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ABSTRACT

Many large content publishers use multiple content distribution net-
works to deliver their content, and many commercial systems have
become available to help a broader set of content publishers to ben
efit from using multiple distribution networks, which we refer to
as content multihoming In this paper, we conduct the first sys-
tematic study on optimizing content multihoming, by introducing
novel algorithms to optimize both performance and cost for content
multihoming. In particular, we design a novel, efficient algorithm
to compute assignments of content objects to content distribution
networks for content publishers, considering both cost and perfor-
mance. We also design a novel, lightweight client adaptation algo-
rithm executing at individual content viewers to achieve scalable,
fine-grained, fast online adaptation to optimize the quality of expe-
rience (QoE) for individual viewers. We prove the optimality of our
optimization algorithms and conduct systematic, extensive evalua-

tions, using real charging data, content viewer demands, and per-
formance data, to demonstrate the effectiveness of our algorithms.

We show that our content multihoming algorithms reduce publish-
ing cost by up to 40%. Our client algorithm executing in browsers
reduces viewer QOE degradation by 51%.

Categories and Subject DescriptorsC.2.3 [Computer Commu-
nication Networks]: Network Operations.

Keywords: Content Delivery, Multiple CDNs, Optimization.

1. INTRODUCTION

Many content publishers on the Internet use multiple content dis-
tribution networks (CDNs) to distribute and cache their digital con-
tent. We refer to content publishing using multiple content distri-
bution networks asontent multihomingln our recent survey, we
found that all major content publishers such as Netflix, Hulu, Mi-
crosoft, Apple, Facebook, and MSNBC use content multihoming.

Content publishers adopt content multihoming to aggregate the
diversity of individual CDN providers on features, performance an
commitment [7]. For example, one CDN may provide good cov-

erage for locations 1 and 2, whereas another CDN provides good

coverage for locations 2 and 3. To deliver content to viewers from

all three locations, a content publisher may need to use both CDNSs.

Given the wide usage and potential benefits of content multi-
homing, many commercial systems supporting content multihom-
ing have recently been deployeeld, [9, 11, 16, 17, 21, 27]), so
that more content publishers can benefit from content multihoming.

However, these commercial products either use ad hoc approache

or do not provide details on their designs. No previous studies on
how to effectively utilize content multihoming are known.

In this paper, we attempt to provide a framework and a set of
novel algorithms to optimize the benefits of content multihoming.
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We ask a simple question: Given that content multihoming allows a

content object to be delivered from multiple CDNs, which CDN(s)
should a content publisher use to deliver each object to each con-
tent viewer requesting this object, so that the publisher optimizes
its benefits from content multihoming? This question is the key
to efficiently utilizing content multihoming, since its solutions can
be implemented directly with the flexible request routing mecha-
nisms €.g, DNS CNAME, HTTP Redirect from servers, and client
scripts in end hosts) in modern content delivery infrastructures.

An answer to this simple question, however, is not immediately
obvious. Consider the current common approach of choosing, for
each content viewer, the best performing CDN among all candidate
CDNs. This approach, despite its simplicity, has multiple issues.
First, although the chosen CDN may provide the highest level of
performance, for example, satisfying that 99% viewers do not see
quality of experience (QoE) degradation, the cost of the chosen
CDN can be much higher than another CDN with a slightly lower,
but still high enough level of 95%. Second, there are often multi-
ple CDNs with comparable and sufficient levels of performance at
a given regione.g, in US. One common approach to break ties in
such cases is to pick the CDN with the lowest cost. However, the
costs of CDNs, in particular, pay-as-you-go CDNs such as Ama-
zon CloudFront, are volume based and non-linear. The cost of one
object assignment depends on the other assignments. Third, there
are locations where even the best performing CDN falls short. For
example, a content publisher may have a QOE target of 95%, but
the best performing CDN at some location achieves only 90%.

In this paper, we answer the preceding question by designing
two algorithms: (1) an efficient optimization algorithm executing
at content publisher to compute content distribution guidance, and
(2) a simple algorithm executing at individual content viewers to
follow the guidance with local adaptation. Either algorithm can be
deployed alone, but together they benefit the most.

Specifically, the publisher optimization algorithm, named CMO,
computes CDN assignments considering many real factors: non-
linear, multi-region CDN traffic charging, per-request charging; con
tent licensing restrictions, CDN feature availability, and CDN per-
formance variations. The CMO algorithm is novel and highly ef-
ficient. For example, when considering traffic cost only, the com-
plexity of CMO is polynomial and independent of the number of
content objects, whereas the complexity of simple enumeration is
exponential in the number of content objects.

The local viewer algorithm provides a capability for a content
viewer to make efficient usage of multiple servers from multiple

§:DNs, with a preference ordering on the usage of CDN edge servers

provided by the content publisher. Inspired by TCP AIMD and
using a simple prioritized assignment mechanism, the algorithm
adapts the usage of multiple CDNs, achieving a performance level
that no single CDN/server can achieve alone.

We implement both of the algorithms and conduct systematic,
extensive evaluations using real charging data, content viewer de-
mands, and CDN performance to demonstrate the effectiveness of
our algorithms. We show that our content multihoming algorithms
reduce publishing cost by up to 40%. Our implementation of the
client algorithm running in Adobe Flash enabled browsers reduces
viewer QoE degradation by 51%.



2. RELATED WORK

The importance of content multihoming has led to substantial
industrial related work. We divide the industrial efforts into three
categories [7]. The first category is software systems which we
name CDN switcherse(g, [1, 21]) and integratorse(g, [19, 27].

For example, the One Pica Image CDN extension [21] of the Ma-
gento Commerce platform provides an API to support the inte-
gration with multiple CDNs, including Amazon S3, Coral CDN,
Mosso/Rackspace Cloud Files, and any CDN server or service tha
supports FTP, FTPS, or SFTP. Their objective, however, is not on
the algorithms to effectively use multiple CDNs, but rather on us-
ability issues such as seamless switching from one CDN provider
to another. Commercial systems such as [19, 27] provide CDN ser-
vices based on aggregation of multiple CDNs. They can benefit
from using our algorithms.

Going beyond the CDN switchers and integrators is a category
of systems named CDN Load balancers. There are many CDN
load balancers commercially available, including Cotendo CDN
balancer, LimeLight traffic load balancer, Level 3 intelligent traffic

management, and Dyn CDN manager. Some of these systems of

fer quite flexible rules to split CDN traffic among multiple CDNs.
For example, Cotendo CDN balancer supports rules with weighted
allocation, geographic location, geographic distance, time of day,
and any combination. In particular, the weighted allocation rule
allows a publisher to specify: percent to CDN oney percent to

multihoming: (1) content objects; (2) viewers of contents; (3) dis-
tribution networks that cache contents from origin networks to serve
content viewers.

Content object A content publisher can have a large number of
content objects such as videos and images.N_etenote the total
number of content objects. An object has many properties. In the
context of content distribution, the performance requirement, the
size, and the popularity of an object are its key properties [4]. Let

t5: be the size of objeat We introduce object popularity when we

next introduce content viewers.

N Number of content objects.
K Number of CDNs.
A Set of fine-grained location areas.
S Size of object.
n? Number of requests for objecfrom areaa.
I Location object: object requested from location area
ap Set of location areas served by charging regiaf CDN k.
iy, Charging volume of CDN: at its charging regiom.
C7() || Charging function of CDN for its charging region-.
Fy, Set of location objects that CDK can serve.
a CDN £’s performance for objeatat location area:
Pik fraction of times CDNk can deliveri® with sufficient QoE.
xd CDN guidance: fraction oh¢ requests directed to CDN
P CDN assignment: set of location objects assigned to GDN

Table 1: Summary of key notations.
Content viewer (client): There can be a large number of content

CDN two, and so on. A key missing component of these existing yjewers requesting content objects. These content viewers can be
systems, however, is the key algorithms to compute the allocation yistributed across multiple geographical areas. The specific geo-
(e.g, the percentages). Hence, the output of our optimizer can be graphical areas depend on the particular requirements of a content

used to configure these systems.

There are also client based CDN load balancers. One interest-

ing example is Conviva [9], whose video player plug-in performs
continuous video quality monitoring, and could perform automatic
CDN and/or source server switching during video playback. The
exact details of their algorithm, however, are unknown.

A third category of related industrial efforts is CDN intercon-
nect. In [20], a CDN interconnect (CDNi) architecture has been

publisher. For generality and conceptual clarity,Aebe the set of
all geographical areas, say all cities or countries. Note that in this
challenging general case the sizebtan be large, on the order of
thousands. Let € A denote a location area.

The popularity of an object among content viewers is location
dependent[12]. Let{ denote the number of times that objéutill
be requested, during a time interval (say a month), from content
viewers located at location area

proposed so that a content publisher contracts with a few upstream \ye also use® to encodelicensing restrictionghat a content
CDNs, who may delegate some requests to downstream CDNSs. Theyplisher often needs to enforce in practice. Specifically, if content
delegation relationship can be recursive to form a directional dele- \;awers from a location areashould not receive a content object

gation graph, and all of the involved CDNs are said to form a CDN
federation [5]. Our algorithms can be extended to the CDNi setting
by considering a set of connected CDNSs as a single logical CDN.

So far content multihoming has not been a focus of academic
research. A related recent academic work is a measurement stud
of Netflix [2]. The paper shows that similar to many content pub-
lishers, Netflix uses content multihoming. The paper conducts a
measurement study and shows that there are indeed potential pe
formance benefits of using content multihoming.

There has been some recent studies on intra-CDN optimizations

which can be used in conjunction with content multihoming. The
authors of [3, 22, 23, 24] study how CDNs can utilize information

on load of edge servers, network conditions, and locations/bandwidt

of clients to improve CDN request routing. Our work complements
these studies by optimizing the assignment of contents into CDNs.

We refer to our system as content multihoming to draw an anal-
ogy with traditional Internet multihominge(g, [13]). However,
content multihoming is quite different from traditional ISP multi-
homing. For example, while ISPs typically have a uniform price
based on traffic, CDNs charge customers by regions.

3. BACKGROUND AND NOTATIONS

We start by introducing the background and notations. Table 1
provides a reference for the major notations used in this paper.

r

i, ng should be 0.

Content distribution network (CDN) : A key reason of content
multihoming is to aggregate theapability-geography expertisaf
ifferent CDNSs, as different CDNs can have quite different perfor
mance and cost characteristics, at different geographic regions. O
the other hand, as we will see, such differences are a major source
of intrinsic complexity when optimizing content multihoming. In
this paper, we assume that the set of CDNs is given./{_é&te the
number of CDNs, and we ugeandj to index individual CDNs.

First consideperformanceFigure 1 shows the edge server foot-
prints of three real CDNs: Amazon CloudFront, MaxCDN and Chi-
HaCache. When a content viewer from a location aresguests a
content object through CDIN, a well designed CDN will choose
an edge server (or several servers) that is close tw serve the
request, since a short latency from edge servers to end users is typ-
ically needed to achieve good content delivery performance [15].
Comparing the geographical footprints of the three CDNs shown
in Figure 1, one can anticipate that CloudFront and MaxCDN are
more likely to provide better performance in US and Europe, while
ChinaCache may perform well in China. None of the three covers
regions such as Russia and Africa.

To quantify the performance, we conduct performance measure-
ments using 600 PlanetLab nodes at different locations to request
content objects from three CDNs (CloudFront, MaxCDN, and Lig-

There are three key types of entities being managed in contentuid Web). Since performance metrics are dependent on the content



CloudFront o MaxCDN

A ChinaCache

cave function of the charging volume. Third, there can be large

price diversity within a CDN as well as across CDNs. For exam-

ple, CloudFront’'s charge for South America for "next 100 TB" is

$0.18/GB, which is3 times that for US at the same traffic volume.
To precisely express the charging of CDNs, wedgtbe the set

of location areas served by charging regioof CDN k. For view-

ers from a location area each CDN has its own strategy to select

servers in some to serve them. This strategy is controlled by CDN

k but can be observed by content publishers [25]. For instance, in

our measurements, requests from Beijing are redirected to Cloud-

. & Front’s JP region but to MaxCDN’s US/EU/SA region. Lgtde-
Figure 1: Edge server distributions of three CDNSs. note the charging volume of CDNat its charging region, during

type, and streaming media is a major content type [8], we evalu- @ Pilling period. Specifically, the value @f; is computed as the
ate the delivery of streaming media. Table 2 shows the measuregtotal _trafflc delivered during Fhe billing period to content viewers at
success rates (fraction of clients with no video freeze) of the CDNs ocation areas who are assignedatp by CDN k. Then the total

to deliver streaming objects encoded at three different streaming charge of CDNk to the content publisher is a sum of the charges at
rates (1 Mbps, 2 Mbps, and 3 Mbps) to some representative loca-individual cha_lrglng regions. I__eft',:() denote the charging function
tions. For example, the entry for Liquid Web/Spain shows the suc- ©f CDN & for its charging regiom.

cess rates when PlanetLab viewers from Spain request from Liquid

Web: if the object is encoded at 1 Mbps, 99.4% of the viewers can 4. CONTROL FRAMEWORK

receive at the encoding rate; for a 2 Mbps object, only 47.3% of  We adopt a general, practical content publishing control frame-
the viewers can receive at the encoding rate; for a 3 Mbps object, work shown in Figure 3. A centraDptimizercomputes configu-
almost no viewers can receive at the encoding rate. The measurerations to direct viewer requests to CDNs. The configurations are
ment results show clearly that the usability of a CDN depends on sent to a DNS system, HTTP redirector, or a manifest-file server
both the objectg.g, a video encoded at 1 Mbps or higher) and system to implement direction for specific viewer requests.

the location of the viewer. We refer to objedbeing requested by In particular, we distinguish two types of clients according to
viewers at a specific location areas alocation objectdenoted as  their capabilities. This distinction affects our problem formulation.
location object®. The first type is passive clients. A key characteristic of passive
| [ CloudFront clients is that they use one CDN edge server at a time. Although

MaxCDN

Liquid Web |

[ US [ 99.9]99.9]99.9][99.2] 98.4] 97.8][ 99.3] 96.1] 92.1 multiple CDNs gnd/c_)r multiple servers fron_1 one CDN are available
[ Brazil || 100 ] 100 | 99.9][98.6] 70.5] 24.4][99.6] 0 | 0 | in content m_ultlhomlng, such traditional chentg at content viewers
AUStia 199971999719981197 6196795319701 4221 0 use only a single CDN server to serve a particular content object
Spain || 99.9| 99.9| 99.9([98.7| 96.6| 95.1|| 99.4| 47.3| 0.2 request [2]. For such clients, we assume that the results of con-
Japan || 99.0] 99.0] 99.0[[97.5[958| 77.1][99.7] 0 | O tent multihoming optimization are implemented only by server side
China [/ 999/ 999998 91.1| 24.7] ©O 161 0 0 mechanisms such as DNS redirection.
Australia|| 100 | 100 | 99.9([94.7[89.5| 0 |[[99.7] O 0 Specifically, suppose that content publisbpt comuses DNS-

based CDN redirection. For simplicity, say the publisher assigns
content object URL http://obj-i.cp.com When a client
requests this link, a DNS query from the client or the local DNS
server of the client to resolvebj - i . cp. comcan be sent to the
DNS server of the content publisher, label@@DNS in Figure 3.
By looking up the IP address of the client or the local DNS resolver
of the client,CPDNS obtains the location area Using the output
from the OptimizerCPDNS returns to the client the CNAME of a
chosen CDNk. As an example shown in Figure 3, CloudFront is
chosen. Note in real implementations, as we will see in Section 6,
URL assignment is not necessarily per-object. Alternative imple-
mentations€.g, using HTTP-based CDN redirection) are similar.
The second type is active clients. Such clients include an adap-
tation algorithm €.g, in Adobe Flash ActionScript) to utilize mul-
tiple CDN servers when retrieving a single content object. In par-
ticular, when the service rate of one CDN server is insufficient,
an active client can use additional servers (from the same CDN or
backup CDNs) to make up the deficit. The additional CDNs/servers

Table 2: Measured CDN performancepy ;. (3 content objects at
streaming rates 1/2/3 Mbps).

To precisely characterize the performance of CBNh this pa-
per, we definey ;. as the fraction of timese(g, 90%) that CDN
k can deliver;* at the encoding rate of the objectOne may de-
fine p7 ;. for other contextsd.g, for images) and use other metrics
(e.g, 95-percentile latency). Practicalbyf, can be obtained from
measurements or service level agreements (SLA) of CDNSs.

Next considercosts Different regions may have different re-
source €.g, bandwidth, electricity) costs. Different CDNs may
operate at different scales at different regions to negotiate differen
volume discounts. Hence, different CDNs’ prices might be various,
and one CDN may charge differently at each region.

Figure 2 shows the real charging structures of two CDNs: Ama-
zon CloudFront and MaxCDN. We show these two structures be-
cause they are public and represent typical CDN charging struc-
tures. We make three observations. First, each CDN groups the
locations of its edge servers into multiple regions and each region

may have a different pricing model. We refer to each such re-
gion as acharging region For example, CloudFront divides into
5 charging regions: US, EU, South America (SA), Japan (JP), and
Singapore/Hong Kong (SHK). MaxCDN divides into 2 charging
regions: US/EU/SA, and Asia Pacific (AP). The total charge of a
CDN to a content publisher is the sum of the charges at all of the

are provided to the adaptation algorithm through a manifest file

from the content publisher. Such manifest files are already used by
some clients such as the Netflix clients. As shown in Figure 3, the

CNAMEs of two CDNs are returned to an active client.

5. PROBLEM STATEMENTS

charging regions. Second, denote the total traffic originated from  With the preceding background and control framework, our prob-
the edge servers of a CDN located at a charging region during alems are easy to state. Note that there is much flexibility in the de-
billing period as thecharging volumeof the charging region; then  ployment of our control framework. There can be settings with only
the charging function of each charging region is a nonlinear con- passive clients, or only active clients, or a hybrid. We first state the



CloudFront MaxCDN
/ >~

charging region US EOD SlA P STHK [ USEOSE | [ AP |
First 10 TB /month | $0.120/GB | | $0.120/GB | | $0.250/GB | | $0.201/GB | | $0.190/GB $0.070/GB $0.100/GB
Next 40 TB /month | $0.080/GB | | $0.080/GB | | $0.200/GB | | $0.148/GB | | $0.140/GB $0.060/GB $0.074/GB
Next 100 TB /month | $0.060/GB | | $0.060/GB | | $0.180/GB | | $0.127/GB | | $0.120/GB $0.050/GB $0.064/GB
Next 350 TB /month | $0.040/GB | | $0.040/GB | | $0.160/GB | | $0.106/GB | | $0.100/GB $0.040/GB $0.053/GB
Next 524 TB /month | $0.030/GB | | $0.030/GB | | $0.140/GB | | $0.085/GB | | $0.080/GB $0.035/GB $0.043/GB
Next 4 PB /month | $0.025/GB | | $0.025/GB | | $0.130/GB | | $0.075/GB | | $0.070/GB $0.030/GB $0.037/GB
Over 5 PB /month | $0.020/GB | | $0.020/GB | | $0.125/GB | | $0.065/GB | | $0.060/GB $0.020/GB $0.032/GB
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=

location area --- (—_New York

Figure 2: Charging structures o
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(2) get CNAME d3ng4btfd3I619.cloudfront
(4) get server addresses

request|

f CloudFront and MaxCDN.

CDN guidance file

<?xml version="1.0" encoding="utf-8" ?>
pﬂe.ﬂv - <guidance expiration="12/13/2011 10:00am UTC">
\ | <cdn name="CloudFront" priority="0" url="/video/smaple.flv"
hostname="d3ng4btfd31619.cloudfront.net" />
<cdn name="MaxCDN" priority="1" url="/smaple.flv"
hostname="maxcdn.example.net" />
</quidance>

Client

.net
of CloudFront

Figure 3: Content multihoming control framework (shaded comporents include our contributions).

problem in the passive client only setting. An extension to active
client only setting is straightforward and follows. Combining them
together is also straightforward and hence omitted.

5.1 Passive Client

will first focus on the basic constraints and cost factors. In Sec-
tion 6.2, we will discuss some extensions. Note that we start with a
basic formulation based on longer-term statistics/prediction to se-
lect CDNSs. In Section 7, we will add active clients for online adap-
tation to form a more complete 2-level optimization framework.

Since a generic problem formulation has benefits, we define our Better traffic predictions (or publisher-knowledge) ofi can be
problem using generic constrained programming. Specifically, we input plugins to the problem formulation.

formulate the content multihoming optimization problem as con-
sisting of two objectives:

QoOE guarantee First and foremost, for every objettand loca-
tion areaa, if n{ > 0, content multihoming should assign one or
more CDNs for viewers from location arearequesting object

to achieve a QOE target. Each assigned Cbéhould satisfy two
requirements: (1) CDN: is providing the required features.§,
streaming vs download) to deliver object(2) pi, exceeds the
performance targetpj. Define Fi,={:*: CDN k can provide the
features to deliver objeatandp;, > p.}. In other words,F} is
the set of location objects that CDNcan serve. Note that it is
Fy, that allows us to distinguish between streaming vs download-
ing content, as it depends on object QOE metrics and featemgs (
HTTP-streaming).

Cost optimization: Under the QoE guarantee constraint, content
multihoming may balance the load to multiple CDNSs, in particular
to minimize the total cost. Let{, denote the fraction of the;
requests that is directed to CDN Hence, each? ;. is an optimiza-

After computing a solutionife., {z{}), the Optimizer sends
the solution toCPDNS in the control framework of Section 4 to
implement it. Typically, the computation should be performed each
billing cycle (e.g, a month) but can be more frequently.

5.2 Active Client

An active client allows the usage of multiple CDNSs to serve the
same request. One might think that this will add substantial com-
plexity to the preceding formulation. But as we will see, it is a
simple extension of the preceding problem definition.

Without loss of generality, consider that each active client uses
two CDNs: one primary and one backup. Consider the following
set of CDNs: each CDN is a "virtual CDN" that consists of a pair
of CDNs, sayk/ = (k, 7) wherek is the primary CDN and is the
backup. Then we will have a similar problem formulation as the
preceding formulation in proble.

First consider the QoE Guarantee. Deffie={:*: both CDNk
and CDNj can provide the features to deliver objéandp; , U

tion variable with a valid value range between 0 and 1. We state the Pi.; = P-}; Whereu denotes the joint reliability of the two CDNSs.

problemQ as:

minimize  C({z{.}
{fo,k} ’

a a
E E g mi si)

o
E

)=2_2_Cil
k a;
subjectto Vi,a,nj >0: szk =1af, > 0;

k
Vk,i,a,1" ¢ Fy :xfyk =0.

The first constraint states that each demand for an obpeca lo-

cationa should be served. The second constraint states the QoE

constraint. In other words, if CDX cannot provide sufficient per-
formance or feature for a location objeft, no content viewers
from location area for object: should be directed to CDK. Note
that the QOE constraint may lead to infeasibility. Since feasibility
can be checked efficiently, we assume feasibility.

One can add additional constraingsg, CDN capacity constraints)
and consider additional cost factoesd, storage, per request). We

Next consider the objective function. Assume that each primary
CDN £ still delivers the same amount of traffic. The backup CDN
Jj incurs an additional traffit — p7 ,, fraction of the time. One may
verify that C({z{,, }) andC({z7}) have similar structure and
can be solved with the same method. ,

After computing a solutionf., {xj.k, 1), where eaclt is a pair
of CDNs, the Optimizer sends the solution to manifest file servers
to return two CDNs for each active client request.

6. COMPUTING OPTIMIZATION

We now develop techniques to solve the problem defined in the
preceding section. Since the problems for the passive clients and
active clients have the same format, we use the passive client for-
mulation: ProblemQ. One might consider solvin@ using stan-
dard LP, but this can be intractable: 500K objects, 200 locations,
and 3 CDNs will imply 300M variables, 100M constraints, and to



minimize aconcavefunction. No generic solver we know can han-
dle this case, so we develop our specific algorithm.

Our strategy is to first transform the problem to a combinato-
rial assignment problem in Section 6.1. Then, in Section 6.2 we
develop a novel, efficient algorithm that computes an optimal as-
signment without enumerating all of the exponentially many possi-
bilities. We discuss extensions in Section 6.3.

6.1 Location Object Assignment

At a first glance of the probler®, one might think about us-
ing convex programminge(g, [6]) to solve the problem. Unfortu-
nately, the objective functiod’({z{ ;}), which we target to min-
imize, is aconcavefunction. Hence, traditional, efficient convex
programming does not apply.

On the other hand, the concavity of the objective does lead to
one observation: there is a minimizer of probl€such that each
location object is put into only one CDN. Precisely, we have:

LEMMA 1. There exists a minimizer of ({= ;. }) for problem
Q, in which for each location objeét, there exists a CD®* such
thati® € Fy«, andzy .« = 1.

Consider one such solution, and {etdenote the assignment (or
mapping), according to the solution, from each location ohjéct
to its assigned single CDK: ¢ (i) = k. Lety, denote the set of
location objects that are assigned to CRNIf Vk,Vi* € i, we
havei® € F}, we cally afeasible assignment

The above interpretation of the solution allows us to change prob-

lemQ into an assignment-based formulation, as shown in Figure 4.

For each location object, the figure shows the candidate CDNSs thatcharging regions of CDX. Note thatag,, - - -

the location object can be assigned to. CBNs a candidate for
location object only if ¢ € Fj. The problem then is to assign
each location object to a single CDN to minimize the cost.

‘ Cloudfront ‘ ‘ LiquidWeb ‘ ‘MaxCDN ‘ Optimal Assignment
I - J —

S X e I-:;;agi_t;le Assignment

i)
Figure 4: Q can be formulated as an assignment problem.

An advantage of the discrete assignment formulation is that it
allows enumeration. A straightforward approach to finding an opti-

\

)
/

element of the vector representing the charging volume at charging
region of CDN. LetV,, denote the multi-dimensional charging vol-
ume vector representing the outcome of an assignmekite will
develop the exact representation shortly.

Since the objective function of our problegnis a concave func-
tion of the charging-volume vector, we know from concave op-
timization theory that we need to evaluate the objective function
only over the extremal points of the convex hull of the charging
volume vectors produced by feasible assignments. In other words,
if the charging volume vectoV,, resulted from a feasible assign-
mente is not an extremal point, the vector can be expressed as a
convex combination of those resulted from some other feasible as-
signments, and hence there is no need to evaljiatBigure 5(a)
illustrates that we need to consider thdge marked with an "x".
As we will see, the number of extremal points is polynomial and
below we develop our efficient algorithm to identify them.

Representing each location object as a vectoi he foundation of

our basic idea is based on considering the resulting charging vol-
umes of an assignmetitas a vectoV,,. We now introduce a rep-
resentation of each location object i as a vector to allow easy
aggregation on the outcome of an assignment. This representation
is quite simple but involves some notation complexity at the begin-
ning. The benefit of the representation is that it provides essential
insight and simplification during our development.

We firstintroduce charging region intersections. Recall that each
CDN k defines a mapping from a location aketo one of its serv-
ing charging regionsyz, - - -, akRk, where Ry, is the number of

, a* provides a par-
tition of all location regionsA. An intrinsic complexity of multiple
CDN s is the heterogeneity of their charging regions. Define the “in-
tersections” of the charging regions of tieCDNs. Leta/ 12" "K
denote the intersection of the charging regien®f CDN 1, of
CDN 2, andrx of CDN K. Then atotal ofR = Ry %« Ry --- Rk
intersections are defined. Figure 6(a) illustrates a setting of two
CDNs with 3 and 2 charging regions respectively. At mBst 6
non-empty intersections may be defined.

With charging region intersections, we can represent each loca-
tion object as a vector. Specifically, given the set of charging region
intersections, one can observe that each locationabedongs to
one and only one of the charging region intersections. Fix one or-

mal assignment is to enumerate all possibilities, and select the besdering of the intersections. Then we can convert the traffic of each
one among the feasible assignments. We know that each locationjocation objecty = i to an R-dimension vector with all elements

objecti® can be assigned to one of tl& CDNs. Hence, the total
number of assignments i§/41Y. For K = 2 or 3, | A| on the order

of thousands an@& hundreds of thousands, direct enumeration is
practically infeasible. In other words, the assignment formulation
allows enumeration, but naive enumeration does not work.

6.2 Efficient and Optimal Assignment

Our key insight to substantially reduce the complexity is that the

except one being 0. The position of the non-zero element is the
intersection that the location aredelongs to, and the value at the
position isn{s;. When it is clear from the context, we useto
either represent the name of a location objéabr the vector. Fig-
ure 6(b) shows the vector representations of two location objects.
By representing each location object i* as aR dimensional
vector, we introduce a simple, linear outer-production operator to
reflect the effect of assigningto CDN k. Let e, be a unitK-

naive enumeration of all of the exponential number of assignments dimensional vector whose only non-zero element is akthie po-
is unnecessary. Instead, we need to consider only a polynomialsition and the value at the k-th position is 1. Defing ey, which

number of assignments.
Basic idea: Specifically, consider the space of all possible assign-

reflects the effect of assigningto CDN &, as producing & x K
matrix such thaw is at the k-th column and the other columns are

ments illustrated by the space on the left of Figure 5(a), where eachzero. Figure 6(c) shows four examples, when we assign two loca-
assignment is shown as a point. A feasible assignment is showntion objects to two CDNs. For example, the first example shows

as an white box while an infeasible one is shown as a black box.

v1 ® eq; that is, assigning, to CDN 1.

Naive enumeration evaluates every assignment, ignores infeasible Given this definition of the outer-product and an assignment
assignments, and picks a feasible one that gives the best outcome.we can calculate the outcome ©f Recalling thatyy, is the set of

Now instead of looking at the space of assignments, we look
at the space of theutcome®f the assignments, illustrated by the

right space in Figure 5(a). Each assignment point in the left space
has a corresponding outcome point in the right outcome space.

Specifically, the outcome of an assignmeris a vector, with each

location objects assigned to CDNwe have:

sz[z Uyoons Z U]=Zv®e¢,(v)eRRXK.

vEY] VEY K v

@

We now go back to identifying extremal assignments.
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Figure 5: An example illustrating the basic idea to solve problem Q.
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(b) location-object as a vector (c) location-object can choose either CDN 1 or CDN 2 (d) both select CDN 1

Figure 6: An example illustrating the charging-intersections.

Extremal assignments v.s. separation vectorThe basis of our
technique to identify the extremal points of a set of points is through
the fundamental Separation Lemma [14]. Specifically, ddfine=
{Vy}, wherey is a feasible assignment. Then a sufficient and
necessary condition for a specifig- € Vi to be an extremal point

of Vg is that there exists a vectét in the same dimension space
whose inner productP, V,, — V=) > 0 for any otherV,, € V.

In other words, the inner product d? and V,- is smaller than
the inner product betweeR and any other point, € Vy. For
instance, in Figure 5(b){(P, Vi, — V=) > 0,V # ™.

Hence, a strategy to identify the set of all extremal points is to
compute a set aPs and from eact® we compute an extremal fea-
sible assignment. Denote the computation ftBrio an assignment
as f(P). Figure 5(d) illustrates a set ¢fs and a mapping function
7. We want the following conditions on the set B andf() :

(1) computationally efficientooth the set oPs andf (P) are easy
to compute; (2)valid: eachf(P) is an extremal feasible assign-
ment; (3)exhaustive for each extremal feasible assignmeit,
there exists ond in the set ofPs, such thaff (P) = ¢*. Below,
we show a set oPs and a functiory (P) satisfying the preceding
conditions.

Function f(P): We start by developing (P). We have the fol-
lowing CDN Identification Lemma.

LEMMA 2 (CDN IDENTIFICATION LEMMA). A feasible as-
signment)™ is extremal among the set of all feasible assignments
if and only if3P € R™*X such thatvv, k, k # ¢*(v) Av € Fy:
(P,v ® eyx(v)) < (P,v® ex).

PROOF The right to the left is straightforward, as the right con-

Set of Ps: We consider the following set dPs: a P satisfies that
all of the elements i{ (P, v ® ex)|Vk : v € F}} are distinct:
{P:VEk,ju,k#jANveF,NF;: (Pv® (e —ej)) #0} (2)
Since the conditions are stronger than those from the CDN Iden-
tification Lemma, we know that each sué¢hcan compute an ex-
tremal assignment.
Geometrically, the condition thd satisfies P, v® (ex —e;)) #
0 is equivalent to thaP is not on the hyperplane that is orthogonal
tov ® (ex — e;). Denote this hyperplane & ® (ex, — ¢;)]* and
let H be the set of all these hyperplanes. Hencg®, satisfying all
conditions in (2) is not on any of the hyperplanesHn In other
words, P should be an interior point in a cell created with hyper-
planes inH as boundaries. Efficient algorithms.§, [26]) exist to
enumerate one interior point from each cell.

Exhaustiveness From the preceding development, it should be
clear that we have developed a set”sf and the functiorf which

is computationally efficient, anfl( P) is valid. The only remaining
issue is whether we satisfy the exhaustive requirement by enumer-
ating an arbitrary interioP from each cell. First, we have

PrROPOSITION 1. If ¢* is an extremal feasible assignmeaf?
makingf(P) = " and P is an interior point of a cell irH.

PROOF Suppose we find an extremal assignmeéiitfrom a
point @ that is not an interior point of any cell iH. Our method
is to construct another poig)’, from @, that is indeed an interior
point of some cell iffl and thatf (Q’) = ¥*.

SinceQ is not interior,3vg, ko # jo such thatQ, vo ® (ex, —
ejo)) = 0. ConsiderP(e) = Q+¢-vo® (ex, —ej, ) Wheree € R™.
Thereforevuv, k # j, (P(e),v® (ex —¢€;)) = (Q,v® (er —e;)) +

dition is stronger than the Separation Lemma condition, when one € - (v ® (ex, — €5,),v ® (ex — €;)) is a continuous function of

applies Expression (1). We prove the left to right. Given the Sep-
aration Lemma, we know tha@P € R™*¥ such that{ P, Vy~) <

(P, V), for any feasible) # v*. Consider any andk such that

v € Fy, andk # 4" (v), lety)’ be the assignment obtained frafi

by movingv to CDN k; that is, s’ (v) = k andv’(u) = ¥*(u),

Yu # v. Sincet’ is also a feasible assignment, it follows that
<P, V¢*> < <]D7 Vw/>, henCG(P,’U ® ew*(v)> — <P,U ® 6k>
(P, Vy=) — (P, V) <0. O

We name the lemma CDN lIdentification Lemma because it is
the foundation to develop(P). Given aP in the lemma, we can
compute a corresponding extremal assignmerdfficiently: for
each location objeat = ¢, iterate among all feasible CDMsfor
the object (e, i* € Fy), we computg P, v ® ei). We assign to
the (unique) CDNk attaining the minimal valuep (v) = k.

e. When|€'| > 0 is small enough: (1) Fovv # v,k # ko or
J # Jjo, (P(€),v ® (ex — e;)) # 0 and has the same sign ('+'
or ) with (Q,v ® (ex — €;)); (UP(€),0 @ (exy — €5)) =
¢ - [vo @ (exy — e5)I* # 0.
This means thaP’(¢’) is on one less hyperplaneshthan Q.
Moreover, sinceb™ is extremal, we havéQ), v®(ey = vy —ex)) < 0
Vo, k, k # 9" (v) Av € Fy, so it follows from (1) that{ P ('), v ®
(e~ vy — ex)) < 0 as well, hencef (P(¢')) = ¢* by Lemma 2.
This process can be repeated to yiel@'ahat is not on any hyper-
planes inH and thatf (Q") = v*. O
A potential issue is that the interiét from the preceding lemma
may not be the one that our algorithm uses. However, we have the
following result, and establish the exhaustiveness of our approach.
LEMMA 3. Interior points from the same cell find the same ex-
tremal feasible assignment.



PROOF Let P; and P, are two interior points from the same
cell. Suppose their corresponding extremal assignmghtg 3,
then3vy which hasyi (vo) # 13 (vo). According to Lemma 2:

(Pr,v0 ® (g1 (vg) = €p5(v0))) <O
(P2, v0 @ (€y (vo) — €u5(v0))) > 0
which contradicts with thaP; and P, are from the same cell.[]

Redundancy elimination On the surface, we need to enumerate
all cells created by a total 94| N K (K — 1) hyperplanes, where
|A|N is due to the number of possibilities for which is the num-
ber of location objects, an& (K — 1) is due to the number of
possibilities for(e, — e;). However, some of thedA| NK (K — 1)

assigned to only CDN 2; antls: the location objects that can be
assigned to either CDN 1 and CDN 2. Then the only remaining is-
sue is to determine the assignments of objecigirOne can verify
that the correct strategy is that we compare the objective function
values of two alternatives: (1) assigning all objectd/into CDN

1, with objects inV; andV; preassigned to their respective CDNSs;
and (2) assigning all objects Ir; to CDN 2, with objects if; and

V> preassigned to their respective CDNSs.

Now, we see how CMO works. In Step 1 (Lines 2 to 9), the al-
gorithm computes that there is only one hyperplane defined by [1,
-1]+. In Step 2Conput ePs computes two interior PB, and P,
whereP; is a vector in the lower right half-space (x-coordinate is
larger than the y-coordinate) of Figure 5(c), ddis one in the up-

hyperplanes are redundant. Specifically, if one vector is just the per left half-space (x-coordinate is smaller than the y-coordinate).
scaling of another vector, they define the same hyperplane. Forin Step 3, the algorithm first evaluatés=P; to compute an ex-

examplepy ® (ex — e;) andv ® (e; — ex) give the same hyper-
plane. Hence, we need to consider only distinct pairs ahd .
Also, consider two location objects = i} andvy, = 52, |If
their vector representations satisfy = A\vs, where\ is a scalar,
then they define the same hyperplane, for each paik ahd j.

tremal assignment. For each location objeet®, if it isin V; or
V4, the algorithm assigns it to the only feasible CDNu I V3, the
value of (P, v ® e1) is the x-coordinate oP; times the traffic vol-
ume of object, and the value of P;, v ® e2) is the y-coordinate of
P, times the traffic volume of. SinceP; is chosen in Step 2 such

In other words, all location objects mapped to the same charging that the x-coordinate is larger than the y-coordind?e produces

region intersection define the same hyperplane for each pair of
andj. Hence, the number of unique hyperplanes is at rﬂﬁj)
which is independent of the number of content objects.

Algorithm 1: CMX(V, {Fkx})
Input: V: location objects to be assigned.
Input: {Fy}: K CDNs and their feasibility sets.
Output: optAs: optimal assignment
/* Step 1: Identify hyperplanes */
HPs<« () ;
foreachv € V do
vVec = vAsVector(v) ;
foreachdistinct(k, 7) pairsdo
if (ve F Av € Fj)then
hpCandidate mormalize([vVec ® (ex — e;)]*) ;
if (hpCandidate ¢ H Ps) then
| HPs +=hpCandidate

©oOo~NOODWNPR

/* Step 2: Compute interior points from hyperplanes */

11 Ps< computePs(HPs);

12 /* Step 3: Evaluate extremal assignments identified by Ps */
13 optAs<« null;

14 foreach P € Psdo

15 /* compute extremal assignmentsidentified by P */
16 ¥ < null;

17 foreachv € V do

18 optOuter<— +oo;

19 foreach CDN k do

20 if v e Fi A(P,v® eg) < optOuter then
21 P(v) « k;

22 L optOuter<— (P, v ® eg)

23 /* compare new extremap with current optAs */

24 if (¢ > optAs) then

25 | optAs<

26 return optAs;

Algorithm : For completeness, we specify the content multihoming
optimization (CMQ) algorithm in Algorithm 1. There are many
ways implementingonput ePs( ) , and we choose [26] as it can
be easily parallelized for multiple CPU cores and computers.

Example: To help readers understand the CMO algorithm, we ap-
ply it to the simplest setting of two CDNs and both use one global
charging region. This is a setting where one can solve prolem
using intuition. Specifically, in this setting, we can divide the lo-
cation objects into 3 categorie¥;: the location objects that can
be assigned to only CDN 1i/2: the location objects that can be

the extremal assignment of assigning all object¥4rto CDN 2.

The algorithm next evaluatd3=P, and produces the extremal as-
signment of assigning all objects Iy to CDN 1. At Line 24, the
algorithm compares the two cases and picks the better one. Hence,
it produces the intuitive result. For general settings that we can
no longer appeal to intuition, the algorithm computes the optimal
assignment efficiently.

6.3 Extensions

The CMO algorithm developed in the preceding section applies
to concave charging functions or charging functions that can be
converted to or approximated by concave charging functions. In
this section, we discuss extensions to handle practical issues on
CDN subscription levels, per-request costs and dynamic streaming.

CDN subscription levels: For some CDNSs, a content publisher
must subscribe to a usage leveld, maximum traffic volume) and
pay a fix fee to the subscription level. To handle such a charging
model, we treat each subscription level as an individual CDN with
a capacity constraint. Note that the basic CMO algorithm needs to
be slightly extended to handle capacity constraints [18].

Per-request cost:Besides charging for traffic, some CDNs also in-
clude charges for the number of requests. For instance, CloudFront
charges $0.0075 per 10,000 HTTP requests in US. Consider that
CloudFront charges $0.12/GB for the first 10 TB traffic as shown
in Figure 2. One can calculate that if the object sizes are less than
6.25 KB, then the per-request charge can be higher than the traffic
charge. Hence, the per-request charge can be the major cost for
content publishers providing small objecesd, small images).
Extending Algorithm 1 to consider both traffic and per-request
charge is relatively straightforward. Specifically, in the preceding
section, each location object is represented Astimension vector
with one non-zero element at the charging region of the object. An
extension to include per-request charge is to represent each location
object as &R + 1 dimension vector, with the one added dimension
representing the number of requests for the object.

CDN || Traffic Charge| Per-request Charge
CDN1|[ $1.0perGB| $0.0 perrequest
CDN 2| $0.1perGB| $0.1 perrequest
Object Size #Reques{ Traffic | Vector Representatioh
v1 0.01 GB 30 0.3 GB 0.30 GB, 30
v2 0.01 GB 49 0.49GB 0.49 GB, 49
v3 0.025 GB 20 0.5GB 0.50 GB, 20
V4 1.0GB 1 1.0GB [1.00 GB, 1]
Table 3: Example of CMO with per-request cost extension.



We demonstrate the extension using an example setting (Table 3):

4 objects, 2 CDNs with one charging regiore( R = 1):

e First the 4 objects are represented as 4 2D vectors (see Table 3).

e Lines 3to 9 construct four corresponding hyperplamgs: [0.3,-
0.3,30,-301, hy =[0.49,-0.49,49,-49%, hs =[0.5,-0.5,20,-20}, hy =
[1,-1,1,-1}-. After normalization and de-duplication (Lines 7, 8),
only three are left:[1,-1,100,-100}, [1,-1,40,-40}, [1,-1,1,-1}";
i.e, first two are redundant and only 1 is needed.

e Line 11 finds 6 interior pointsp; = [1,0,1,0], P> = [-1,0,-1,0],P5
=[70,0,-1,0],P4 =[-70,0,1,0] ,Ps =[20,0,-1,0],Ps =[-20,0,1,0]

e Lines 14 to 22 find 6 extremal object assignments={CDN1
objects}{CDN2 objects): 1 ={{ v1, v2, v3, v}, Y2 ={v1, vo, v3,
val{}, ¥3 ={v1, va}{ v3, va}, Y4 ={vs, va} {1, v2}, VY5 ={v1, v2,
vs}{ va}, ¥6 ={va}{v1,v2, vs}.
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Figure 7: An active-client control diagram.

Based on the preceding guidelines, we derive a simple control
state transition diagram as the control objective of an active client.
Figure 7 shows an example control diagram where each node rep-
resents the current subset of edge servers that the active client use
The client starts in the statéi{1}, indicating that the client starts
from downloading front ;.

Note that one can introduce other transitions using our control

e Lines 23 to 25 enumerate the costs of the 6 extremal object as- state diagram based approach.

signments, and identify optimal assignment As a compari-

son, simple enumerations need to consider 16 assignment possi/ -2 Adaptation Algorithm

bilities (4 objects each with 2 possible assignments).
Multiple streaming rates: A content publisher can encode the

We implement the control diagram using the classic window-
based AIMD (Additive Increase Multiplicative Decrease) scheme,

same video object at multiple rates, and a client can switch amongPased on a key observation that there is an analogy between the
the encoding rates dynamically online. To extend CMO for this set- traditional congestion control and active client adaptation. In par-
ting, one can consider each video at each encoding rate as an indeticular, if we consider the flow from each server to the client as
pendent object and then derive the number of requests to each suci® link, then we are solving a rate allocation problem among the
object. Specifically, suppose a totahdf requests for video from links, where two essential mechanisms are needed: (1) the rate on
location area when there is no multi-rate. Consider two encoding @ link should be reduced if the link is overloaded; and (2) a probing
rates, say 1x and 2x. Then according to client access bandwidthscheme is needed to utilize newly available capacity.

distribution at location are@and the publisher dynamic streaming Specifically, for each sevér, the client maintains eequest win-

algorithm, one can derive?, andn?, for the two encoding rates ~ dowsizew;, (KB), which is the current upper bound on the out-
from n¢ [18]. standing request load from the client/igperT" seconds, wherg’

is a configuration parameter. For simplicity, we refer to each KByte
7. ACTIVE CLIENTS in the request window aspiece We use the classic AIMD algo-

An active client is provided with a list of CDNs to use when rithm as a base to adjust the window sizesh iénd the network
requesting a single content object. The list may come from the from h to the client has enough capacity to finish the requested
result of our optimization algorithm in the preceding section or an- pieces,wy, is linearly increased; otherwisey, is multiplicatively
other source of guidance. Even though our optimization algorithm decreased. Our client uses HTTP range request to query a set of
considers performance constraints, the filtering is based on long-pieces in one HTTP request message. After the range request is
term statistics. Hence, the objective of the active client is to adapt finished or a time out happens aftBrseconds, apnResponse
to specific real-time CDN performance dynamics, in particular, to event handler is triggered. We implement the AIMD algorithm in

improve QoE during CDN server failures.
7.1 Adaptation Problem Statement

onResponse listed as Algorithm 2.
Algorithm 2 : onResponse(h, reqPieceSeatvdPieceSel)

An active client receives guidance in the format of a list of CDNs 1 if revdPieceSet = reqPieceSet and wy, = reqPieceSet.size()then
where each CDN has a priority value. Without loss of general- 2 | wp < wy +1;

ity, we consider two CDNs: the firgirimary CDN, and the sec-

3 if rcvdPieceSet C reqPieceSetthen

ond backupCDN. For example, the example in Figure 3 gives 4 | wj, + max(1,w,/2);

an active client two CDNs with priority O (primary) and priority

5 /* Update piece status */

1 (backup) respectively. We assume that each individual CDN 6 foreach piece ic reqPieceSet do

on the list provides a small number (say, 1 or 2) preferred edge 7

servers through its request routing mechanisny,(DNS resolu-
tion or HTTP redirect). Leff denote the set of all candidate edge

servers. As an example, if the primary CDN provides two servers 10

(h11 andhi2) and the backup CDN provides one server(, then
H = {h11, h12, ho1}. Each server it has a priority value, which
is the priority value of its CDN. At time, an active client maintains
a subsefi, .. Of H under the following guidelines:

e QOE protection (feasibility)the combined available bandwidth
of the servers i ,.+ive Can provide the target QoE;

e Prioritized guidancethe available bandwidth of a higher prior-
ity server should be used before that of a lower priority server;

e Low session overheathe overhead of redistributing load among

if piece i€ rcvdPieceSef then
8 I extract piece i's data, add to video buffer;
9 pieceStatusMap[i}— DOWNLOADED;

else
11 | pieceStatusMap[i}- NOT_ASSIGNED;

12 avail, < true; /* mark h avaiable for new assignment */
13 updateAssignment();

However, our problem is also different from the traditional con-
gestion control problem, and hence we need to introduce two novel
and interesting techniques.

Total workload control: Naive usage of traditional AIMD will
imply that all servers can be fully utilized to achieve a download
rate that is as high as possible. However, this can be unnecessary

same-priority servers is unnecessary unless it reduces the num+for the content viewer. Specifically, to achieve QoE of streaming
ber of servers used concurrently to reduce the number of con- content, the client only needs to sustain a sufficient downloading

nections overhead.

rate €.9g, the video encoding rate KB/s).



Based on this observation, we appbtal workload controlto a video encoded in a set of rates, say 1x, 2x, and 4x. As we de-
appropriately limit the usage of the CDN servers. In our design, rive Algorithm 3 and 4 from Figure 7, after a publisher defines its
everyT seconds, a client callsel easelLoad( ), shown in Algo- preference on video rates and the extended control diagram, we can
rithm 3, to releasev - T' new pieces to be downloaded. Note the similarly derive a control algorithm. As a simple example, a con-
client may download more than - T pieces inT" seconds if there tent publisher with a control goal of providing the highest video
are incomplete pieces in previous downloading periods. rate whenever possible will lead to a transition diagram that more
servers are used until combined capacity is above 4x, if possible.

Algorithm 3: releaselLoad()

1 /* regLimit: the “newest” piece to be assigned for downloagth 8 EVALUATIONS

2 regLimit <— regLimit +w - T'; ' ] )

3 // set pieceStatusMap of new pieces NOT_ASSIGNED In this section, we evaluate the cost and performance of our sys-
4 updateAssignment(); tem design for content multihoming. In specific, we implement and

L . . test our optimization algorithm (CMO), the client adaptation algo-
Prioritized assignment Total workload control does notyetachie-  (ithm, and the interactions between the two system components.
ve our adaptation goal. In particular, the load may still spread un- \ye yse real data to drive the run of our optimizer, and instrument
necessarily to too many servers. For example, a single primary cjients on PlanetLab to conduct experiments.
serverhi; has enough capacity to serve the client, but a backup .
serverhy; may be also used unnecessarily for downloadinggif 8.1 Evaluation Methodology
has an equal opportunity to fetch assigned pieces. Content publishers We evaluate our algorithms using real traces

Our solution to this issue igrioritized assignmentSpecifically, of content requests to two production Video-on-Demand (VoD) pub-
when assigning pieces to be downloaded, a client starts with serverdishers. We name the content publishers CP1 and CP2 respectively.
with higher ranks. Algorithm 4 gives more details on how pieces We consider each video as a content object, and collect the follow-
to be downloaded are assigned to servers. ing information about each video: its size, and the number of times
- - - that it is requested from each city per month for a 6-month dura-
Algorithm 4 - updateAssignment() tion. Tableq4 shows the summarg// Statistics of the content objects.
L /I sort serverList by rank (retrieved from manifest xml) Figure 8 plots detailed statistical distributions of object sizg} (
5 ;é f’;]dihggr’i/he g_issiF(;]e raggr’verList[serverList size() - o number of requests:{) to each object, and traffic volume; ;) of

. each object. These distributions are long-tail distributions.

4 [* availy, is h's availability for assignment, see Algorithm 2 */ - .
5 if avail, then We use the MaxMind GeolP database to map a client IP address
6 /* request fromh, for up tow, pieces */ in the trace to a location area. Our evaluations define location areas
7 reqPieceSgt<« 0; _ _ as following: we start with each country as a location area; for a
g I p|a>|’P°F')”tf thflO'deSt piece being consumed by player*/ country with a large geographical span, we refine it to a next level;
| <— playPoin ) . . .
10 while i < reqLimit and reqPieceSet size() <w;, do for example, we define each state in USA as a location area.
11 if pieceStatusMapli] = NOT_ASSIGNEDen # Objects| Sum of Obj Size| Total Traffic | #Request
12 reqPieceSgt < reqPieceSgtU {piece i}; CP1| 667,856 71TB 27,307 TB | 390,235,440
13 pieceStatusMapl[i] = ASSIGNED; CP2| 529,411 40 TB 12,114 TB | 153,129,348
14 i+ Table 4: Summary statistics of content objects.
12 i reg\lfgielceie}t;; e® then Content distribution networks: Our evaluation is based on three
h H .

17 L asyncHTTPRequest(h, reqPiecaSeimeout(T)): commert_:lal CDNs: Amazon CloudFront, MaxCDN, and an anony-

| L mous private CDN which we refer to as CDN3. The geographic

footprints of CloudFront and MaxCDN are shown in Figure 1, and
the real charging structures and parameters of CloudFront and Max-
CDN are shown in Figure 2. The server distribution and detailed
price information for CDN3 are not shown due to privacy. More-
over, in our evaluations, we require thgt, > 90% for each CDN

k and each location obje¢t.

To obtain how each CDN maps a location area to its charging re-
gion, we deploy a measurement client on each orig6éfavailable
PlanetLab machines to request objects from each CDN. We use
t racer out e to determine the locations of the CDN servers, as
the GeolP database can be inaccuratg, all CloudFront servers
are always classified as in Seattle, WA, US. After computing the
charging region intersections of the three CDNs, we pick the top 5
intersections that contain the most traffic. Table 5 shows the per-
centages of traffic to major geographical regions.

Comparison with TCP: Our window-based downloading adapta-
tion algorithm is different from traditional TCP congestion control.
(1) To maintain client QoE, it requires (at application-level, dur-
ing T seconds) that the total downloading rate across all servers to
be at least video encoding rate. In particular, the sum of window
sizes should satisfy", w;, > w - T. The adaptation algorithm en-
forces this by setting initial window size for a primary serveig(
wp11) to bew - T, and for each backup server to be(2) Differ-

ent from TCP’s per-segment window update, we apply Al on the
window size after all requests of the entire window are completed.
In steady state (client streaming smoothly), this allows the client to
slowly probe higher-ranked servers. Upon primary server failure o
congestion, the Al strategy increases the backup server's window
size; due to self clocking and before reaching the streaming rate,

the increase behavior is similar to TCP slow start, which is fast to US | EU | SA | Asia& Pacific | Japan
allow request queue cleanup. (3) Although the algorithm maintains CPLII19% ] 7% | 1% 1% 2%

a window size for each server, it does not open a (TCP) connection CP2|| 77% | 11% [ 6% 5% 1%

to a lower-ranked server until necessary. Also, when the higher- Table 5: Traffic distribution across major geo regions.

re_tnked servers have sufficient capacity, the adaptation algorithm Optimizer: Our publishing optimizer is simple to implement2000
disconnects the lower-ranked servers. lines of C++ code) and runs on a commodity PC with 2 quad-core
Active multi-rate streaming: Just as CMO can be extended to Intel Xeon 2.33 GHz CPUs and 3 GB of memory. It takes about
handle multi-rate streaming, the preceding active clients can also 12 minutes for CMO to compute the optimal assignments for each
be extended to take advantage of multi-rate. Specifically, consider charging period (one month) for our data set.
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Active clients and controller: We integrate our client adaptation  start or user drag (seek). As observed in [10], freezes are a majo
algorithm into an Adobe Flash video player. Our player is deployed factor reducing viewer's QoE. (Zmoothness ratigdhe percentage

on CDN3 and can be accessed by any web browser on the Internetpf the clients that never encounter freeze. This is a statistical per-
including PlanetLab nodes. We leverage HTFldhge r equest formance metric. (3puffering time viewer visible buffering time

and Adobe Flash'®Net St r eam appendByt es (supported by (in seconds) per video view, including startup delay and seek delay.
version 10.1 and above) to integrate multiple CDN servers for one
video streaming session. Our player periodically reports back throu-

gh HTTP to a publisher controller. The reporting process allows the tion 6.2 considering both traffic and per-request cost defined in

controller to obtain player IP, player local DNS server address, and Section 6.3; (2)greedy This algorithm assigns location objects

the IP addresses of each CDN serving the player’s content request, o - I
An implementation issue of the player is that the Flash browser sequentially in a uniformly random order. When assigning the next

sandbox does not allow UDP DNS queries. Hence, although a object, the algorithm computes the cost to be reached when the ob-

CDN typically resolves a DNS name to multiple server IPs, the jectis putin each feasible CDN. The object is assigned to the CDN

player can have access to only one. We use two approaches to Ob[esultlng the lowest cost among the alternatives;r¢8nd-robin

; o This algorithm also assigns location objects sequentially in a uni-
tain ba}CKUp Server IPs.for a C.D.N' The firstis that the controller re- formly random order. A CDN index is maintained. When assign-
turns, in the manifiest file, additional server IPs reported recently by

other closeby (same location area) players. The second is that theitng the next object, the algorithm uses round-robin, starting from
player makes a TCP connection to its LDNS or CDN DNS server he current CDN index, to assign the object to a feasible CDN; (4)

. . : cost-only This algorithm minimizes cost without any performance
if allowed by Flash Socket Policy) to query DNS directly. h . ; :
( We install)llvlozilla Firefox with X\z:iob?a Flasgh Player (us)ilng Xvnc considerations. (Sperf-only. This algorithm selects the best per-

as XServer) ont12 PlanetLab nodes and some personal laptops forming CDN(s) at each location area regardiess the cost.
with ADSL and WiFi, and instrument these clients to conductvideo g 2 Publishing Cost Optimization
streaming experiments. Note that although most of our clients are
PlanetLab nodes which typically have good network connectivity
rather than real clients, we control the settings to reflect two key
factors that contribute to real client QoE degradation: server over-
load and network bottlenecks. Both factors are included in our
stress tests to impose challenging, oscillating limits on bandwidth.
Specifically, based on our traces, we deploy active clients on
PlanetLab according to their availability and geographical loca-
tions. We select random videos from CP1 and generate active client
request load according to video request patterns of CP1.

CDN assignment algorithms We evaluate 5 CDN assignment al-
gorithms: (1)CMO: This is the CMO algorithm defined in Sec-

We start by evaluating the CDN cost savings of our CMO algo-
rithm. At the beginning of a month, for each location atgave
use the content traffic ta in last month as the traffic prediction
in this month; we leverage the algorithms listed in Section 8.1 to
decide how to redirect requests from various locations to the three
CDNs; we then use the real traffic in the month to calculate the total
monthly cost of CP1 and CP2.

We first compare the monthly costs to the two content publish-
ers using CMQvsthose using the other 4 algorithms. Figures 9(a)
and 9(d) show the results. We observe that CMO saves around 30%
Content deployment We deploy video objects testing active clien-  ~ 40% each month for both CP1 and CP2, compared with all algo-
ts on both CloudFront and CDN3. CloudFront has the best perfor- rithms that should satisfy real performance constraints (perf-only,
mance according to our PlanetLab measurement (see Table 2). Weound-robin, and greedy). For CP2, CMO’s cost is close to cost-
are able to run Adobe Flash Socket Policy service on CDN3, and only because (1) the traffic of CP2 is mostly in US/EU, and (2)
hence active clients can use customized and optimized TCP socketall 3 CDNs have good performance in US/EU and hence each can
for requests to this private CDN. We also run multiple pre-tests (be- be used. Note that CMO achieves savings despite traffic fluctua-
fore the evaluation) to warm up both CDN<,, the edge servers  tions across billing periods. Figures 9(b) and 9(e) show the traf-
prefetched the video content before the experiments start. fic demands from different regions in different months. From Fig-
ure 9(b), we see that the demand from US changes from 4000 TB to
3000 TB in the first 2 months. Despite such fluctuations and hence
rediction variations, CMO achieves substantial cost savings.

CDN server capacity failure models We evaluate the effective-
ness of our client adaptation algorithm under both controlled stress

tests and real server congestions. In the real experiments using wd’ Next we look at some details on how CMO assigns traffic among

CDNs and PlanetLab clients, we dot inject any failures, but the . ] . .
CDN servers can get temporarily congested due to the bursty natureCDNs' Figure 9(c) shows _the traffic assignments for CP1, durl_ng

. the 2nd month. As comparisons, we also show results for two sim-
of client request load. .

ple extreme strategies: perf-only and cost-only. We observe that

Performance metrics We evaluate both th€DN costandclient cost-only assigns all traffic to MaxCDN, but as we have seen in Ta-
QoEof our content multihoming optimization. CDN costis simply  ble 2, this can lead to performance violations at locations such as
the total charge (in USD) by all CDNs given a CDN assignment, China and Brazil. The perf-only strategy assigns a large fraction of
i.e, the value of functiorC({z7 , }) defined in problen@ in Sec- traffic to CDN3, whose performance is the best in AP and JP. How-
tion 5.1. For client QoE, we use three performance metrics: (1) ever, the cost of perf-only can be much higher. Specifically, we
freezesthe frequency (number of times per view) a viewer encoun- can see from Figure 9(f) that the cost of perf-only for CP1 during
ters rebuffering during a video view, excluding cases due to initial month 2 is1.84 times that of CMO. CMO assigns most traffic to



6000

5000

5 ‘ ‘ "perf-only’- -+
g 1000 roEr?{j r%?:%—x— 1 5000
2 greedy ¥ & 4000
g 800 CMO ---8- 1 S a0
Z eo0l . +COSI-9nIy+ By § 3000 g
8 Wz S g 300
B 400 R * 1 g 2000 £ 2000
(5] i = W B — - B ) E
£ 200m- - . . = 1000 1000
e
0 : : : : 0 - 0
1 2 3 4 5 6 1 2 3 4 5 6 Cost-Only  Perf-Only CMO
(a) monthly cost: CP1 (b) CMO monthly traffic distribution: CP1 (c) traffic distribution: CP1; Month 2
600 3500 600
[~ rolnd rabih e 3000
B 500 greedy % | & _ 500 CloudFront
2 CMO --3--- £ 2500 a
< 400 cost-only & o @ 400
P . E 2000 s
§ 3007 + AR 1 3 T 300
> > 1500 bt
@ 200F AR . £ 1000 & 200
g 100W T @ s T 100
0 : : ‘ ‘ 0 0
1 2 3 4 5 6 1 2 3 4 5 &6 Cost-Only Perf-Only ~ CMO
(d) monthly cost: CP2 (e) CMO monthly traffic distribution: CP2 (f) monthly cost: CP1; Month 2

Figure 9: Cost and traffic distributions in the 6 months with different CDN assignment algorithms.
CloudFront and MaxCDN, as they satisfy performance constraints  Fourth, the active client achieves “stickiness” for low session

at lower costs. overhead. For example, comparing (a)(b) with (d)(e), we observe
. ) that in (a) and (b), there is no shifting-back poi mary1, as
8.3 Active Clients pri mary?2 can handle the load alone and belongs to the same

Passive clients cannot handle the failures or congestions of theCDN aspri mary1.
primary CDN, and hence may encounter QoE degradation at times.  Fifth, the active client performs relatively the worst in (f), when
We demonstrate that active clients can protect per-view QoE de- there is asingleprimary CDN server and the capacity of the server
spite CDN server failures/congestions. fluctuates widely. We observe multiple downloading spikes, as the
client recovers from low rates resulted from HTTP request time-
outs. The fluctuations of the client downloading rate reflects the
primary server’s capacity fluctuations. In practical deployment, itis
recommended that a content publisher uses a primary CDN which
offersmultiple edge servers.

Stress tests We start with stress tests when delivering a 1080p
HD video object encoded @80 KB/s. We run two sets of experi-
ments: (1) only one CDN (primary), which has two servers named
pri marylandpri mary2; (2) two CDNs (one primary+one bac-
kup), each with one server, nampdi nmar y1 andbackupl re-
spectively. In each set, we vary the capacitypofi maryl in

the following three cases: (1) step-down, in which the capacity of
primaryl is reduced down to only0% of video encoding rate

PlanetLab experiments We next evaluate the statistical perfor-
mance for both passive and active clients with real PlanetLab ex-

. X . periments. First, we measure smoothness. Figure 11(a) shows that
and then recovers after 2 min; (2) ramp-down: in which the ca- it passive clients3% clients experience video freeze. Thus, the
pamty_ofprl mar ylis I|_nearly decreas_ed (tﬂ)O% of the video smoothness ratio 2%, which is considered as high performance
encoding rate) in one minute and then linearly increased back; (3) ;, industry. Active clients improve viewer QoE and reduce the per-
oscillation, in which the ca_lpacity qfr i mar y1 periodically falls centage of clients observing video freeze to ahB%. Thus, ac-
down (t010% of the encoding rate) and then recovers aitesec- tive clients reduce QoE degradation®)%. We also calculate that
onds. We plot detailed downloading rates to observe more behav-g e clients reduce the average number of video freezes#romn

iors. Figure 10 plots the results. (for passive clients) t@.19. Second, Figure 11(b) shows the buffer-

We make multiple observations on client behaviors. First, in all j, ime performance. Active clients reduce the average buffering
6 cases, the client downloads at full speed at the beginning to build ;14 from9.6 seconds to less than half4s seconds

the required 4-second video buffer before playback can start. After
playback starts, the active client continues to maintain a 16-secondcost impact of active clients Active clients might increase pub-
video buffer (total workload CO“F“")- _ _ _ lisher cost for two reasons. First, the optimization algorithm con-
Second, despite gir i mary1's fluctuations, our active client  gjgers the impact of active clients by predicting the amount of traf-
achieves QOE protection by downloading from alternative servers. fic shifted to backup. Reality may be different from the prediction.
In (b) and (e), despite gradupt i mary1 capacity changes, the  gecond, for simplicity, during evaluations, our optimization algo-
aggregated downloading rate (labeledt al ) never falls below rithm does not consider the additional number of requests due to
the streaming rate at any instance of time. In the other 4 cases,packup protection.
there are instantaneous dips when the total rate drops below the v evaluate the cost impact of client adaptation by comparing
streaming rate. However, instantaneous dips may not lead to viewerine computed optimal cost, the real cost during our PlanetLab ex-
visible freezes if the streaming buffer has enough data. In all 6 heriments (after scaling up the traffic), and the cost of using round-
cases, the rebuffering wheel never appears during the entire videgrohin CDN assignment. To better understand this impact, we fur-

playback. o . ther break down the cost into “traffic cost” and “per-request cost”.
Third, the active client prefensr i mary1 overbackupl, fol- Figure 11(c) shows the result. We observe that the cost impact in

lowing prioritized guidance. For example, in (q); i mary1 re- total is less thais.6% (~8, 000 USD added to-142, 000). Traffic

covers at 250s and its utilization starts to increase, and at time 280Sgeaviation is less tha?. 1% from prediction and contributes 104%

all requests have shifted frobackupl back topri mary1. One of the total5.6% difference. The additional number of requests ac-

can also observe this “shifting-back” in (e) at time 160s-210s. counts for4.2% of the total cost.
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content multihoming, by introducing the CMO algorithm and the
client adaptation algorithm to optimize both the cost and the per-
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Figure 11: Per-view QOE in PlanetLab experiments.

CONCLUSIONS

[11] Dyn CDN managehtt p://dyn. con .
In this paper, we have conducted the first systematic study on [12] Geo best-of YouTube.

formance for content multihoming. Our realistic evaluations show [14]
that our content multihoming algorithms reduce publishing cost by
up t040%, and reduce viewer QoE degradationday%.

Acknowledgments: The research of Y. Richard Yang
is supported in part by grants from NSF, and by a gift from Huawei.

[15]

[16]

We are grateful to Aditya Akella (paper shepherd), Nicole Shibley,
Peng Zhang, Haiwei Xue, Andreas Voellmy, Yin Zhang and SIG- [17]
COMM anonymous reviewers for valuable suggestions.

10.

(1]
(2]

(3]

(4]
(5]
(6]
(7]
(8]

(9]
[10]

REFERENCES

Olbox.http://cdn. Olbox. net.

V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Stmer, and
Z.-L. Zhang. Unreeling netflix: Understanding and improving
multi-CDN movie delivery. INEEE INFOCOM'12

H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, an¥ah
Der Merwe. A practical architecture for an anycast CINCM
Trans. Web5(4):17:1-17:29, Oct. 2011.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Rirda
needle in haystack: Facebook’s photo storag&l$ENIX OSDI'10
G. Bertrand, E. Stephan, G. Watson, T. Burbridge, P. Egrénd
K. Ma. Use cases for CDNi. IETF Draft, Jan. 2012.

D. BertsekasConvex Analysis and Optimizatio?003.

CDN expertht t p: // cdnexpertonl i ne. com node/ 45.
Cisco Systems. Cisco Visual Networking Index: Forecast a
Methodology, 2011-2016.

Conviva.ht t p: / / www. convi va. com

F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, Anfaan,

J. Zhan, and H. Zhang. Understanding the impact of video tyuati
user engagement. WCM SIGCOMM'11

(28]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[13]

http:// geobest of yout ube. gmapi fy.fr/.

D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang.tmpzing
cost and performance for multihoming. ACM SIGCOMM'04

A. loffe and V. Tihomirov.Theory of Extremal Problemg&lsevier
Science Ltd, 1979.

R. Krishnan, H. V. Madhyastha, and etc.. Moving beyond-éo-end
path information to optimize CDN performance. ACM IMC’09.
Level 3 Intelligent Traffic Managemertit t p:

/1w | evel 3. conf ~/ medi a/ Asset s/ br ochur es/
brochure_intelligent_traffic_nmanagenment. pdf.
Limelight Traffic Load Balancet t p:

/1w | i nelight.comtraffic-Ioad-bal ancer/.

H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian. Optirimg
cost and performance for content multihoming. Technical Repor
YaleCS-TR1456, May 2012.

MetaCDN.ht t p: / / www. net acdn. coni .

B. Niven-Jenkins, F. L. Faucheur, and N. Bitar. Conwistribution
network interconnection problem statement. IETF Draft, 2812.
OnePicaht t p: / / ww. magent oconmer ce. com

R. S. Peterson and E. G. Sirer. Antfarm: efficient contistribution
with managed swarms. NSDI'09.

R. S. Peterson, B. Wong, and E. G. Sirer. A content prapiag
metric for efficient content distribution. IACM SIGCOMM’11

|. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feladman
Improving content delivery using provider-aided distance
information. InIMC’10.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. ldeyget
off of my cloud: Exploring information leakage in third-party
compute clouds. IACM CCS’09

N. H. Sleumer. Output-sensitive cell enumeration in hpfEne
arrangements\ordic J. of Computing6:137-147, June 1999.
XDN. ht't p: / / ww. xdn. com



