

IMPROMPTU: A New Interaction Framework for Supporting
Collaboration in Multiple Display Environments and Its
Field Evaluation for Co-located Software Development

Jacob T. Biehl1, William T. Baker1, Brian P. Bailey1, Desney S. Tan2,
Kori M. Inkpen2, and Mary Czerwinski2

1Department of Computer Science
University of Illinois

Urbana, IL 61801, USA
{jtbiehl, wtbaker, bpbailey}@uiuc.edu

2Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{desney, kori, marycz}@microsoft.com

ABSTRACT
We present a new interaction framework for collaborating
in multiple display environments (MDEs) and report results
from a field study investigating its use in an authentic work
setting. Our interaction framework, IMPROMPTU, allows
users to share task information across displays via off-the-
shelf applications, to jointly interact with information for
focused problem solving and to place information on shared
displays for discussion and reflection. Our framework also
includes a lightweight interface for performing these and
related actions. A three week field study of our framework
was conducted in the domain of face-to-face group software
development. Results show that teams utilized almost every
feature of the framework in support of a wide range of
development-related activities. The framework was used
most to facilitate opportunistic collaboration involving task
information. Teams reported wanting to continue using the
framework as they found value in it overall.

Author Keywords
Multiple Display Environments, Group Work, Group
Software Development, Field Study

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing.

INTRODUCTION
A multiple display environment (MDE) is comprised of co-
located personal (e.g. laptops) and shared devices (e.g. large
displays) that are networked to form an integrated virtual

workspace [33]. These environments offer many potential
benefits for small workgroups, including the ability to place
myriad information artifacts on shared displays for
comparing, discussing, and reflecting on ideas; to jointly
create and modify information to enhance focused problem
solving or enable opportunistic collaboration; and to allow
quick and seamless transitions between these work modes.

Figure 1: An example of a multiple device environment
typically used for face-to-face software development.

One fundamental challenge is to build systems that allow
groups to fully realize these benefits in MDEs. Many such
systems have been investigated [19, 27, 34, 36], but have
not adequately addressed this challenge. For example, with
Colab [33], groups can only work with digital information
supported by custom built applications. In the iRoom [19],
relocating applications (information) does not maintain
interaction context (e.g. stack traces in a debug window
would be lost). This can hinder opportunistic collaboration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

A second challenge is to understand how groups leverage
MDEs to perform their activities and the resulting impact.
Many lab studies of such systems and related interactions
have been conducted [25, 31, 33], but this corpus of work
has not adequately answered the broader question of how
MDEs are used for real activities in authentic settings.

Addressing both challenges, we present a new interaction
framework for collaborating in MDEs and report results
from one of the first field studies investigating how such
frameworks are utilized in an authentic work setting. Our
research was grounded in a particular task domain: face-to-
face software development activities (see Fig. 1). This
domain was chosen because it is representative of co-
located group problem solving activities and the use of
MDEs is a rapidly emerging practice in this domain [29].

Our IMPROMPTU framework allows groups to more fully
realize core principles of group work in MDEs beyond what
is provided by existing systems. Important features include
the ability to share myriad information across displays via
off-the-shelf applications without modification, to jointly
interact with task information across devices for focused
problem solving, and for different group members to place
information on large displays for discussing, comparing,
and reflecting on ideas. It also provides a lightweight
interface for performing these and other related actions. The
interaction design of our framework was based on lessons
learned from our earlier experiences [5, 6] as well as
surveys and interviews with users in our target domain.

We deployed our framework within authentic workspaces
used by two software development teams and studied its
use and impact over a three week period. Our results show
that teams utilized almost every feature of the framework in
support of a wide range of problem solving activities. The
framework was used most often to facilitate opportunistic
collaborations that involved task information. Teams
reported wanting to continue using the framework as they
found value in it overall. We also discovered new insights
for how to improve the design of MDE frameworks.

RELATED WORK
We review principles of group work and how systems have
sought to realize them for MDEs, the role of MDEs in
emerging software development practices, and why existing
tools are insufficient for supporting those practices.

Realizing Principles of Group Work within MDEs
Researchers have conducted many studies of group work to
extract principles for building supporting systems [15].
Fundamental principles include the ability to create, share
and exchange task information, to allow individual work in
parallel and joint interaction, to allow seamless transitions
between these work modes, and to maintain awareness of
each other’s activities (e.g. see [13, 16, 23, 30, 33]).

For multiple display environments (and other co-located
workspaces), a challenge has been to understand how to
build systems that allow groups to realize these principles.
The effectiveness of the systems is generally determined by
the degree to which these principles are supported.

WinCuts [38] allows users to replicate a local window’s
pixel data to other devices (e.g. large shared displays). This
allows sharing of task information, but does not allow for

joint interaction. LiveMeeting [2] and Community Bar [39]
allow users to share each other’s desktop screens and
interact with them. However, these systems do not support
the ability to share applications from multiple devices at the
same time. For example, this would not allow two users to
view and compare each other’s ideas in parallel.

CoWord [43] and similar frameworks [22] allow the same
or similar application to be tightly synchronized through an
underlying protocol. This allows for individual work in
parallel as well as relaxed WYSIWIS [33]. However,
because these protocols must be developed per-application,
using this technique to support applications in MDEs would
require an overly large effort. Another set of systems
including KidPad [4], PointRight [20], Mighty Mouse [8],
Dynamo [18], and Swordfish [17] allow joint interaction
within a shared visual workspace, but do not allow
individual work to be performed in parallel.

iRoom [19] allows information to be shared across devices
by passing descriptors of content (e.g., a URL) between
devices. Limitations of this approach include that it requires
similar applications to be installed, it does not maintain
applications’ interaction context when relocated, and
ownership of relocated applications is not maintained. This
can inhibit the natural flow of group work. Colab [33] and
i-LAND [36] support specific group activities within MDEs
(e.g., shared note taking). However these systems do not
support existing off-the-shelf applications and do not
provide control over which applications can be shared.

Many usability studies of systems that support MDEs have
been conducted (e.g., [6, 20, 25, 31]). These studies have
typically focused on testing interface representations [6],
relocation techniques [25], and coordination policies [24].
Other studies have compared the effectiveness of group
work within MDEs to other workspace configurations [37].

Our work makes two contributions to this body of research.
First, we present a new framework that allows principles of
group work to be more fully realized within MDEs. For
example, our framework supports joint interaction on both
personal and shared displays, the ability to multitask among
shared applications, and the ability to leverage any off-the-
shelf application. A lightweight interface is also provided
for choosing which applications can be shared and when.

Second, we report results from one of the first field studies
investigating how groups leverage MDEs for authentic
tasks. As a starting point, we studied how our framework is
used for face-to-face software development. This allowed
us to study in-depth how groups use and benefit from
MDEs and how supporting frameworks can be improved.

Emerging Software Development Practices
Software developers are attempting to improve their work
practices to meet the increasing demand for dependable
systems [29]. A radical change is occurring in how the act
of programming and related development activities is being
performed. Development teams are rapidly transitioning

from individuals working in their own offices to small
groups working face-to-face in co-located workspaces.

As shown in Figure 1, these workspaces are typically
configured with individual work areas but are also equipped
with large displays, whiteboards, and other instruments to
foster team communication and awareness. Early evidence
suggests that the group activities that are facilitated by these
workspaces can reduce defects in software and improve the
quality of its overall design [21, 26, 32, 41, 42].

Though being situated within the same workspace allows
for increased communication, it exacerbates the need to
realize principles of group work. For example, groups need
to share and interact with each other’s task artifacts such as
code editor windows, debug windows, and web browsers
showing examples. Our work contributes a new framework
that developers can use to more fully realize principles of
group work within these types of co-located workspaces.

Tools for Supporting These Practices
Several tools have been designed or could potentially be
adapted for face-to-face group development activities. For
example, source code repositories like CVS [1] and SVN
[3] can be used to help coordinate access to shared code.
However, these systems typically embody formal processes,
and do not provide an effective means for informally
sharing task artifacts during group development activities.

A file server or e-mail can be used for sharing task artifacts.
But, these approaches are not sufficient because they do not
allow joint interaction or retain their interaction context
when passed between users. Using personal devices, with
one connected to a large display, is also insufficient, e.g.,
artifacts from multiple users cannot be shown in parallel.

Tools have been created for better coordinating activities
among programmers. For example, Palanír [28] and Augur
[14] provide visualizations of recent actions within a shared
code repository. FASTDash [7] extends this awareness to
include developers’ actions within their local integrated
development environments (IDEs). Collaborative IDEs,
such as Jazz [9], allow users to see who is working within
the shared code, receive updates of their actions, and chat
with each other. Our framework can be used to complement
many of these tools. For example, FASTDash could be
launched from a personal device and placed on a shared
display for maintaining awareness of group activity.

IMPROMPTU
IMPROMPTU (IMPROving MDE’s Potential to support
Tasks that are genUine) is a new interaction framework that
allows users to better realize natural and effective group
work practices when working in MDEs. Important benefits
include the ability to share any off-the-shelf application
without modification, to share applications and input across
multiple displays, and to allow different users to place
applications on large displays at the same time. It also
affords a lightweight interface for performing these actions.

While existing systems allow subsets of these benefits to be
realized [2, 19, 33, 36, 38], a contribution of our framework
is that it enables all of them to be more fully realized.

Figure 2: Screenshot of the IMPROMPTU user interface,
along with replicated and local application windows on a
user’s machine. The collaborator bar is on the left (A), and
one collaborator drawer is expanded showing the
applications available to the group. The shared screen
dock (B) allows windows to be placed on a large shared
display. Whether an application is available to the group
and what level of control is allowed can be set using (C). A
replicated window in share mode allows interaction with
its content (D); while a replicated window in show mode
allows a user to view, but not modify its content (E).

The framework’s design was based on lessons learned from
a series of surveys, interviews, and low fidelity prototyping
sessions with professional developers. Our design also
leveraged lessons from our earlier experiences developing
and evaluating several interfaces for MDEs [5, 6] as well as
principles from group work theory [12, 23, 30, 35].

User Interface
The interface provides a visual representation of group
members, available large displays, and applications that
have been made available to the group. See Figure 2. The
user interface is comprised of the Collaboration Control,
Collaborator Bar, and Shared Screen Dock(s).

Collaboration Control. This control allows a user to
configure whether an application window is available to the
group, and if group members are allowed to modify or only
view its content. See Figure 3. The control is displayed on
the title bar of every top-level application window. This
location reinforces that this is a window-level operation,
provides quick access to the functionality, and provides a
persistent indicator of the window’s sharing state.

Selecting the control reveals three sharing states (Fig. 3):

• Do not show or share. The application window is not
available to group members (this is the default value).

• Show. The window is available to the group, but in a
view-only mode. A live thumbnail of the window is

displayed in the show area of the user’s representation in
each group member’s Collaborator Bar.

• Share. The window is available to the group and anyone
can interact with its content. A thumbnail of the window
is displayed in the share area of the user’s representation
in each group members’ Collaborator Bar.

Offering both show and share is necessary as we have
found that users have a strong sense of ownership of their
applications. For example, a user can set a window to show
to allow others to view and maintain awareness of their
activity in relation to that window, but not be able to
interact with it. Alternatively, with share, group members
can edit source code or other documents together, or a user
could pass control temporarily to another group member.

Collaborator Bar. This interface component provides a
representation of each user participating in the collaborative
session and the application windows that each user has
made available to the group. When a user joins a session,
their photo (or other image) appears within the Collaborator
Bar, located on the side of the screen. See Figure 2 (A).

Each user’s representation in the Collaborator Bar has a
drawer with two rows. The top row displays thumbnails of
application windows that have been set to share while the
bottom row displays thumbnails of windows that have been
set to show. Moving the cursor over a user’s image causes
the corresponding drawer to animate out. See Figure 4.

From a group member’s drawer, a user can drag the desired
thumbnail and drop it onto the desktop, establishing a
replication of that window. For example, in Figure 2, a
developer has replicated a team member’s Visual Studio
window. If the owner sets the window to share, the user

could edit the source code while the owner switches to
another task, or the two users could edit the code together.
Users can also see each other’s cursors within replicated
windows. This particular cue establishes presence, provides
awareness, and improves coordination [16].

(a)

(b)
Figure 5: The shared screen dock. Hovering over it gives a
summary of windows placed on the corresponding shared
display (a). Selecting the arrow causes it to expand,
providing a view that allows windows to be repositioned on
the shared display (b). Selecting the redirection button
redirects mouse/keyboard actions to the shared display.

Figure 3: The collaboration control is displayed on top-
level application windows. It is used to configure whether
the window is available to the group, and whether group
members can only view (Show) or interact with it (Share).

One interesting aspect of this interaction is that it embodies
a natural negotiation process. For example, it is the owner
of an application window who determines if it is available
to the group, while it is each group member who decides if
and when to create a replication of that window.

Shared Screen Dock. This enables users to place application
windows on a shared display, organize windows remotely,
and redirect input to interact with them. Our system can
support any number of shared displays, and each display is
represented by its own dock. Any user can place any
number of replicated windows onto the large displays.

The dock is minimized by default, and opens when the user
moves the cursor over it. When opened, the dock shows
thumbnails of all application windows on the corresponding
display. In this view, the thumbnails are shown left-to-right,
as this allows all of them to be seen at once without
occlusion (Figure 5a). When expanded (via the button at the
bottom), the dock shows a world-in-miniature
representation of the content on the corresponding display
(Figure 5b). By interacting with the thumbnails in this view,
any user can adjust the position or z-order of the windows.

Figure 4: A close-up of an expanded collaborator drawer.
The user has two applications in share mode (Internet
Explorer and Visual Studio) and one in show mode (IE).

Any application window that has been set to show or share
can be placed on a large display. From a group member’s
representation in the Collaborator Bar (including her own),
a user drags the representation of the desired window and
drops it onto the appropriate shared screen dock. The dock
expands and the user can position the window as desired. It

is important to note that a shared display can contain
replicated windows from different users at the same time.

Users can also redirect their local input to a shared display.
For example, this would allow group members to
collectively interact with a replicated window and share the
same visual focus. To redirect input, the user selects the
redirection button on the screen dock. Input is returned to
the local device using the ctrl+alt+home key sequence.

Interestingly, our interface centers on a view of the people
participating in the collaboration rather than a strict spatial
representation of the workspace, as done in much prior
work (e.g. [5, 31, 40]). This was one of the primary lessons
learned from working with users in our design process.

Implementation
A central goal of our implementation was to allow sharing
of and interaction with any off-the-shelf application across
devices. This is important because it would allow users to
continue using the applications that they prefer and need for
their daily work. For example, in our target domain of
software development, users stressed that they use a large
number of diverse applications and that building only
application specific solutions would be of limited value.

To meet this goal, we chose a replication-based model for
sharing applications. At a high level, this model works by
capturing application windows’ pixel data and reproducing
it on other devices. This approach has some limitations,
e.g., users cannot independently manipulate the view within
a shared application, but the ability to utilize any off-the-
shelf application in an MDE is a worthwhile tradeoff.

As a user interacts with a replicated view, the local input is
captured and routed to the corresponding UI control in the
source window. This provides a modest technical
improvement over existing redirection techniques (e.g.,
[2]), but it allows substantial improvement in usability. For
example, our technique allows group members to interact
with a shared application while the owner is still able to
interact with other applications simultaneously.

Our framework is implemented in managed C#, with some
of the lower-level components in unmanaged C++. It has
been tested with Windows Vista and XP and the techniques
could be mapped onto other commonly used systems.

FIELD STUDY
We conducted a field study to evaluate our framework. A
field study was conducted because this would allow us to
better understand how groups utilize our framework for
their own collaborative activities in authentic settings, how
collaborative behaviors are impacted, and how such
frameworks might be improved. All of this would have
been very difficult to achieve in a single session lab study.

Study Participants
We recruited development teams from Microsoft Corp., a
U.S.-based software company. To recruit teams, we sent a

study solicitation to a company mailing list. We followed
up with teams that expressed interest by arranging short
meetings to outline for them the goals of our study, discuss
requirements for participation, and describe the data that
would be collected. These meetings also allowed the
researchers to establish an initial level of trust with the
teams. We found this to be especially important to ensure
that our presence observing their daily activities for several
weeks would not be overly disruptive or uncomfortable.

Through this process we identified two teams that met our
requirements and agreed to the conditions of the study:

Team Alpha is a group of 9 individuals (all male), including
3 developers, 3 testers, a technical writer, a program
manager, and a software architect. The team works closely
together to create sample applications and documentation
that promote the use of Microsoft development
technologies. When we observed them, they were actively
working on a package to showcase Web 2.0 technologies.

All members of Team Alpha were physically co-located
within the same workspace (see Figure 1). The space was
also equipped with a large display to which all members
had access. This configuration supported the team’s heavy
adoption of Agile practices [29] which promote activities
such as paired programming, daily status meetings (a.k.a.
“scrums”), and face-to-face communication.

Our second team, Team Beta, is a group of 6 individuals (2
female) including 3 developers, 2 testers and a program
manager. Team Beta is a feature team that works on next
generation software management tools. We observed this
team in the late stage of their development process as they
were performing final testing, bug fixes, and integration.

Unlike the other team, Team Beta had individual offices
located within close proximity (just a few steps away).
Team members worked in their own offices, but frequently
traveled to each other’s offices to collaborate, as well as to
a group conference room that was equipped with a large
display. Like Team Alpha, this team performed many tasks
collaboratively, including editing, debugging, and review.

Each team member was provided with a software gratuity
for participating in the study. Also, to provide incentive for
filling out questionnaires (discussed in the next section),
each submitted questionnaire served as an entry into a raffle
for two Zune™ MP3 players, one for each team.

Procedure and Measures
The study was conducted over a three week period and used
a split pre/post observation design. We observed the teams
without IMPROMPTU for one week to gain a baseline of
their current collaborative practices. The next two weeks
were spent observing the teams using IMPROMPTU.

Observations were split into alternating half-day sessions.
That is, Team Alpha was observed in the morning and Team
Beta in the afternoon. The next day, Beta was observed in
the morning and Alpha in the afternoon, and so forth.

For each session, at least one observer was present in the
workspace to code the teams’ collaborative activities. For
approximately half of the sessions, there was an additional
independent observer who also coded the activities, which
allowed for cross-validation. Two independent observers
were used during the course of the study. Each had over 20
years experience in behavioral data collection.

Observation Data
The observational coding scheme consisted of 6 primary
categories, summarized in Table 1. The categories were
based on schemes used in previous studies of collaborative
software activities [7, 11]. After several iterations, we
arrived at a scheme that we felt provided an adequate (for
our purposes) representation of the teams’ collaborative
behavior, was simple and quick enough to use in real-time,
and allowed the data to be easily quantified and compared.

Instances of collaborative engagements that could be
externally observed were coded. An instance would be
signaled by initiation of physical movement to each other’s
work areas and/or verbal communication. Instances were
considered complete when the verbal communication ended
and/or users returned to their own work areas.

A brief example will illustrate how the scheme was applied.
Suppose one user physically moves to another’s device and
they work together to solve an error in the code. Along with
modifying the code, they consult discussion forums and
API documents to explore solutions. This instance would be
coded as Evaluation and Explore Alternative Solutions
under Activity; Edit and Debug/Test under Domain; Move
to Personal Device under Physical Movement; and Single
Personal Device under Use of Devices.

Inter-coder reliability was measured by sampling 10% of
the coded data and computing Cohen’s κ [10], a common

measure of coder reliability. All but two categories (Review
and Edit under Domain), had Cohen’s κ ≥ 0.76, which
indicates a very high degree of agreement. The remaining
categories had lower Cohen’s κ (0.25 & 0.46, respectively),
but this was due in part to having unbalanced categorization
frequencies. A further test of raw agreement showed that
these categories had > 80% consistency, and we believed
this represented sufficient agreement.

Category Classification
Activity Cognitive Synchronization

Evaluation
Explore Alternative Solutions
Conflict Resolution
Management

Domain Edit
Debug/Test
Review
Reference
Design

Physical Movement No Movement
Move to Personal Device
Move to Large Display
Other

Use of Devices Single Personal Device
Multiple Personal Devices
Personal Device(s) and Large Display
Large Display Only

Time Length of collaborative collaboration
Size Number of individuals in collaboration

Table 1: Category and classifications used for coding observed
instances of collaborative engagements.

Instrumented Data
We instrumented our framework to log usage data. This
was done to understand which features were used and how
often. This data included which applications had been
shared or shown and for how long, which applications had
been replicated, to which device they were replicated and
for how long, how often input redirection was used, and
how often users interacted with the Collaborator Bar.

User Feedback
Finally, we collected user feedback in two forms. First, we
asked users to complete a questionnaire that probed their
use of the framework for a recent, meaningful collaborative
activity. Questions included explaining the motivation for
the activity, who was involved and their role, which aspects
of the framework were used, and how it affected the overall
activity. Each team member was asked to complete the
questionnaire every other day using an online form.

In addition to the questionnaires, we performed a 30 minute
group interview with each team at the end of the study. We
asked the teams about their overall experiences using the
framework, what they felt were its strengths/weaknesses,
and for recommendations on how it could be improved.

RESULTS
In this section, we describe how the teams utilized our
framework, provide results from the instrumentation data,
and discuss impacts on existing collaborative practices.

Use of IMPROMPTU
During the study, our framework was leveraged to perform
myriad collaborative tasks. These tasks included providing
opportunistic assistance in solving complex complier errors,
working closely together to integrate different users’ code
into a single solution, reviewing API documentation, and
brainstorming designs for new features. In support of these
tasks, users leveraged our framework to show or share a
wide variety of applications, including source code and
document editors, communication tools, and Web browsers.
The applications were replicated between personal devices
as well as placed on the large displays. A few detailed
examples will help exemplify the use of the framework.

In one instance, we observed John, a developer from Team
Alpha, encounter a compiler error while working on his
code. After spending a few minutes attempting to solve the
error, he requested assistance from Stan, another developer
on his team. John used the Collaboration Control to set his
source code editor to share and Stan replicated the window

by dragging its thumbnail from John’s area within the
Collaborator Bar. Stan interacted with John’s code editor to
review and understand the problem, used the telepointer to
highlight segments of possible problem code for John, and
offered verbal suggestions on how to proceed.

In another instance, the manager on Team Beta, Felix,
needed to send a status report to his boss. Because he was
unsure on technical details, he asked Susan, a developer on
the team, to assist. Felix shared his document window, and
Susan replicated it on her device. A verbal communication
channel between the two was established via the office
phone. Felix and Susan were able to jointly compose the
report, each providing content that they knew most about.

In a similarly structured task, Steven and Greg, two
developers on Team Beta, used the framework to review
and integrate Steven’s code into the source repository. Greg
replicated a code editor and a separate integration tool that
Steven had shared. Greg spent a few minutes reviewing
Steven’s code, while Steven multitasked between
answering an occasional question from Greg and his email.
When Greg finished reviewing a section of code, the two
rejoined working in the code editor, made modifications to
the code, and then moved on to the next section.

Aside from peer-to-peer tasks, the teams also engaged in
group-wide tasks. Members of Team Alpha, for example,
conducted a team-wide design session. In the session, the
lead developer replicated an architectural diagram from his
personal device onto the group’s large display. Using the
diagram as a shared visual reference, the team stood near
the large display to discuss the content of the diagram and
its implications on their immediate and future work.

In another team-wide collaboration that was focused on
feature planning, a developer replicated a note taking
application onto the large display and the team took turns
adding content to the list. Team members added content by
interacting with replications of the note taking application
that they had also created on their personal devices.

Finally, one of the more inventive uses of the framework
that we observed was to place information on the large
display to passively attract the attention of team members.
For example, in Team Alpha, a developer placed a trade
news article discussing a competing product on the display
to entice discussion and comments from team members.

Though not exhaustive, these examples demonstrate that
teams did indeed utilize the framework to perform many
different types of collaborative tasks. Users were able to
quickly and easily make task-related artifacts available to
the group, without disrupting the natural flow or pace of the
collaboration. For example, users could, in most cases,
quickly transition from individual work to joint interaction
with an application without having to physically move or
reconfigure devices. For example, as one user commented,
he appreciated “the ability to have multiple team members
actively manipulate the same application.”

Users also appreciated the ability to share windows while
maintaining the ability to multitask with other applications.
As one user wrote, “I like that I can be actually working on
another team member’s machine (reviewing code, editing a
PowerPoint, editing a word doc) in a hidden window (off to
the side) while not blocking them from doing other work.”

Users could also quickly make information available for
group review and comparison through the ability to place
applications from multiple devices onto large displays. One
user said the most useful piece of functionality was “the
ability to easily display items [from] the desktop to [the large
display] where they could be viewed by others.” Another
said it was useful because “you could see that someone
was collaborating, and might choose to jump in.”

Instrumented Measurements
We collected over 1035 hours of system use across the 15
users. The amount of use by each user was highly varied;
the overall mean length was just under 74 hours
(SD=64h04m). The distribution, though, was bimodal; a
subgroup of 7 users used the framework for a mean of
16h21m (SD=3h46m) during the course of the study, while
the remaining 8 had a mean of 131h38m (SD=17h24m).
These results exemplify two types of use of the framework.
The less frequent users would tend to only launch the
framework when it was needed (e.g., to initiate or support a
replication) while others would launch and leave it running
throughout the entire workday (e.g., to make applications
available to facilitate awareness for team members).

96 applications were made available to the group in total;
74 were shared and 22 were shown. On a per user level,
mean shares was 6.73 (SD=10.1) and mean shows was 2.0
(SD=2.1) for the period the framework was deployed. This
result illustrates that users typically only made applications
available to the group when there was an immediate need. It
also indicates that the owner of an application deliberately
considered the control other members should have over it.

Figure 6 shows the distribution of application types made
available. Given the task domain, it was expected that the
majority of applications made available would be source
code related. But, many other applications were also made
available including instant messaging (IM) applications,
diagramming tools, and Web browsers. This highlights the
need for MDE frameworks to support myriad applications.

Figure 6: Breakdown of the type of applications that users
made available to their group.

Of the 96 (~80%) applications that were made available, 77
of them were replicated. The mean time that an application
was replicated was 13m38s (SD=23m33s). 19 (~25%) of
the replications occurred in collaborations in which more
than one application was replicated at the same time. This
functionality was leveraged, for example, to compare
information that was distributed across several devices.

At the device level, the median number of applications that
were replicated from and to each device was 6.00 (SD=4.0)
and 2.50 (SD=9.7), respectively. The imbalance is due to
the heavy use of the large displays (35/77, or 45.5% of the
replications). This shows that both personal-to-personal and
personal-to-large display replications were utilized.

There were 898 Collaborator Bar interactions, a per user
mean of 68.9 (SD=41.9). This shows users were leveraging
this component as a means for establishing replications and
for acquiring awareness of others’ current tasks.

Finally, the users rarely used the input redirection support
(only 3 instances logged). This result indicates that users
strongly preferred to perform input actions via replications
on their local device, rather than on the shared display.

Impact on Existing Collaborative Practices
We collected 125 hours of coded observational data over
the three week period of the study. 50 hours of observation
were conducted prior to the introduction of our framework,
and 75 hours were conducted with our framework. The
coded data is summarized in Figure 7.

For Physical Movement, a change was found in the number
of movements to a single personal device in Team Beta.
Movements dropped from 66% to 40%. No differences
were found for Team Alpha. Analysis did not reveal
significant differences in the other categories.

We do not believe this is a negative result for two reasons.
First, the framework was specifically designed to support
existing collaborative practices, not to necessarily change
them. Second, the use of the framework was studied within
teams who had well-established working relationships (e.g.

the teams had been working together for several years). The
fact that the teams used the framework in support of many
tasks without a detectable change in observed behavior
suggests that the design of the framework succeeded in
supporting natural collaborative practices. Indeed, as we
found in the interviews, users stated that a central benefit of
the framework was that it allowed new opportunities for
collaboration within their existing group practices.

This result does not necessarily mean that changes in group
behavior would not occur. Rather, it suggests that such
changes would occur gradually, over much longer duration.
We plan to further investigate this issue in future studies.

DISCUSSION
A central design decision in developing our interaction
framework was to use a replication model. The purported
benefit of this model is that it would allow any off-the-shelf
application to be shared across devices. Indeed, results from
our study showed that this design decision was justified, as
users chose to leverage this benefit to share code editors,
Web browsers, and document editors, among others.
Another benefit is that the model enables the interaction
context of applications to be maintained when replicated
(e.g., keeping breakpoints and stack data in a debug tool).
This proved to be valuable, as it minimized the overhead
when transitioning between individual and group work.

A main criticism of this approach is that users cannot
independently manipulate the view of a shared application.
However, results from our study did not show this to be a
serious problem in the domain studied. The reason is that
our framework was used mostly to support opportunistic,
short-lived collaborative engagements. In these cases, it
was important for users to maintain the same view.

Overall, our study showed that groups did find value in
using our framework (in an MDE setting) to support
software development. This is evidenced by the wide range
of tasks performed and applications shared, and by many
users stating during the group interview that they would
want to continue using the framework. Several users also

Figure 7: This chart summarizes the observation data gathered before and after the framework was deployed. Results are
reported as the percentage of total collaborative instances observed per condition (194 before/160 with framework).

stated that our framework allowed the large displays to be
more tightly integrated into their work practices, as their
use could now be shared without configuration overhead.

Teams utilized almost all of the features of our framework,
but its usage frequency was relatively modest overall. We
attribute this usage behavior mostly to the task domain, as
users were often focused on their own individual efforts.
The value of the framework was thus derived not from its
frequency of use, but in its utility in supporting specific
instances of collaborative engagements. Users expressed,
however, that the framework may have been utilized more
frequently in situations where collective understanding of
the technical content is low, e.g., during project planning or
initial coding, resulting in more information being shared.

The use of our framework was studied in one complex task
domain, software development. This decision was made
because it would allow us to study the actual benefits and
use of this type of framework in an authentic setting, filling
a large gap in the current literature on MDEs. Groups in
other domains that share similar work processes, e.g., to
opportunistically share task information, transition between
individual and joint work, and collectively manipulate
content on large displays, may benefit from and/or use our
framework in similar ways. Collaborative design and
creative writing offer potential domains in which to further
study the use of our (or a similar) framework.

Though studied in one domain, results from our study did
reveal opportunities for improving the design of MDE
frameworks in general. One improvement would be to
enable the owner of a window to know the status of the
associated replications on other users’ machines. For
example, users wanted to know when a team member was
actively working within a replicated window or if it had
been moved out of focus or minimized, as this would allow
them to better time appropriate transitions to (sub)group
work. One possible solution would be to provide visual
cues of replication status within the title bar or other
decoration of the source window on the owner’s device.

A second improvement would be to merge the framework’s
Collaborator Bar with the contact lists already available in
existing communication tools such as e-mail and chat. This
would reduce the need for maintaining separate collaborator
lists and free up valuable screen real estate. It could also
enable cross-utilization of collaboration tools. For example,
an ongoing group chat could easily expand, if desired, to a
collaboration involving several application windows shared
among the users’ displays.

Finally, frameworks should enable users to manage sharing
options from any device within the MDE. For example,
once engaged in a task at another user’s work area or large
display, a user may want to access applications running on
her personal device. The current design of our framework
requires the user to move back to her device to set the
appropriate permissions. A possible solution would be to
allow the user to enter a password into her representation on

the Collaborator Bar to set all running applications on her
local device to be shared (or a subset based on defined
rules), allowing the desired applications to be available.

CONCLUSION
Multiple display environments offer an exciting opportunity
for allowing groups to collaborate more effectively with
digital information. In this work, we have made several
important contributions towards realizing this vision.

First, we have described the design and implementation of a
new interaction framework that enables core principles of
effective group work to be better realized in multiple
display environments. Key benefits include the ability to
quickly share task information via existing off-the-shelf
applications, to replicate application windows and input
across devices to support focused problem solving, and to
place task information on shared displays for discussing and
comparing ideas. The framework also affords a lightweight
interface for performing these and other related actions.

Second, we have presented results from one of the first field
studies investigating how groups utilize an interaction
framework for MDEs in support of authentic collaborative
tasks. We deployed our framework and, over a three week
period, studied how it was utilized by two software
development teams. Results show that teams leveraged the
framework most for facilitating opportunistic collaboration
and found value in using it overall. From observing how
groups used the framework, we produced several insights
into how the design of such frameworks can be improved.

Finally, we have made our framework publicly available.
This will enable practitioners to realize the benefits of our
framework for their own collaborative activities and enable
researchers to test new interaction designs or study its use
in other task domains. The framework can be downloaded
from http://orchid.cs.uiuc.edu/projects/IMPROMPTU/.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under award no. IIS 06-43512.

REFERENCE
1. CVS - Concurrent Versions System. Retrieved January 3,

2008 from: http://www.nongnu.org/cvs/
2. Microsoft Office LiveMeeting. Retrieved January 3, 2008

from: http://office.microsoft.com/livemeeting/
3. Subversion Project. Retrieved January 3, 2008 from:

 http://subversion.tigris.org/
4. Benford, S., et.al. Designing Storytelling Technologies to

Encourage Collaboration between Young Children. Proc. CHI,
2000, 556-563.

5. Biehl, J.T. and B.P. Bailey. ARIS: An Interface for
Application Relocation in an Interactive Space. Proc.
Graphics Interface, 2004, 107-116.

6. Biehl, J.T. and B.P. Bailey. Improving Interfaces for
Managing Applications in Multiple-Device Environments.
Proc. Advanced Visual Interfaces (AVI), 2006, 35-42.

7. Biehl, J.T., M. Czerwinski, G. Smith and G.G. Robertson.
FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams. Proc. CHI, 2007, 1313-1322.

8. Booth, K.S., B.D. Fisher, C.J.R. Lin and R. Argue. The
“Mighty Mouse” Multi-Screen Collaboration Tool. Proc.
UIST, 2002, 209-212.

9. Cheng, L.-T., S. Hupfer, S. Ross and J. Patterson. Jazzing up
Eclipse with Collaborative Tools. Proc. OOPSLA Workshop
on Eclipse Technology eXchange, 2003, 45-49.

10. Cohen, J. A Coefficient of Agreement for Nominal Scales.
Educational and Psychological Measurement, 20 37-46.

11. d'Astous, P., F. Détienne, P.N. Robillard and W. Visser. Types
of Dialogs in Evaluation Meetings: An Analysis of Technical-
Review Meetings in Software Development. Proc. Conference
on the Design of Cooperative Systems, 1998, 25-33.

12. Douglas, T. Groupwork Practice. Tavistock Publications
Limited, London, England, 1976.

13. Elwart-Keys, M., D. Halonen, M. Horton, R. Kass and P.
Scott. User Interface Requirements for Face to Face
Groupware. Proc. CHI, 1990, 295-301.

14. Froehlich, J. and P. Dourish. Unifying Artifacts and Activities
in a Visual Tool for Distributed Software Development Teams.
Proc. ICSE, 2004, 387-396.

15. Grudin, J. Computer-Supported Cooperative Work: History
and Focus. Computer (May): 19-26.

16. Gutwin, C. and S. Greenberg. A Descriptive Framework of
Workspace Awareness for Real-Time Groupware. Journal of
Computer-Supported Cooperative Work (3-4): 411-446.

17. Ha, V., K. Inkpen, J. Wallace and R. Ziola. Swordfish: User
Tailored Workspaces in Multi-Display Environments.
Extended Abstracts CHI, 2006, 1487-1492.

18. Izadi, S., H. Brignull, T. Rodden, Y. Rogers and M.
Underwood. Dynamo: A Public Interactive Surface Supporting
the Cooperative Sharing and Exchange of Media. Proc. UIST,
2003, 159-168.

19. Johanson, B., A. Fox and T. Winograd. The Interactive
Workspaces Project: Experiences with Ubiquitous Computing
Rooms. IEEE Pervasive Computing, 1 (2): 67-74.

20. Johanson, B., G. Hutchins, T. Winograd and M. Stone.
Pointright: Experience with Flexible Input Redirection in
Interactive Workspaces. Proc. UIST, 2002, 227-234.

21. Layman, L., L. Williams and L. Cunningham. Exploring
Extreme Programming in Context: An Industrial Case Study.
Proc. IEEE Agile Development Conference, 2004, 32- 41.

22. Li, D. and J. Lu. A Lightweight Approach to Transparent
Sharing of Familiar Single-User Editors. Proc. CSCW, 2006,
139-148.

23. Mandviwalla, M. and L. Olfman. What Do Groups Need? A
Proposed Set of Generic Groupware Requirements. ACM
Transactions on Computer-Human Interaction, 1 (3): 245-268.

24. Morris, M.R., K. Ryall, C. Shen, C. Forlines and F. Vernier.
Beyond "Social Protocols": Multi-User Coordination Policies
for Co-Located Groupware. Proc. CSCW, 2004, 262-265.

25. Nacenta, M.A., D. Aliakseyeu, S. Subramanian and C.
Gutwin. A Comparison of Techniques for Multi-Display
Reaching. Proc. CHI, 2005, 371-380.

26. Nosek, J.T. The Case for Collaborative Programming.
Communications of the ACM, 41 (3): 105-108.

27. Rekimoto, J. and M. Saitoh. Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing Environments.
Proc. CHI, 1999, 378-385.

28. Sarma, A., Z. Noroozi and A.v.d. Hoek. Palantír: Raising
Awareness among Configuration Management Workspaces.
Proc. ICSE, 2003, 444-454.

29. Schwaber, K. and M. Beedle. Agile Software Development
with Scrum. Prentice Hall, Upper Saddle River, NJ, 2002.

30. Scott, S.D., K.D. Grant and R.L. Mandryk. System Guidelines
for Co-Located Collaborative Work on a Tabletop Display.
Proc. ECSCW, 2003, 159-178.

31. Shen, C., K.M. Everitt and K. Ryall. Ubitable: Impromptu
Face-to-Face Collaboration on Horizontal Interactive Surfaces.
Proc. UbiComp, 2003, 281 - 288.

32. Souza, C., D. Redmiles and P. Dourish. "Breaking the Code",
Moving between Private and Public Work in Collaborative
Software Development. Proc. CSCW, 2003, 105-114.

33. Stefik, M., D.G. Bobrow, G. Foster, S. Lanning and D. Tatar.
Wysiwis Revised: Early Experiences with Multiuser
Interfaces. ACM TOIS, 5 (2): 147-167.

34. Stefik, M., G. Foster, D.G. Bobrow, K. Kahn, S. Lanning and
L. Suchman. Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings.
Communications of the ACM, 30 (1): 32-47.

35. Steiner, I. Group Process and Productivity. Academic Press,
New York, 1972.

36. Streitz, N.A., J. Giessler, T. Holmer, S. Konomi, C. Muller-
Tomfelde, W. Reischl, P. Rexroth, P. Seitz and R. Steinmetz.
I-Land: An Interactive Landscape for Creativity and
Innovation. Proc. CHI, 1999, 120-127.

37. Streitz, N.A., P. Rexroth and T. Holmer. Does Roomware
Matter? Investigating the Role of Personal and Public
Information Devices and Their Combination in Meeting Room
Collaboration. Proc. ECSCW, 1997, 297-312.

38. Tan, D.S., B. Meyers and M. Czerwinski. Wincuts:
Manipulating Arbitrary Window Regions for More Effective
Use of Screen Space. Proc. CHI, 2004, 1525-1528.

39. Tee, K., S. Greenberg and C. Gutwin. Providing Artifact
Awareness to a Distributed Group through Screen Sharing.
Proc. CSCW, 2006, 99-108.

40. Wigdor, D., C. Shen, C. Forlines and R. Balakrishnan. Table-
Centric Interactive Spaces for Real-Time Collaboration. Proc.
Advanced Visual Interfaces (AVI), 2006, 103-107.

41. Williams, L., R. Kessler, W. Cunningham and R. Jeffries.
Strengthening the Case for Pair Programming. IEEE Software,
17 (4): 19-25.

42. Wu, J., T.C.N. Graham and P.W. Smith. A Study of
Collaboration in Software Design. Proc. International
Symposium on Empirical Software Engineering, 2003.

43. Xia, S., D. Sun, C. Sun, D. Chen and H. Shen. Leveraging
Single-User Applications for Multi-User Collaboration: The
CoWord Approach. Proc. CSCW, 2004, 162-171.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	H.5.3 [Information Interfaces and Presentation]: Group and Organization Interfaces – collaborative computing.
	INTRODUCTION
	RELATED WORK
	Realizing Principles of Group Work within MDEs
	Emerging Software Development Practices
	Tools for Supporting These Practices

	IMPROMPTU
	User Interface
	Implementation

	FIELD STUDY
	Study Participants
	Procedure and Measures
	Observation Data
	Instrumented Data
	User Feedback

	RESULTS
	Use of IMPROMPTU
	Instrumented Measurements
	Impact on Existing Collaborative Practices

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCE

