
Taking Back Control (Flow) of Reactive Programming
Position Paper

Sean McDirmid
Microsoft Research

Beijing China
smcdirm@microsoft.com

Abstract
Event-driven programming avoids wasting user and CPU
time, but is difficult to perform since program control flow
is necessarily inverted and twisted. To make reactive pro-
gramming easier, many advocate burying control flow within
abstractions that are composed via data flow instead. This
might be a mistake: data-flow has issues with expressive-
ness and usability that might not pan out. Instead, control
flow could be re-invented to hide the adverse affects of CPU
time while preserving expressiveness and directness1.

The Rise of Data Flow
In the beginning, programs would continuously poll for
something to happen. Polling is simple and direct; consider:

while true:
clearScreen()
if button.pushed:

x += 1
print(x)

Unfortunately, very few were happy about polling: the user
was stuck waiting for the computer to finish, while the com-
puter was doing nothing very useful in the meantime.

Event handling notifies programs when something hap-
pens so they do not need to wait and check all the time; e.g.:

button.onPushed(cbA)

label.content = x

def cbA():
x += 1
label.content = x

1 This position paper motivates managed time work presented in [5].

[Copyright notice will appear here once ’preprint’ option is removed.]

The programmer installs a “callback” that gets called when
the button is pushed (cbA); the implementation of the cbA
callback must also tell label that it has new content, and
should redraw itself, since what it is showing (x) has changed.
In particular, much complexity is needed to ensure that
changes are propagated when needed. Although events gain
efficiency, the simplicity and directness of polling is lost.

Various data-flow approaches, like Rx [7] or FRP (func-
tional reactive programming) [2] aim to tame the complexity
of event programming. Rather than instruct the computer di-
rectly, programmers route data through the program; e.g.

print(count(button.pushed))

Here button.pushed is a stream of push events that is trans-
formed by count into a stream of counts, which is then con-
sumed by print to display the most recent count; control
flow is completely buried by code that merely pushes event
streams around. The resulting code is very concise, meshing
with the declarative mantra of expressing what rather than
how. Clearly data-flow is the way forward, right?

The Limits of Data Flow
Data flow is best understood as encoding a program as a
static network of vertices and connections. For our exam-
ple’s graph, button’s pushed flows into count, which then
flows into print. The program then more resembles an elec-
trical circuit than a procedural recipe. Pure data flow is then
one giant form of indirection in that programmers can only
influence control flow indirectly in how they wire up data
flow relationships. Control encapsulation is great when data-
flow is in focus, but is problematic if nuanced control is nec-
essary. Consider Rx-like [7] code for a mouse drag adapter:

def drag(widget):
var p = from tm in widget.mouseDown

let pw = widget.position
from nm in widget.mouseMove.until(widget.mouseUp):

select pw + nm - pm
widget.positionAt(p)

This example uses LINQ syntax where from initiates a map
whose transformation is determined by a nested select. The
drag method will route positions to its argument based on
mouse down, move, and up events; But its logic is broken:

1 2014/10/8



for efficiency reasons on many platforms, including the con-
text of this example2, mouse up and down events are only
delivered to entities under the mouse: it is very easy to move
the mouse off widget and no longer “hear” its mouse events.
The solution to this problem is typically to “capture” the
mouse on widget when the mouse goes down and release the
capture when the mouse goes up, but such imperative oper-
ations require imposing on event streams with conventional
event handlers, ruining most of this solution’s elegance!

In a pure FRP data flow systems, state can accumulate
within each node but cannot be shared via aliases, which
would otherwise create implicit communication channels.
This results in a very different way of programming; e.g.
collections that change over time cannot be managed with
“insert” and “remove” calls, but instead must “switched” in
a way where their contents are defined by a function; e.g.

gameCore objs =
dpSwitch route

objs
(arr killOrSpawn >>> notYet)
(\sfs f -> gameCore(f sfs’))

In this example, taken from [1], dpSwitch takes a route func-
tion that routes signal inputs (event streams) to collection
members and a killOrSpawn function that adds or removes
elements from the collection. Basically, all interactions in
a pure data flow system must be obvious via explicit con-
nections; e.g. a collection’s membership and external inter-
action must occur all at once through dpSwitch. Interactions
in an imperative system can be diffused throughout various
encapsulated procedures; e.g. they can populate a collection
or iterate over the collection to create interactions that are
encapsulated from the code calling the procedures.

The difference between data-flow and control flow sys-
tems have important modularity implications: data flow sys-
tems encapsulate all control flow but not any interactions be-
tween nodes; while control flow systems encapsulate inter-
actions. The data-flow code is more clear but is also brittle
with respect to change; e.g. adding new collection member-
ship behavior requires a top level change to the input func-
tions of dpSwitch. Imperative code basically boils down to
“spooky actions at a distance” but is also incredibly mal-
leable to new behavior; simply add a procedure that does it!

Another issue with data-flow programming is that while
it is incremental in the streaming sense–new events added
to a stream are immediately propagated–it is not incremen-
tal with respect to non-monotonic changes in those streams.
Consider X = Y + Z, where X is a stream with values that cor-
respond to the sum of values in the Y and Z streams. How-
ever, changes to any element of the X stream can only be
dealt with by backing up the entire program and re-building
the streams! In contrast, change is a first-class entity in the
non-streaming imperative world: if Y or Z are assigned new
values, we know that they have changed (via change prop-

2 http://jasonrowe.com/2010/04/02/silverlight-drag-and-drop-with-rx

agation), which can drive the recomputation of X. The rep-
resentation of changing values as pure event streams sim-
ply provides no basis to deal with non-monotonic change,
though memoization can help in this regard [3].

Finally, the challenge of debugging data-flow code cannot
be ignored. Given encapsulated control flow, programmers
are guided to reason about and examine program execution
at the level of its data flow. Debugging then becomes a matter
of observing event flows as a circuit engineer would perfom
with probes and oscilloscopes—as control flow is encapsu-
lated programmers cannot easily set breakpoints or inject
printfs to track down problems. Debugging without control
flow is quite different and not currently well understood as
evidenced by the lack of data-flow debuggers to survey.

Immediate-mode Programming
One of the primary advantages of data-flow systems is how
they “abstract” over time: the dataflow network is continu-
ously re-evaluated as new events are driven thorugh it. Could
get this advantage without encapsulating control flow? Enter
polling-intensive immediate-mode UI APIs; consider:

slider(GEN_ID, 15, 15, 100, ref value)

label(‘‘hello ’’ + value, 15 * value, 30)

This code uses Sol [4], an immediate-mode UI toolkit for
games. The value variable is updated when the slider is
moved; no explicit event handler is needed because the code
will be called if a value changed event is pending. The
value variable then determines the horizontal placement of
the “hello” label. Processing [8] uses similar abstractions to
make UI programming more accessible to designers and
artists. The advantage of immediate-mode programming are
simplicity and directness: control flow is not inverted or
encapsulated outside of simple procedure constructs.

Unfortunately, the disadvantages of immediate-mode
programming are many. Not only is it inefficient, but it also
does not support state or identity encapsulation. Consider
the Sol slider code: the value variable both determines where
the slider thumb is and holds where the user puts it, so it has
to persist across render calls. For that to occur, value must
be declared as a global outside of the continuously executed
redraw loop–the slider method cannot encapsulate any state!
Additionally, the slider needs an identity that is stable across
redraws for the purpose of event routing, supplied here by a
GEN_ID macro that would not work directly in a loop.

Managed Time
For immediate-mode programming to be viable, it must be
efficiently executed with full support for identity and state
encapsulation. State changes should also be handled incre-
mentally since many reactive programs are oriented around
responding to change. We meet these requirements with
what we call managed time [5] where control flow is re-
invented to hide pesky computer time. Code in this paradigm

2 2014/10/8

http://jasonrowe.com/2010/04/02/silverlight-drag-and-drop-with-rx


as realized by YinYang, a Python-like managed time lan-
guage, looks very much like polling code:

object sld is Slider
object lab is Label
lab.content = ‘‘hello ’’ ++ sld.value
lab.position = (15 * sld.value, 30)

Code in YinYang executes continuously so label lab’s con-
tent and position fields are updated whenever slider sld’s
value field changes via user manipulation. The content, po-
sition, and value fields are not data-flow event streams, rather
they are mutable fields being assigned and re-assigned as
needed. Internally, YinYang statements are incrementally re-
played whenever what they read changes, gaining efficiency
over a naive polling-based interpretation. Compared to the
immediate-mode UI approach, object identities are memo-
ized across replays so that object state is encapsulated; e.g.
the Slider class provides a value field.

Unlike typical imperative code, continuous execution is
the default in YinYang—event handlers must be used to
realize any kind of discrete execution; consider:

cell x = 0, y = 0
print(x + y)

on buttonA.pushed: x += 1
on buttonB.pushed: y += 1

Event handlers in YinYang are expressed as the bodies of
if-like on statements guarded by the event being handled. In
this code, x and y cells are discretely incremented when but-
tonA or buttonB are pushed. Unlike the event handling ap-
proach, however, outside code sees these changes automati-
cally, updating the print statement’s execution.

Behaviors that continue after an event occurs must also
be considered; e.g. the mouse drag behavior mentioned pre-
viously. We handles this with an after statement; consider:

def drag(widget):
on widget.mouseDown:

var pw = widget.position
var pm = widget.mousePosition
after:

widget.mouseCapture()
widget.position = pw + (widget.mousePosition - pm)

on widget.mouseUp:
widget.position = widget.position # hold widget position
break # stop the most inner after block

When the mouse goes down on widget, the initial widget and
mouse positions are remembered as pw and pm to be used
in an after block that (a) captures the mouse and (b) assigns
the position of the widget to the dragging position. When the
mouse goes up, the after block is stopped via the break state-
ment, which stops all behavior of the block like the capture
and the assignment; to prevent the widget from reverting to
its pre-drag position, it must be assigned discretely to its own
value when the break statement is executed. The structure of
this example looks very similar to the one previously pre-
sented for Rx. However, control flow for the YinYang ver-
sion is not encapsulated; e.g. the mouse is captured as long
as the after block’s execution is unbroken.

Unlike FRP, YinYang fully supports side effecting oper-
ations on object references (aliases) as long as these oper-
ations are both undoable, so they can be rolled back when
no longer performed on a replay, and commutative, so that
statements can be replayed in any order. Beyond cell-like
fields, state can also be collections whose memberships are
determined by normal operations; consider:

set monsters
trait Monster:

cell life = 100
if this.life > 0:

monsters.insert(self)
...
on hit: life -= 1

object m0 is Monster
object m1 is Monster

This code defines a Monster class-like trait and uses this trait
to define two monsters (m0 and m1). As long as a monster’s
life cell (mutable field) greater than zero, the monster is in-
serted into the monsters set, which is then undone whenever
that condition does not hold; e.g. as soon as the monster has
accumulated as much damage as it has life. Aliases to ele-
ments of a set are accessible via iteration; consider:

if doHighlight:
for m in monsters:

m.highlight()

which highlights monsters in the monsters set whenever do-
Highlight is true. Such code can be diffused through out the
program—monsters be iterated on as a reference, even one
obtained from a field. In a pure data-flow system, such inter-
actions must be explicitly bound in a central location.

Managed time has a cost: the overhead of dependency
tracing, replay, and effect logging (needed to support roll-
back) is expensive. We are currently exploring ways to re-
duce this cost. Additionally, managed time code is not as ex-
pressive as standard imperative code: so that field (cell) up-
dates are commutativity, fields cannot be re-assigned outside
of a discrete event context. It is then impossible to express
algorithms where reassignment is common, e.g. bubble sort,
which in any case is a limitation of pure functional code.

We have prototyped YinYang with a programming editor
that leverages managed as a library in C#. Beyond imple-
menting the semantics shown here, this environment sup-
ports live programming along with time travel, which be-
come more feasible when the system is managing time for
the programmer. Please see [6] for an animated discussion.

Conclusion
Given the problems with event handling, we are quickly
rushing to data-flow abstractions that albeit am improve-
ment, have many expressiveness and usability challenges.
We should also consider re-inventing control flow so that
it is more suited to reactive programming; we have found
managing time as a very fruitful way to do this.

3 2014/10/8



References
[1] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade.

In Haskell, pages 7–18, 2003.

[2] C. Elliott and P. Hudak. Functional reactive animation. In Proc.
of ICFP, pages 263–273, 1997.

[3] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster. Adap-
ton: Composable, demand-driven incremental computation. In
Proc. of PLDI, pages 156–166, 2014.

[4] J. Komppa. Sol on immediate mode guis (IMGUI). http:

//iki.fi/sol/imgui/, 2005.

[5] S. McDirmid and J. Edwards. Programming with managed
time. In Proc. of SPLASH Onward!, Oct. 2014.

[6] S. McDirmid and J. Edwards. Programming with managed time
(essay with videos). http://bit.ly/1oeuWtB, Sept. 2014.

[7] E. Meijer. Your mouse is your database. ACM Queue, 10(3),
2012.

[8] C. Reas and B. Fry. Processing: programming for the media
arts. AI Soc., 20(4):526–538, 2006.

4 2014/10/8

http://iki.fi/sol/imgui/
http://iki.fi/sol/imgui/
http://bit.ly/1oeuWtB

