 1, 2, 3, ….

 Event id = integer x integer
 Chess numbers events in each thread consecutively

1.1, 1.2, 1.3, ….       2.1., 2.2., 2.3, …

 Syncvar = integer
 Abstractly represents a synchronization object (lock, 

volatile variable, etc.)

 SyncvarOp = { LOCK_ACQUIRE, LOCK_RELEASE, RWVAR_READWRITE, 
RWVAR_READ, RWVAR_WRITE, TASK_FORK, TASK_JOIN, TASK_START, 

TASK_RESUME, TASK_END, …}
 Represents synchronization operation on syncvar



ConcurrencyExplorer View of Schedule



Event IDs



SyncVar



SyncVarOp



Some Callbacks

 At beginning & end of schedule
virtual void OnExecutionBegin(IChessExecution* exec)
virtual void OnExecutionEnd(IChessExecution* exec)

 Right after a synchronization operation:
virtual void OnSyncVarAccess(EventId id, Task tid,

SyncVar var, SyncVarOp op, size_t sid)

 Right after a data access:
virtual void OnDataVarAccess(EventId id, void* loc, int

size, bool isWrite, size_t pcId)

 Right before a synchronization operation:
virtual void OnSchedulePoint(EventId id, SyncVar var,

SyncVarOp op, size_t sid)



Happens-before information

 Can query ‘character’ of a sync var op

static bool IsWrite(SyncVarOp op)

static bool IsRead(SyncVarOp op)

 Get happens-before edges between two sync-var ops

 To the same variables

 At least one of which is a write

 Note: most syncvarops are considered to be both 
reads & writes



Reduction-Compatible Monitors

 Different schedules may produce same hb-execution

 Call such schedules hb-equivalent

 Program behaves identically under hb-equivalent 
schedules

 Thus, reductions  are sound (sleep-sets, data-race-free) 

 But: some monitors may not behave equivalently

 E.g. naïve race detection may require specific schedule

 For coverage guarantees, monitor must be reduction-
compatible: must detect error on all hb-equivalent schedules

 Our Race Detection and Store Buffer Detection are 
Reduction -Compatible



Refinement Checking



Concurrent Data Types

 Frequently used building blocks for parallel or 
concurrent applications.

 Typical examples: 
 Concurrent stack

 Concurrent queue

 Concurrent deque

 Concurrent hashtable

 ….

 Many slightly different scenarios, implementations, 
and operations

 Written by experts… but the experts need help



Correctness Criteria

 Say we are verifying concurrent X
(for X  queue, stack, deque, hashtable …)

 Typically, concurrent X is expected to behave like 
atomically interleaved sequential X

 We can check this without knowing the semantics of X

 Implement easy to use, automatic consistency check



Observation Enumeration Method    
[CheckFence, PLDI07]

 Given concurrent test, e.g.

 (Step 1 : Enumerate Observations) 
Enumerate coarse-grained interleavings and record 
observations

1. b1=true   i1=1   b2=false   i2=0

2. b1=false   i1=0   b2=true   i2=1

3. b1=false   i1=0   b2=false   i2=0

 (Step 2 : Check Observations) 
Check refinement: all concurrent executions must look 
like one of the recorded observations

Stack s = new ConcurrentStack();

s.Push(1); b1 = s.Pop(out i1);

b2 = s.Pop(out i2);



Demo

 Show refinement checking on simple stack example



Conclusion
 CHESS is a tool for 

 Systematically enumerating thread interleavings

 Reliably reproducing concurrent executions

 Coverage of Win32 and .NET API

 Isolates the search & monitor algorithms from their 
complexity

 CHESS is extensible

 Monitors for analyzing concurrent executions

 Future: Strategies for exploring the state space


