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Abstract

We study a combinatorial variant of the classical
principal-agent problem. In our setting a principal
must motivate a team of strategic agents to exert
costly effort on his behalf, but their actions are hid-
den from him. Our focus is on cases where arbitrary
combinations of the efforts of the different agents prob-
abilistically determine the outcome, and the principal’s
problem is to decide which set of agents to motivate to
exert effort and to what extent. The principal moti-
vates the agents by offering to them a set of contracts,
which together should put the agents in an equilibrium
point of the induced game. We present formal models
for this setting, embark on a comprehensive analysis of
the basic issues, but leave many questions open.

1 Introduction

1.1 Background

The well studied principal-agent problem deals with
how a “principal” can motivate a rational “agent” to
exert costly effort towards the welfare of the princi-
pal. The difficulty in this model is that the agent’s
action (i.e. whether he exerts effort or not) is invisi-
ble to the principal and only the final outcome, which
is probabilistic and also influenced by other factors, is
visible. “Invisible” here is meant in a wide sense that
includes “not precisely measurable”, “costly to deter-
mine”, or “non-contractible” (meaning that it can not
be upheld in “a court of law”). This problem is well
studied in many contexts in classical economic theory
and we refer the readers to introductory texts on eco-
nomic theory such as [4] Chapter 14. The solution is
based on the observation that a properly designed con-
tract, in which the payments are contingent upon the
final outcome, can influence a rational agent to exert
the required effort.

∗moshe@sims.berkeley.edu. UC Berkeley School of Informa-
tion

†mfeldman@cs.huji.ac.il. School of Engineering and Com-
puter Science, The Hebrew University of Jerusalem, Israel.

‡nisan@cs.huji.ac.il. School of Engineering and Computer
Science, The Hebrew University of Jerusalem, Israel.

In this paper we initiate a general study of handling
combinations of agents rather than a single agent.
While much work was already done on motivating
teams of agents [3, 10], our emphasis is on dealing
with the complex combinatorial structure of depen-
dencies between agents’ actions. In the general case,
each combination of efforts exerted by the n different
agents may result in a different expected gain for the
principal. The general question asks, given an exact
specification of the expected utility of the principal for
each combination of agents’ actions, which conditional
payments should the principal offer to which agents as
to maximize his net utility? In our setting and unlike
in previous work (see, e.g., [11]), the main challenge is
to decide which set of agents to offer contracts to; once
this set is determined, the optimal contracts themselves
can be easily determined.

Our study may be viewed as part of a general re-
search agenda stemming from the fact that all types of
economic activity are increasingly being handled with
the aid of sophisticated computer systems. In general,
in such computerized settings, complex scenarios in-
volving multiple agents and goods can naturally occur,
and they need to be algorithmically handled. This calls
for the study of the standard issues in economic theory
in new complex settings. The principal-agent problem
is a prime example where such complex settings intro-
duce new challenges.

Applications of such complex multi-agent scenarios
include those of firms that wish to hire many individ-
uals (or firms) to collectively perform a task such as
finding information, testing a system, or promoting a
product. In many such cases, the exact contribution
of each sub-contractor cannot be fully monitored (as
the contribution is hidden or too costly to monitor).
A more extreme point of view may envision this as
the first step towards a game-theoretic foundation for
designing profit-based collaborative projects like open-
source software or ”Wikis” which are now only done
voluntarily: a principal that wishes such a project to
“emerge” and is willing to pay for it, need only put the
optimal set of contracts in place – no further monitor-
ing is necessary1.

1No doubt that there is still a significant gap between our
models and this type of application – e.g. where do we get the
specification of the expected success for each set of agents?
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Another class of applications we have in mind is the
incentive-based management of the Internet infrastruc-
ture – addressing the difficulty that various parts of the
infrastructure are owned by different entities who have
their own ”selfish” goals. While the field of algorithmic
mechanism design [5] deals with how to extract private
information from the different “selfish” sub-systems, it
assumes that the actions of these sub-systems are pub-
licly known (or at least may be verified). This paper
deals with the complementary point of view: there is
no private information, but the actions of the different,
privately owned, pieces of the network are not publicly
observable. An example that was discussed in [2] is
Quality of Service (QoS) routing in a network: every
intermediate link or router may exert different amount
of effort when attempting to pass a packet of informa-
tion. How can we assure that the “right” combination
of efforts is exerted? Similarly, a task that runs on a
collection of shared servers may be allocated, by each
server, an unknown percentage of the CPU’s processing
power or of the physical memory.

This paper suggest models for and provides some
interesting initial results about this “combinatorial
agency” problem. We believe that we have only
scratched the surface and leave many open questions,
conjectures, and directions for further research.

1.2 Our Models

We start by presenting a general model: in this model
each of n agents has a set of possible actions, the
combination of actions by the players results in some
outcome, where this happens probabilistically. The
main part of the specification of a problem in this
model is a function that specifies this distribution for
each n-tuple of agents’ actions. Additionally, the prob-
lem specifies the principal’s utility for each possible
outcome, and for each agent, the agent’s cost for each
possible action. The principal motivates the agents by
offering to each of them a contract that specifies a pay-
ment for each possible outcome of the whole project2.
Key here is that the actions of the players are non-
observable and thus the contract cannot make the pay-
ments directly contingent on the actions of the players,
but rather only on the outcome of the whole project.

Given a set of contracts, the agents will each opti-
mize his own utility: i.e. will choose the action that
maximizes his expected payment minus the cost of his
action. Since the outcome depends on the actions of all
players together, the agents are put in a game and are

2One could think of a different model in which the agents
have intrinsic utility from the outcome and payments may not
be needed, as in [8, 9].

assumed to reach a Nash equilibrium3. The principal’s
problem, our problem in this paper, is of designing an
optimal set of contracts: i.e. contracts that maximize
his expected utility from the outcome, minus his ex-
pected total payment. The main difficulty is that of
determining the required Nash equilibrium point.

In order to focus on the main issues, the rest of the
paper deals with the basic binary case: each agent has
only two possible actions ”exert effort” and ”shirk”
and there are only two possible outcomes ”success”
and ”failure”. It seems that this case already captures
the main interesting ingredients4. In this case, each
agent’s problem boils down to whether to exert effort
or not, and the principal’s problem boils down to which
agents should be contracted to exert effort. This model
is still pretty abstract, and every problem description
contains a complete table specifying the success prob-
ability for each subset of the agents who exert effort.

We then consider a more concrete model which con-
cerns a subclass of problem instances where this expo-
nential size table is succinctly represented. This sub-
class will provide many natural types of problem in-
stances. In this subclass every agent performs a sub-
task which succeeds with a low probability γ if the
agent does not exert effort and with a higher proba-
bility δ > γ, if the agent does exert effort. The whole
project succeeds as a deterministic Boolean function of
the success of the subtasks. This Boolean function can
now be represented in various ways. Two basic exam-
ples are the ”AND” function in which the project suc-
ceeds only if all subtasks succeed, and the “OR” func-
tion which succeeds if any of the subtasks succeeds. A
more complex example considers a communication net-
work, where each agent controls a single edge, and suc-
cess of the subtask means that a message is forwarded
by that edge. “Effort” by the edge increases this suc-
cess probability. The complete project succeeds if there
is a complete path of successful edges between a given
source and sink. Complete definitions of the models
appear in Section 2.

1.3 Our Results

We address a host of questions and prove a large num-
ber of results. We believe that despite the large amount
of work that appears here, we have only scratched the
surface. In many cases we were not able to achieve the

3In this paper our philosophy is that the principal can “sug-
gest” a Nash equilibrium point to the agents, thus focusing on
the “best” Nash equilibrium. One may alternatively study the
worst case equilibrium as in [11], or alternatively, attempt mod-
eling some kind of an extensive game between the agents, as
in [7, 8, 9].

4However, some of the more advanced questions we ask for
this case can be viewed as instances of the general model.
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general characterization theorems that we desired and
had to settle for analyzing special cases or proving par-
tial results. In many cases, simulations reveal structure
that we were not able to formally prove. We present
here an informal overview of the issues that we studied,
what we were able to do, and what we were not. The
full treatment of most of our results appears only in
the appendix, and only some are discussed, often with
associated simulation results, in the body of the paper.

Our first object of study is the structure of the class
of sets of agents that can be contracted for a given
problem instance. Let us fix a given function describ-
ing success probabilities, fix the agent’s costs, and let
us consider the set of contracted agents for different
values of the principal’s associated value from success.
For very low values, no agent will be contracted since
even a single agent’s cost is higher than the principal’s
value. For very high values, all agents will always be
contracted since the marginal contribution of an agent
multiplied by the principal’s value will overtake any
associated payment. What happens for intermediate
principal’s values?

We first observe that there is a finite number of
“transitions” between different sets, as the principal’s
project value increases. These transitions behave very
differently for different functions. For example, we
show that for the AND function only a single tran-
sition occurs: for low enough values no agent will be
contracted, while for higher values all agents will be
contracted – there is no intermediate range for which
only some of the agents are contracted. For the OR
function, the situation is opposite: as the principal’s
value increases, the set of contracted agents increases
one-by-one. We are able to fully characterize the types
of functions for which these two extreme types of tran-
sitions behavior occur. However, the structure of these
transitions in general seems quite complex, and we were
not able to fully analyze them even in simple cases like
the ”Majority function” (the project succeeds if a ma-
jority of subtasks succeeds) or very simple networks.
We do have several partial results, including a con-
struction with an exponential number of transitions.

During the previous analysis we also study what we
term “the price of unaccountability”: How much is
the social utility achieved under the optimal contracts
worse than what could be achieved in the non-strategic
case5, where the socially optimal actions are simply
dictated by the principal? We are able to fully analyze
this price for the ”AND” function, where it is shown to
tend to infinity as the number of agents tends to infin-
ity. More general analysis remains an open problem.

Our analysis of these questions sheds light on the

5The non-strategic case is often referred to as the case with
”contractible actions” or the principal’s ”first-best” solution.

difficulty of the various natural associated algorithmic
problems. In particular, we observe that the optimal
contract can be found in time polynomial in the rep-
resentation of the probability functions. We prove a
communication lower bound that shows that the opti-
mal contract can not be found in time that is polyno-
mial just in the number of agents, in a general black-
box model. We also show that when the probability
function is succinctly represented as a read-once net-
work, the problem becomes #P -complete. The status
of some algorithmic questions remains open, in particu-
lar that of finding the optimal contract for technologies
defined by serial-parallel networks.

In a follow-up paper [1] we deal with equilibria in
mixed strategies and show that the principal can gain
from inducing a mixed-Nash equilibrium between the
agents rather than a pure one. We also show cases
where the principal can gain by asking agents to reduce
their effort level, even when this effort comes for free.
Both phenomena can not occur in the non-strategic
setting.

2 Model and Preliminaries

2.1 The General Setting

A principal employs a set of agents N of size n. Each
agent i ∈ N has a possible set of actions Ai, and a
cost (effort) ci(ai) ≥ 0 for each possible action ai ∈ Ai

(ci : Ai → <+). The actions of all players determine,
in a probabilistic way, a “contractible” outcome o ∈ O,
according to a success function t : A1×...×An → ∆(O)
(where ∆(O) denotes the set of probability distribu-
tions on O). A technology is a pair, (t, c), of a success
function, t, and a cost function, c. The principal has
a certain value for each possible outcome, given by the
function v : O → <. As we will only consider risk-
neutral players in this paper6, we will also treat v as
a function on ∆(O), by taking simple expected value.
Actions of the players are invisible, but the final out-
come o is visible to him and to others (in particular the
court), and he may design enforceable contracts based
on the final outcome. Thus the contract for agent i is
a function (payment) pi : O → <; again, we will also
view pi as a function on ∆(O).

Given this setting, the agents have been put in a
game, where the utility of agent i under the vec-
tor of actions a = (a1, . . . , an) is given by ui(a) =
pi(t(a)) − ci(ai). The agents will be assumed to reach
Nash equilibrium, if such equilibrium exists. The prin-
cipal’s problem (which is our problem in this paper) is

6The risk-averse case would obviously be a natural sec-
ond step in the research of this model, as has been for non-
combinatorial scenarios.
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how to design the contracts pi as to maximize his own
expected utility u(a) = v(t(a))−∑i pi(t(a)), where the
actions a1, . . . , an are at Nash-equilibrium. In the case
of multiple Nash equilibria we let the principal choose
the equilibrium, thus focusing on the “best” Nash equi-
librium. A variant, which is similar in spirit to “strong
implementation” in mechanism design would be to take
the worst Nash equilibrium, or even, stronger yet, to
require that only a single equilibrium exists.

2.2 The Binary-Outcome Binary-

Action Model

We wish to concentrate on the complexities introduced
by the combinatorial structure of the success function
t, we restrict ourselves to a simpler setting that seems
to focus more clearly on the structure of t. A similar
model was used in [11]. We first restrict the action
spaces to have only two states (binary-action): 0 (low
effort) and 1 (high effort). The cost function of agent i
is now just a scalar ci > 0 denoting the cost of exerting
high effort (where the low effort has cost 0). The vector
of costs is ~c = (c1, c2, . . . , cn), and we use the notation
(t,~c) to denote a technology in such a binary-outcome
model. We then restrict the outcome space to have only
two states (binary-outcome): 0 (project failure) and 1
(project success). The principal’s value for a successful
project is given by a scalar v > 0 (where the value of
project failure is 0). We assume that the principal can
pay the agents but not fine them (known as the limited
liability constraint). The contract to agent i is thus
now given by a scalar value pi ≥ 0 that denotes the
payment that i gets in case of project success. If the
project fails, the agent gets 0. When the lowest cost
action has zero cost (as we assume), this immediately
implies that the participation constraint holds.

At this point the success function t becomes a func-
tion t : {0, 1}n → [0, 1], where t(a1, . . . , an) denotes the
probability of project success where players with ai = 0
do not exert effort and incur no cost, and players with
ai = 1 do exert effort and incur a cost of ci.

As we wish to concentrate on motivating agents,
rather than on the coordination between agents, we
assume that more effort by an agent always leads
to a better probability of success. I.e. that the
success function t is strictly monotone. Formally,
if we denote by a−i the (n − 1)-dimensional vector
of the actions of all agents excluding agent i. i.e.,
a−i = (a1, . . . , ai−1, ai+1, . . . , an), then a success func-
tion must satisfy:

∀i ∈ N, ∀a−i ∈ A−i t(1, a−i) > t(0, a−i)

Additionally, we assume that t(a) > 0 for any a ∈ A
(or equivalently, t(0, 0, . . . , 0) > 0).

Definition 1. The marginal contribution of agent i,
denoted by ∆i, is the difference between the probability
of success when i exerts effort and when he shirks.

∆i(a−i) = t(1, a−i) − t(0, a−i)

Note that since t is monotone, ∆i is a strictly posi-
tive function. At this point we can already make some
simple observations. The best action, ai ∈ Ai, of agent
i can now be easily determined as a function of what
the others do, a−i ∈ A−i, and his contract pi.

Claim 1. Given a profile of actions a−i, agent i’s best
strategy is ai = 1 if pi ≥ ci

∆i(a−i)
, and is ai = 0 if pi ≤

ci

∆i(a−i)
. (In the case of equality the agent is indifferent

between the two alternatives.)

As pi ≥ ci

∆i(a−i)
if and only if ui(1, a−i) = pi ·

t(1, a−i)− ci ≥ pi · t(0, a−i) = ui(0, a−i), i’s best strat-
egy is to choose ai = 1 in this case.

This allows us to specify the contracts that are the
principal’s optimal, for inducing a given equilibrium.

Observation 1. The best contracts (for the principal)
that induce a ∈ A as an equilibrium are pi = 0 for
agents who exert no effort (ai = 0), and pi = ci

∆i(a−i)

for agents who exert effort (ai = 1).
In this case, the expected utility of agents who exert

effort is ci ·
(

t(1,a−i)
∆i(a−i)

− 1
)

, and 0 for agents who shirk.

The principal’s expected utility is given by u(a, v) =
(v − P ) · t(a), where P is the total payment in case of
success, given by P =

∑

i|ai=1
ci

∆i(a−i)
.

We say that the principal contracts with agent i if
pi > 0 (and ai = 1 in the equilibrium a ∈ A). The
principal’s goal is to maximize his utility given his value
v, i.e. to determine the profile of actions a∗ ∈ A, which
gives the highest value of u(a, v) in equilibrium. We call
the set of agents S∗ that the principal contracts with
in a∗ (S∗ = {i|a∗

i = 1}) an optimal contract for the
principal at value v.

A natural yardstick by which to measure this de-
cision is the non-strategic case, i.e. when the agents
need not be motivated but are rather controlled di-
rectly by the principal (who also bears their costs). In
this case the principal will simply choose the profile
a ∈ A that optimizes the social welfare (global effi-
ciency), t(a) · v −∑i|ai=1 ci. The ratio between the
social welfare in this non-strategic case and the social
welfare for the profile a ∈ A chosen by the principal
in the agency case, may be termed the price of unac-
countability.

Given a technology (t,~c), let S∗(v) denote the op-
timal contract in the agency case and let S∗

na(v) de-
note an optimal contract in the non-strategic case,
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when the principal’s value is v. The social welfare
for value v when the set S of agents is contracted is
t(S) ·v−∑i∈S ci (in both the agency and non-strategic
cases).

Definition 2. The price of unaccountability
POU(t,~c) of a technology (t,~c) is defined as the
ratio between the total social welfare in the non-
strategic case and the agency case:

POU(t,~c) = Supv>0

t(S∗
na(v)) · v −∑i∈S∗

na(v) ci

t(S∗(v)) · v −∑i∈S∗(v) ci

In cases where several sets are optimal in the agency
case, we take the worst set (i.e., the set that yields the
lowest social welfare).

When the technology (t,~c) is clear in the context we
will use POU to denote the price of unaccountability
for technology (t,~c). Note that the POU is at least 1
for any technology, and is exactly 1 for some technol-
ogy (t,~c) if and only if the socially efficient outcome is
achieved (in the strategic case) for all values.

As we would like to focus on results that derived
from properties of the success function, in most of the
paper we will deal with the case where all agents have
the same cost c of exerting effort, that is ci = c for
all i ∈ N . We denote a technology (t,~c) with identical
costs by (t, c). For the simplicity of the presentation,
we sometimes use the term technology function to refer
to the success function of the technology.

2.3 Structured Technology Functions

In order to be more concrete, we will especially focus on
technology functions whose structure can be described
easily as being derived from independent agent tasks –
we call these structured technology functions. This sub-
class will first give us some natural examples of tech-
nology function, and will also provide a succinct and
natural way to represent the technology functions.

In a structured technology function, each individ-
ual succeeds or fails in his own “task” independently.
The project’s success or failure depends, in a complex
way, on the set of successful sub-tasks. Thus we will as-
sume a monotone Boolean function f : {0, 1}n → {0, 1}
which denotes whether the project succeeds as a func-
tion of the success of the n agents’ tasks, and constants
0 < γi < δi < 1, where γi denotes the probability of
success for agent i if he does not exert effort, and δi

(> γi) denotes the probability of success if he does
exert effort. In order to reduce the number of para-
meters, we will restrict our attention to the case where
γ1 = . . . = γn = γ and δ1 = . . . = δn = 1− γ thus leav-
ing ourselves with a single parameter γ s.t. 0 < γ < 1

2 .

Under this structure, the technology function t is
defined by t(a1, . . . , an) being the probability that
f(x1, . . . , xn) = 1 where the bits x1, . . . , xn are cho-
sen according to the following distribution: if ai = 0
then xi = 1 with probability γ and xi = 0 with proba-
bility 1 − γ; otherwise, i.e. if ai = 1, then xi = 1 with
probability 1 − γ and xi = 0 with probability γ. We
denote x = (x1, . . . , xn).

The question of the representation of the technol-
ogy function is now reduced to that of representing
the underlying monotone Boolean function f . In the
most general case, the function f can be given by a
general monotone Boolean circuit. An especially nat-
ural sub-class of functions in the structured technolo-
gies setting would be functions that can be represented
as a read-once network – a graph with a given source
and sink, where every edge is labeled by a player. The
project succeeds if the edges that belong to player’s
whose task succeeded form a path between the source
and the sink7.

A few simple examples should be in order here:

1. The ”AND” technology: f(x1, . . . , xn) is the logi-
cal conjunction of xi (f(x) =

∧

i∈N xi). Thus the
project succeeds only if all agents succeed in their
tasks. This is shown graphically as a read-once
network in Figure 1(a). If m agents exert effort
(
∑

i ai = m), then t(a) = tm = γn−m(1 − γ)m.
E.g. for two players, the technology function
t(a1a2) = ta1+a2

is given by t0 = t(00) = γ2, t1 =
t(01) = t(10) = γ(1−γ), and t2 = t(11) = (1−γ)2.

2. The ”OR” technology: f(x1, . . . , xn) is the logi-
cal disjunction of xi (f(x) =

∨

i∈N xi). Thus the
project succeeds if at least one of the agents suc-
ceed in their tasks. This is shown graphically as
a read-once network in Figure 1(b). If m agents
exert effort, then tm = 1− γm(1− γ)n−m.E.g. for
two players, the technology function is given by
t(00) = 1− (1− γ)2, t(01) = t(10) = 1− γ(1− γ),
and t(11) = 1 − γ2.

3. The ”Or-of-Ands” (OOA) technology: f(x) is the
logical disjunction of conjunctions. In the sim-
plest case of equal-length clauses (denote by nc the
number of clauses and by nl their length), f(x) =
∨nc

j=1(
∧nl

k=1 xj
k). Thus the project succeeds if in at

least one clause all agents succeed in their tasks.
This is shown graphically as a read-once network
in Figure 2(a). If mi agents on path i exert effort,
then t(m1, ..., mnc

) = 1−∏i(1−γnl−mi(1−γ)mi).
E.g. for four players, the technology function
t(a1

1 a1
2, a

2
1 a2

2) is given by t(00, 00) = 1− (1−γ2)2,

7One may view this representation as directly corresponding
to the project of delivering a message from the source to the sink
in a real network of computers, with the edges being controlled
by selfish agents.
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Figure 1: Graphical representations of (a) AND and (b)
OR technologies.

Figure 2: Graphical representations of (a) OOA and (b)
AOO technologies.

t(01, 00) = t(10, 00) = t(00, 01) = t(00, 10) =
1 − (1 − γ(1 − γ))(1 − γ2), and so on.

4. The ”And-of-Ors” (AOO) technology: f(x) is the
logical conjunction of disjunctions. In the sim-
plest case of equal-length clauses (denote by nl the
number of clauses and by nc their length), f(x) =
∧nl

j=1(
∨nc

k=1 xj
k). Thus the project succeeds if at

least one agent from each disjunctive-form-clause
succeeds in his tasks. This is shown graphically as
a read-once network in Figure 2(b). If mi agents
on clause i exert effort, then t(m1, ..., mnc

) =
∏

i(1 − γmi(1 − γ)nc−mi). E.g. for four players,
the technology function t(a1

1 a1
2, a

2
1 a2

2) is given by
t(00, 00) = (1 − (1 − γ)2)2, t(01, 00) = t(10, 00) =
t(00, 01) = t(00, 10) = (1− γ(1− γ))(1− (1− γ)2),
and so on.

5. The ”Majority” technology: f(x) is “1” if a ma-
jority of the values xi are 1. Thus the project
succeeds if most players succeed. The majority
function, even on 3 inputs, can not be represented
by a read-once network, but is easily represented
by a monotone Boolean formula maj(x, y, z) =
xy + yz + xz. In this case the technology func-
tion is given by t(000) = 3γ2(1−γ)+γ3, t(001) =
t(010) = t(100) = γ3 +2(1− γ)2γ + γ2(1− γ), etc.

3 Analysis of Some Anonymous

Technologies

A success function t is called anonymous if it is sym-
metric with respect to the players. I.e. t(a1, . . . , an)
depends only on

∑

i ai. A technology (t, c) is anony-
mous if t is anonymous and the cost c is identical to all
agents. Of the examples presented above, the AND,
OR, and majority technologies were anonymous (but
not AOO and OOA). For an anonymous t we denote
tm = t(1m, 0n−m) and ∆m = tm+1 − tm.

3.1 AND and OR Technologies

Let us start with a direct and full analysis of the AND
and OR technologies for two players for the case γ =
1/4 and c = 1.

Example 1. AND technology with two agents,
c = 1, γ = 1/4: we have t0 = γ2 = 1/16, t1 =
γ(1 − γ) = 3/16, and t2 = (1 − γ)2 = 9/16 thus
∆0 = 1/8 and ∆1 = 3/8. The principal has 3 possibil-
ities: contracting with 0, 1, or 2 agents. Let us write
down the expressions for his utility in these 3 cases:

• 0 Agents: No agent is paid thus and the princi-
pal’s utility is u0 = t0 · v = v/16.

• 1 Agent: This agent is paid p1 = c/∆0 = 8 on
success and the principal’s utility is u1 = t1(v −
p) = 3v/16 − 3/2.

• 2 Agents: each agent is paid p2 = c/∆1 = 8/3 on
success, and the principal’s utility is u2 = t2(v −
2p2) = 9v/16 − 3.

Notice that the option of contracting with one agent is
always inferior to either contracting with both or with
none, and will never be taken by the principal. The
principal will contract with no agent when v < 6, with
both agents whenever v > 6, and with either non or
both for v = 6.

This should be contrasted with the non-strategic case
in which the principal completely controls the agents
(and bears their costs) and thus simply optimizes glob-
ally. In this case the principal will make both agents
exert effort whenever v ≥ 4. Thus for example, for
v = 6 the globally optimal decision (non-strategic case)
would give a global utility of 6 · 9/16 − 2 = 11/8 while
the principal’s decision (in the agency case) would give
a global utility of 3/8, giving a ratio of 11/3.

It turns out that this is the worst price of unaccount-
ability in this example, and it is obtained exactly at the
transition point of the agency case, as we show below.

Example 2. OR technology with two agents, c =
1, γ = 1/4: we have t0 = 1 − (1 − γ)2 = 7/16, t1 =
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Figure 3: Number of agents in the optimal contract of the
AND (left) and OR (right) technologies with 3 players, as a
function of γ and v. AND technology: either 0 or 3 agents
are contracted, and the transition value is monotonic in γ.
OR technology: for any γ we can see all transitions.

1−γ(1−γ) = 13/16, and t2 = 1−γ2 = 15/16 thus ∆0 =
3/8 and ∆1 = 1/8. Let us write down the expressions
for the principal’s utility in these three cases:

• 0 Agents: No agent is paid and the principal’s
utility is u0 = t0 · v = 7v/16.

• 1 Agent: This agent is paid p1 = c/∆0 = 8/3 on
success and the principal’s utility is u1 = t1(v −
p1) = 13v/16− 13/6.

• 2 Agents: each agent is paid p2 = c/∆1 = 8 on
success, and the principal’s utility is u2 = t2(v −
2p2) = 15v/16− 15.

Now contracting with one agent is better than contract-
ing with none whenever v > 52/9 (and is equivalent for
v = 52/9), and contracting with both agents is better
than contracting with one agent whenever v > 308/3
(and is equivalent for v = 308/3), thus the principal
will contract with no agent for 0 ≤ v ≤ 52/9, with one
agent for 52/9 ≤ v ≤ 308/3, and with both agents for
v ≥ 308/3.

In the non-strategic case, in comparison, the princi-
pal will make a single agent exert effort for v > 8/3,
and the second one exert effort as well when v > 8.

It turns out that the price of unaccountability here is
19/13, and is achieved at v = 52/9, which is exactly the
transition point from 0 to 1 contracted agents in the
agency case. This is not a coincidence that in both the
AND and OR technologies the POU is obtained for v
that is a transition point (see proof in Appendix A).

Lemma 1. For any given technology (t,~c) the price of
unaccountability POU(t,~c) is obtained at some value v
which is a transition point, of either the agency or the
non-strategic cases.

We already see a qualitative difference between the
AND and OR technologies (even with 2 agents): in the

first case either all agents are contracted or none, while
in the second case, for some intermediate range of val-
ues v, exactly one agent is contracted. Figure 4 shows
the same phenomena for AND and OR technologies
with 3 players.

Theorem 1. For any anonymous AND technology8:

• there exists a value9 v∗ < ∞ such that for any
v < v∗ it is optimal to contract with no agent, for
v > v∗ it is optimal to contract with all n agents,
and for v = v∗, both contracts (0, n) are optimal.

• the price of unaccountability is obtained at the
transition point of the agency case, and is

POU =
(

1
γ − 1

)n−1
+ (1 − γ

1−γ ).

The findings of Theorem 1 are special cases of the
characterization presented in Appendix B.1 and the
POU result of Lemma 2.

The property of a single transition occurs in both the
agency and the non-strategic cases, where the transi-
tion occurs at a smaller value of v in the non-strategic
case. Notice that the POU is not bounded across
the AND family of technologies (for various n, γ) as
POU → ∞ either if γ → 0 (for any given n ≥ 2) or
n → ∞ (for any fixed γ ∈ (0, 1

2 )).

Next we consider the OR technology and show that
it exhibits all n transitions.

Theorem 2. For any anonymous OR technology,
there exist finite positive values v1 < v2 < . . . < vn

such that for any v s.t. vk < v < vk+1, contract-
ing with exactly k agents is optimal (for v < v1, no
agent is contracted, and for v > vn, all n agents are
contracted). For v = vk, the principal is indifferent
between contracting with k − 1 or k agents.

The same behavior occurs in both the agency and
the non-strategic case. This characterization is a direct
corollary of a more general characterization given in
Appendix B.1.

For OR technology with n = 2 we can bound the
POU by 2 (see Lemma 15 in Appendix B.3). Based on
the lemma, we already observe a qualitative difference
between the POU in the AND and OR technologies.

Observation 2. While in the AND technology the
POU for n = 2 is not bounded from above (for γ → 0),
for OR technology the POU is bounded by 2.

8AND technology with any number of agents n and any γ,
and any identical cost c.

9v∗ is a function of n, γ, c.
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Figure 4: Number of agents in the optimal contract of the
AND (left) and OR (right) technologies with 3 players, as a
function of γ and v. AND technology: either 0 or 3 agents
are contracted, and the transition value is monotonic in γ.
OR technology: for any γ we can see all transitions.

3.2 What Determines the Transitions?

Theorems 1 and 2 say that both the AND and
OR technologies exhibit the same transition behavior
(changes of the optimal contract) in the agency and
the non-strategic cases. However, this is not true in
general. In Appendix B.1 we provide a full charac-
terization of the sufficient and necessary conditions for
general anonymous technologies to have a single transi-
tion and all n transitions. We find that the conditions
in the agency case are different than the ones in the
non-strategic case.

We are able to determine the POU for any anony-
mous technology that exhibits a single transition in
both the agency and the non-strategic cases (see proof
in Appendix B.3).

Lemma 2. For any anonymous technology that has
a single transition in both the agency and the non-
strategic cases, the POU is given by:
POU = 1 + tn−1

t0
− tn−1

tn
.

3.3 The MAJORITY Technology

The project under the MAJORITY function succeeds
if the majority of the agents succeed in their tasks (see
Section 2.3). We are unable to characterize the tran-
sition behavior of the MAJORITY technology analyt-
ically. Figure 5 presents the optimal number of con-
tracted agents as a function of v and γ, for n = 5. The
phenomena that we observe in this example (and others
that we looked at) leads us to the following conjecture.

Conjecture 1. For any Majority technology (any n, γ
and c), there exists l, 1 < l ≤ dn/2e such that the
first transition is from 0 to l agents, and then all the
remaining n − l transitions exist.

Moreover, for any fixed c, n, l = 1 when γ is close
enough to 1

2 , l is a non-decreasing function of γ (with
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Figure 5: Number of agents in the optimal contract of the
MAJORITY technology with 5 players, as a function of γ
and v. As γ decreases the first transition is at a lower value
and to a higher number of agents. For any sufficiently small
γ, the first transition is to 3 = d5/2e agents, and for any
sufficiently large γ, the first transition is to 1 agents. For
any γ, the first transition is never to more than 3 agents,
and after the first transition we see all following possible
transitions.

image {1, . . . , dn/2e}), and l = dn/2e when γ is close
enough to 0.

4 Non-Anonymous Technologies

In non-anonymous technologies (even with identical
costs), we need to talk about the contracted set of
agents and not only about the number of contracted
agents. In this section, we identify the sets of agents
that can be obtained as the optimal contract for some
v. These sets construct the orbit of a technology.

Definition 3. For a technology t, a set of agents S
is in the orbit of t if for some value v, the optimal
contract is exactly with the set S of agents (where ties
between different S’s are broken according to a lexico-
graphic order10). The k-orbit of t is the collection of
sets of size exactly k in the orbit.

An important observation is that the orbit of a tech-
nology is actually an ordered list of sets of agents,
where the order is determined by the following lemma
(see proof in Appendix A).

Lemma 3. (Monotonicity lemma) For any tech-
nology (t,~c), in both the agency and the non-strategic

10This implies that there are no two sets with the same success
probability on the orbit.
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cases, the utility of the principal at the optimal con-
tracts, the success probability of the optimal contracts,
and the expected payment of the optimal contract, are
all monotonically non-decreasing with the value.

4.1 AOO and OOA Technologies

We begin our discussion of non-anonymous technolo-
gies with two examples; the And-of-Ors (AOO) and
Or-of-Ands (OOA) technologies.

The AOO technology (see figure 2) is composed of
multiple OR-components that are “And”ed together.

Theorem 3. Let h be an anonymous OR technology,
and let f =

∧nc

j=1 h be the AOO technology that is ob-
tained by a conjunction of nc of these OR-components
on disjoint inputs. Then for any value v, an optimal
contract contracts with the same number of agents in
each OR-component. Thus, the orbit of f is of size at
most nl + 1, where nl is the number of agents in h.

Part of the proof of the theorem (for the complete
proof see Appendix C.2), is based on such AOO tech-
nology being a special case of a more general family of
technologies, in which disjoint anonymous technologies
are “And”-ed together, as explained in the next sec-
tion. We conjecture that a similar result holds for the
OOA technology.

Conjecture 2. In an OOA technology which is a dis-
junction of the same anonymous paths (with the same
number of agents, γ and c, but over disjoint inputs),
for any value v the optimal contract is constructed from
some number of fully-contracted paths. Moreover, there
exist v1 < . . . < vnl

such that for any v, vi ≤ v ≤ vi+1,
exactly i paths are contracted.

We are unable to prove it in general, but can prove
it for the case of an OOA technology with two paths
of length two (see Appendix C.2).

4.2 Orbit Characterization

The AOO is an example of a technology whose or-
bit size is linear in its number of agents. If conjec-
ture 2 is true, the same holds for the OOA technology.
What can be said about the orbit size of a general non-
anonymous technology?

A collection of sets of k elements (out of n) is ”ad-
missible”, if every two sets in the collection differ by at
least 2 elements (e.g. for k=3, 123 and 234 can not be
together in the collection, but 123 and 345 can be).

Theorem 4. Every admissible collection can be ob-
tained as the k − orbit of some t.

In Appendix C.1 we present the proof of the theorem,
as well as the proofs of all other claims presented in
this section. We next show that there exist very large
admissible collections.

Lemma 4. For any n ≥ k, there exists an admissible
collection of k-size sets of size Ω( 1

n ·
(

n
k

)

).

Corollary 1. There exists a technology (t, c) with orbit
of size Ω( 2n

n
√

n
).

Thus, we are able to construct a technology with
exponential orbit, but this technology is not a network
technology or a structured technology.

Open Question 1. Is there a Read Once network with
exponential orbit? Is there a structured technology with
exponential orbit?

Nevertheless, for some network technologies, we be-
lieve that the orbit size cannot be very large.

Conjecture 3. The orbit size of serial-parallel net-
works is O(n).

We are unable to fully prove this, but we are able
to show that it holds for networks that are “AND”-ed
together, as characterized below.

Let g and h be two Boolean functions on disjoint
inputs and let f = g

∧

h (i.e., take their networks in
series). The optimal contract for f for some v, denoted
by S, is composed of some agents from the h-part and
some from the g-part, call them T and R respectively.

Lemma 5. Let S be an optimal contract for f = g
∧

h
on v. Then, T is an optimal contract for h on v ·tg(R),
and R is an optimal contract for g on v · th(T ).

Lemma 6. Let g and h be two Boolean functions on
disjoint inputs and let f = g

∧

h (i.e., take their net-
works in series). Suppose x and y are the respective
orbit sizes of g and h; then, the orbit size of f is less
or equal to x + y − 1.

By induction we get the following corollary.

Corollary 2. Assume that {(gj , cj)}m
j=1 is a set of

anonymous technologies on disjoint inputs, each with
identical agent cost (all agents of technology gj has the
same cost cj). Then the orbit of f =

∧m
j=1 gj is of

size at most (
∑m

j=1 nj) − 1, where nj is the number
of agents in technology gj (the orbit is linear in the
number of agents).

In particular, this holds for AOO technology where
each OR-component is anonymous.

Open Question 2. Does Lemma 6 hold also for the
Boolean function f = g

∨

h (i.e., when the networks
g, h are taken in parallel)?
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We conjecture that this is indeed the case, and that
the corresponding Lemmas 5 and 6 exist for the OR
case as well. If this is true, we will be able to prove
conjecture 3.

We also conjecture that IRS ensures small orbit.

Conjecture 4. Any IRS technology has orbit of size
O(n).

5 Algorithmic Aspects

Our analysis throughout the paper sheds some light
on the algorithmic aspects of computing the best con-
tract. In this section we state these implications (for
the proofs see Appendix D). We first consider the gen-
eral model where the technology function is given by an
arbitrary monotone function t (with rational values),
and we then consider the case of structured technolo-
gies given by a network representation of the underly-
ing Boolean function.

5.1 Binary-Outcome Binary-Action

Technologies

Here we assume that we are given a technology and
value v as the input, and our output should be the op-
timal contract, i.e. the set S∗ of agents to be contracted
and the contract pi for each i ∈ S∗. In the general case,
the success function t is of size exponential in n, the
number of agents, and we will need to deal with that.
In the special case of anonymous technologies, the de-
scription of t is only the n + 1 numbers t0, . . . , tn, and
in this case our analysis in section 3 completely suffices
for computing the optimal contract.

Proposition 1. Given as input the full description of
a technology (the values t0, . . . , tn and the identical cost
c for an anonymous technology, or the value t(S) for
all the 2n possible subsets S ⊆ N of the players, and a
vector of costs ~c for non-anonymous technologies), the
following can all be computed in polynomial time:

• The orbit of the technology in both the agency and
the non-strategic cases.

• An optimal contract for any given value v, for both
the agency and the non-strategic cases.

• The price of unaccountability POU(t,~c).

A more interesting question is whether if given the
function t as a black box, we can compute the optimal
contract in time that is polynomial in n. We can show
that, in general this is not the case:

Theorem 5. Given as input a black box for a success
function t (when the costs are identical), and a value
v, the number of queries that is needed, in the worst
case, to find the optimal contract is exponential in n.

5.2 Structured Technologies

In this section we will consider the natural representa-
tion of read-once networks for the underlying Boolean
function. Thus the problem we address will be:

The Optimal Contract Problem for Read Once
Networks:

Input: A read-once network G = (V, E), with two
specific vertices s, t; rational values γe for each player
e ∈ E (and ce = 1), and a rational value v.

Output: A set S of agents who should be contracted
in an optimal contract.

We first notice that even computing the value t(E)
is a hard problem: it is called the network reliability
problem is is known to be #P − complete [6]. Just a
little effort will reveal that our problem is no easier:

Theorem 6. The Optimal Contract Problem for Read
Once Networks is #P -complete (under Turing reduc-
tions).

A special case which find of interest is the case of
series-parallel networks for which the network reliabil-
ity problem (computing the value of t) is easy. We con-
jecture that finding the optimal contract is also easy:

Conjecture 5. The optimal contract problem for Read
Once series-parallel networks can be solved in polyno-
mial time.

We can only handle the first non-trivial level, AND-
of-OR networks:

Lemma 7. Given a Read Once AND − of −OR net-
work such that each OR-component is an anonymous
technology, the optimal contract problem can be solved
in polynomial time.
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A General

Let Q(S) be the expected total payment to all agents in
S in the case that the principal contracts with the set S
and the project succeeds (we use this notation in claims
that are true for both the agency and the non-strategic
cases). Let Qns(S) be the above expected payment in
the non-strategic case, that is Qns(S) =

∑

i∈S ci. Let
Qa(S) be the above expected payment in the agency
case, that is Qa(S) = t(S) ·∑i∈S

ci

t(S)−t(S\i) .

Lemma 3 (Monotonicity lemma) For any tech-
nology (t,~c), in both the agency and the non-strategic
cases, the utility of the principal at the optimal con-
tracts, the success probability of the optimal contracts,
and the expected payment of the optimal contract, are
all monotonically non-decreasing with the value.

Proof. Suppose the sets of agents S1 and S2 are optimal
in v1 and v2 < v1, respectively. The utility is a linear
function of the value, u(S, v) = t(S) · v − Q(S). As S1

is optimal at v1, u(S1, v1) ≥ u(S2, v1), and as t(S) ≥ 0
and v1 > v2, u(S2, v1) ≥ u(S2, v2). We conclude that
u(S1, v1) ≥ u(S2, v2), thus the utility is monotonic non-
decreasing in the value.

Next we show that the success probability is
monotonic non-decreasing in the value. S1 is optimal
at v1, thus:

t(S1) · v1 − Q(S1) ≥ t(S2) · v1 − Q(S2)

S2 is optimal at v2, thus:

t(S2) · v2 − Q(S2) ≥ t(S1) · v2 − Q(S1)

Summing these two equations, we get that (t(S1) −
t(S2)) · (v1 − v2) ≥ 0, which implies that if v1 > v2

than t(S1) ≥ t(S2).
Finally we show that the expected payment is

monotonic non-decreasing in the value. As S2 is op-
timal at v2 and t(S1) ≥ t(S2), we observe that:

t(S2)·v2−Q(S2) ≥ t(S1)·v2−Q(S1) ≥ t(S2)·v2−Q(S1)

or equivalently, Q(S2) ≤ Q(S1), which is what we
wanted to show.

The above implies that the social welfare is monoton-
ically non-decreasing with the value in the non-
strategic case (as it equals to the principal utility).

Lemma 1 For any given technology (t,~c) the price of
unaccountability POU(t,~c) is obtained at some value v
which is a transition point, of either the agency or the
non-strategic cases.

Proof. For high enough values, all agents are con-
tracted in both the agency and the non-strategic case.
As the payments are independent of the value, the ra-
tio decreases when v increases, thus if the POU is ob-
tained, it happens for a finite positive value, at which
an optimal set in the agency case is not N (all the
agents). Let v∗ be the infimum over values for which
contracting with all the agents is optimal in the agency
case (v∗ is finite). Up to the first transition point v > 0
of the non-strategic case, the ratio is 1, thus if the POP
is obtained, it is obtained for some value v ≥ v.

We can assume w.l.o.g. that ties between optimal
sets are broken in a consistent way (as we only care
about the welfare of the principal). By Lemma 3, we
can partition the [v, v∗] interval to at most 2n − 1 seg-
ments, in each the optimal contract in the agency case
is fixed (and is not all agents). Similarly, each of these
segments can be partitioned to at most 2n segments,
in each the optimal contract for the non-strategic case
is fixed. We conclude that there is a finite partition of
the [v, v∗] interval such that at each segment, the op-
timal contracts of the agency and non-strategic cases
are fixed.

Let f(v) =
t(S∗

na)·v−�
i∈S∗

na
ci

t(S∗)·v−
�

i∈S∗ ci
. On each of the seg-

ments mentioned above, f satisfies the conditions of
Lemma 8, thus its suprimum is obtained at an end
point of the segment. The global suprimum (over all
segments) is obtained as the maximum of finitely many
maximal numbers obtained, one in each segment.

Lemma 8. Let f(x) = a·x−b
c·x−d be a function for c > 0.

Let x ≥ x > 0 be two points for which cx − d > 0.
Then the supremum of f on the range [x, x] is obtained
at either x or x.

Proof. As f is a continuous function (recall that cx −
d > 0 on the range as c > 0 and cx − d > 0) on a
compact range, its supremum is obtained.

In order to find the maximum of f , we take the first
derivative and equate to zero:

∂f

∂x
=

a(cx − d) − c(ax − b)

(cx − d)2
=

bc − ad

(cx − d)2
= 0

which holds if and only if bc = ad. As this equality
is independent of x, it either hold for any x (and in
particular for x and x), or for no x. If it holds for no
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x, then the maximum must be obtained at either x or
x.

B Analysis of Some Anonymous

Technologies

B.1 What Determines the Transitions?

In this appendix we characterize anonymous technolo-
gies with a single transition, and with all n transitions
for both the agency and the non-strategic cases. The
proofs for the claims presented below appear in Appen-
dix B.2.

We begin by an example that shows that transitions
are not necessarily the same in the agency and the non-
strategic cases.

Example 3. Consider the following anonymous tech-
nology with two agents: t0 = 0, t1 = 0.3, and t2 = 0.61.
In the agency case, the principal will contract with
no agent for 0 ≤ v ≤ 3.33.., with one agent for
3.33.. ≤ v ≤ 9.47.., and with both agents for v ≥ 9.47..,
thus either 0, 1, or 2 agents can be obtained as the op-
timal contract. In contrast, in the non-strategic case,
the principal contracts with no agent for 0 ≤ v ≤ 3.33..
and with both agents for v ≥ 3.33... Contracting with
a single agent is never optimal.

A technology (t, c) has all transitions if for each k ∈
{0, 1, . . . , n}, there exists v for which ∀k

′ 6= k, u(k) >
u(k

′

).11

What determines the number of transitions in the
agency and non-strategic cases? It turns out that in
the non-strategic case, the conditions are simple. We
denote a−i < b−i if for any agent j 6= i it holds that
aj ≤ bj, and for some j 6= i it holds that aj < bj .

Definition 4. A technology success function12 t ex-
hibits

• (strictly) increasing returns to scale (IRS)
if for every i and every a−i < b−i it holds that
∆i(a−i) < ∆i(b−i)

• (strictly) decreasig returns to scale (DRS)
if for every i and every a−i < b−i it holds that
∆i(a−i) > ∆i(b−i)

• (strictly) under-proportional contribution
(UPC) if the technology is anonymous, and for
every k it holds that

k

n
>

tk − t0
tn − t0

11A technology (t, c) has all transitions in the weak sense if
the inequality holds only weakly.

12If the success function of the technology (t, c) exhibits some
property, we will also say that the technology exhibits the same
property.

Note that every success function that exhibits IRS
also exhibits UPC (see Lemma 13).

Theorem 7. In the non-strategic model, an anony-
mous technology (t, c) has

• all n transitions if and only if it exhibits DRS.

• a single transition if and only if it exhibits UPC.

The analysis of the agency case is more complex and
involves less intuitive conditions.

Definition 5. For an anonymous technology (t, c) let
Qk = c·k·tk

tk−tk−1
be the total expected payment in the best

contract for which there exist an equilibrium with k
agents exerting effort.

An anonymous technology13 (t, c) exhibits

• (strictly) over-payment (OP) if for any k, it
holds that

Qk

Qn
>

tk − t0
tn − t0

• (strictly) increasing relative marginal pay-
ment (IRMP) if for any k, it holds that

Qk+1 − Qk

tk+1 − tk
>

Qk − Qk−1

tk − tk−1

Intuitively, the over-payment condition compares the
proportional increase in success probability when mov-
ing from k agents to n agents ( tk−t0

tn−t0
), to the propor-

tional expected payment to k agents with respect to
the expected payment to n agents (Qk

Qn
). If any set of

k agents (k 6= 0, k 6= n) needs to be paid “over pro-
portionally”, the principal will contract either with 0
agents or with all n agents.

The IRMP condition looks at the proportional in-
crease in payment (Qk −Qk−1) with respect to the in-
crease in success probability (tk − tk−1), when increas-
ing the number of contracting agents by one, from k−1
to k. The IRMP condition requires that any additional
agent has a larger effect than its predecessor.

Notice that if we adjust Qk to the non-strategic case,
OP is equivalent to UPC, and IRMP is equivalent to
DRS.

Theorem 8. In the agency model, an anonymous tech-
nology (t, c) has

• all n transitions if and only if it exhibits IRMP.

• a single transition if and only if it exhibits OP.

13Note that these are conditions on the success function, inde-
pendent of the identical cost c
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Notice that, in general, none of the conditions in
Theorem 7 imply any of the conditiond in Theorem ,
and vice versa. Also note that Theorems 7 and B.1 can
both be derived from a more general analysis, which
can be found in Appendix B.2.

While we are unable to determine the POU in gen-
eral, for technologies that have a single transition, we
are able to fully characterize the POU.

Lemma 2 For any anonymous technology that exhibits
both UPC and OP, and t0 > 0, the POU is

POU = 1 +
tn−1

t0
− tn−1

tn

B.2 Phase Transitions: Proofs

The following characterization holds for both the
agency and the non-strategic cases. Let Qk be the to-
tal expected payment to all agents in the best (minimal
payment) contract in which k agents exert effort (for
the non-strategic case Qk = c · k and for the agency
case Qk = c·k·tk

tk−tk−1
). Note that Qk is only a function of

the technology t.

Theorem 9. An anonymous technology (t, c) has

• a single transition if and only if it exhibits Over-
Payment, that is for any k ∈ {1, . . . , n} it holds
that

Qk

Qn
>

tk − t0
tn − t0

• all n transitions at different values if and only if it
exhibits IRMP, that is for any k ∈ {1, 2, . . . , n−1}
it holds that

Qk+1 − Qk

tk+1 − tk
>

Qk − Qk−1

tk − tk−1

Proof. We begin by a lemma that characterize the two
cases by some properties of the principal utilities, and
than show that these properties are equivalent to the
properties presented by the theorem.

We use the following corollary from Lemma 3.

Observation 3. For any anonymous technology (t, c),
assume that contracting with k1 agents is optimal for
v1, and contracting with k2 agents is optimal for v2. If
v1 > v2 then k1 ≥ k2.

Given an anonymous technology (t, c), let u(k, v) be
the utility at value v, when optimally contracting with
k agents14, and let vi,j be the value v in which the
principal is indifferent between contracting with either

14Note that in the strategic model, u(k, v) denote the utility
of the principal, and in the non-strategic model, the principal’s
utility coincides with the social welfare.

i agents or with j agents (by the definition of vi,j ,
u(j, vi,j) = u(i, vi,j). That is ti ·vi,j −Qi = tj ·vi,j −Qj ,

or equivalently vi,j =
Qj−Qi

tj−ti
).

Lemma 9. An anonymous technology (t, c) has

1. all n transitions at different values if and only
if u(k, vk−1,k) > u(k + 1, vk−1,k) for all k ∈
{1, 2, . . . , n − 1}, and

2. a single transition (from 0 agents to n agents)
if and only if u(n, v0,n) > u(k, v0,n) for all k ∈
{1, 2, . . . , n − 1}.

Proof. First we show that a technology t has all n
transitions at different values if and only if for all
k ∈ {1, 2, . . . , n − 1} it holds that u(k, vk−1,k) >
u(k + 1, vk−1,k).

case if: Assume that u(k, vk−1,k) > u(k + 1, vk−1,k)
for all k ∈ {1, 2, . . . , n − 1}. By Lemma 11 this con-
dition is equivalently to the IRMP condition, that is
Qk+1−Qk

tk+1−tk
>

Qk−Qk−1

tk−tk−1
for any k ∈ {1, 2, . . . , n − 1}. As

vi,j =
Qj−Qi

tj−ti
, IRMP is equivalent to vk,k+1 > vk−1,k

for any k ∈ {1, 2, . . . , n−1}. We next show that at any
value v ∈ (vk−1,k, vk,k+1) for some k ∈ {1, 2, . . . , n−1},
contracting with k agents is optimal for the principal,
and this is the only optimal contract for him. Together
with the fact that 0 is optimal for value of 0, and n is
optimal for values larger that vn−1,n, we conclude that
all transitions occur.

We first show by induction that at any value v ∈
(vk−1,k, vk,k+1) for some k ∈ {1, 2, . . . , n−1}, contract-
ing with k agents has higher utility than contracting
with j < k agents. Clearly the claim holds for k = 0.
Assume that we have proven the claim of to k−1, which
means that at vk−1,k contracting with k− 1 agents has
higher utility than contracting with j < k − 1 agents.
By definition of vk−1,k, contracting with k agents is
better than contracting with k−1 agents for any value
larger than vk−1,k, thus contracting with k agents is
better than contracting with any j < k agents.

A similar argument shows by induction that at any
value v ∈ (vk−1,k, vk,k+1) for some k ∈ {1, 2, . . . , n−1},
contracting with k agents has higher utility than con-
tracting with j > k agents. This is proven by starting
from k = n agents and going backwards. Combining
the two claims we derive that contracting with k agents
at a value v ∈ (vk−1,k, vk,k+1) achieves higher utility for
the principal than contracting with any other number
of agents.

case only if: Assume that t has all n transitions, and
at different values. For all k ∈ {1, 2, . . . , n − 1}, by
Observation 3 k is not optimal for v < vk−1,k and is an
optimal contract at vk−1,k, thus u(k, vk−1,k) ≥ u(k +
1, vk−1,k). If u(k, vk−1,k) = u(k+1, vk−1,k), then (again
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by the same Observation), k is not optimal for any
v > vk−1,k, contradicting the transitions in different
values. We conclude that u(k, vk−1,k) > u(k+1, vk−1,k)
for all k ∈ {1, 2, . . . , n − 1}.

Next we show that a technology t has a single
transition (from 0 agents to n agents) if and only if
u(n, v0,n) > u(k, v0,n) for all k ∈ {1, 2, . . . , n − 1}.

case if: Assume that u(n, v0,n) > u(k, v0,n) for all
k ∈ {1, 2, . . . , n − 1}. By Observation 3, since n is
optimal contract at v0,n, for any v > v0,n, n is the only
optimal contract. On the other hand, as 0 is optimal
at v0,n, by Observation 3, if k > 0 was optimal for any
v < v0,n then 0 was not optimal for v0,n. Thus for any
v < v0,n, 0 is the only optimal contract. As at v0,n

the only optimal contracts are 0 and n, this imlies that
any k ∈ {1, 2, . . . , n− 1} is never optimal, thus t has a
single transition.

case only if: Assume that t has a single transition
from 0 to n at v0,n. This implies that for any v ≤ v0,n, 0
is the optimal contract, thus u(0, v) > u(k, v) for all k ∈
{1, 2, . . . , n−1}. for any v ≥ v0,n, n is the optimal con-
tract, thus u(n, v) > u(k, v) for all k ∈ {1, 2, . . . , n−1}.
We conclude that at v = v0,n, u(n, v0,n) = u(0, v0,n) >
u(k, v0,n) for all k ∈ {1, 2, . . . , n − 1}.

Next we show that Condition 1 in Lemma 9 is equiv-
alent to the Over-Payment condition.

Lemma 10. u(n, v0,n) > u(k, v0,n) for any k ∈
{1, 2, . . . , n − 1} if and only if Qk

Qn
> tk−t0

tn−t0
for any

k ∈ {1, 2, . . . , n − 1}.

Proof. For all k ∈ {1, 2, . . . , n − 1}

u(n, v0,n) > u(k, v0,n) ⇔ tn·v0,n−Qn > tk·v0,n−Qk

⇔ (tn − tk) · v0,n > Qn − Qk

As v0,n = Qn

tn−t0
, the above happens if and only if

(tn − tk) · Qn

tn − t0
> Qn − Qk ⇔ Qk

Qn
>

tk − t0
tn − t0

which is what we wanted to prove.

Next we show that Condition 2 in Lemma 9 is equiv-
alent to the IRMP condition.

Lemma 11. u(k, vk−1,k) > u(k + 1, vk−1,k) for any

k ∈ {1, 2, . . . , n−1} if and only if Qk+1−Qk

tk+1−tk
> Qk−Qk−1

tk−tk−1

for any k ∈ {1, 2, . . . , n − 1}.

Proof. For all k ∈ {1, 2, . . . , n − 1}

u(k, vk−1,k) > u(k + 1, vk−1,k)

⇔ tk · vk−1,k − Qk > tk+1 · vk−1,k − Qk+1

As vk−1,k = Qk−Qk−1

tk−tk−1
, the above happens if and only

if

Qk+1−Qk > (tk+1−tk)·vk−1,k = (tk+1−tk)·Qk − Qk−1

tk − tk−1

⇔ Qk+1 − Qk

tk+1 − tk
>

Qk − Qk−1

tk − tk−1

which is what we wanted to prove.

the theorem is now a direct result from the claims
above.

We now turn to the non-strategic case and show that
the Over-Payment and IRMP conditions are equivalent
to DRS and UPC, respectively.

Observation 4. For the non-strategic case, an anony-
mous technology (t, c):

1. exhibits Over-Payment if and only if it exhibits
UPC.

2. exhibits IRMP if and only if it exhibits DRS.

Proof. As for the non-strategic case the total expected
payment to all agents in the best (minimal payment)
contract in which k agents exert effort is c · k, this
means that Qk = c · k for any k. Thus, for the non-
strategic case Qk

Qn
= k

n , which implies the first claim,
and Qk+1 − Qk = Qk − Qk−1 = c which implies the
second claim.

Observation 5. For the agency case, an anonymous
technology (t, c) it holds that Qk = c·k·tk

tk−tk−1
. Thus tech-

nology (t, c)

1. has all n transitions if and only if for any k ∈
{1, . . . , n} it holds that Qk

Qn
> tk−t0

tn−t0
(exhibits Over-

Payment), for Qk as defined above.

2. has a single transition if and only if for any k ∈
{1, 2, . . . , n−1} it holds that Qk+1−Qk

tk+1−tk
> Qk−Qk−1

tk−tk−1

(exhibits IRMP) for Qk as defined above.

Proof. As for the agency case the total expected pay-
ment to all agents in the best (minimal payment) con-
tract in which k agents exert effort is c·k·tk

tk−tk−1
, this ob-

servation is derived directly from Theorem 9.

The following holds for the symmetric case (in γ and
c). Let AND(n, γ, c) be the AND technology with n
symmetric agents, each with cost c. Fixing n and c,
let v(γ) be the transition value of the optimal contract
from the 0 contract to the n contract, when we use the
parameter γ. We next show that the function v(γ) is a
monotonic function of γ. This means that if the success
probability in case that an agent exert effort increases,
the principal will move to the n contract earlier.
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Lemma 12. For AND(n, γ1, c) and AND(n, γ2, c),
where γ1 < γ2 it holds that v(γ1) < v(γ2).

Proof. Recall that at v(γ) the utility of the agent is
the same for the 0 and n contracts. Thus v(γ) =

c·n·tn

(tn−tn−1)(tn−t0) . For AND technology tn

tn−tn−1
=

(1−γ)n

(1−γ)n−γ·(1−γ)n−1 = 1−γ
1−2γ . For 0 < γ < 1

2 this is

a monotonic function of γ. Additionally, 1
tn−t0

=
1

(1−γ)n−γn is also a monotonic function of γ, for 0 <

γ < 1
2 .

B.3 The Price Of Unaccountability

For an anonymous technology that exhibits both UPC
and Over-Payment, we can analyze the price of unac-
countability. An AND technology is an example of
such a technology.

Lemma 2 For any anonymous technology (t, c) that
exhibits both UPC and Over-Payment and t0 > 0, the
POU is

POU = 1 +
tn−1

t0
− tn−1

tn

Proof. By Theorem 7 and Theorem B.1 the technology
has a single transition in both the strategic and non-
strategic cases. Let va be value in which the phase
transition occur in the agency (strategic) case, and let
vn be value in which the phase transition occur in the
non-agency (non-strategic) case. The phase transition
value is the value in which the principal is indifferent
between contracting with 0 agents and contracting with
n agents. Thus vn solves the equation vn ·tn−c·n = vn ·
t0, so vn = c·n

tn−t0
. Additionally, va solves the equation

tn · (va − c·n
tn−tn−1

) = va · t0, so va = c·n
tn−t0

· tn

tn−tn−1
=

va · tn

tn−tn−1
.

As we assumed that t0 > 0 then tn−1 > 0, thus
tn

tn−tn−1
> 1, and therefore va > vn, that is, the phase

transition in the strategic case occur in a larger value
than in the non-strategic case. Up to vn, in both cases
no agent is contracted, thus the social welfare is the
same and the POU is 1 for such values. At any value
larger than va in both cases all n agents are contracted,
thus the social welfare is the same and the POU is 1 for
such values. The only difference occur in [vn, va] range,
in which all agents are contracted in the non-strategic
case, while non is contracted in the strategic case. In
that range, the social welfare ratio for a given value
v is v·tn−c·n

v·t0 = tn

t0
− 1

v · c·n
t0

, which is a monotonically
increasing function of the value v. Thus the ratio is
maximized at the highest value of the range, which is
va.

Thus, the POU is POU = va·tn−c·n
va·t0 = tn

t0
− c·n

va·t0 . As

c·n
va·t0 = c·n

c·n
tn−t0

· tn
tn−tn−1

·t0
=
(

tn

t0
− 1
)

·
(

1 − tn−1

tn

)

, we

derive that

POU =
tn
t0

− c · n
va · t0

=
tn
t0

−
(

tn
t0

− 1

)

·
(

1 − tn−1

tn

)

=

tn−1

tn
· tn
t0

+ 1 − tn−1

tn
= 1 +

tn−1

t0
− tn−1

tn

Lemma 13. A technology function that exhibits IRS
also exhibits UPC.

Proof. Assume in contradiction that the technology ex-
hibits IRS and not UPC. Then there is a k ∈ {1, . . . , n}
s.t. k

n ≤ tk−t0
tn−t0

. As the technology exhibits IRS, it holds
that for any i ∈ {2, . . . , n}, ti − ti−1 > ti−1− ti−2, thus
for any i ∈ {1, . . . k − 1} it holds that tk − tk−1 >
ti − ti−1. Therefore by summation

(k − 1)(tk − tk−1) =

k−1
∑

i=1

(tk − tk−1) >

k−1
∑

i=1

(ti − ti−1) = tk−1 − t0

Equivalently tk − tk−1 > tk−t0
k . As for k we assumed

that k
n ≤ tk−t0

tn−t0
, it implies that tk − tk−1 > tn−t0

n . As
for any i ∈ {(k+1), . . . , n}, by IRS tk−tk−1 < ti−ti−1,

(n − k)(tk − tk−1) =
n
∑

i=k+1

(tk − tk−1) <

n
∑

i=k+1

(ti − ti−1) = tn − tk

which implies that tn − tk > n−k
n (tn − t0). With the

assumption that k
n (tn − t0) ≤ tk − t0 we observe that

tn − t0 = (tn− tk)+(tk − t0) > tn − t0, a contradiction.

Lemma 14. AND technology exhibits both UPC and
Over-Payment, thus has a single phase transition in
both the strategic and non-strategic cases.

Proof. First we observe that AND exhibits IRS thus
exhibits UPC (Lemma 13). Next we show that it
exhibits Over-Payment. As for any k, tk

tk−tk−1
=

γ
1−γ , it implies that Qk

Qn
=

�
c·k·tk

tk−tk−1 ��
c·n·tn

tn−tn−1 � = k
n . Thus,

Over-Payment is equivalent to UPC for AND tech-
nology.

Corollary 3. The price of unaccountability for AND
technology for any c and γ > 0 is obtained for the phase
transition value of the strategic case, and is

POU =

(

1

γ
− 1

)n−1

+ 1 − γ

1 − γ

15



Proof. By the above Lemma, AND technology ex-
hibits both UPC and Over-Payment. Now, the proof
is a direct result of Lemma 2 and the fact that for
AND technology with γ > 0, tn−1 > 0 for any n

and tn−1

t0
= (1−γ)n−1·γ

γn =
(

1
γ − 1

)n−1

and tn−1

tn
=

(1−γ)n−1·γ
(1−γ)n = γ

1−γ .

Lemma 15. For an anonymous OR technology with
two agents and parameter γ, the POU is obtained at the
transition point of the agency case from 0 to 1 agent,
and is

∀γ ≤ 0.282.., POU =
3γ2 − 4γ + 2

1 − γ + γ2

∀γ ≥ 0.282.., POU =
(−1 + γ)(−1 + 10γ − 16γ2 + 9γ3)

(1 − γ + γ2)γ(−2 + γ)

Proof. Let vA
ij and vNS

ij denote the transition point
from investing in i to j agents in the agency and non-
strategic cases, respectively. Since in the OR technolo-
gies all the transitions exist (see Theorem 2), the tran-
sition points with two agents are vNS

01 , vNS
12 , vA

01, and
vA
12.
It is easy to verify that vNS

01 < vNS
12 < vA

12, and that
vNS
01 < vA

01 < vA
12. Thus, there are two possible orders

on the transition points:

1. vNS
01 < vNS

12 < vA
01 < vA

12

2. vNS
01 < vA

01 < vNS
12 < vA

12

The order of the transitions depends on the relation
between vA

01 and vNS
12 .

vNS
12 > vA

01

m

− −1 + 5γ − 6γ2 + 3γ3

(−1 + 2γ)2(−1 + γ)2γ
> 0

m

γ < 0.282..

We denote the critical γ by γc = 0.282... Solving for
the transition points, we get:

vA
01 =

−γ + 1 + γ2

(−1 + γ)2(−1 + 2γ)2

vA
12 = − 2 − 3γ − γ2 + γ3

(−1 + γ)(−1 + 2γ)2γ2

vNS
01 =

1

(−1 + γ)(−1 + 2γ)

vNS
12 = − 1

γ(−1 + 2γ)

Suppose k1 agents are contracted in the non-strategic
case and k2 agents are contracted in the agency case.
The ratio between the social welfare in the two cases
is

wk1

wk2

=
tk1

v−k1c

tk2
v−k2c . By Lemma 1, the POU is obtained

at a transition point of either the agency or the
non-agency case. In addition, w0

w1
, w1

w2
, and w0

w2
are all

monotonically increasing in v. Therefore, for any a, b,
the maximal ratio for v ∈ [a, b] is obtained at b.

In case (1), where γ ≥ γc, there are three possible
transition points, r1, r2, r3 as follows:

r1 =
w0

w2
(v = vA

01)

=
(−1 + γ)(−1 + 10γ − 16γ2 + 9γ3)

(1 − γ + γ2)γ(−2 + γ)

r2 =
w0

w1
(v = vNS

12 ) =
1 − 2γ + 3γ2

γ(2 − γ)

r3 =
w1

w2
(v = vA

12)

=
(−1 + γ)(−2 + γ + 6γ2 − 8γ3 + 7γ4)

2 − 5γ + 3γ2 + 4γ3 − 10γ4 + 5γ5

and we get:

POU = max{r1, r2, r3} =
1 − 2γ + 3γ2

γ(2 − γ)

In case (2), where γ ≤ γc, there are only two
transition points, and we get:

POU = max{w0

w1
(v = vA

01),
w1

w2
(v = vA

12)}

= max{2 − 4γ + 3γ2

1 − γ + γ2
,

(−1 + γ)(−2 + γ + 6γ2 − 8γ3 + 7γ4)

2 − 5γ + 3γ2 + 4γ3 − 10γ4 + 5γ5
}

=
2 − 4γ + 3γ2

1 − γ + γ2

C Non Anonymous Technolo-

gies

C.1 Orbit Characterization

Let g and h be two Boolean functions on disjoint inputs
with any cost vectors, and let f = h

∧

g (i.e., take their
networks in series). An optimal contract for f for some
v, denoted by S, is composed of some agents from the
h-part and some from the g-part, call them T and R
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respectively.
Lemma 5 Let S be an optimal contract for f = g

∧

h
on v. Then, T is an optimal contract for h on v ·tg(R),
and R is an optimal contract for g on v · th(T ).

Proof. We will abuse the notation and use the func-
tions to denote the technology as well (f(S) will denote
the probability of success with the function f and the
contract S).

The utility of the principal with value v from S when
using technology f is

U(S, v) = f(S)

(

v −
∑

i∈S

ci

∆f
i (S \ i)

)

= h(T )·g(R)·
(

v −
∑

i∈T

ci

∆f
i (S \ i)

+
∑

i∈R

ci

∆f
i (S \ i)

)

For any i ∈ T , ∆f
i (S \ i) = h(1, T \ i) · g(R) − h(0, T \

i) · g(R) = g(R) · ∆h
i (T \ i). Similarly, for any i ∈ R,

∆f
i (S \ i) = h(T ) · ∆g

i (R \ i).
We derive that

U(S, v) = h(T ) ·
(

g(R) · v −
∑

i∈T

g(R) · ci

g(R) · ∆h
i (T \ i)

)

+ h(T ) · g(R) ·
∑

i∈R

ci

h(T ) · ∆g
i (R \ i)

=

h(T )

(

g(R) · v −
∑

i∈T

ci

∆h
i (T \ i)

)

+g(R)·
∑

i∈R

ci

∆g
i (R \ i)

the first term is maximized exactly at a set T that is
optimal for h on the value g(R) · v, while the second
term is independent of T and h. We conclude that S
is an optimal contract for f on v if and only if T is an
optimal contract for h on v · tg(R). The proof that R
is an optimal contract for g on v · th(T ) is similar and
is omitted.

Lemma 16. The real function v → th(T ), where T
is the h − part of an optimal contract for f on v, is
monotone non-decreasing (and similarly for the func-
tion v → tg(R)).

Proof. Let S1 = T1 ∪R1 be the optimal contract for f
on v1, and let S2 = T2∪R2 be the optimal contract for
f on v2 < v1. Assume in contradiction that h(T1) <
h(T2). By Lemma 5, R1 is optimal for g on v·h(T1), and
R2 is optimal for g on v · h(T2). Since h(T1) < h(T2),
R2 is optimal for g on a larger value then R2, thus by
Lemma 3, g(R2) ≥ g(R1). As f = g · h we conclude
that f(S2) = h(T2) · g(R2) > h(T1) · g(R1) = f(S1),
contracting Lemma 3 that shows that the function v →
f(S) is monotone non-decreasing, thus f(S1) ≥ f(S2).

Observation 6. The k-orbit of any technology with
symmetric cost c in the non-strategic case is of size at
most one. Thus, the orbit of any such technology (with
non anonymous success function and symmetric cost
c) in the non-strategic case is of size at most n + 1.

Proof. At most one set of size k, one with the maximal
probability, can be on the orbit.

By the above observation, in the non-strategic case
any k-orbit is very small (of size at most 1). We show
that in the strategic case, this is far from being the
case.
Theorem 4 Every admissible collection of k size sets
can be obtained as the k − orbit of some t.

Proof. Let S be some admissible collection of k size
sets. For each set S ∈ S in the collection we pick
εS ∈ (0.17, 0.2], such that for any two admissible sets
Si 6= Sj , εSi

6= εSj
, and for some S ∈ S, εS = 0.2. We

also pick a smaller ε > 0.
Next, we define the technology t:

• For any set T such that T = S ∈ S let t(S) =
1/2 − εS.

• For any set S ∈ S and every i ∈ S, t(S \ i) =
1/2 − 2εS.

• Let Z be the family of all sets for which the above
defined t for (Z = S ∪ ⋃S∈S,i∈S{S \ i}). For
any set T that is not in Z, we define: t(T ) =
maxZ:T⊂Z,Z∈Z(t(Z) + (|T | − |Z|) · ε) (if there is
not Z ∈ Z such that T ⊂ Z, then t(T ) = ε · |T |).

Note that t is well defined, as S is an admissible set,
thus for each set T , t(T ) was only defined once (that
is, for any two sets S, S′ ∈ S and any two agents i, j,
S \ i 6= S′ \ j).

We show that each admissible set S is the optimal
at the value vS = c·k

2εS
2 . We first show that it is better

than contract with a different S′ ∈ S, and than we
show that it is better than any contract for other sets
(in particular k − 1 size sets).

The utility of the principal from a contract with a
set S ∈ S is u(S, v) = t(S) · (v −∑i∈S

c
t(S)−t(S\i) ) =

(1
2 − εS)(v − c·k

εS
) = v

2 + k · c − ( c·k
2εS

+ v · εS). The

utility is maximized when ( c·k
2εS

+ v · εS) is minimized,

which happens when c·k
2εS

= v · εS , or when v = c·k
2εS

2 .
We denote by vS the value for which εS maximizes the
utility of the principal (vS = c·k

2εS
2 ). Note that at vS ,

any set S′ 6= S has a lower utility for the principal.
Additionally, note that for any admissible set S, and

any set T of size k − 1, t(S) > t(T ). This is true as
t(S) = 1

2 − εS > 0.3, while even if T = S′ \ i for some
S′, i, then t(T ) = 1

2 − 2εS′ < 0.16. This implies that in
order to show that any S ∈ S has higher utility than
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any T of size k−1 at the value vS , it is sufficient to show
that this hold for the smallest vS , which is achieved for
the largest εS , which is 0.2 by our construction. We de-
note the largest εS by ε̄ = 0.2 = 1/5, its corresponding
set by S̄, and its corresponding value by v̄ = k·c

2·ε̄2 .
The utility of the principal from a set T = S \ i for

some admissible set S and agent i, at the value v̄ is

u(T, v̄) = (1
2 − 2εS) · (v̄ − (k−1)·c

( 1
2
−2εS)−(k−2)ε

). As we can

take ε to be as small as we like, we can neglect the
(k − 2)ε term. Thus, u(T, v̄) = v̄

2 − 2εS · v̄ − (k − 1) · c.
We need to verify that u(T, v̄) = v̄

2 − 2εS · v̄ − (k −
1) · c < v̄

2 + k · c − c·k
ε̄ = u(S̄, v̄). As v̄ = k·c

2·ε̄2 , this is

equivalent to c(1 − 2k + k
ε̄ ) < 2εS · k·c

2·ε̄2 . Equivalently,
εS > ε̄ − ε̄2 · (2 − 1

k ). As k = 1 maximizes the right
side, we need to verify that εS > ε̄− ε̄2 = 1/5− 1/25 =
4/25 = 0.16, and this holds as εS > 0.17.

Finally, note that for any other contract, there is at
least one agent that is paid 1

ε . As we can choose ε
arbitrarily small, we can make sure that at any vS =
c·k

2εS
2 (recall that εS > 0.17) the payment to any one

agent is at least as the value vS . This implies that for
any vS , the optimal contract is not any set other that
S ∈ S or T = S \ i for some S ∈ S and agent i ∈ S.

We conclude that at any vS the optimal contract is
the admissible set S ∈ S.

Lemma 4 For any n ≥ k, there exists an admissible
collection of k-size sets of size Ω( 1

n ·
(

n
k

)

).

Proof. Take an error correcting code that corrects a
single error. Since the distance between any two code
words is at least 3, the set of code words is an ad-
missible collection. Now, it is known that there ex-
ist such codes with Ω(2n/n) code words. The only
thing left is to show that an appropriate fraction of
these code words have weight k. This can be easily
achieved by renaming at random for each coordinate 0
and 1. I.e. choose a random n-bit vector r and Xor
each codeword (bitwise) with r. Now each single code-
word is uniformly mapped to the whole cube, and thus
its probability of having weight k (after the Xor-ing) is
exactly

(

n
k

)

/2n. Thus the expected number of weight k
words (in the code after Xor-ing) is the product of this
probability and the number of code words, which gives
Ω(
(

n
k

)

/n), and for some r this expectation is achieved
or exceeded.

Corollary 1 There exists a technology (t, c) with orbit
of size with orbit of size Ω( 2n

n
√

n
).

Proof. By Stirling approximation
(

k
2k

)

= 22k
√

πk
(1 +

O(1/k)), thus for n=2k we derive that there exists

an orbit of size Ω
(

(

n
n/2

)

· 1
n

)

= Ω

(

2n√
π·n/2

· 1
n

)

=

Ω( 2n

n
√

n
)

Lemma 6 Let g and h be two Boolean functions on
disjoint inputs and let f = g

∧

h (i.e., take their net-
works in series). Suppose x and y are the respective
orbit sizes of g and h; then, the orbit size of f is less
or equal to x + y − 1.

Proof. By Lemma 5 an optimal contract for f is con-
structed from optimal contracts for h and g. By
Lemma 16 the orbit of h consists of sets T1, T2, . . . , Ty

with increasing success probabilities (because of con-
sistent tie breaking). Similarly, the orbit of g consists
of sets R1, R2, . . . , Rx with increasing success probabil-
ities.

The orbit of f consists of contracts of the form Ti ∪
Rj . If we order the orbit of f by increasing success
probabilities: S1, S2, . . . Sz, where Sl = Ti(l) ∪ Rj(l),
then By Lemma 16 both i(l) and j(l) are monotonically
non decreasing, and at least one of them must increase
when we move from l to l+1. As for any l , x ≥ i(l) ≥ 1
and y ≥ j(l) ≥ 1, the orbit size of f is of size at most
x + y − 1.

Corollary 2 Assume that {(gj, cj)}m
j=1 is a set of

anonymous technologies on disjoint inputs, each with
identical agent cost (all agents of technology gj has the
same cost cj). Than the orbit of f =

∧m
j=1 gj is of

size at most (
∑m

j=1 nj) − 1, where nj is the number
of agents in technology gj (the orbit is linear in the
number of agents).

Proof. The size of the orbit of the technology (gj , cj) is
at most nj +1 (as it is anonymous with identical costs,
see Observation 6). By induction we get that he size of
f is at most

∑m
j=1(nj+1)−(m−1) = (

∑m
j=1 nj)−1.

C.2 AOO and OOA Technologies

Theorem 3 Let h be an anonymous OR technology,
and let f =

∧nc

j=1 h be the AOO technology that is ob-
tained by a conjunction of nc of these OR-components
on disjoint inputs. Then for any value v, an optimal
contract contracts with the same number of agents in
each OR-component. Thus, the orbit of f is of size at
most nl + 1, where nl is the number of agents in h.

Proof. We prove that for any AOO technology with nc

OR-components, each with nl symmetric agents, any
optimal contract has equal number of agents contracted
in each OR-component (for any v, c, γ, and any nc, nl).
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We prove the claim by induction on nc. The base case
of nc = 2 is proven first. Let h denote the OR tech-
nology for a single component (by symmetry h is the
same for all components).

Claim 2. For any AOO technology with two OR-
components, each with nl symmetric agents, any opti-
mal contract has the same number of agents contracted
in each OR-component.

Proof. Assume that for some v the optimal contract
has k1 agents in the first OR-component, and k2 in
the second OR-component. Assume in contradiction
(wlog) that k1 > k2, this h(k1) > h(k2). By Lemma 5,
k1 is optimal for h on v · h(k2), and k2 is optimal for h
on v ·h(k1) > v ·h(k2). This contradicts Observation 3
which shows that if k2 is optimal for a larger value than
k1, than k2 ≥ k1.

By induction, assume that for any number of OR-
components that is smaller than nc (nc > 2), the op-
timal contract has the same number of agents in each
component. We show that in the optimal contract has
the same number of agents in each component if there
are nc components. Assume that in the optimal con-
tract has k1 agents on the first OR-component. Let g
be the conjunction of the rest nc − 1 components. By
Lemma 5, the contract on g is an optimal contract at
the value v ·h(k1), thus by our induction hypothesis has
the same number of agents k2 contracted at each OR-
component. To conclude the proof we need to show
that k1 = k2.

Let h2 be the conjunction of the first two OR-
components. Again by Lemma 5 the contract on h2

is an optimal contract for some value, and by the in-
duction hypothesis has the same number of agents con-
tracted in each of the two components, k3. Since in the
first component k1 agents are contracted then k1 = k3.
Since in the second component k2 agents are contracted
then k2 = k3. Thus k1 = k2, and we conclude the proof.

Corollary 4. The orbit of AND technology with any
n, any {γi}i∈N and any cost vector c is of size at most
n + 1 and can be calculated in polynomial time.

Proof. We can look at each agent as a technology (an
“OR” technology over a single agent), and the AND
technology is just and “AND” over these n technolo-
gies. Each of these n technologies has two optimal
contracts (0 and 1), and clearly the transition point
between these contracts can be calculated in constant
time. We apply Lemma 6 to conclude by induction
that the orbit of the AND technology is of size at most
2n− (n−1) = n+1. Any AND technology is a special
case of the family of AND − of − OR technologies of

Lemma 7, thus we can calculate the orbit in polynomial
time.

Theorem 10. In the OOA technology with two parallel
paths of length two, for any values of c and γ, there
exist values v1 < v2 in the optimal contract such that:

• for any v ≤ v1, no agent is contracted.

• for any v ∈ [v1, v2], two agents on the same path
are contracted.

• for any v ≥ v2, all four agents are contracted.

Proof. Let t(k1, k2) be the probability of success when
k1 agents are contracted on the first path and k2 on
the second path. Similarly, let p(k1, k2) and u(k1, k2)
be the respective total payments and principal’s utility
under these profiles. Since uk1,k2

is a linear function
of v with a slope of tk1,k2

, the functions u(k1, k2) and
u(k′

1, k
′
2) cannot intersect in more than a single point.

We will show that the profiles (k1 = 0, k2 = 1), (k1 =
1, k2 = 1), and (k1 = 2, k2 = 1) cannot be optimal:

1. For any γ, t(2, 0) > t(1, 1) and p(2, 0) < p(1, 1).
Therefore, u(1, 1) < u(2, 0).

2. Let v1 denote the intersection point of u(0, 0) and
u(0, 2). It is easy to verify that:

v1 =
2(−1 + 2γ − 2γ3 − γ2 + γ4)

(γ2 − 1)(γ − 1)(2γ − 1)(−2γ + 2γ3 + 1 − γ2)

Calculating the gap between u(0, 0) and u(0, 1) at
v1, we get:

(u(0, 0) − u(0, 1))v=v1
=

−γ3 + 3γ2 − 2γ + 1

(γ − 1)2
> 0

⇓

∀v ≤ v1, u(0, 0) > u(0, 1)

and:

∀v ≥ v1, u(0, 2) > u(0, 1)

⇓
u(0, 1) < max{u(0, 0), u(0, 2)}

Let v2 denote the intersection point of u(2, 0) and
u(2, 2). It is easy to verify that:

v2 =
2(−2γ − 5γ2 + 4γ3 + 3γ4 − 4γ5 + γ6 + 2)

(γ2 − 1)(γ − 1)(2γ − 1)γ2(γ − 2)(2 + 2γ2 − 5γ)

Calculating the gap between u(2, 2) and u(2, 1)
at v2, we get:

(u(2, 2) − u(2, 1))v=v2
=

γ8 − 4γ7 + 4γ6 − 3γ4 − γ3 + γ2 + γ − 1

γ2(2 − γ)(1 − γ + γ2)(−1 + γ2)
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⇓

∀v ≤ v2, u(2, 0) > u(2, 1) and:

∀v ≥ v2, u(2, 2) > u(2, 1)

⇓

u(2, 1) < max{u(0, 2), u(2, 2)}

.
From the above claims, we get that for v ≤ v1, the

profile (0, 0) is optimal, for v1 ≤ v ≤ v2, the profile
(2, 0) is optimal, and for v ≥ v2, the profile (2, 2) is
optimal. To complete the proof, we have to show that
v1 < v2. Indeed,

vi − v2 = 2(γ6−4γ5+3γ4+4γ3−7γ2+2γ+2)
(2+2γ2−5γ)(2−γ)γ2(−1+γ2)2(−1+γ) < 0.

D Algorithmic Aspects

Proposition 1 Given as input the full description of
a technology (the values t0, . . . , tn and the identical cost
c for an anonymous technology, or the value t(S) for
all the 2n possible subsets S ⊆ N of the players, and a
vector of costs ~c for non-anonymous technologies), the
following can all be computed in polynomial time:

• The orbit of the technology in both the agency and
the non-strategic cases.

• An optimal contract for any given value v, for both
the agency and the non-strategic cases.

• The price of unaccountability POU(t).

Proof. We prove the claims for the non-anonymous
case, the proof for the anonymous case is similar.

We first show how to construct the orbit of the tech-
nology (the same procedure apply in both cases). To
construct the orbit we find all transition points and
the sets that are on the orbit. The empty contract is
always optimal for v = 0. Assume that we have cal-
culated the optimal contracts and the transition points
up to some transition point v for which S is an optimal
contract with the higher success probability. We show
how to calculate the next transition point and the next
optimal contract.

By Lemma 3 the next contract on the orbit (for
higher values) has a higher success probability (there
are no two sets with the same success probability on
the orbit). We calculate the next optimal contract by
the following procedure. We go over all sets T such
that t(T ) > t(S), and calculate the value for which the
principal is indifferent between contracting with T and
contracting with S. The minimal indifference value is

the next transition point and the contract that has the
minimal indifference value is the next optimal contract.
Linearity of the utility in the value and monotonicity of
the success probability of the optimal contracts ensure
that the above works. Clearly the above calculation is
polynomial in the input size.

Once we have the orbit, it is clear that an optimal
contract for any given value v can be calculated. We
find the largest transition point that is not larger than
the value v, and the optimal contract at v is the set
with the higher success probability at this transition
point.

Finally, as we can calculate the orbit of the technol-
ogy in both the agency and the non-strategic cases in
polynomial time, we can find the price of unaccount-
ability in polynomial time. By Lemma 1 the price of
unaccountability POU(t) is obtained at some transi-
tion point, so we only need to go over all transition
points, and find the one with the maximal social wel-
fare ratio.

A more interesting question is whether if given the
function t as a black box, we can compute the optimal
contract in time that is polynomial in n. We can show
that, in general this is not the case:

Theorem 5 Given as input a black box for a success
function t (when the costs are identical), and a value
v, the number of queries that is needed, in the worst
case, to find the optimal contract is exponential in n.

Proof. Consider the construction of an orbit for an ad-
missible collection of k size sets of Theorem 4. We can
view the constructed t as encoding all, exponentially
many, values of epsilon used in the construction. Any
algorithm that finds the optimal contract, can be di-
rectly used to answer queries of the form ”is a given
ε inside the set encoded by t?” by simply finding the
optimal contract for the v whose optimal contract is
given by that εS (the expression for v is given in the
construction). A lower bound for this problem is quite
trivial as an adversary will just keep providing values
for the queried locations of t that reflect arbitrary other
εS ’s, keeping the desired εS for the last position.

Theorem 6 The Optimal Contract Problem for Read
Once Networks is #P -complete (under Turing reduc-
tions).

Proof. We will show an algorithm for this problem can
be used to compute t(E). This will be done as fol-
lows: first define a new graph G′ which is obtained by
”And”ing G with a new player x, with γx very close
to 1

2 . By choosing γx close enough to 1
2 , we can make

sure that player x will enter the optimal contract only
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for very large values of v, after all other agents are
contracted (if we can find the optimal contract for any
value, it is easy to find a value for which in the original
network the optimal contract is E, by keep doubling
the value and asking for the optimal contract. Once
we find such a value, we choose γx s.t. c

1−2γx
is larger

than that value). Let us denote βx = 1 − 2γx.
The critical value of v where player x enters the op-

timal contract of G′, can be found using binary search
over the algorithm that supposedly finds the optimal
contract for any network and any value. Note that at
this critical value v, the principal is indifferent between
the set E and E ∪{x}. Now when we write the expres-
sion for this indifference, in terms of t(E) and ∆t

i(E) ,
we observe the following.

t(E) · γx ·
(

v −
∑

i∈E

c

γx · ∆t
i(E \ i)

)

=

t(E)(1−γx)

(

v −
∑

i∈E

c

(1 − γx) · ∆t
i(E \ i)

− c

t(E) · βx

)

m

t(E) · γx · v − t(E) ·
∑

i∈E

c

∆t
i(E \ i)

=

t(E) · (1− γx) · v− t(E) ·
∑

i∈E

c

∆t
i(E \ i)

− (1 − γx) · c
βx

m

t(E) · γx · v = t(E) · (1 − γx) · v − (1 − γx) · c
βx

m

t(E) =
(1 − γx) · c
(βx)2 · v

thus, if we can find the optimal contract we are also
able to compute the value of t(E).

Lemma 7 Given a Read Once AND − of − OR net-
work such that each OR-component is an anonymous
technology (has the same γ and c for all agents), the
optimal contract problem can be solved in polynomial
time.

Proof. Let us assume that there are nl OR-components
and that the c OR-component (for c ∈ {1, . . . , nl}) has
nc agents. We will calculate all the transition points

and the optimal contract at each interval between any
two consecutive points. We begin by calculating the
transition points and the optimal contract at each in-
terval for each OR-component separately, this can be
done in polynomial time by Proposition 1.

Next we start to combine each OR-component with
all previous ones, starting from combining the sec-
ond component with the first. Let hk be the AND
technology of the first k OR-components. Assume
by inductions that its orbit was calculated in polyno-
mial time and by Lemma 6 its size r(k) is at most
∑k

c=1 nc − (k − 1). Let X be the set of optimal con-
tracts for hk. We sort the contracts by increasing suc-
cess probabilities, thus X = (X1, X2, . . . , Xr(k)) where
hk(Xi) < hk(Xi+1). Let ok+1 denote the (OR) technol-
ogy of the k+1 OR-component, let Y = (Y1, Y2, . . . , Yy)
be the set of optimal contracts for ok+1 sorted by in-
creasing probabilities. Note that y ≤ nk+1 + 1.

Using Lemma 5 we show how to combine the k + 1
OR-component with hk. By the Lemma, the only can-
didates for optimal contracts of hk+1 = hk

∧

ok+1, are
(Xi, Yj) ∈ (X, Y ). We denote the indexes of the l − th
optimal contract for h(k + 1) by (i(l), j(l)). The first
optimal contract for hk+1 is (Xi(1), Yj(1)) = (X1, Y1),
which is the (0, 0) contract. Assume that we calcu-
lated the optimal contracts for hk+1 up to the l-th
contract. We calculate the l+1-th optimal contract by
the following procedure. We go over all i, j pairs such
that i ≥ i(l) and j ≥ j(l), and calculate the value for
which the principal is indifferent between the contract
(Xi(l), Yj(l)) and the contract (Xi, Yj). The contract
that has the minimal indifference value is the next opti-
mal contract, and we continue to find the next optimal
contract by the same procedure.

Clearly, finding each additional optimal contract can
be done in polynomial time, as the number of optimal
contracts in hk grows at most linearly in the number
of agents in hk.
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