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ABSTRACT
There have been some serious concerns about the TCP per-
formance in data center networks, including the long comple-
tion time of short TCP flows in competition with long TCP
flows, and the congestion due to TCP incast. In this paper,
we show that a properly tuned instant queue length based
Explicit Congestion Notification (ECN) at the intermediate
switches can alleviate both problems. Compared with previ-
ous work, our approach is appealing as it can be supported
on current commodity switches with a simple parameter set-
ting and it does not need any modification on ECN proto-
col at the end servers. Furthermore, we have observed a
dilemma in which a higher ECN threshold leads to higher
throughput for long flows whereas a lower threshold leads to
more senders on incast under buffer pressure. We address
this problem with a switch modification only scheme - de-
queue marking, for further tuning the instant queue length
based ECN to achieve optimal incast performance and long
flow throughput with a single threshold value. Our experi-
mental study demonstrates that dequeue marking is effective
for increasing the maximum incast senders close to the per-
formance limit of ECN, achieving a gain anywhere from 16%
to 140%.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Packet-switching networks

General Terms
Algorithms, Design
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Data center networks are designed to support various ap-
plications [11, 8] and diverse traffic patterns [14]. Advanced
topologies and structures [1, 13, 12] have been proposed to
achieve higher bandwidth in data center networks. How-
ever, there have been some serious concerns about the TCP
performance in data centers. For example, TCP incast con-
gestion has become a practical issue in data center networks
[22]. TCP incast occurs when many-to-one short flows are
barrier synchronized by the applications. A recent study
[22] shows that extreme high bandwidth and low latency,
true of most data center networks, are preconditions for in-
cast congestion. Moreover, without well-recognized service
differentiation support, short-duration TCP flows will fur-
ther suffer in the interaction with long-duration TCP flows
[2]. Short flows require low queue occupancy for smaller
task completion time while a large queue has been built up
by long flows. A recent study [2] proposes a solution called
DCTCP that requires both changing the switch ECN set-
tings and modifying end server ECN in TCP stacks.

In this paper, we propose a further look at ECN imple-
mentation at the switches, and see if there is a way to ad-
dress the above two TCP performance issues with a simple
ECN tuning at the switch-side only. First, we have observed
that the network latencies across data center networks are
extremely low (under a millisecond). This has inspired us
to study the use of instant queue length instead of aver-
age queue length in ECN. We hypothesize that, if instant
queue length is used to trigger ECN, and if the threshold is
properly tuned, ECN may actually alleviate the TCP per-
formance impact without requiring end-host modifications.
We use ECN* in this paper to denote such a scheme in which
instant queue length based ECN is used at the switches and
standard ECN congestion control is used at the end hosts.

The notion of using instant queue length to trigger ECN
is not new. It has been proposed in previous literature, most
recently in DCTCP to obtain the ratio of marked packets in
[2], and to some extent to decouple ECN from Active Queue
Management (AQM) in [15]. However, DCTCP requires
modifying the end-point ECN implementation to make use
of the new information, and it remains an open question on
how to tune the ECN threshold for instant queue length to
achieve a general buffer management scheme on commodity
switches for TCP performance gains.

Through a brief analysis of TCP throughput, we discov-
ered that the lower bound of the ECN* threshold is deter-
mined by the Bandwidth Delay Product (BDP). Our mea-
surement in a real data center with 40,000 servers revealed
that the TCP Round Trip Time (RTT) is hundreds of mi-



croseconds, which means the BDP can be as low as tens
of kilobytes for Gigabit Ethernet. Furthermore, an ECN
threshold based on a small BDP is already effectively sup-
ported by existing commodity switches. The preconditions
for using ECN* are thus satisfied in data center networks.
Our experimental results show that ECN* achieves a sim-

ilar performance to DCTCP on low latency networks when
the ECN threshold is set by BDP. We believe that this
clearly demonstrates the effectiveness of instant queue length
based ECN, as ECN* only uses standard ECN[20] at the
end servers. However, the results also reveal that there is a
dilemma with the ECN threshold setting for both DCTCP
and ECN*: a higher threshold leads to a high throughput
for TCP long flows while a lower threshold is better for con-
trolling TCP short flows on incast. We therefore designed
a switch modification only approach to achieve the optimal
performance of both long flows and incast using one thresh-
old: ECN with dequeue marking. By checking whether in-
stant queue length is over the ECN threshold when packets
are dequeued, the marking of dequeued packets at the head
of queue accelerates the congestion information delivery to
the end system.
This paper has two key technical contributions. First,

we give the threshold lower/upper bounds for ECN* and
show a valid setting on commodity switches. Through our
analysis, comprising latency measurements in a real data
center and experiments in our tesbed, we have shown that
ECN* achieves a similar performance to DCTCP for both
short flows competing with long flows as well as incast in
low latency data center networks. Second, we have solved
the dilemma of setting the ECN threshold for instant queue
length schemes, including DCTCP and ECN*. We have
proposed, developed, and evaluated a switch modification
only approach, namely dequeue marking, that achieves close
to optimal incast performance for ECN using the threshold
that leads to the high throughput of long flows.
The rest of the paper is organized as follows. Section 2 dis-

cusses research background. Section 3 describes ECN*. Sec-
tion 4 presents dequeue marking. Section 5 presents exper-
imental results. Section 6 discusses issues related to ECN.
Section 7 presents related work. Finally, Section 8 concludes
the paper.

2. RESEARCH BACKGROUND

2.1 TCP incast
TCP incast has been identified and described by Nagle et

al. [18] in distributed storage clusters. In distributed file
systems, the files are deliberately stored in multiple servers.
When multiple blocks of a file are fetched from multiple
servers at the same time, TCP congestion can occur at or
near the receiver. This is called TCP incast. Several appli-
cation specific solutions have been proposed in the context
of parallel file systems. In data center networks, there can
be many applications and TCP incast problem has become
a practical issue [22, 2].
Figure 1 shows the incast goodput achieved on multiple

connections versus the number of concurrent senders. Note
that this paper uses the term goodput and throughput inter-
changeably to denote effective throughput obtained at the
applications. The results are measured in a testbed as de-
tailed in Section 5. The multiple TCP connections are bar-
rier synchronized in our experiments as follows. We first
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Figure 1: The incast goodput of multiple barrier
synchronized TCP connections versus the number
of senders.

establish multiple TCP connections between all senders and
the receiver respectively. Then the receiver sends out mul-
tiple small request packets (one per sender) to request each
sender to transmit data. TCP connections are issued round
by round, and one round ends when all connections in that
round have finished their data transfer to the receiver. We
present two setups for incast: 1) each connection has a fixed
traffic amount with the number of senders increasing, as in
[19]; 2) the total traffic amount of all connections is a fixed
one, as in [22].

2.2 ECN
As an explicit congestion notification protocol, DECbit

[21] is proposed to detect possible congestion at routers. A
bit at data packet header is set by intermediate nodes to
notify the congestion. When the receiver gets the marked
packets, it echoes the information to the sender by marking
another bit at the ACK. The sender then decides whether
the congestion window should be cut by the ratio of marked
ACKs.

Recent switches/routers follow the standard set by RFC [20]
in implementing ECN for TCP, which is closely related to
Random Early Detection (RED) [10]. RED addresses the
global synchronization issue of multiple TCP connections
sharing the same bottleneck link, which is caused by a large
number of packet losses occurring when the drop tail buffer
overflows. For ECN/RED, an average queue length is main-
tained at the switch, and two (low and high) thresholds for
the average queue length are used. In RED, when the aver-
age queue length is between the two thresholds, the incoming
packet is dropped with a probability capped by a parameter,
namely the max drop probability. When the average queue
length is over the high threshold, all incoming packets are
dropped.

In ECN, the incoming packets will be marked on Conges-
tion Experienced (CE) bits instead of being dropped. In
contrast to RED, which works without changing TCP end
points, ECN requires a TCP receiver to continuously pass
the CE bits as ECE (ECN echo) bits to the TCP sender.
The TCP sender then cuts the congestion window in half
and marks the first new data with a CWR (congestion win-
dow reduced) bit to suppress the ECE bit from the receiver.
A TCP sender responds to the ECE bit only once for a win-



dow of data. Later studies have shown that RED/ECN may
improve the performance of TCP if the parameters are prop-
erly set. However, the setting of the parameters are for the
most part very subtle [9].

2.3 DCTCP
DCTCP[2] proposes changes to ECN to address the inter-

action of short and long TCP flows as well as TCP incast.
DCTCP introduces two distinct features that differ from the
ECN standard. First, DCTCP uses instant queue length at
the switch instead of average queue length to trigger CE
marking. Second, DCTCP cuts the congestion window at
the sender in proportion to the ratio of CE marking. It does
so by requiring the TCP receiver to echo the ECE for every
packet (instead of per window of packets). If all ACKs are
marked with ECE for a window of data, DCTCP cuts the
congestion window size in half. To smooth the reduction of
the congestion window, an exponential filter is introduced
for the ratio of marked packets at the DCTCP sender.
The use of instant queue length combined with the use

of only one threshold can greatly simplify the ECN setup
on switches. The idea of using the ratio of marked packets
(obtained by one-to-one mapping of ECE on ACKs) changes
the binary feedback in ECN into multiple levels. In contrast
to DECbit, which reduces the window when the ratio of
marked packets is over a certain parameter, DCTCP cuts
the congestion window using the value of half of the marked
packets ratio. With these two changes, DCTCP can greatly
improve the TCP performance with ECN enabled.

3. INSTANT QUEUE LENGTH BASED ECN
In this section, we present a generalized strategy for using

instant queue length and a single threshold in ECN at in-
termediate switches. The scheme using instant queue length
ECN with standard ECN [20] at the end servers is denoted
as ECN*. We provide an analysis for the threshold setting
and present the measurement results to show that existing
data center networks are well within the operational region.
As an example, we show that this strategy can be easily im-
plemented in existing ECN-capable switches and it achieves
similar results with DCTCP (but without end-system mod-
ifications).

3.1 ECN*
As already mentioned, instant queue length based ECN

has been proposed in previous research to decouple ECN
from AQM [15] and for frequent marking of the congestion
state [2]. Here, we look at the instant queue length from
a more generalized angle. Instant queue length represents
the congestion window of all TCP connections sharing the
same bottleneck. If the focus is to deal with temporal con-
gestion caused by traffic burstiness, e.g,. incast congestion,
a congestion control scheme like ECN can use instant queue
length directly. Therefore, as long as the ECN threshold is
set according to the window reduction taken by TCP, the
TCP throughput performance will not be degraded.
Our generalized ECN strategy works as follows. At the

intermediate switch/router, the instant queue length value
is compared with a pre-configured threshold value whenever
a packet is processed. If the instant queue length is greater
than or equal to the threshold, the packet is marked with
a CE bit at the IP header. The only configurable param-

eter that can tune the behavior of this scheme is the ECN
threshold.

Our generalized ECN strategy does not make any assump-
tion on the congestion control scheme used by the TCP
sender and receiver to handle the marked packets, but we
believe different schemes should achieve similar performance
and have a similar tradeoff on parameter settings. The con-
gestion control schemes include DCTCP [2], standard ECN
as defined in RFC3168 [20], and DECbit.

We designate ECN* as the scheme that uses instant queue
length and a single threshold at the switches and uses stan-
dard ECN[20] at the TCP sender/receiver.

ECN* is very well supported by today’s commodity ECN-
capable switches. First, ECN switches allow a weight pa-
rameter to adjust the exponential factor for updating the
average queue length. By setting this weight to 1, the aver-
age queue length is effectively the same as the instant queue
length because the values in the history are ignored. Second,
ECN switches accept two threshold parameters, the low and
high thresholds. By setting the two thresholds to the same
value, they become one single threshold and the region in
between the low and high thresholds is no longer in effect.

The support of ECN* at end-servers follows the ECN stan-
dard[20]. We assume that all packets are ECN-capable in
data center networks and will discuss issues of non-ECN-
capable packets suggested by the ECN standard [20] in Sec-
tion 6.

3.2 Analysis of ECN*
We will now analyze the performance of ECN* when con-

gestion occurs. We are interested in the parameter set-
ting of the ECN* threshold, and seek to generalize it for
future congestion control strategies deployed by the TCP
sender/receiver. As standard ECN cuts the congestion win-
dow in half for a marked packet, we believe that the ECN*
threshold serves as the upper bound for other schemes like
DCTCP that decreases the congestion window more conser-
vatively.

3.2.1 Lower bound of ECN* threshold
We analyze the lower bound for the ECN* threshold at

which the TCP throughput performance won’t be affected
after the congestion window reduction by ECN. To simplify
the analysis, we assume that the switch buffer size is large
enough so that no packet is dropped due to buffer overflow.
Additionally, we start with a case where there is only one
TCP connection at the bottleneck link.

We assume that the connection is in a steady state, i.e., in
congestion avoidance mode when an ACK with an ECE is
received. The TCP sender then cuts its congestion window
in half, which leads to buffer draining at the bottleneck link.
To ensure that the throughput of this TCP connection does
not degrade, the queue length at the bottleneck link should
never drain to zero. Therefore, the TCP window saw-tooth
phenomena is similar to the case described and analyzed
carefully in [4] for switch buffer sizing. The difference is that
in our case packets are not dropped after ECN threshold is
reached. Instead, the packets are marked and delivered to
the receiver. The marked ECE on return ACKs results in
congestion window reduction, which is actually the same
assumption made in [4]. Note that [4] does not consider
a timeout caused by lost packets to simplify the analysis.
For ECN*, there is no timeout and no packet loss, which



means that our case closely follows the previous simplified
analysis for a drop tail queue with a buffer size the same as
the ECN* threshold. Therefore, the ECN threshold h that
won’t affect TCP throughput is similarly obtained as that
by the well-known rule-of-thumb for drop tail buffer size,
i.e., the BDP.

h ≥ T × C (1)

where T is the averaged Round Trip Time (RTT) for TCP
connections in the network, and C is the bottleneck link
capacity. For an advanced congestion control scheme like
DCTCP, the lower bound of the threshold has been shown
to be O(

√
T × C) in [2, 3]. However, as we will show later in

this section, the absolute value of the difference between the
lower bounds of DCTCP and ECN* is actually very small
for data center networks, which allows ECN* to perform
similarly to DCTCP.
The case of multiple TCP connections on the same bot-

tleneck link can be similarly obtained as h ≥ T × C/
√
N ,

where N is the number of long TCP flows on the bottleneck
link. However, as shown in a measurement study of DCTCP
by [2], the number of concurrent long TCP connections to a
server is generally 2 or 3. For shallow-buffered Top of Rack
(ToR) switches that connect servers, synchronization of a
small number of TCP connections still takes effect so that
the lower bound stays close to BDP in practice.

3.2.2 Upper bound of ECN* threshold
We analyzed the upper bound for the ECN* threshold

at which the congestion windows of the TCP connections
sharing the bottleneck link are effectively controlled to avoid
buffer overflow. In other words, when the ECN* threshold
is lower than the upper bound, there is no TCP packet loss.
To obtain the upper bound, we begin with a simplified

case where there is only one TCP connection and it has a
slow start. We denote its congestion window size as we when
the ECN threshold is reached at the intermediate switch.
To simplify our analysis, we assume that the TCP sender
only generates full-sized data packets, and the transmission
time is δ for a Maximum Transmission Unit (MTU) on the
bottleneck link. TCP aggressively increases the congestion
window by the same amount of data acknowledged by the
receiver during a slow start, so the largest queue length at
this phase is our focus.
To illustrate the evolution of the TCP congestion window

and the resulting queue length at the bottleneck link, we
present the details of a TCP connection on a slow start in
Table 1. A similar method was used in [17] to illustrate
the advantage of TCP-Reno over TCP-Tahoe in a steady
state. In contrast to previous scenarios, data center net-
works feature high-bandwidth and low-latency, which results
in a small BDP compared to the switch buffer size. We dis-
cuss the measurement of latency in datacenter networks in
Section 3.3.
In Table 1, the TCP initially starts with the congestion

window as 2 packets, which directly results in the switch
queue length also having 2 packets. An RTT (T ) later the
ACK for the first data packet arrives at the sender, which
causes the window to increase from 2 to 3 and the packets
with sequence 3 and 4 are sent. Since the buffer has drained
to empty, the newly arrived packets 3 and 4 cause the queue
length to reach 2 again. This phenomena continues, result-

Time Packets Window Packets Queue length
Acked size sent

0 2 1,2 2
T 1 3 3,4 2
T + δ 2 4 5,6 3=2-1+2
2T 3 5 7,8 2
2T + δ 4 6 9,10 3=2-1+2
2T + 2δ 5 7 11,12 4
2T + 3δ 6 8 13,14 5
3T 7 9 15,16 2
3T + δ 8 10 17,18 3=2-1+2
3T + 2δ 9 11 19,20 4=3-1+2
3T + 3δ 10 12 21,22 5=4-1+2
3T + 4δ 11 13 23,24 6
3T + 5δ 12 14 25,26 7
3T + 6δ 13 15 27,28 8
3T + 7δ 14 16 29,30 9

· · ·
we h
we + 1 h+ 1
· · ·
2we = we + we h+ we

Table 1: Evolution during a slow start phase.

ing in regular mini-cycled initial queue length at the switch
with a mini-cycle length of T .

There are two conditions for changing the mini-cycled
switch queue length. First, the BDP in the data center must
be small, e.g., around 30 packets from our measurement
study in Section 3.3. The small BDP leads to insufficient
time to completely drain the queue in a mini-cycle before
the next mini-cycle starts. That is to say, the queue length
increases continuously after the network pipe becomes full.
Second, if the switch queue length reaches the ECN* thresh-
old, then the switch starts to mark incoming packets with
a CE bit. When the ACKs of those marked packets arrive
at the sender, the sender decreases the congestion window.
The half-reduced congestion window throttles the outgoing
traffic and thus causes the draining of the switch queue.

When the switch queue length reaches threshold h, the
congestion window size is we. This means that there are
we packets on the flight (either data packets in the forward
direction or the ACKs in the backward direction). Before
the congestion information generated by the ECN reaches
the sender, the congestion window continues to increase. As
the TCP connection is still in the slow start phase, the con-
gestion window will at most become 2we. Considering equa-
tion 1 has to be satisfied to maintain TCP performance on
throughput, the first condition will always be satisfied when
the second condition is reached. Therefore, the queue does
not drain and thus the queue length keeps increasing from
h to h+ we.

The value of window size we is bounded by queue thresh-
old h and the BDP, as the network may hold the packets
either in the switch queue or in the network pipe. There-
fore, we have

we ≤ h+ T × C. (2)

Note that whether the bound in equation 2 is tight is
determined by the value of h and the the BDP. For example,
assume the BDP is 30 packets while h is set to 6 packets.
From Table 1 we determine that we is actually 13 packets
when ECN is triggered, and the value 13 is much less than
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Figure 2: The instant queue length versus time with
different ECN* threshold.

6 + 30. However, when h is set according to equation 1, the
value of we is very close to the bound, as the network pipe
is close to full. To ensure there is no packet loss, the switch
buffer size B should be larger than the maximal value of
queue length, i.e.,

h+ we ≤ B. (3)

From equations 2 and 3, the upper bound for the ECN*
threshold to avoid packet loss is

h ≤ 1

2
(B − T × C). (4)

As the threshold h also has a lower bound in equation 1,
equation 4 also gives the minimal switch buffer size to avoid
buffer overflow as

B ≥ 2h+ T × C ≥ 3T × C. (5)

This condition holds for multiple synchronized TCP con-
nections as long as the total congestion window of those
connections can be successfully reduced1.

3.2.3 Validation in Experimental testbed
We use experimental results to show that both the lower

and upper bound obtained in equations 1 and 4 are valid.
The details of our testbed are presented in Section 5. We
used a Broadcom Pronto 3290 48-port GbE switch and de-
veloped software to log the instant queue length when an
incoming packet arrives at the output port. We set up two
TCP connections to the same receiver, and we changed the
threshold h on the output port to the receiver and logged
the queue length of the output port.
We ran the experiments 5 times and the queue length

versus time with maximal the peak can be seen in Figure 2.
The results show that the queue always jumps to the peak
because of the slow start of the TCP connections, and then
goes into cycled saw-tooth caused by congestion avoidance
of the TCP connections. We observed that when threshold
h is set to 20, the queue does not drain to empty and thus

1For incast, the total minimal congestion windows used in
multiple TCP connections may cause switch buffer overflow,
which is unavoidable even if DCTCP/ECN* is used in the
switch.

maintains the throughput. This phenomena echoes the con-
dition of equation 1 as the BDP in our testbed is close to
20 packets. If we count the BDP, i.e., T × C as 20 packets,
then the peak buffer occupation during the slow start phase
clearly echoes the conditions of buffer size requirement as
2h+ 20 in equation 5.

3.3 RTT in data center networks
The threshold for ECN* should be T × C, and the buffer

size should be three times larger than the threshold. This
requirement translates into a very large buffer requirement
for Internet cases [4]. However, we will show that this re-
quirement makes sense for data center networks and most
commodity switches have the capacity to support it.

Our interest is to understand the value of T × C. Most
data center networks use Gigabit Ethernet Interface, so for
the Top of Rack (ToR) switch, the link capacity to servers
is one Gigabit. We start with the case of the ToR switch to
check whether such a buffer and the ECN threshold require-
ments can be supported. Upper layers may have 10G or
even 40G links, but certainly the buffer size on high profile
switches/routers are much larger. We believe our evaluation
of ECN* like protocols may provide more information on the
buffer size ECN needs for switches in data center networks.

Another key element for BDP is the RTT in data center
networks. Paper [2] showed that in the absence of queueing,
the RTT is under 250us for inter-rack, and approximately
100us for inner-rack. What we are interested in is the RTT,
including queueing latency, in a real data center, so that we
can set and tune the ECN threshold and also set the buffer
size.

To achieve this goal, we used software to setup TCP con-
nections between different server pairs in a production data
center with over 40,000 servers. The connections pattern was
like a mesh for the whole data center at the rack level. We
purposefully turned off our inner-rack connections to reduce
traffic. All servers logged the RTTs for connection establish-
ment then tore down the connections, so that no additional
traffic was generated into the data center. We collected the
RTT for those TCP connections as samples for RTT in the
whole data center. Note that this data center was busy as
it serves many customers using diverse products. Actually,
we use the same data center to store and process our RTT
logs.

Figure 3 shows the inter-rack latency distribution we ob-
tained for one day in December 2011. We actually collected
results for several months and found the patterns to be sim-
ilar. The results show that over 23% of connections have an
RTT of less than 200us, and over 74% of connections have
an RTT of less than 300us. The connections have an RTT
of less than 600us with a probability of 95%. As most of
the RTT we observed was less than 400us (90% percentile),
we estimate the BDP in data centers for ECN* threshold
setting as follows:

BDP = T × C = 1G ∗ 400us = 50KB

The default MTU on the Ethernet is 1.5KB, so 50KB
means 33 full sized packets.

We suggest using 20 to 30 packets as the ECN* threshold
(h) at the switches, as determined by the RTT values in net-
work. In addition, a buffer size in the same amount as the
threshold should be reserved for each port on the switches.
For a 48 port Gigabit Ethernet switch, the total reserved
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buffer size is about 2MB(30*1.5K*48). Taking our shallow
buffered broadcom switch as an example, it has 4MB shared
buffer in total. DCTCP [2] also shows two other shallow
buffered commodity ToR switches with a 4MB buffer, a Tri-
umph 48-port, and a Scorpion 24-port. Thus, the ECN*
threshold setting is valid for existing shallow buffered ToR
switches. Note that ECN* also requires that the actual
buffer size should be as large as 3TC to handle traffic peak.
We consider that the buffer size over the reserved size (TC to
3TC) can be allocated from the rest of the buffer in a shared
way, instead of allocating to ports in a dedicated way. Such
configurations for partial dedicated buffers per port and the
rest buffers for limited sharing among all ports are actually
supported in commodity switches [7].

3.4 Performance of DCTCP and ECN*
Next, we will briefly evaluate the performance of DCTCP

and ECN* in our testbed. The setup of our testbed is de-
scribed in Section 2.1. Both DCTCP and ECN* are designed
to handle short flows, especially for incast. Ideally, we ex-
pect them to achieve similar performance on long flows and
much better performance on incast.
We started by testing their performance on long flows.

Figure 4 shows the throughput performance of two long
TCP flows to the same destination server. The two flows
contend the bandwidth at the switch output port to the
server, and the total goodput is normalized by the link ca-
pacity. We chose two flows because paper [2] showed that
the number of concurrent long flows is around 2 to 3, and 2
is the lowest number to cause contention. Additionally, as
we discussed in Section 3.2, a larger number of TCP flows
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requires a smaller threshold to maintain throughput. We
also present the throughput achieved by TCP (ECN off) as
the target throughput for DCTCP/ECN*. For both 1G and
10G link cases, the buffer size is set at 100 MTUs. We used
1500bytes MTU for 1GbE and 9000bytes jumbo frame MTU
for 10GbE.

For both DCTCP and ECN*, the achieved throughput in-
creases with the threshold and converges at TCP (ECN off).
DCTCP [2] recommends using 20 packets as the thresh-
old for a Gigabit Ethernet. ECN* can follow the same
setup and achieve a similar performance. For 10GbE, we
found the threshold should be set to 30+ packets, which is
reasonable considering the ratio of link capacity to packet
sizes. The figure also shows the slight throughput advan-
tage of DCTCP on the smaller threshold requirements of
10GbE. The threshold requirements for DCTCP and ECN*
to achieve high throughput on long flows are actually both
well supported by existing commodity switches.

Next we evaluate the incast performance of TCP (ECN
off), DCTCP, and ECN* respectively. One problem with
incast is the question of how to set the threshold. As we
discussed in Section 3.3, the ECN threshold used for ECN*
should be around 30 packets considering the typical RTT
in data center networks. To understand the impact of the
ECN threshold on incast performance, we present the incast
throughput of DCTCP and ECN* with different thresholds
in Figure 5 and 6, respectively. The transmission block size
for each sender is fixed at 64KB. Similar performance gaps
are also observed for other incast setups, e.g., the total fixed
block size as 1MB or 2MB.

Figures 5 and 6 show that the incast performance of DCTCP
and ECN* is significantly affected by the ECN threshold.
Larger thresholds lead to a smaller number of concurrent in-
cast senders being supported. In the two figures, the curves
of the threshold at 0 are just shown for the incast perfor-
mance limit, i.e., the maximal number of parallel senders
that can be supported on incast. When threshold is set
to 0, all the incoming packets will be marked by CE un-
conditionally, so that the congestion window at the senders
will never be increased. Note that such an unconditional
marking strategy or a small threshold actually degrades the
performance when the number of senders is small. The idea
case for incast performance is non-degraded throughput un-
til the largest number of incast senders is reached.

We have observed the tradeoff with the ECN threshold
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setting: a larger threshold leads to a higher long flow through-
put but a smaller number of concurrent senders on incast,
and a smaller threshold greatly improves incast performance
but degrades the throughput of long flows. As we observe
this same tradeoff for both DCTCP and ECN*, we believe
this is a fundamental tradeoff for all congestion control schemes
using instant queue based ECN.
Since the total number of supported incast senders is close

to the number of the switch port at 48, why should we care
about the performance difference. As we will show in Section
5, the maximum number of concurrent senders is actually
determined by the switch buffer size. And as we have dis-
cussed in Section 3.3, for shallow buffered ToR switches, the
buffer is actually shared among ports [7]. Therefore, with
a smaller effective buffer size, e.g., due to high buffer pres-
sures caused by buffer occupation on other ports, or with
multiple incast applications occurring at the same time, the
worst situation can be amplified.

4. DEQUEUE MARKING

4.1 Problem statement
To understand the impact of the ECN threshold setting

on performance, we categorize the traffic in data center net-
works into three categories as follows.
First, all competing TCP flows are long flows. In this case,

the performance is mainly determined by the throughput of
the long flows. A recent study in [2] showed that there are
usually 2 or 3 competing long flows. Second, a few short
flows are trying to deliver a small volume of data as fast as
possible, while there are other background long flows com-
peting for bandwidth. In this case, the completion time of
those short flows is the focus of performance. Third, during
TCP incast, a large number of short flows are competing for
a specific network port in a very short time. TCP incast
happens whether or not there are ongoing background long
flows. The performance of TCP incast is determined by the
completion time of the last finished short flow.
As shown in Section 3.4, TCP (ECN off) actually works

well for the first category. However, the large buffer occupa-
tion of TCP (ECN off) makes it work poorly for the second
and third cases. ECN* and DCTCP use congestion control
based on instant queue length. Thus, compared with TCP,
both methods achieve similar performance for the first cate-
gory and much better performance for the second and third

categories. Considering the throughput of TCP connections
is still fundamental to performance, we need a scheme that
improves the performance of both DCTCP and ECN* dur-
ing the last two categories by assuming the threshold is set
for the first category.

In Section 3.2, we present the relationship of throughput
and the threshold setting of ECN*. For DCTCP, the rela-
tionship has also been analyzed previously in [3]. Given that
the ECN threshold has been set, we must next address how
to make the instant queue length represent the traffic and
thus trigger the threshold faster. Note that we don’t wish
to change the ECN threshold dynamically according to the
traffic categories as we believe that such a solution is hard
to implement due to the traffic dynamics in a data center.

4.2 Dequeue marking scheme
We have proposed, implemented, and evaluated a pure

switch based solution - dequeue marking. The purpose of
dequeue marking is not only to provide a complete switch
only solution for ECN*, but also to understand the per-
formance limit of instant queue length based ECN (both
ECN* and DCTCP). Customers that have concerns with
TCP stack modifications at the end server, e.g., DCTCP,
can use dequeue marking and ECN*.

At the concept level, dequeue marking seems similar to
the well-known drop-from-front method [16], which was pro-
posed for TCP over ATM. A previous study in [16] shows
that drop-from-front greatly improves performance over tail-
drop, but for RED, front-drop and tail-drop are similar. In
existing commodity switches, ECN follows the implementa-
tion of RED. As the switch buffer uses a First Come First
Service (FIFO) rule, RED checks whether a packet should
be dropped (or marked if ECN is enabled) when an incoming
packet is queued at the switch output port. Such a drop-
ping/marking policy for original RED/ECN works well as
the rule is performed by an exponential filter based on the
average queue length.

In this paper, we argue that for instant queue length
based ECN, the marking policy performed when packets
are queued is not longer efficient. For instant queue length
based ECN, e.g., ECN* as analyzed in Section 3.2, the per-
formance has been analyzed by assuming that congestion
information is generated when the instant queue length is
over the threshold. However, in existing ECN implementa-
tion, such congestion information (marked CE bit on pack-
ets just queued) must wait until the marked packet moves
to the head of the queue. If the ECN threshold is set to a
large value to accommodate TCP throughput of long flows,
we believe that setting ECN mark when packets are queued
severely delays the delivery of congestion information.

In this paper, we propose the use of dequeue marking
for instant queue length based ECN at switches. When an
ECN-capable packet is about to be dequeued, we check the
instant queue length and the ECN threshold. If the instant
queue length is larger or equal to the ECN threshold, then
the packet is marked with a CE bit.

There are two benefits to dequeue marking. First, the
latency to deliver the congestion information is reduced, so a
better incast performance is expected. Second, our analysis
and experimental results (skipped due to space limitation)
for dequeue marking show a minimal buffer size (threshold
upper bound) of ECN* as B ≥ h+T×C ≥ 2T×C, compared
with equation 5 for the original enqueue marking.



Dequeue marking decides whether a packet should be marked
when a packet is about to transmit, which is different from
a straightforward extension of drop-from-front strategy of
RED [16] to a mark-from-front strategy of ECN. This is
because for both RED and ECN, the dropping/marking de-
cision is made when a packet is enqueued. Considering that
the traffic is highly bursty during TCP incast and multi-
ple packets are enqueued at the same time, the front-mark
of ECN may only mark the packets waiting for transmis-
sion when other packets are enqueued, while dequeue mark-
ing continuously marks all outgoing packets until the queue
length is less than the threshold. To this end, front-mark
may leave some “holes” (unmarked packets) and thus we
believe dequeue marking is more suitable for instant queue
based ECN.

4.3 Implementation on commodity switches
Dequeue marking does not require any change of the ECN

protocol, as it changes the start time of when the packets
are marked.
Readers may have concerns of whether this method will

introduce large process latency for the outgoing packets if
we modify the CE bits when the packet is about to dequeue.
From our experience, changing bits on the packet header
during dequeue is well supported on commodity switches.
However, the switch does not provide a hardware solution
to check the current buffer length when a packet is about
to dequeue. To solve this problem, we developed a soft-
ware solution using the broadcom switch SDK and started
a dedicated thread to check queue length continuously. Our
measurement results show that queue length reading costs
about 6 us (microseconds). That is to say, the first packet
to get a CE mark is 6us behind the time when the queue
length is over the ECN threshold. Note that the delay is not
the process latency introduced per packet. Since the hard-
ware on the broadcom switch also requires a 4us interval for
the queue length update during normal ECN marking (when
packets are queued), we think that our software solution for
dequeue marking at 6us is acceptable.
Similar operations can be made for other types of switches

and we believe there is no other barrier to implementing
dequeue marking on chips.

5. EXPERIMENTAL RESULTS
We deployed a testbed with 50+ servers and one Broad-

com Pronto 3290 48-port Gigabit Ethernet switch. This
switch supports ECN, and has 48 1GbE ports and 4 10GbE
ports. The topology of our testbed is such that 47 servers
connect to the GbE ports, and the other 4 servers connect to
the 10GbE ports. Each server has two 2.2G Intel Xeon CPUs
E5520 (four cores in total), 32G RAM, and a 1T hard disk.
We use 47 Intel PRO/1000 PT Dual Port GbE Adapters and
four Mellanox ConnectX 10GbE Adapters. The OS of each
server is Windows Server 2008 R2 Enterprise 64-bit version.
The CPU, memory, or hard disk was never a bottleneck in
any of our experiments. We modified the iperf to create an
incast scenario in which multiple sending servers generate
TCP traffic to a receiving server under the same switch.
The implementation of DCTCP followed the description

in paper [2]. For ECN*, we used existing Windows 2008r2
TCP/IP stack with no modification, which was New-Reno
like. We didn’t use SACK (Selective Acknowledgment) in
our experiments as a previous study [19] shows that it does
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Figure 7: Incast performance of TCP and DCTCP
with and without dequeue marking. ECN Threshold
is set at 20 and 30 packets.

not help much with incast congestion. We turned on ECN
support at both the sender and receiver servers. All other
settings followed those in the data center network we ac-
cessed. The default timeout of TCP on Windows server is
300 milliseconds (ms).

We use “dq” to denote the results which featured dequeue
marking for DCTCP/ECN*. We evaluated instant queue
based ECN and found improvements according to the traffic
categories described in Section 4.1. Our experiments started
with incast as our schemes are motivated by degraded incast
performance on a large ECN threshold. Then we evaluated
the interaction between short and long flows and finally the
case of long flows only.

5.1 Incast
In our incast congestion experiments, we evaluated two

cases as described in Section 2.1: fixed per sender block
size and fixed total block size. The trends and improvement
obtained were similar, so due to space limitation we only
present the results for when the amount of data transmitted
by each connection is fixed at 64kbytes. When the number
of concurrent senders is less than 44, each server generates
at most one connection. To evaluate a situation with more
senders (over 44), each server may generate at most two
connections. The incast performance of DCTCP and ECN*
with the same ECN threshold is fairly similar, so we present
two cases for DCTCP and ECN* with the threshold set at
20 and 30 packets respectively.

In Figures 7 and 8, we show the incast performance of
DCTCP and ECN* versus TCP, respectively. TCP (ECN
off), DCTCP, and ECN* with the ECN threshold set at 0
(h=0) are the same as those in Figures 5 and 6. The curves
with h=0 show the maximum number of servers that can
be supported by using instant queue length based ECN in
practice.

Dequeue marking does not degrade performance when
the number of senders is small, compare with the results
achieved by setting h=0. In addition, we have observed that
with dequeue marking enabled, both DCTCP and ECN*
achieve incast performance close to the limit of ECN proto-
col by marking packets unconditionally (h=0), but without
sacrificing throughput when the number of senders is small.
Dequeue marking effectively mitigates the performance dif-
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ference of DCTCP and ECN* when using different thresh-
olds.
Dequeue marking supports more senders during incast.

To evaluate the performance when the buffer size on the
switches is constrained, e.g., the shared buffer is occupied by
flows on other ports, we designed an experiment for buffer
pressure as follows. The ECN threshold at the switch was
kept at 20 packets, and we varied the buffer size from 40
to 100 link MTU and compared the incast performance of
TCP, DCTCP, and ECN*. For DCTCP/ECN*, we turned
on dequeue marking and compared the performance with the
ECN limit (h = 0), so that in total we have seven candidates
in Figure 9.
The performance was judged by the maximum number of

concurrent senders without obtaining goodput below 600Mbps.
We observed that when the buffer pressure is high, caused
by either a constrained buffer size per port or sharing the
buffer occupied by other ports in practice, the relative gain
obtained by dequeue marking was also higher. For example,
when the buffer size was equal to 40(100) link MTU, de-
queue marking increased the maximum number of DCTCP
senders from 10 to 24 (48 to 56), achieving a gain of 140%
(16%). The larger buffer size supports more concurrent in-
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Figure 10: Short flow (20k bytes) completion time
of TCP and DCTCP, with two background long
TCP/DCTCP flows respectively. The ECN thresh-
old (h) at switch was set at 20 packets.

cast senders and the performance of DCTCP and ECN* were
almost the same for the buffer size satisfying equation 5.

We tried other incast setups and obtained larger improve-
ment when the threshold was larger. We have observed that:
first, with dequeue marking enabled, the maximum number
of incast senders of DCTCP and ECN* with a large thresh-
old are fairly close to the performance limit of ECN (h=0).
Second, given a threshold and the varied buffer size caused
by buffer sharing, the improved ratio of dequeue marking
increases with smaller buffer size.

5.2 Interaction of long flows and short flows
Dequeue marking is proposed to address the ECN thresh-

old setting problem for incast. Readers may have concerns
over whether such modifications will make short flows unnec-
essarily conservative when competing with long flows that
have a larger congestion window and queue occupation at
the switches.

To evaluate the interaction between long and short flows,
we first established two long connections to the same receiver
that occupy the buffer on the bottleneck link. Then we con-
tinuously established and tore down a new TCP connection
to transmit 20kbytes data to the same destination server of
the two long flows. The duration of the long connections
was just long enough to cover the transmission of all the
20kbytes short connections. Both long and short TCP con-
nections were started using iperf. All the servers were under
the same GbE switch. We selected 20kbytes as it has been
used in related research [2].

We evaluated the performance according to two aspects
of the interaction: the completion time observed by short
flows and the throughput obtained by long flows.

In Figure 10 and Figure 11, we show the distribution of
completion time of short flows. Note that the completion
time of TCP (ECN off) was actually worse and had over a
2% probability of encountering a timeout (over 300ms and
not shown in the two figures). As the completion time dis-
tributions of dequeue marking for both enabled and not en-
abled are fairly close, we provide a zoomed in look. We have
observed that dequeue marking always slightly decreases the
completion time for short flows. Moreover, the completion
time of short flows was similar for DCTCP and ECN*, which
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Figure 11: Short flow (20k bytes) completion time
of TCP and ECN*, with two background long
TCP/ECN* flows respectively. The ECN threshold
(h) at switch was set at 20 packets.

Stacks Original Dequeue marking
TCP (ECN off) 944.85 -
DCTCP 918.7 903.87
ECN* 895.2 897.75

Table 2: Comparison of total achieved throughput
(Mbps) of two long flows when there is a short flow
continuously downloading 20kbytes traversing the
same bottleneck link.

indicates that the queue occupancy caused by the two long
TCP connections was similar for the two schemes.
In Table 2, we present the throughput of long flows when

there are short flows continuously traversed. TCP (ECN
off) achieves the largest throughput of long flows, with the
worst completion time on short flows. The throughput of
long flows under both DCTCP and ECN* are very close,
especially when dequeue marking is enabled.
To this end, we found a slightly better large percentile

completion time for short flows when dequeue marking was
enabled. Meanwhile, the throughput of long flows on DCTCP
and ECN* was close.

5.3 Long flows with large latency
We evaluated an extreme latency case for instant queue

length based schemes, including both DCTCP and ECN*.
In Figure 3 we have shown that the latency in data center
network is less than 1ms with a probability around 98%.
We are interested in the performance degradation in the
remaining 2% of cases. The worst case occurs when two long
flows are competing on the same bottleneck. We introduced
extra latency by adding a fixed 1 millisecond delay using
software for each outgoing packet at the two sender servers
in our testbed. We measured the throughput achieved with
these two long flows and the results are shown in Figure 12.
We observed that DCTCP achieves much higher through-

put compared with ECN*, when the network latency was
over 1ms but the threshold was set to a low value according
to 90 percentile latency. For example, for ECN threshold
h=30, DCTCP was 929.8Mbps while ECN* was 736.7Mbps
(79%). Note that ECN* quickly gained more throughput
if there were more connections, e.g., 3, and thus it’s still
as competitive as DCTCP in data center networks. An-
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other observation is that dequeue marking slightly degraded
throughput if the ECN threshold was set too low, e.g., lower
than the recommended h=30 determined by the normal la-
tency in data center networks.

6. DISCUSSIONS
The ECN standard defines ECN-capable (ECT) bits at

the IP header to indicate switches that mark the packet in
order to make the connection respond in the same manner
as dropping. However, the behavior of switches handling
non-ECT packets when ECN is triggered is not specified.
By ECN triggering we mean the instant queue length is
over the ECN threshold in our setting. We observe that
the broadcom switch simply drops the packets that are not
ECN-capable when ECN is triggered. This behavior gives
the ECN-capable packets preference as the ECT packets just
get marked.

The ECN standard states that TCP retransmitted pack-
ets and SYN packets must not be marked as ECT at the
IP header. The concerns behind the statements are mainly
rooted in security and the desires to make ECN more ro-
bust. The queue size in Figure 2 shows that the queue
length is periodically over the ECN threshold. Therefore,
if SYN packets for new connections or retransmitted pack-
ets meet the conditions during congestion, these packets may
get dropped and the performance degraded. In this paper,
we suggest that all such packets can be marked as ECT in
data center networks.

7. RELATED WORK
Paper [15] describes instant queue length based ECN,

and DCTCP uses the ratio of marked packets in its con-
gestion control algorithm. In this paper, we analyze the
ECN threshold setting. Our analysis and measurements of
use in a data center show that ECN*, which uses instant
queue at the switch and standard stack at the end system,
can perform as well as DCTCP in three traffic categories.

Besides DCTCP, there are other schemes proposed for
mitigating the impact of incast congestion. Paper [22] uses
a smaller retransmission timeout for incast. We consider an
instant queue length based ECN approach is complementary
to smaller timeouts. Meanwhile, avoiding a timeout is more
appealing than a fast recovery after packet loss. ICTCP
[23] is proposed to mitigate incast by overloading the TCP



receive window for congestion control. ICTCP also targets
the avoidance of packet loss caused by buffer overflow. We
believe ECN* has several benefits compared to ICTCP: 1)
ECN is more general and can be used for all bottlenecks
in the network while ICTCP only works for the last hop
congestion; 2) In addition to incast, ECN* also reduces the
completion time of short flows by controlling queue occupa-
tion and mitigates the interaction of short and long TCP
flows.
Previously, there have been some approaches for dynamic

tuning RED thresholds, e.g., [9], but they are only designed
for average queue length. Control theoretic analysis of RED
and improved designs are proposed in [5, 6], namely the Pro-
portional and the Proportional-Integral (PI) controller. The
proportional controller also uses the instant queue length in-
stead of the average queue length. However, the identified
stability conditions for Proportional controllers can’t be ap-
plied to ECN*. This is because ECN* sets the two (low
and high) thresholds for ECN at the same value, which es-
sentially is a bang-bang control (on-off control). Therefore,
ECN* only uses the ECN implementations on commodity
switches, but has different properties when compared with
ECN.
Actually, both DCTCP and ECN* share the same differ-

ence. The stability of DCTCP is analyzed in [3]. This paper
proposes a simple model to analyze the queue occupancy
properties following the methods in [15] and [17]. Our ana-
lyzed bounds for ECN* thresholds are briefly validated using
experiments, and we show that the setup for the threshold
determines TCP performance, especially for incast.
Commodity switches use tail-drop when buffer overflows.

In drop-from-front [16], when a cell arrives at a full buffer
or meeting, the cell closet to being transmitted is dropped
instead of the tail. With partial frame drop, drop-from-front
achieves similar performance to RED. A previous study in
[16] shows tail-drop and front-drop are equally good when
either is applied to RED. Compared with the marking ap-
proach when the packet is queued, the idea of dequeue mark-
ing greatly speeds up congestion information delivery for in-
stant queue length based ECN.
This paper uses instant queue length and demonstrates

the feasibility of dequeue marking on commodity Broadcom
switches. We believe that the final deployment of dequeue
marking in switch chips has no fundamental technical bar-
riers.

8. CONCLUSIONS
In this paper, we demonstrate that instant queue length

based ECN* achieves a similar performance when compared
with DCTCP in high-bandwidth low-latency networks. ECN*
does not need to modify ECN protocols at end servers. We
observed that both DCTCP and ECN* have a dilemma with
the ECN threshold: a larger ECN threshold to achieve high
throughput for long flows may have worse performance dur-
ing incast. To achieve both high throughput and optimal
incast performance with a single ECN threshold, we propose
dequeue marking for DCTCP and ECN*. Dequeue mark-
ing checks the queue length when packets are dequeued and
speeds up the delivery of the congestion signal by the packets
at the queue head instead of the queue tail.
We have developed dequeue marking ECN on Broadcom

switch Pronto 3290. We built a testbed with 50+ servers and
a 48-port Ethernet Gigabit switch. Our experimental results

demonstrate that dequeue marking is effective for enlarging
the maximum incast senders of DCTCP and ECN* fairly
close to the performance limit of ECN using unconditional
marking. Depending on the buffer size and ECN threshold,
the gain obtained by dequeue marking varies from 16% to
140%.
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