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1. INTRODUCTION
Modern data centers host tens (if not hundreds) of thou-

sands of servers and are used by companies such as Ama-
zon, Google, and Microsoft to provide online services to mil-
lions of individuals distributed across the Internet. They
use commodity hardware and their network infrastructure
adopts principles evolved from enterprise and Internet net-
working. Applications use UDP datagrams or TCP sockets
as the primary interface to other applications running inside
the data center. This effectively isolates the network from
the end-systems, which then have little control over how the
network handles packets. Likewise, the network has limited
visibility on the application logic. An application injects a
packet with a destination address and the network just de-
livers the packet. Network and applications effectively treat
each other as black-boxes.

This strict separation between applications and networks
(also referred to as dumb network) is a direct outcome of the
so-called end-to-end argument [49] and has arguably been
one of the main reasons why the Internet has been capable
of evolving from a small research project to planetary scale,
supporting a multitude of different hardware and network
technologies as well as a slew of very diverse applications,
and using networks owned by competing ISPs.

Despite being so instrumental in the success of the In-
ternet, this black-box design is also one of the root causes
of inefficiencies in large-scale data centers. Given the little
control and visibility over network resources, applications
need to use low-level hacks, e.g., to extract network prop-
erties (e.g., using traceroute and IP addresses to infer the
network topology) and to prioritize traffic (e.g., increasing
the number of TCP flows used by an application to increase
its bandwidth share). Further, a simple functionality like
multicast or anycast routing is not available and develop-
ers must resort to application-level overlays. This, however,
leads to inefficiencies as typically multiple logical links are
mapped to the same physical link, significantly reducing ap-
plication throughput. Even with perfect knowledge of the
underlying topology, there is still the constraint that servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM .

usually have only a single network interface. Any logical
topology with a fan-out higher than one cannot be mapped
optimally to the physical network.

This black-box design is also detrimental from the per-
spective of network operators. Since the network has little
or no knowledge of the semantics of application data, traffic
engineering is hard. For instance, the network cannot easily
distinguish between online, time-sensitive, traffic vs. back-
ground or delay-tolerant traffic. Likewise, inferring the flow
dynamics and dependencies is a non-trivial task.

These shortcomings suggest that it may be a good time
to revisit some of the early design decisions and verify if the
original assumptions still hold. In particular, we maintain
that data centers exhibit quite unique properties compared
to traditional Internet systems.
First, in data centers, hardware and network technologies
are very homogeneous, with x86 servers and Ethernet be-
ing by far the most popular choice. Second, the bulk of
core services (e.g., GFS [32] or BigTable [24]) and applica-
tions (e.g., MapReduce [28] jobs or web services) running is
rather limited. Third, the network topology is known and,
at least to some extent, customizable. Finally, most compo-
nents, including software (e.g., hypervisors), are owned and
controlled by a single entity. This means that customiza-
tion of software, hardware, and network is feasible and full
compatibility with legacy technologies is a non-goal.

Given these differences, we argue that data centers should
not be considered as mini-Internets but, instead, they should
be seen as an opportunity to rethink established approaches
in networking and investigate alternative solutions, aiming
to improve performance and reduce development and man-
agement complexity.

We investigated some of these opportunities in our re-
cent work [14, 19, 26, 38]. We will briefly report on some of
these projects in Section 2 while in Section 3 we discuss our
current research activity, which focuses on simplifying and
enhancing the interaction between applications and network
in a cloud computing scenario. We then outline the research
challenges in Section 4 and discuss the related work in Sec-
tion 5. Finally, we conclude the paper in Section 6 with brief
ending remarks.

2. BACKGROUND: CAMCUBE
In the CamCube project [14, 26], we have been under-

taking a clean-slate approach to the design of data centers,
borrowing ideas from the fields of high performance com-
puting (HPC), distributed systems, and networking. We
use a direct-connect topology, similar to those used in HPC,



in which servers are directly connected to each other us-
ing cross-over cables, creating a 3D torus topology (or k-
ary 3-cube) [46], like the one depicted in Figure 1. Servers
are therefore responsible for routing all the internal traffic.
Switches are only used to connect CamCube servers to the
external networks but are not used to route intra-CamCube
traffic.

The key benefit of CamCube is that by using a direct-
connect topology and letting servers handle packet forward-
ing and processing, it completely removes the distinction
between computation and network devices.
This enables services to easily implement custom-routing
protocols (e.g., multicast or anycast) as well as efficient in-
network services (e.g., caching or in-network aggregation),
without incurring the typical overhead (path stretch, link
sharing, etc.) and development complexity introduced by
overlays.

Rather than attempting to fix the problems incrementally,
CamCube demonstrates that by designing a data center clus-
ter from the ground up, including the network topology and
the network stack, it is possible to achieve higher perfor-
mance, simplify the design and development of applications,
and reduce cluster costs.

As an example of the benefits that can be achieved with
this platform, we briefly describe Camdoop [26], a Map-
Reduce system running on CamCube that supports on-path
aggregation of data streams.

A common property of MapReduce (and in general of“Big
Data” applications) is that often data is aggregated during
the process and the output size is a fraction of the input
size. This motivated us to explore a different approach to
improve the performance of MapReduce. Rather than in-
creasing the bandwidth, e.g., like in [34, 56], we focus on
decreasing the traffic by pushing aggregation from the edge
into the network core.

Camdoop builds aggregation trees with the sources of the
intermediate data as the children and roots at the servers ex-
ecuting the final aggregation. A convergecast is performed,
where all on-path servers intercept packets, aggregate their
content in a new packet and forward it to the upstream
server. This significantly reduces network traffic because at
each hop only a fraction of the data received is forwarded.
This enables achieving a speed-up of up to two orders of
magnitude compared to Hadoop and Dryad/DryadLINQ [26].

Camdoop is a paradigmatic example of the philosophy
underlying CamCube. Instead of treating application traf-
fic just as bits to ship from one end-host to another (as in
today’s networks), Camdoop exploits application knowledge
to improve network performance.

Although we evaluated CamCube through a custom testbed,
using x86 servers and Ethernet cables, our approach aligns
well with the recent trend of deploying 3D torus-based ap-
pliances in clusters [10, 12]. Unfortunately, however, these
platforms use traditional network stacks like TCP/IP and
MPI, which are oriented towards point-to-point server com-
munication and completely hide the underlying topology,
thus inhibiting the implementation of any in-network func-
tionality. We are currently porting our network stack to one
SeaMicro appliance. This will allow us to take advantage of
the SeaMicro hardware, thus further increasing the perfor-
mance of CamCube.
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Figure 1: A 3-ary 3-cube (or 3D torus)

3. NETWORK-AS-A-SERVICE (NAAS)
The experience accumulated with CamCube confirms our

expectations that a tighter integration and cooperation be-
tween applications and network could be beneficial for both.
We are currently investigating how to apply similar ideas
in the more challenging context of cloud computing as op-
posed to the production data center environment targeted
by CamCube. This requires striking a balance between the
fine-grained control offered by CamCube to application de-
velopers and the flexibility and isolation required by cloud
providers as well as the ability to be incrementally deployed
and fully compatible with existing cloud applications.

3.1 Motivation
Cloud computing has made it possible for small compa-

nies or even single individuals to access virtually unlimited
resources in large data centers for running computationally
demanding tasks. This has triggered the rise of “big data”
applications, which operate on large amounts of data. These
include traditional batch processing applications, such as
data mining, data indexing, log collection and analysis, and
scientific applications [2,3,7,55], as well as real-time stream
processing, web search and advertising [4, 6, 11].

These applications typically adopt a partition/aggregate
model: a large input data set is distributed over many servers,
and each server processes a share of the data. Locally gener-
ated intermediate results must then be aggregated to obtain
the final result. For example, this is how MapReduce [28]
or mainstream web search engines [6] are built.

An open challenge of the partition/aggregate model is that
it results in high contention for network resources in data
centers when a large amount of data traffic is exchanged be-
tween servers. Facebook reports that, for 26% of processing
tasks, network transfers are responsible for more than 50%
of the execution time [25]. This is consistent with other
studies, showing that the network is often the bottleneck in
big data applications [16,34,35].

Improving the performance of such network-bound appli-
cations in data centers has attracted much interest from
the research community. A class of solutions focuses on re-
ducing bandwidth usage by employing overlay networks to
distribute data [25] and to perform partial aggregation [40].
However, this requires applications to reverse-engineer the
physical network topology to optimize the layout of overlay
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Figure 2: NaaS architecture in a data center.

networks and, as we discussed in Section 1, even with full
network visibility, it would still be inefficient.

Other proposals increase network bandwidth through more
complex topologies [15,34] or higher-capacity networks [56].
These approaches, however, exhibit two main drawbacks.
First, to fully exploit the extra bandwidth available, complex
techniques must be used to infer application demands and
traffic patterns at runtime [16, 21]. Second, network over-
provisioning can significantly increase the data center oper-
ational and capital expenditures, up to 5 times according to
some estimates [39]. This, in turn, impacts tenants costs as
well. For example, Amazon AWS recently introduced Clus-
ter Compute instances with full-bisection 10 Gbps band-
width, with an hourly cost of 16 times the default Amazon
EC2 instance [1].

3.2 Overview
Recently, triggered by the availability of multi-core CPUs

at low cost, there has been a renewed interest in software-
based routers, [30, 36, 41, 42, 48], and FPGA-based [45] pro-
grammable routers. These proposals usually aim to replace
traditional functionality of switches and routers with a cus-
tom software implementation. In contrast, we argue that
the flexibility provided by these implementations should be
offered to tenants to implement part of the application logic
in the network.

Instead of over-provisioning the network, our goal is to
optimize network traffic by exploiting application-specific
knowledge in the network core. We term this approach
“Network-as-a-service” (NaaS) [27] because it allows tenants
to customize the service that they receive from the network.
Our goal is to enable tenants to efficiently, easily, and safely
control network operations while still allowing the provider
to decide how resources are allocated and shared across ten-
ants.

NaaS-enabled tenants can deploy custom routing proto-
cols, including multicast services [22] or anycast/incast pro-
tocols, as well as more sophisticated mechanisms, such as
content-based routing [23] and content-centric networking [37].
This would allow applications to distribute data and re-
quests efficiently through custom multicast and anycast pro-
tocols instead of inefficient overlay networks.

Further, by modifying the content of packets on-path, ten-
ants could efficiently implement advanced network services,
such as in-network data aggregation and smart caching, that
are application-specific (as opposed to traditional application-
agnostic network services). Parallel processing systems such

as MapReduce would greatly benefit because data can be ag-
gregated on-path, thus reducing execution times [26]. Data
intensive applications can reduce network traffic by exploit-
ing customized redundancy elimination techniques [17] or
by caching popular data items within the network, which
decreases latency and bandwidth usage compared to end-
host-only deployments. Our preliminary simulation results
using simple yet representative cloud traffic patterns show
that the NaaS approach can reduce the median flow comple-
tion time of applications by approximately 60%–90% [27].

3.3 Preliminary Architecture
Figure 2 shows the envisioned data center architecture

for NaaS. Compared to existing setups, NaaS requires net-
work devices to be capable of efficiently executing tenant-
provided code. To logically distinguish the functionality of
traditional packet switching from the more advanced NaaS
functionality, we colloquially refer to the network compo-
nent responsible for executing tenant code as a NaaS box.
They can be implemented as separate devices connected via
high bandwidth links to switches like in SideCar [52] or can
be integrated with the switch hardware, e.g., using a hybrid
solution comprising a NetFPGA-based hardware layer [45],
coupled with a flexible software stack. NaaS boxes host
instances of NaaS processing elements, NPEs, which carry
out application-specific packet processing. For a given ten-
ant application, NPEs execute on the subset of NaaS boxes
that are along the routing paths between the virtual ma-
chines (VMs) in the network.

A critical requirement for the implementation of NaaS
boxes is their ability to process packets at line rate. We as-
sume that network switches (and hence NaaS boxes) are in-
terconnected in a (potentially oversubscribed) fat-tree topol-
ogy [15], as shown in Figure 2. This topology, increasingly
adopted in data centers [13], has the property that it re-
quires only switches with a limited port count (e.g., for
a 27,648-server cluster, only 48-port switches are needed).
This means that the worst-case rate that a NaaS box must
support is limited to tens of Gbps, which can be supported
by today’s NetFPGAs (with four 10 Gbps ports [9]) and also
by commodity servers [30,36,48]. While rates may increase
in the near future due to the deployment of 10 Gbps Ether-
net in data centers, we expect that advances in multi-core
platforms and FPGA technology can still meet our goals.
Distributed software router designs like in RouteBricks [30]
can also be used to scale to higher rates.



4. RESEARCH CHALLENGES
In order to see a widespread adoption of NaaS, a range of

research challenges have to be overcome.

C1: Integration with current data center hardware
and software. Existing data centers constitute a sig-
nificant investment for large cloud providers like Google or
Amazon. For NaaS to become successful, it is important
that the techniques devised can be incrementally deployed
in today’s cloud data centers and be compatible with ex-
isting solutions for powering, cooling, and interconnecting
servers [20]. Also, we need to ensure that NaaS can coexist
with legacy applications and cloud services, without nega-
tively impacting them.

C2: Scalability. The number of tenant applications run-
ning in the network will be at least one or two orders of
magnitude higher than what is currently supported by pro-
grammable routers. Even with only a moderate number
of tenants in a data center, the NaaS infrastructure must
handle the concurrent execution of a large number of NPEs
because each tenant requires multiple NPEs depending on
the complexity of the physical network topology. Similar to
how cloud computing providers require scalable and efficient
management solutions to handle tenant VMs, NaaS infras-
tructure will necessitate automatic management of NPEs.

C3: Performance isolation. Unlike previous proposals
on flexible data center networking, which typically assume
only a handful of cooperative and trusted services, a NaaS
model exposes in-network processing to tenants. Therefore,
NaaS must be able to execute malicious or poorly written
code without impacting the performance of other tenants,
including non-NaaS tenants. This will require the develop-
ment of novel mechanisms to ensure performance isolation,
both locally, e.g., using lightweight OS containers, and glob-
ally, e.g., using in-network solutions that efficiently partition
the bandwidth among multiple tenants [19].

C4: Resource allocation. A key requirement for NaaS is
that the provider does not have to reveal too much informa-
tion to the tenants about the internal network configuration.
Besides the obvious privacy reasons, this is also important
because it allows the provider to retain the ability to dy-
namically (re-)allocate the tenant’s resources (end-hosts and
networking devices). For instance, the provider could decide
to run the code of a tenant only on a subset of networking
devices if this improves the overall performance without sig-
nificantly impacting the tenant. This requires investigating
novel allocation schemes that take into account the new ca-
pabilities offered by NaaS and the performance/cost trade-
offs involved, including new models of fairness, e.g., [33].

C5: Programming abstractions. The additional flex-
ibility and performance provided by NaaS must not come
at the cost of additional complexity for the users. This can
be achieved in two ways. For popular applications, e.g.,
MapReduce or key-value stores, the provider can offer be-
spoke versions that have been internally modified to exploit
the NaaS functionality (e.g., by using in-network aggrega-
tion) while still maintaining the current external interface
that tenants are familiar with. For custom applications, in-
stead, we need to devise novel programming abstractions
that strike a balance between expressiveness and complex-
ity. For example, this may include high-level domain specific

languages such as Cloud Haskell [31], as well as low-level lan-
guages like Click [44], which allow for finer-grained control.
Also, it is important to decouple the virtual topology of-
fered to the tenants from the physical topology in order to
i) enable providers to re-arrange the internal configuration
without impacting existing code and to ii) enable tenants
to move to another provider without having to completely
rewrite their applications.

C6: Pricing model and incentives. Finally, cloud
providers will require new charging models for NaaS offer-
ings. We have already started exploring some of the trade-
offs [18] but more investigation is required to also account
for in-network computation. However, we expect that a
mutual benefit for providers and tenants will be achieved.
Taking advantage of NaaS will in many cases yield a re-
duction in overall traffic, e.g., by using in-network aggrega-
tion or optimized forwarding. This would be beneficial for
NaaS tenants, which can improve their performance and,
hence, would be happy to pay a premium. Beside this ad-
ditional income, the provider should also benefit because it
can re-allocate the unused bandwidth to the non-NaaS ten-
ants, which therefore will also see an improvement in their
performance, potentially leading to an even higher revenue.

5. RELATED WORK
There have been several proposals to support network pro-
grammability. Here, we briefly summarize the main related
work, highlighting the challenges (as described in the previ-
ous section) introduced by the NaaS model.

5.1 Programmable Routers
Triggered by a desire to lower costs and increase perfor-

mance, there has recently been a renewed interest in software-
[30,36,41,42,48] and FPGA-based [45] programmable routers,
including commercially available products [5,8]. These pro-
posals aim to replace traditional switch and router oper-
ations (e.g., IPv4 forwarding) with software implementa-
tions to reduce costs and increase flexibility. The NaaS
model leverages these efforts but goes beyond them: it offers
the flexibility of programmable packet-processing to tenants.
This, however, challenges current design assumptions. First,
we expect that the number of independent tenants services
that NaaS-devices must be able to support will be at least
one or two orders of magnitude higher than what can be sup-
ported by current programmable routers [29] (challenge C2 ).
Second, these services are written by third-parties and com-
pete with each other for resources. They must be isolated
from other components without impacting tenant perfor-
mance (C3 ).

5.2 Software Defined Networking (SDN)
SDN has been recently proposed as a flexible way for cen-

trally managing the network control plane [43, 53]. The
NaaS model is complementary to these efforts—while SDN
focuses on packet forwarding and targets network adminis-
trators, NaaS allows arbitrary on-path application-specific
packet processing and is geared to cloud tenants. Although
NaaS shares some of the research challenges of SDN, e.g.,
providing an abstract view of the network, it also introduces
new ones. For example, the OpenFlow interface [43] is too
limited to express the wide range of possible computations
required by NaaS (C5 ). NaaS also requires new mecha-



nisms to virtualize and isolate packet processing (C3 ) and
scheduling protocols to allocate in-network resources to ten-
ants (C4 ).

5.3 Active Networks (ANs)
ANs were proposed more than a decade ago as way to

simplify network management by allowing packets to carry
code that is executed by routers [54, 57]. NaaS shares some
ideas with this body of work. However, there are also some
important differences. First, ANs were mostly intended to
be used to implement new routing protocols rather than
in-network processing services like those targeted by NaaS.
This means that both the API and their implementation
are ill-suited to capture the complexity and performance re-
quirements posed by NaaS. Second, NaaS exposes network
programmability to cloud tenants. This will require novel
programming abstractions for non-expert developers (C5 )
as well as appropriate hardware and software performance
isolation (C3 ), and resource allocation mechanisms (C4 ).
Finally, NaaS targets data center networks rather than Inter-
net WANs. This allows for a higher degree of customization
of hardware and software and it potentially enables over-
coming some of the implementation issues that in the past
hampered a widespread deployment of ANs.

5.4 Middleboxes
While switches and routers focus on packet forwarding,

middleboxes are responsible for packet processing. This in-
cludes functionality such as WAN optimizers, proxies, ID-
Ses, NATs, and firewalls. Traditionally, middleboxes have
been implemented on close and difficult to extend hardware
platforms. Recently, however, there have been several pro-
posals that exploit software-centric implementations to pro-
vide more flexibility and simplify management, e.g., [50,51].
NaaS integrates these efforts by focusing on application-
specific packet processing such as in-network aggregation
or caching, which introduces new challenges (C2 and C3 ).
However, through NaaS, tenants can also implement func-
tions analogous to those usually provided by middleboxes
but with the possibility of customizing them based on appli-
cations needs, e.g., optimizing traffic compression according
to the specific application workload.

6. CONCLUSIONS
Data center networks exhibit significant differences com-

pared to traditional IP-based networks. This motivated us
to explore alternative solutions. In particular, we argue that
a better integration of applications and network can be ben-
eficial for both entities. We investigated these opportunities
in the context of the CamCube project and, more recently,
with NaaS.

We believe that the NaaS model has the potential to rev-
olutionize current cloud computing offerings by increasing
the performance of tenant applications—through efficient in-
network processing—while reducing development complex-
ity. Cloud providers will benefit too because by offering a
better service to tenants and by optimizing network usage,
they can increase their customer base (and revenue due to
higher utilization). Our initial results show that NaaS does
not require pervasive adoption in a data center to be cost-
effective [27].

We believe that by combining (distributed) computation
and network in a single, coherent, abstraction NaaS would

provide a significant step towards realizing the vision of “the
data center is the computer” [47].
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