
MDCube: A High Performance Network Structure for
Modular Data Center Interconnection

Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo, Yongguang Zhang
Microsoft Research Asia (MSRA), China

{hwu, lguohan, danil, chguo, ygz}@microsoft.com

ABSTRACT
Shipping-container-based data centers have been introduced
as building blocks for constructing mega-data centers. How-
ever, it is a challenge on how to interconnect those containers
together with reasonable cost and cabling complexity, due to
the fact that a mega-data center can have hundreds or even
thousands of containers and the aggregate bandwidth among
containers can easily reach tera-bit per second. As a new
inner-container server-centric network architecture, BCube
[9] interconnects thousands of servers inside a container and
provides high bandwidth support for typical traffic patterns.
It naturally serves as a building block for mega-data center.

In this paper, we propose MDCube, a high performance
interconnection structure to scale BCube-based containers
to mega-data centers. MDCube uses the high-speed up-
link interfaces of the commodity switches in BCube contain-
ers to build the inter-container structure, reducing the ca-
bling complexity greatly. MDCube puts its inter- and inner-
container routing intelligences solely into servers to han-
dle load-balance and fault-tolerance, thus directly leverages
commodity instead of high-end switches to scale. Through
analysis, we prove that MDCube has low diameter and high
capacity. Both simulations and experiments in our testbed
demonstrate the fault-tolerance and high network capacity
of MDCube.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Packet-switching networks

General Terms
Algorithms, Design

Keywords
Modular data center, Server-centric network, Commoditiza-
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1. INTRODUCTION
Large data centers are built around the world to provide

various online services. The deployment trend shows that
the number of servers in data centers continues to grow.
Companies like Amazon, Google, and Microsoft are build-
ing mega-data centers for cloud computing [13]. The re-
cently proposed “shipping container” data center [13, 9, 11,
15, 16, 17] takes a modular approach, which is called Modu-
larized Data Center (MDC). Servers, up to a few thousand,
are interconnected and placed on multiple racks within a
standard, say 40- or 20-feet, shipping container. Efforts are
made to significantly reduce the costs of cooling, powering,
and administration in a container.

The shipping container product is already available and
deployed by companies including HP, Microsoft, and Sun
[13]. Taken the structure shown in [13] as an example, fu-
ture mega-data center may contain 400 containers, with each
container houses 2500 servers. However, how to interconnect
the building block containers to scale a data center from
thousands to millions of servers is a challenging problem.

There are three challenges for inter-container interconnec-
tion. First, high inter-container bandwidth requirement. A
data center needs to support many high bandwidth services,
such as distributed file system [7, 4, 5] and distributed ex-
ecution engine [6, 12]. They typically require high commu-
nication capacity among servers across different containers.
The number of containers of an MDC may vary from several
to hundreds. A scalable design should provide high network
capacity in various settings. Second, the cost of the inter-
connection structure. To scale, existing approaches either
scale up the intermediate networking devices, e.g., high end
routers, with more capacity, or scale out the intermediate
devices to a large number, e.g., in fat-tree [1] and VL2 [8].
However, either capacity is poor or enormous switch cost is
introduced to a mega-data center with hundreds of contain-
ers. Third, cabling complexity. When the number of con-
tainers scales to hundreds, the required long cables between
containers become a practical barrier for MDC scalability.
The inter-container cabling complexity should not restrict
the scalability of a well planned MDC.

With these challenges, we discuss the design spaces as fol-
lows. For scalability and high capacity reason, we cannot
use hierarchical designs such as the tree structure, and we
need to make containers equal in certain sense. For cost is-
sue, it is better that we do not depend on high end switches,
and we want to only use commodity switches without any
change. This directly leads to our server-centric design on
whole mega-data center, which makes us choose BCube [9]



as one of the examples for inner container. For cabling is-
sue, we choose to use 10Gbps switch-switch link to reduce
the number of cables, which naturally fits the link rate hi-
erarchy of Ethernet switches.

As a new network architecture designed for shipping-con-
tainer-based data centers, BCube [9] is proposed for intra-
container server interconnection. BCube is a server-centric
structure and provides high network capacity for various
typical data center applications such as MapReduce[6] and
Dryad[12], distributed file systems, and reliable data broad-
casting/ multicasting. Due to the desired properties of BCube
(high network capacity, graceful performance degradation,
and directly built from low-end COTS (commodity off-the-
shelf) switches, see [9]), it is a natural step to use BCube as
the building block for mega-data centers.

In this paper, we present MDCube, a high-capacity inter-
connection structure for a M odularized Data center Cube
network. Recent COTS switches provide dozens (e.g., 48)
of Gigabit ports and several (e.g., 4) high-speed 10 Gigabit
ports, while BCube only uses those Gigabit ones. Our idea
for MDCube is to directly connect the high-speed ports of
a switch in a container to those of the peer switches in an-
other container. By treating each container as a virtual node
and those switches inside a BCube network as interfaces for
inter-container connection, all the container-based virtual
nodes form a virtual cube network. MDCube therefore con-
nects all the containers using fairly low cost optical fibers
without extra high-end switches or routers. Moreover, MD-
Cube ensures high-degree robustness because of the large
number of paths between two containers. We note that it
is possible to use switch-centric structures such as fat-tree
as intra-container structure and still treat them as a virtual
node in MDCube. But switch-centric structures need up-
grading switches. In this paper, we only focus on the server-
centric BCube structure, due to BCube’s high performance
compared with that of other server-centric structures such
as DCell.

Our MDCube-based solution well addresses all the three
challenges. First, MDCube offers high aggregate bandwidth
between containers, which is achieved by the MDCube topol-
ogy design and a novel hierarchical routing algorithm on top
of the MDCube topology. Second, MDCube directly con-
nects the high speed interfaces (ports) of switches in con-
tainers and thus the interconnection cost is only the optical
fibers. The trade-off we pay is the slightly reduced all-to-all
throughput of the whole mega-data center compared with
the case that all servers are directly connected to a super
crossbar. Third, the number of inter-container cables is half
of the number of high-speed interfaces of switches, which
is much smaller than the number of servers. Hence cabling
complexity is an addressable issue. MDCube makes innova-
tions in its direct interconnection structure, load balanced
routing protocol, and efficient implementation.

We have designed and implemented an MDCube proto-
col suite. Due to the property of the MDCube structure,
we are able to extend the fast packet forwarding engine in
BCube to MDCube packet forwarding, which can decide the
next hop of a packet by only one table lookup. The packet
forward engine can be efficiently implemented in both soft-
ware and hardware. We have built an MDCube testbed
with 20 servers and 5 24-port Gigabit Ethernet switches.
Experiments in our testbed demonstrated the efficiency of
our implementation.

MDCube is a better structure for modular mega-data cen-
ters than recently proposed structures such as fat-tree [1]
and DCell [10]. Compared to DCell, MDCube solves ca-
bling issue, and provides much higher network capacity since
it does not have performance bottlenecks; compared to fat-
tree, MDCube can be directly built using COTS switches
without any switch upgrade. See Section 7 for detailed com-
parisons.

The rest of the paper is organized as follows. Section 2
discusses research background and the design of MDCube.
Section 3 presents MDCube and its properties. Section 4 de-
signs the load balance and fault tolerant routing. Sections
5 and 6 present simulations and experiments, respectively.
Section 7 discusses related work. Finally, Section 8 con-
cludes the paper.

2. BACKGROUND AND MDCUBE DESIGN
The design of the MDC network architecture is driven by

application needs, technology trends, as well as MDC de-
ployment constraints and operational requirements. Instead
of building raised floor rooms, mounting server racks and
open room cooling systems, shipping-container-based build-
ing blocks [13, 9] with integrated computing, power and cool-
ing systems provide an appealing alternative way to build
mega-data centers.

BCube [9] is a novel network structure for inner-container
server interconnection. By installing a small number of net-
work ports (e.g., 2, which is already a standard profile for
existing servers in data centers) at each server, using COTS
switches as dummy crossbars, and putting routing intelli-
gence at the server side, BCube forms a server-centric net-
work architecture. BCube provides high network capacity
and smooth performance degradation when failures increase.
Yet, designing network architecture for MDCs with BCube
containers as building blocks is still challenging. The band-
width between containers are highly dynamic and bursty
[8], and many data center applications are bandwidth de-
manding. The design should be scalable as the number
of containers starts from several and increases to hundreds
or thousands and should only use commodity switches for
cost saving. In what follows, we first briefly introduce the
BCube structure and its properties, and then we overview
the BCube-based MDCube design.

2.1 BCube Structure
There are two types of devices in BCube: Servers with

multiple ports and switches that connect a constant num-
ber of servers. BCube is a recursively defined structure. A
BCube0 is simply that n servers connect to an n-port switch.
A BCubek (k ≥ 1)) is constructed from n BCubek−1s and
nk n-port switches. Each server in a BCubek has k + 1
ports, which are numbered from level-0 to level-k. It is easy
to see that a BCubek has nk+1 servers and (k + 1) levels of
switches, with nk n-port switches at each level.

The construction of a BCubek is as follows. We number
the n BCubek−1s from 0 to n − 1 and the servers in each
BCubek−1 from 0 to nk − 1. We then connect the level-k
port of the i-th server (i ∈ [0, nk− 1]) in the j-th BCubek−1

(j ∈ [0, n− 1]) to the j-th port of the i-th level-k switch, as
we show in Figure 1(a).

We show a BCube1 with n = 4, which is constructed from
four BCube0s and four 4-port switches, in Figure 1(b). We
denote a server in a BCubek using an array akak−1 · · · a0



(a) (b)

Figure 1: (a) BCube is a leveled structure. A BCubek is constructed from n BCubek−1 and nk n-port switches.
(b) A BCube1 with n = 4. In this BCube1 network, each server has two ports.

(ai ∈ [0, n− 1], i ∈ [0, k]). Equivalently, we can use a BCube

server ID bsID=
∑k

i=0 ain
i to denote a server. We denote a

switch using the an array < l, sksk−1 · · · sl+1∗ sl−1 · · · s0 >
sksk−1 · · · sl+1∗ sl−1· · · s0 (sj ∈ [0, n− 1], j ∈ [0, k], sl = ∗),
where l(0 ≤ l ≤ k) is the level of the switch. Similarly, we

can use a BCube switch ID bwID=
∑l−1

i=0 sin
i+

∑k
i=l+1 sin

i−1

+lnk to denote a switch. Figure 1 shows that the con-
struction guarantees that the i-th (i ∈ [0, n − 1]) port of a
switch sksk−1 · · · sl+1∗sl−1· · · s0 connects to the level-l port
of server sk sk−1 · · · sl+1isl−1· · · s0.

As described in [9], BCube has two proved properties as
follows.

• The diameter, which is the longest shortest path among
all the server pairs, of a BCubek, is 2(k + 1).

• There are k + 1 edge-disjoint parallel paths between
any two servers in a BCubek.

Note that the path length is twice of that in [9], because
one server-server hop (through a switch) is counted as two
server-switch hops in this paper. In practice, k is a small
integer, typically 1 and at most 3. BCube therefore is a
low-diameter network.

2.2 Properties for BCube Switches
In this Subsection, we provide several additional proper-

ties of BCubes. These properties will be used to analyze
the properties of MDCube and help us design the MDCube
inter-container routing algorithm.

1. The longest shortest path length between two switches
in a BCubek is 2(k + 1).

2. The longest shortest path length between a server and
a switch in a BCubek is 2k + 1.

3. There are n edge-disjoint parallel paths between any
two switches in a BCubek.

4. There are k + 1 edge-disjoint parallel paths between
a switch and a server in a BCubek network (suppose
k + 1 < n).

We prove the first property here and move the proofs of
third and fourth properties to Appendix A and B. The proof

of the second property is similar to that of the first one and
thus skipped. Note that the edge-disjoint parallel paths in
BCube between a switch and another switch (or a server)
are useful to construct parallel paths crossing containers in
an MDCube.

Proof. Suppose the switches w0 and w1 are numbered
as akak−1 · · · al+1∗al−1· · · a0 at level l and bkbk−1 · · · bt+1∗
bt−1· · · b0 at level t. By definition w0 connects to a server
n0 = akak−1· · · al+1xal−1· · · a0 and w1 connects to a server
n1 = bkbk−1· · · bt+1ybt−1· · · b0, x, y ∈ [0, n − 1]. From the
properties in Section 2.1, we know that there are shortest
pathes of length at most 2(k + 1) between the two servers.
Hence the path length between the two switches are at most
2(k + 1) + 2. However, when selecting n0, we can choose
x = bl so that the shortest path from w0 to w1 is shorten by
2 hops. Similarly we can also choose y = at, but the path
length is shorten only when l 6= t. Thus, we have longest
shortest path length between switches at 2(k + 1).

2.3 MDCube Design Overview
BCube builds high capacity network structure using only

COTS switches and commodity servers with multiple ports
for better performance-to-price ratio [2]. However, BCube
cannot directly scale out to millions of servers by adding
more ports to servers and deploying more COTS switches.
The fundamental barrier is that the number of non-local
(inter-container) cables required by BCube increases linearly
with the total number of servers. Note that similar problems
exist for other high capacity structures like DCell and fat-
tree. See Section 7 for detailed discussion.

How to scale to hundreds of containers while maintain-
ing high interconnection capacity with reasonable cost is a
big challenge. A conventional approach is to use high end
switches to connect those high speed interfaces, but the high
over-subscription ratio is not satisfactory for mega-data cen-
ter. A recent approach VL2 [8] is to use multiple high end
switches to build a Clos network as interconnection struc-
ture. Although it could support 10k servers with 148 148-
port 10Gbps switches, the cost of such structure is unafford-
ably high for a mega-data center. For example, considering
directly using VL2 to connect 1 million servers (each with
1Gbps link), then it needs 448 448-port 10Gbps aggregate
and intermediate switches.



Observing the link speed hierarchy in existing network
devices, i.e., 1Gbps for server-switch links and 10Gbps for
switch-switch links, we are motivated to reduce the number
of cables by using those high speed interfaces on commodity
off-the-shelf switches. MDCube chooses to directly intercon-
nect those 10Gbps links. The cables that connect switches in
different containers are optical fibers since the range of cop-
per fibers is not enough for space required by hundreds of
containers. We expect our design follows the technique im-
provements well, e.g., when 10Gbps is used for server-switch
links, 40Gbps or 100Gbps will be provided for switch-switch
interfaces.

Besides the cabling complexity and cost challenges, there
are several other technical challenges that MDCube is fac-
ing. First, the structure of MDCube. How to directly inter-
connect those high speed interfaces, while ensure the capac-
ity still increases linearly with the number of servers. Sec-
ond, the routing of MDCube. How to choose the path and
how to determine the bandwidth ratio of those high speed
switch-switch links over those server-switch links. Third,
the flexibility of MDCube. Both small and large number of
containers should be supported. And the requirement of in-
cremental deployment is also possible. We will address these
challenges in the next Section.

In addition to the above challenges, there are three tech-
nical details we need to address: the first is load balance for
better performance; the second is fault tolerance as faults
are inevitable for such large number of servers and switches;
and the third is the routing to external networks. We will
address these issues in Section 4.

3. MDCUBE

3.1 MDCube Construction
MDCube is designed to interconnect multiple BCube con-

tainers by using the high-speed (10Gb/s) interfaces of switches
in BCube. To support hundreds of containers in a mega-data
center, we assume optical fibers are used for these high-speed
links. Each switch contributes its high-speed interfaces as
a virtual interface for its BCube container. The virtual in-
terface can be achieved by port trunking, e.g., four 10Gbps
high-speed interfaces of a 48 port Gigabit switch can be
bundled into a virtual interface at 40Gbps. Thus, if each
BCube container is treated as a virtual node, it will have
multiple virtual interfaces (the exact number is the number
of switches). For each switch, it only observes its directly
connected servers and its directly connected peer switch as
well as servers connecting to that peer. Therefore, MDCube
is server centric, and switches are dumb crossbars.

We can use the virtual interfaces of the BCube contain-
ers to form a basic complete graph. Suppose the number
of containers to be connected is M , and there is a direct
link between any two containers, then each container needs
M − 1 virtual interfaces. To be scalable when the number
of containers grows, we extend the virtual complete graph
topology to a generalized cube by introducing dimensions.
The switches of a BCube container are divided into groups,
serving as interfaces connecting to different dimensions. A
container is identified by an ID that is mapped to a multi-
dimensional tuple. Each container connects to other neigh-
bor containers with different tuple on one dimension.

We build a (D + 1) dimensional MDCube as follows. We

have M =
∏D

d=0 md, where md is the number of contain-

/* D + 1 is the dimension size of MDCube;
md is the number of containers on dimension d;

*/
BuildMDCube(D, mD, mD−1, · · · , m0):

for(int d = D; d ≥ 0; d−−)
for(int i = 0; i < md − 2; i + +)

for(int j = i + 1; j < md − 1; j + +)
cID1 = cD · · · cd+1icd−1 · · · c0;
cID2 = cD · · · cd+1jcd−1 · · · c0;

bwid1 = j − 1 +
∑d−1

x=0(mx − 1)};
bwid2 = i +

∑d−1
x=0(mx − 1)};

connect {cID1,bwid1} and {cID2,bwid2};
return;

Figure 2: The procedure to build an MDCube from
BCubes

ers on dimension d. A container is identified by a (D +
1)-tuple cID=cDcD−1 · · · c0(cd ∈ [0, md − 1], d ∈ [0, D]).

Each container houses
∑D

d=0(md − 1) switches, as (md − 1)
is the number of switches on dimension d. In MDCube,
each switch is identified by its container ID and its switch
ID in its BCube container: {cid, bwid}, cid ∈ [0, M − 1],

bwid ∈ [0,
∑D

d=0(md − 1)− 1]. Each switch contributes one
trunked interface for MDCube’s interconnection. There are
two types of links in MDCube: one is the normal link by
which switch connects to servers, and the other is the inter-
container high-speed link between switches in different con-
tainers.

The construction of MDCube is shown in Figure 2. There
is a link on dimension d between two containers that have
different identity tuple only on dimension d. To illustrate
the MDCube’s construction, as an example we show a 2-
d MDCube networks built from 9 BCube1 containers with
n = 2, k = 1 in Figure 3. Another 1-d MDCube built
from 5 BCube1 containers is shown in Figure 8, which is
the topology used in our experimental testbed. Note there
are superficial similarities between MDCube and generalized
Hypercube [3] at container level. MDCube is a hierarchical
structure built from BCube, which is a server-centric struc-
ture. This results in both different structural properties and
routing strategies.

Although the properties of MDCube shown later work for
any integer D, this paper focuses on 1-d MDCube (vir-
tual mesh) and 2-d MDCube (virtual generalized hyper-
cube) cases, since the number of servers supported in 2-d
is already over 1 million. Take MDCube constructed by
BCube1 with 48 port switches (n = 48, k = 1) as an exam-
ple: each BCube container houses nk+1 = 482= 2304 servers
and n(k + 1) = 48× 2 = 96 switches, so MDCube supports
up to n(k + 1) + 1 = 97 containers (0.22M servers) on 1-

d, and up to (n(k+1)
2

+ 1)2 = 492 = 2401 containers (5.5M
servers) on 2-d.

3.2 Single-path Routing in MDCube
By exploring the multi-dimensional structure of MDCube

at container level, we design a single-path routing algorithm
for MDCube as shown in Figure 4. The procedure is to
correct the tuples of the container ID one by one to reach
the destination container, and the order of such correction is
controlled by a permutation ΠD. Function GetLink returns
the switch pairs that directly connect the two containers us-
ing the high-speed link defined in Figure 2. For the routing



Container-00 Container-01 Container-02Container-10 Container-11 Container-12Container-20 Container-21 Container-22

00.0* 00.1*00.*000.*1 00.00 00.1000.01 00.11 01.0* 01.1*01.*001.*1 01.00 01.1001.01 01.11 02.0* 02.1*02.*002.*1 02.00 02.1002.01 02.1110.0* 10.1*10.*010.*1 10.00 10.1010.01 10.11 11.0* 11.1*11.*011.*1 00.00 00.1000.01 00.11 12.0* 12.1*12.*012.*1 12.00 12.1012.01 12.1120.0* 20.1*20.*020.*1 20.00 20.1020.01 20.11 21.0* 21.1*21.*021.*1 21.00 21.1021.01 21.11 22.0* 22.1*22.*022.*1 22.00 22.1022.01 22.11
switch server

Figure 3: A 2-D MDCube is constructed from 9=3*3
BCube1 Containers with n=2, k=1.

between two servers or switches in the same container, we
call BCubeRouting. Note that [9] only defines the route be-
tween servers, here we define route for switches as a path
through any of its directly connected servers. The proce-
dure shown in Figure 4 can be easily implemented at the
server side. Hence the routing can be carried out without
the involvement of switches.

Theorem 1. For a (D + 1)-dimensional MDCube con-
structed from BCubek, the path length in MDCubeRouting
between any two servers is at most h = 4k + 3 + D(2k + 3).

Proof. The procedure taken in MDCubeRouting is to
correct the container ID (D + 1)tuple one by one, so that
the number of intermediate container between source and
destination container is at most D. For each intermediate
container, the path is from an entry switch to an exit switch.
From the first property of BCube switches in Section 2.2, the
total hops for intermediate container is thus 2D(k + 1) +
(D + 1). The adding of (D + 1) is to count the hops on
high-speed links when containers are concatenated. Then
we add hops in source and destination container from the
second property, and the result is 4k + 3 + D(2k + 3).

Note that here the path length is increased by 2 (or 3)
whenever a server is traversed for inner-container crossing
one switch (or inter-container crossing two switches). The-
orem 1 gives an upper bound for the maximum path length
among all the shortest-paths. Therefore, the diameter of an
MDCube network is also at most 4k + 3 + D(2k + 3).

Considering that MDCube is at most 2-dimensional (D=1)
in practice, the longest shortest path length in MDCube is
at most 6k+6. Since k is 1 for BCube1, the longest shortest
path in any 2-dimensional MDCube constructed by BCube1

is at most 12.

/* Both src and dst are denoted as {cid, bsid};
Πx = [πx, πx−1, · · · , π0] is a permutation of of [0, 1, · · · , x]

*/
MDCubeRouting(src, dst, ΠD):

c1=src; c2=c1; path=();
for(i = D; i ≥ 0; i−−)

if(the πi-th entry of c2.cid and dst.cid are different)
change πi-th entry of c2.cid to that of dst.cid
(sw1, sw2)= GetLink(c1.cid, c2.cid);/*switches pair*/
path1=BCubeRouting(c1, sw1);
path = path + path1+(sw1, sw2);
c1=sw2; c2=c1;

if (c2.cid == dst.cid) /*in the same BCube*/
path1= BCubeRouting(c2, dst);
path = path + path1;

return path;

Figure 4: MDCubeRouting to find a path from src
to dst. It corrects one digit at one step at container
level by a predefined permutation ΠD.

Theorem 2. There are (k+1) parallel paths between any
two servers in an MDCube built from BCubeks (by assuming
the high-speed links between containers provide higher band-
width than (k + 1) normal speed link).

The proof of Theorem 2 is from the third property of
BCube switches in Section 2.2 for intermediate containers
and the fourth property for source and destination container.
Since the high-speed links usually provide bandwidth that is
much higher than normal links, we can treat it as a fat pipe,
e.g., 40Gbps high-speed link can be treated as 40 1Gbps
normal links. The BCubek usually has k at most 3, so k is
much smaller than the number of links in pipe. Note that
here the paths are not fully edge disjointed because a high-
speed link is treated as multiple small links. In Section 4.1
we will discuss how to provide fully edge disjoint parallel
paths using detour routing for load balance.

3.3 Traffic Distribution in MDCube
We elaborate the traffic distribution on MDCube under

the all-to-all communication model, which is used in MapRe-
duce [6] alike applications in MDC. We have theorem as
follows. Its proof is given in Appendix C.

Theorem 3. Consider an all-to-all communication model
for a (D + 1)-dimensional MDCube Built from BCubeks,
where any two servers have one flow between them. When
MDCubeRouting is used, the number of flows carried on a

BCube normal link is around (2k + 1 + D( k2

k+1
+ 1)) (N−1)

k+1
,

and the number of flows carried on a high-speed link on di-
mension i is tN

mi
, where t and N are the numbers of servers

in a BCube and an MDCube, respectively.

The proof of Theorem 3 shows that the requirement of nor-
mal links and high-speed links are different for the all-to-all
communication traffic pattern. The bottleneck link is deter-
mined by the ratio of capacity of high-speed links over that
of normal links. Take the number of flows we obtained, we

can estimate the ratio required as r = t(k+1)

mi(2k+1+D( k2
k+1+1))

.

As an example, we estimate the ratio of an MDCube built
from BCubek with k=1, then the ratio is r=n

3
for 1-d MD-

Cube, and r= n
2.25

for 2-d square MDCube. Let’s consider
BCube1 built from 48-port switches, i.e., n=48, then the



required high-speed link capacity on all-to-all communica-
tion pattern is 16Gbps for 1-d MDCube, and 21.3Gbps for
2-d MDCube. As we know, by port trunking, we provide
40Gbps high-speed link using four 10Gbps high-speed links,
so that the high-speed links are not bottleneck for both 1-d
and 2-d MDCube. Note that commodity 48-port Gigabit
switches with 4 10Gbps high-speed ports are available.

To evaluate the capacity of MDCube, we use the metric
ABT (Aggregate Bottleneck Throughput), defined in [9] as
the throughput of the bottleneck flow times the total num-
ber of flows in the all-to-all traffic model, implemented in
MapReduce like applications in data center. Large ABT
means shorter all-to-all job finish time. The ABT of MD-
Cube is constrained by normal links and equals to N( 2k+1

k+1
+

D k2+k+1
(k+1)2

)−1. It’s N
1.5+0.75D

when k=1.

3.4 Incomplete MDCube
In a complete MDCube, all the high-speed interfaces of

switches are used as in Figure 2. However, a user may de-
ploy containers with the number ranging from several to
hundreds. In this paper, we focus on three related issues: 1)
how to provide high throughput between containers when
the number of switches is much larger than the container
number; 2) how to deal with factoring of M (the number
of containers in an MDCube); 3) incremental deployment of
MDCube.

The interconnection described in Figure 2 works for the
case when the number of switches g in BCube is larger than
the number of switches G =

∑D
d=0(md−1) used in intercon-

nection. However, it may result in low performance since
the interfaces on the rest switches are not used. Take the
MDCube in Figure 3 as an example, if there are only three
containers, say container-00, container-01 and container-02,
then it’s a 1-d MDCube. There is only 2 paths between two
containers yet each container has two idle interfaces.

Our solution is to duplicate the cabling dg/Ge times so
that the aggregate bandwidth between containers are main-
tained compared to a complete MDCube. The procedure
in the last step of function BuildMDCube that connects
bwid1 to bwid2, is changed to connecting (bwid1 + iG) to
(bwid2+iG), 0 ≤ i < dg/Ge. In this way, the rich connectiv-
ity of MDCube is maintained as the case g = G. Moreover,
the function GetLink in Figure 4 should return one of the
link from dg/Ge candidates.

Our MDCube construction method provides many ways
to organize M containers. For example, when M = 64, we
can arrange the containers into 1-d (1 × 64) or 2-d (8 × 8,
or 2× 32, etc). So there is a problem on how to decide the
number of dimensions and choose the value of mi for each
dimension i.

We have two principles on how to choose the factoring of
M . First, 1-d MDCube is preferred over 2-d if the number
of switches is enough because 1-d has higher ABT. Second,
when 2-d is used, factoring of mi =

√
M is preferred, with

the least number of switches required so that duplication is
maximized. Different mi is possible but not recommended.

MDCube provides the flexibility on incremental deploy-
ment. When the number of containers is small, a 1-d MD-
Cube is flexible to add/remove containers. For a 2-d MD-
Cube with hundreds of containers, we believe that for a
well planned mega-data center, it is more likely that several
columns or rows of containers are added into a mega-data

center instead of a single container. Note that rewiring does
happen, but only affects the wires to those added/removed
containers.

4. LOAD BALANCED AND FAULT TOLER-
ANT ROUTING

MDCubeRouting described in Section 3.2 explores the hi-
erarchical and dimensional properties of MDCube. It works
well for the balanced all-to-all communication pattern. How-
ever, it may use bandwidth inefficiently when facing bursty
traffic patterns, since it tends to only choose the shortest
path at container level. Take 1-d MDCube (virtual mesh)
as example, suppose we backup all files from container A
to container B, since the direct link A → B is always se-
lected, it may result in bottleneck even if other longer paths
like A → C → B through detour routing are idle. More-
over, MDCubeRouting is not fault tolerant when the se-
lected inter-container link breaks. In MDCube, we take a
holistic approach to design a load-balancing and fault toler-
ant routing algorithm. We divide the routing into inter- and
inner-container parts. We use detour routing to achieve high
throughput by balancing the load among containers, and the
fault tolerant routing by handling inter- and inner-container
routing failures at MDCube and BCube respectively.

4.1 Detour Routing for Load Balance
To leverage the rich connectivity between containers in

MDCube, we design a detour routing algorithm shown in
Figure 5. The idea of our detour algorithm is to initiate the
routing by a random, container-level jump to a neighboring
container, then perform MDCubeRouting by correcting the
first random jump at the final step.

Taking a 1-d MDCube as an example, our detour routing
algorithm is similar to Valiant Load Balance (VLB). How-
ever, in VLB a random node is selected for detour routing,
while in our algorithm, a random container is selected. Our
choice is based on MDCube topology and the goal to bal-
ance the load between containers: if simply a random node
is selected, then the path from the source to it and from it
to the destination may be unnecessarily overlapped at that
container, wasting bandwidth. Similar arguments hold for
multi-dimensional MDCube.

Another difference of our detour routing compared with
VLB is that we only choose a random jump to a neigh-
boring container (at one dimension) instead of choosing a
fully random container (at all dimensions). This is because
the paths obtained from our random jump are parallel (not
overlapped) on intermediate containers. First consider a 1-
d MDCube: it’s a complete graph, and each path takes at
most one intermediate container so that a randomly selected
container results in parallel detour paths. Second consider
a 2-d MDCube: a random jump on dimension i(i ∈ [0, 1])
changes the i-th entry of container ID, and it maintains that
value on later correction except the final step to destination.
Thus, paths started from different jumps are parallel. For
multiple dimensional MDCube, the claim still holds but it
needs a special ΠD\i, e.g., a sawtooth sequence (ceiled at
D) one like [i+1, i+2, · · · , D-1,D, 0,1,· · · , i]. The above
property leads to the following Theorem.

Theorem 4. For a (D + 1) dimensional MDCube con-
structed by M BCube Containers, and the i-th dimension
houses mi containers so that M=

∏D
i=0 mi, in total there are



/* Both src and dst are denoted as {cid, bsid};
Πx\i = [πx−1, πx−2, · · · , π0, i] is a special permutation of

[0, 1, · · · , x], where i is pushed to the last one
*/
MDCubeDetourRouting(src, dst)

inode=src; path1=();
i=random(0,D);/*a random value in [0,D]*/;
do

j=random(0,mi-1);
/*mi is the number of containers in dimension i*/;

until (j 6= πi-th entry of src.cid) /*not src container itself*/
change πi-th entry of inode.cid to j;
(sw1, sw2)= GetLink(src.cid, inode.cid);
path1=BCubeRouting(src, sw1)+(sw1, sw2);
path=path1+MDCubeRouting(sw2, dst, ΠD\i);
return path;

Figure 5: MDCubeDetourRouting to find a detour
path from src to dst. A neighbor is randomly se-
lected for the first step. MDCubeRouting is called
later for the rest hops, and the first random jump is
correct at the final step.

∑D
i=0 (mi − 1) intermediate container non-overlapped paths

between any source destination server pairs in different con-
tainers.

4.2 Traffic Distribution with Detour Routing
We are interested in the traffic distribution on MDCube

when the servers of two containers have an all-to-all commu-
nication model, e.g., running MapReduce. This in practice
makes senses since the number of servers of one container
may be not enough while that of the whole MDC may be
too large for a task. We have the following Theorem, and
its proof is in Appendix D.

Theorem 5. Consider an all-to-all communication model
for all servers of two containers in a (D + 1)-dimensional
MDCube built by BCubek. When MDCubeDetourRouting is
used, the number of flows carried on a BCube normal link is

nearly (3k+2)t
k+1

, and the number of flows carried on a high-

speed link is nt
k+1

, where t is the total number of servers in
a BCubek in MDCube.

From the proof of Theorem 5 we can estimate the ratio of
capacity of high-speed link over that of normal speed link re-
quired for all-to-all traffic between two containers. We have
ratio r = n

(3k+2)
and it translates to 9.6Gbps requirement on

high-speed link for the case of k=1 and n=48. The ABT of
two containers is constrained by normal links and thus it’s
2t 2k+2

3k+2
.

4.3 Fault Tolerant Routing
When either intermediate servers or switches are failed,

the algorithm described in Figure 5 is difficult to imple-
ment since it’s unlikely to guarantee that the failed device
information is known immediately. Thus, directly extending
BCube’s source routing protocol to MDCube faces scalabil-
ity challenge. However, we still want to control which inter-
mediate containers are traversed to achieve multiple parallel
paths to destination container for high aggregate through-
put. The idea of our routing algorithm dealing with failures
is similar to the inter- and intra-domain routing for the In-
ternet, but we leverage the structure of MDCube so that the

source node balances the load on candidate parallel paths at
container level, and BCube handles failures in containers.

We implement a hierarchical routing approach to decouple
the inter- and inner-container routing in MDCube: 1) the
source node only chooses which containers to traverse im-
plemented by a loosely controlled source routing protocol.
2) the path inside a container is maintained by BCube itself
so that failed servers or switches are bypassed without noti-
fying source node. However, for failures happened between
containers that cannot be handled by BCube itself, e.g., the
fiber link connecting two containers is broken, a route er-
ror message is generated and sent back to the source node
to trigger rerouting at container level using other parallel
paths. Note that from Theorem 4, if another random con-
tainer is selected, then it guarantees that it will not overlap
with the previous intermediate container.

After source node chooses its intermediate container, it
stores the IDs of those containers into its MDCube header
(extended from BCube header), which lies between Ethernet
and IP header. Those container IDs are used when cross-
ing BCube routing domain. Since BCube fully controls the
routing inside a container, a connection that traverses multi-
ple containers may experience packet reordering because an
intermediate container may route the packet using different
paths in BCube. In addition, there are many direct server
pairs that are connected by the same inter-container link.
Hence there exist many paths through this inter-container
link. This may result in packet reordering.

To select a fixed path from those available ones, we tag
the packet with a flow id field at source node, and later
path selection and caching is based on the flow id so that a
connection is always on the same path. The first packet with
a new flow id of a source/destination pair triggers a route
selection in BCube, and the path selected is cached and
indexed by source/destination plus flow id. When failure
happens and reroute in BCube is triggered, the new route in
BCube replaces the old entry to keep path consistent. Note
that alternatively we can let intermediate node inspect the
5-tuple (source/ destination IP and port, protocol), but we
leave this flexibility to source node.

4.4 Routing to External Networks
We follow the approach proposed for BCube [9] to route

the packets to or from the external networks. In [9], proxy
servers that connect to the aggregate switches serve as gate-
ways. The high-speed links of those aggregate switches are
connected to routers to external networks.

In MDCube, we reserve multiple switches in each BCube
with highest switch IDs and not used for interconnection of
BCubes. Such reservation will not confuse inter-container
MDCube routing since those switches do not appear in MD-
Cube interconnection. We then use their high-speed links to
connect routers to external networks. Servers under those
switches are gateways to the other servers in the same BCube.
The number of those switches and gateway servers are con-
figurable based on the load generated by a container.

5. SIMULATION RESULTS
In this Section, we use simulations to evaluate the per-

formance of MDCube. First, we study the ABT (aggregate
bottleneck throughput) of MDCube with multiple contain-
ers. We have analyzed the ABT of two containers in Section
4. We now use simulation to study the ABT as the number
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Figure 6: The ABT of MDCube with increased num-
ber of containers.

of containers increases. ABT generates an all-to-all traffic
pattern. This is to emulate the reduce-phase of MapReduce:
each reducer fetches data from all the mappers, resulting in
an all-to-all traffic pattern. Second, we study the ABT of
two containers under various server/switch failure ratios. In
a large data center, both servers and switches are facing fail-
ures that can’t be fixed immediately. We are interested in
MDCube’s performance to see whether our decoupled inter-
and inner-container routing works well under high failure
ratio.

In our simulation, we use a 2-d MDCube network built
from BCube1 with n=32, k=1. There are 33*33= 1089 con-
tainers, and each houses 32*32=1024 servers, so that the
total number of servers is over 1.1 million. The normal
link rate is 1Gbps for links between servers and switches,
while the high-speed link rate is 10Gbps for links between
switches.

5.1 ABT versus Number of Containers
We increase the number of containers to check ABT pro-

vided by MDCube in Figure 6. As a comparison, we also
show the performance of a case where all servers are con-
nected to a super crossbar switch, i.e., it always achieves
100% line rate of 1Gbps per server. Hence, the theoreti-
cal ABT of a super crossbar switch increases linearly as the
number of servers increases, serving as a performance upper
bound.

For MDCube, the achieved aggregate throughput is 1584
Gbps for 2 containers (2048 servers), so that the per server
throughput is 0.77Gbps with interface line rate at 1Gbps.
The 0.77Gbps is very close to the analysis result 2k+2

3k+2
=0.8

(k=1) in Section 4.2. The performance ratio of MDCube
over 100% line rate bound drops slowly with increased num-
ber of containers: 0.68Gbps per server for 10 containers.
Here we only give the ABT of multiple containers. We will
compare other performance metrics and cost in Section 7.

5.2 ABT under Failures
In [9], the graceful performance degradation of BCube un-

der both server and switch failures have been demonstrated,
compared with that of fat-tree and DCell. In this simula-
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Figure 7: The ABT of two containers in MDCube
under failures.

tion, we focus on the case of all-to-all traffic pattern with two
containers in a 2-d MDCube, and evaluate it by randomly
choosing servers or switches from the whole MDCube as the
failed ones in Figure 7.

Graceful performance degradation states that when server
or switch failure ratio increases, ABT decreases slowly and
there are no dramatic performance falls. For server failures,
either resulted from server crash or hardware failure, we find
that the ABT degrades smoothly for reasonable failure ratio:
for failure ratio of 2%, the ABT drops by 2.6%(from 1584
to 1543). ABT drops by half at a high failure ratio of 20%.

Switch failure has higher impact on the ABT than server
failure, and similar phenomena are also observed in [9] for
fat-tree, DCell and BCube networks. In MDCube, a failed
switch not only breaks all inner-container links for servers
connected to it, but also the inter-container link using it.
Note that in our simulation, the maximum failure ratio of
20% rarely happens in a well managed data center, where
an Ethernet switch usually has MTBF (Mean Time Between
Failure) at years.

6. EXPERIMENTAL EVALUATION

6.1 Testbed
We have designed and implemented an MDCube stack as

a kernel driver in the Windows server 2003 network stack.
The MDCube stack implements the load balance and fault
tolerant routing in Section 4 and a fast packet forward en-
gine which is extended from BCube[9]. We have built a 1-d
MDCube testbed using 20 Dell OptiPlex 755 and 5 24-port
Cisco 3560 Gigabit Ethernet switches. Each server has one
Intel 2.0GHz dualcore CPU, 2GB DRAM, and 160GB disk,
and an Intel Pro/1000 PT quad-port Ethernet NIC. We turn
off the xon/xoff Ethernet flow control, since it has interac-
tion with TCP [10].

For MDCube, it has 5 BCube1 (n=2) containers and each
houses 4 servers. We use VLAN to divide a physical switch
into multiple virtual 4-port Gigabit mini-switches. Each
mini-switch connects 2 servers and the rest two ports are
bundled together to form a high-speed inter-container link.
Each server uses two ports of its quad-port NIC. Figure 8
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Figure 8: The 1-D MDCube testbed built from 5 BCube1 containers with n=2, k=1.

illustrates the topology. We use a tree topology as a com-
parison. It connects the 20 servers in two layers: 4 servers
in a container connect to a Gigabit leaf switch, and then a
Gigabit root switch connects to those 5 leaf switches.

6.2 Bandwidth-intensive Application Support
To evaluate capacity of MDCube, we design four exper-

iments which generate typical traffic patterns required by
many bandwidth intensive applications. In all the experi-
ments, we set MTU to 9KB and each server transmits 10GB
data in total.

One-to-one. We set up two TCP connections tcp1 and
tcp2 between servers 3.11 and 4.00. The two connections use
random jump to two parallel paths, path1 {3.11, 1.00, 1.01,
4.10, 4.00} and path2 {3.11, 3.01, 0.10, 0.11, 4.00}, respec-
tively. The total inter-server throughput is 1.92Gb/s. The
throughput is 0.99Gb/s in the Tree, limited by one Gigabit
NIC per-server.

C-to-C. In this experiment, we show that load balance
can speedup data replication between two containers. Every
server in Container 0 replicates 10GB data to its counter-
part server (same server ID) in Container 1. Every server
splits its 10GB data into 4 blocks and uses 4 TCP connec-
tions because every container has 4 inter-container links. We
compare our approach with the tree structure and we achieve
2.1 times speedup. MDCube can achieve 4 times speedup in
theory by assigning paths. Our result is sub-optimal since
we use random jump which causes the inner-container links
to be bottlenecks.

C-to-C (All-to-All). In this experiment, all the 8 servers
in container 0 and 1 generate all-to-all traffic. Every server
sends 10GB data to all other 7 servers. The per-server
throughputs of MDCube and the tree are 460Mb/s and 300
Mb/s, respectively. Figure 9 plots the details for total
throughput of MDCube and that of the tree. MDCube
is about 1.5 times faster than the Tree. The initial high
throughput of the Tree is due to the TCP connections among
the servers under the same leaf switches, while later root
switch becomes the bottleneck. There is no such bottleneck
in MDCube.

All-to-all. In this experiment, each server establishes 19
TCP connections to all the other 19 servers. The per-server
throughput values of MDCube and the Tree are 243Mb/s
and 189Mb/s, respectively. MDCube is almost 1.3 times
faster than the tree.

Figure 10 summarizes the per-server throughputs of the
experiments. We note that while the first and fourth ex-
periments are similar to that presented in [9], the second
and third experiments are unique to MDCube and show the
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Figure 10: Per-server throughput under different
traffic patterns.

high inter-container capacity of MDCube. Compared with
the tree structure, MDCube achieves 1.3-2 times speedup
for these traffic patterns. Note that as the scale of network
increases, the gain of MDCube will be much more signifi-
cant. The all-to-all capacity of MDCube increases linearly
whereas the tree structure has severe bottleneck.

6.3 TCP Connection under Failures
We use experiment to illustrate the impact of failure on

an existing TCP connection in Figure 11. For tcp1 in the
one-to-one case, when we first unplug the inner-container
link between server 1.00 and switch 1.*0, server 3.11 finds
that server 1.00 is not available using its neighbor mainte-
nance protocol (by 3 continuous hello messages lost in three
seconds). Then server 3.11 changes tcp1 to path {3.11, 1.10,
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Figure 11: TCP connection experiences failures.

1.11, 4.10, 4.00}. Then we unplug the inter-container link
between container 1 and 4. Then, the source server notices
the failure from destination unreachable message from server
1.10 and randomly select another container 2 to forward the
traffic. The new path for tcp1 becomes {3.11, 3.10, 2.00,
2.01, 4.00}. In our current implementation, the unreachable
message strictly follows the reverse direction of the forward
path to ensure that the unreachable message can reach the
source with high probability. The recovery times of both the
inner-container and inter-container failure are dominated by
the 3 seconds neighbor failure detection time. Note we set
the period of hello message as 1 second to reduce the pro-
tocol overhead since we treat link broken as rare case. We
believe further improvement can be made to detect failure
faster in mega-data center networks.

7. RELATED WORK
Network interconnections have been studied for several

decades. They can be roughly divided into two categories.
One category is switch-centric and the other is server-centric.
In the switch-centric approaches such as Clos network, But-
terfly and fat-tree [1], servers connect to a switching fab-
ric. Since the routing is implemented in those switches, ex-
isting COTS switches need upgrade. In the server-centric
approaches such as mesh, torus, ring, Hypercube [14] and
de Bruijn, servers usually connect to other servers directly,
resulting in either limited capacity or large server port num-
ber. There are also hierarchical structures like CCC (cube-
connected-cycle)[14] which trades network capacity for small
server port number.

To interconnect thousands of containers, MDCube treats
each container as a virtual node, and each switch in any con-
tainer as a virtual interface, which makes it similar to gen-
eralized hypercube at container level. However, as routing
decision is made by server instead of container, we decouple
inter and inner containers routing and use random interme-
diate container to balance inter-container load. We consider
MDCube at 1-d or 2-d to support millions of servers in a
mega-data center.

DCell [10] is a multi-layer, server-centric structure that
leverages COTS switches on its construction. The basic
layer is a switch connected to n servers, where n is the port
number of the switch. And a layer k DCellk is constructed

fat-tree DCell BCube MDCube
One-to-one 1 k′ + 1 lognN lognt

ABT(MDC) N N

2k′
n(N−1)

n−1
N

1.5+0.75D

Traffic balance Yes No Yes Yes
Graceful fair good good good
degradation

Switch upgrade Yes No No No

Inner- cable NO. N log n
2

t
2

N(k
′′
2

+ 1) N lognt N lognt

Inter- cable NO. N log n
2

N
t

N(k
′−k′′
2

) N logn
N
t

N
2n

lognt

Switches NO. N
n

log n
2

N
2

N
n

N
n

lognN
N
n

lognt

∗ n is port number of switches. t is the number of servers in a

container, while N is the number of all . DCell has k′ = log2lognN

and k′′ = log2lognt. MDCube has lognt = k + 1.

Table 1: Performance and cost comparison of MD-
Cube and three other network structures.

by multiple DCellk−1 treating each one as a virtual node
with multiple interfaces. Each server in DCell has multiple
ports and the total number of servers in DCell grows super
exponentially. As we show in Table 1, DCell uses the least
number of switches.

Fat-tree[1] is a switch-centric structure, motivated by re-
ducing over-subscription ratio and removing single failure
point. Since switches are concatenated, the effective port
number for scaling out is half (except the root layer), which
makes it uses the largest number of switches comparing with
DCell, BCube, and MDCube.

We compare MDCube, fat-tree, DCell and BCube in de-
tail in Table 1. For performance, we focus on throughput of
one-to-one (server to server) and ABT for all-to-all commu-
nications. For one-to-one, fat-tree only achieves throughput
1 since each server has 1 port. DCell, BCube, and MDCube
leverage multi-port and improve throughput linearly. The
ABT of MDCube is lower than that of fat-tree and BCube,
but still scales linearly as N increases. Take an MDCube
built from BCube1s as an example, the ABTs are 2N

3
for

D=0 and 4N
9

for D=1, respectively. The ABT of MDCube

of multiple containers is closer to that of fat-tree, e.g., 8
5
t

compared to 2t for 2 containers. Moreover, MDCube can
balance traffic well and its ABT degrades gracefully as fail-
ure rate increase, as shown in Section 5.

For cost analysis, we focus on both cabling and switch
costs. Since the basic building blocks are containers, the
cabling cost is divided into two types: local (copper) cables
for inner-container connections and remote (fiber) cables for
inter-container connections. The cabling cost inside con-
tainers is similar for all structures, although fat-tree is the
largest and DCell is the smallest. For inter-container ca-
bles, as the cost of inter-container cabling is dominate by
the price of fiber ports (interface), we focus on the number
instead of length of cables. The number of cables of MD-
Cube is the smallest, since it reduces the cables by nearly
2n times. Taking MDCube built from 48-port switches as
an example, 2n=98 is two order of magnitudes.

To make a fair cost comparison of the four structures on
switches, we choose to use the same n-port switches to con-
nect N servers. We observe DCell uses the least number
of switches, while fat-tree uses the largest. Take the MD-
Cube constructed by BCube1 (k=1, t=n2) as an example,
MDCube uses only twice number of switches than that in



DCell. Given its low switch and cabling costs, MDCube is
more appealing for mega-data centers.

Note that VL2 [8] is a three-layer folded Clos network
but needs large number high-end intermediate switches for a
mega-data center, e.g., 448 448-port switches with 10G ports
to support 1 million servers. It has fat-tree like performance
while the number of cables is reduced by also using 10G link.
The tradeoff made is the cost of those high-end switches.

8. CONCLUSIONS
In this paper, we have presented the design, implemen-

tation, and evaluation of a novel network architecture MD-
Cube, to scale BCube-container-based data center to mega
level. By directly connecting the high-speed interfaces of the
COTS switches in the BCube containers, MDCube forms a
virtual generalized hypercube at the container level. MD-
Cube can interconnect hundreds or thousands BCube con-
tainers with its 1-d or 2-d structure and provide high net-
work capacity for typical data center applications. Com-
pared with mega-data center designs directly built from a
single structure like BCube or fat-tree, the number of inter-
container cables is reduced by nearly two orders of magni-
tudes.

MDCube is also fault-tolerant and load-balancing in na-
ture due to its specific structure design and the routing pro-
tocol on top of its network topology. The MDCube routing
is a hierarchical two-level approach, with BCube routing for
inner container and a randomized algorithm for inter con-
tainer routing. The routing algorithm well balances traffic
load and provides high capacity for container-to-container
communications. Our analysis, simulation, and implemen-
tation experiences demonstrate that MDCube is an attrac-
tive and practical modular design for mega-data centers, due
to its high capacity for inner- and inter- container commu-
nications, its fault tolerance, and that it only uses low-end
COTS switches and its manageable cabling complexity.
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APPENDIX
A. PROOF OF THE 3RD BCUBE PROPERTY

Proof. Suppose two switches w0 and w1 are numbered as
akak−1 · · · al+1∗al−1· · · a0 at level l and bkbk−1 · · · bt+1∗bt−1

· · · b0 at level t. If l = t, then we got n parallel paths between
them because these two switches are connected to n sub
BCubek−1. Next without lossing generality we consider the
case for t > l.

We construct a path, pathi(i ∈ [0, n − 1]), from server
ni

0 = akak−1 · · · al+1ial−1 · · · a0 to server ni
1 = bkbk−1· · ·

bt+1jbt−1· · · b0, where j = i + at − bl. The bits correction of
any path is from level k to 0, but we leave t and l as the last
two levels. That is to say, pathi is from ni

0 to ni
2=bkbk−1· · ·

bt+1attt−1· · · bl+1ibl−1· · · t0, then to ni
1.

Here we distinguish two cases:
1) i=bl, so that j=at: we have ni

2 = ni
1, i.e., destination

is reached so that path is ni
0 → ni

2(n
i
1),

2) i 6= bl: the penultimate server ni
3=bkbk−1 · · · bt+1jtt−1

· · · bl+1ibl−1· · · b0 is routed, and path is ni
0 → ni

2 → ni
3 →

ni
1. The parallel properties of these paths are easy to verify:

for pathi, we maintain the l-th bit entry value as i until
finally corrected at destination, for both intermediate servers
and switches.

B. PROOF OF THE 4TH BCUBE PROPERTY
We prove this property by construct such k + 1 paths,

shown in Figure 12.

C. PROOF OF THEOREM 3
Proof. For BCubek, there are totally t = nk+1 servers

and g = (k +1)nk switches. For a (D +1)-dimensional MD-

Cube, the number of containers connected is M =
∏D

d=0 md.



/* sw = bkbk−1 · · · bl+1 ∗ bl−1 · · · b0; a switch at level l
svr = akak−1 · · · a0; a server at arbitrary location

*/
BuildServerSwitchPaths(sw, svr):

for (i = k; i ≥ 0; i−−)
j = (al + i− l) mod n; /*when i = l, we have j = al*/
src = bkbk−1 · · · bl+1jbl−1 · · · b0; /*servers connect to sw*/
if (ai 6= bi)

Π = [i− 1, · · · , 0, k, · · · , i + 1, i];
pathi = BCubeRouting(src, svr, Π);

else
if (i == l AND src == svr)

pathi = ();/*when svr connects to sw on level l*/
else

src2 = a neighbor of src at level i;
Π = [i− 1, · · · , 0, k, · · · , i];
pathi = {src, };
pathi += BCubeRouting(src2, svr, Π);

Figure 12: The algorithm to construct the k+1 paths
between a server and a switch.

The total number of servers is N = tM . The total number
of flows in MDCube is N(N −1). The number of normal di-
rectional links is 2N(k +1), while the number of high-speed
links is gM .

In a BCubek, the averaged path length in hops between
a server and switch is h1=

1
nk+1

∑k
i=0[(2i + 1)nCi

k (n − 1)i]

= (2k+1)nk+1−2knk

nk+1 =2k + 1− 2k
n

.
Similarly the averaged path length between two switches is

h2 = 2
(k+1)nk−1

[
∑k

i=1(i+1)Ci
k(n−1)i+

∑k−1
i=0 (i+1)knCi

k−1(n

−1)i] = 2k2(n−1)nk−1

(k+1)nk−1
+ 2 ≈ 2k2

k+1
n−1

n
+ 2.

Similar to the proof procedure of Theorem1, the averaged
number of normal link for a flow traversed is 2h1 + D′h2,
where D′ is the averaged number of intermediate containers
traversed. Note we ignore the case for inner-container flow
given the number of containers is tens to hundreds, and have
D′ ≈ D.

Since the links are symmetric, the number of flows car-
ried on all the normal links should be identical. Then,
the number of flows carried on a normal link is around
(2h1+Dh2)N(N−1)

2N(k+1)
= (2k + 1− 2k

n
+ D( k2

k+1
n−1

n
+ 1)) (N−1)

k+1
≈

(2k + 1 + D( k2

k+1
+ 1)) (N−1)

k+1
.

The number of flows carried on a high-speed link on di-
mension i is t2

∏i−1
d=0 md

∏D
d=i+1 md = t2 M

mi
= tN

mi

D. PROOF OF THEOREM 5
Proof. We use the same symbols in Appendix C. There

are 2t2 flows crossing containers, and 2t(t − 1) flows inside
containers. The traffic through intermediate containers cross
multiple switches, and the number of parallel paths n be-
tween switches are large enough to support it. Thus, we
only need to consider the traffic on source and destination
container.

From Theorem 1, the averaged number of hops (on normal
links) for an inter-container flow traversed is h1 for source
and destination container. While the normal links a inner-
container flow takes is h0 = 2(k+1) t(n−1)

n(t−1)
≈ 2(k+1)n−1

n
[9].

Since the links are symmetric, the number of flows car-
ried on all the normal links should be identical. Then,
the averaged number of flows carried on a normal link is
2t22h1+2t(t−1)h0

2∗2t(k+1)
≈ (3k+2)t

k+1
.

The number of high-speed links traversed by an inter-
container flow is 2, one for source and one for destination
container respectively, except those are directly connected.
The high-speed links are also symmetric as used randomly.
Thus, the number of flows carried on a high-speed link is at

most 2t2∗2
4g

= nt
k+1

.


