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Abstract

We wish to determine the epipolar geometry of a stereo cam-
era pair from image measurements alone. This paper de-
scribes a solution to this problem which does not require a
parametric model of the camera system, and consequently
applies equally well to a wide class of stereo configurations.
Examples in the paper range from a standard pinhole stereo
configuration to more exotic systems combining curved mir-
rors and wide-angle lenses.

The method described here allows epipolar curves to be
learned from multiple image pairs presented to the stereo
cameras. By aggregating information over the multiple im-
ages, a dense map of the epipolar curves can be determined
on the images. The algorithm requires a large number of
images, but has the distinct benefit that the correspondence
problem does not have to be explicitly solved.

We show that for standard stereo configurations the re-
sults are comparable to those obtained from a state of
the art parametric model method, despite the significantly
weaker constraints on the non-parametric model. The new
algorithm is simple to implement, so it may easily be em-
ployed on a new and possibly complex camera system.

1. Introduction
This paper concerns the computation of epipolar geome-
try for stereo camera pairs. Recently many new types of
camera configurations have been used which are generaliza-
tions of the conventional stereo rig with two pinhole cam-
eras [3, 4, 5, 6, 8, 7, 9]. We are interested in such gen-
eral cases and indeed in cases where a parametric model
may not even be available. The approach developed here
takes a fresh look at the two-camera configuration. It does
not model the 3D geometric configuration of cameras, mir-
rors and lenses but rather learns the shape of the epipolar
curves by accumulating matching evidence over multiple
image pairs.

The advantages of this approach are several: it applies to
any camera model, not only pinhole. This means, for exam-
ple, that large radial distortion does not pose a problem and

Figure 1: A collection of photos acquired from the same
stereo camera. We seek a general way to learn the epipolar
geometry of the camera from large sets of training images
such as these,without an explicit parametric model of the
camera system.

moreover, any optical configuration can be used. It is not
a requirement that the epipolar curves be smooth, though
we will assume that they are in the implementation here.
Finally, the algorithm is extremely simple—it depends on
having a reasonable model of image noise, but not on the
complex bookkeeping strategies that characterize success-
ful approaches to parametric epipolar geometry estimation.
The primary practical contribution of this work is to allow
automatic self-calibration of a range of stereo camera sys-
tems. Two benefits ensue: first, the method allows estima-
tion of epipolar geometry when the parametric model is un-
known, as for example with archive material. Second, even
when the parametric model is known, the nonparametric al-
gorithm may be a valuable preprocessing step.

To expand on the latter point, it is worth briefly re-
viewing strategies for the estimation of epipolar geometry
where parametric models are available. It is known that
the epipolar geometry between two (classical) perspective
pinhole cameras can be recovered using point matches [2].
The epipolar geometry is completely characterized by the
fundamental matrixF, which can be computed from seven
corresponding points in two images (yielding one or three
solutions). Successful techniques for estimatingF from a
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Figure 2:A general stereo camera. Each pixel on the left
image samples light from points along a ray in space. For a
given pixel, points along that ray project to someeidolaktic
setof points in the right image. For many systems, the set
of right-image points is a smooth curve, called theepipo-
lar curve. Note that neither set of rays need intersect in a
common point.

pair of views generally have two key steps: first, pairs of
left-right point correspondences are extracted from the im-
ages. Because the epipolar geometry is not yet known,
these correspondences invariably include a significant num-
ber of false correspondences oroutliers. In the second step,
these outliers are identified by robust estimation of the para-
metric model (i.e. the parameters of the Fundamental ma-
trix) [10, 14]. Finally, given this estimate of the epipolar
geometry, a much more accurate set of correspondences can
be found because the image region in which correspond-
ing points must lie is reduced to a narrow band around the
epipolar lines. Repeating the two steps refines the estimate.

The key to the parametric approach lies in ensuring that
the first matching step produces enough good point corre-
spondences that the parametric model may be accurately
fitted. With non-pinhole cameras, however, this is often
difficult. For example, fitting the catadioptric fundamen-
tal matrix [1] currently requires at least 15 correct corre-
spondences, vastly increasing the combinatorics of the ro-
bust estimation algorithms. Other models [3, 5, 9] impose
even more stringent requirements on the correspondences or
acquisition methods, to the extent that for general cameras,
no automatic system for self-calibration from image data is
known to the authors.

The essential idea here is to learn epipolar curves directly
from multiple image pairs: consider determining the corre-
spondence for a point in the left image from a single image
pair – the true corresponding point in the right image will
lie on the epipolar curve, but from any particular image pair
many incorrect correspondences will be determined. How-
ever, when the correspondences from many image pairs are
aggregated the incorrect correspondences will be scattered,
but the true correspondences will cluster on the epipolar

curve. The epipolar curve can thus be determined.
The most similar previous work is Triggs’ joint feature

distributions [11], which may be regarded as a paramet-
ric (in the statistical sense) analogue of our nonparametric
model. The major advance of our work here is a simple ro-
bust algorithm to estimate the joint distributions of match-
ing points in the left and right images, and demonstrations
of recovered epipolar geometry on a range of central and
non-central cameras.

The method is somewhat in the same spirit as [13] where
many images were combined to compute an environment
map which would be ambiguous if computed from a sin-
gle image. It also has some similarity with the common
technique for camera calibration where a dense sampling of
the scene is obtained by imaging thousands of images of a
bright light or retroreflective marker. Beyond the obvious
difference that the method described in this paper does not
require a uniquely identifiable point in the scene, such tech-
niques still require a parametric model as it is impractical to
densely sample 3D space with a single point, while an im-
age of a natural scene samples densely in two of the three
dimensions.

2. The Model
We assume we have a stereo camera pair, which collects
synchronized pairs of images, labelled “left” and “right”.

Let x be some pixel coordinate in one of the images, as
shown in Fig 2. The image at positionx contains the projec-
tion of some world color onto the image plane. Assuming
that the light travels in straight lines, the world point has to
lie along the ray as shown. In a pinhole-camera stereo pair,
the projection of the ray into the second image forms a line,
called the epipolar line. When the cameras do not conform
to the pinhole model the projection will not necessary be a
line. In general, we call the set of projections of the preim-
ages of a pointx the eidolaktic set1of x. The task of this
paper is to determine the mapping between points in each
image of the stereo pair and their corresponding eidolaktic
sets in the other. The eidolaktic set is neither necessarily
one-dimensional nor infinite, but after describing the gen-
eral model, this paper will concentrate on the case where it
is 1D and smooth. In the case where the eidolaktic set is
a smooth curve, we follow conventional nomenclature and
call it theepipolar curveof x.

Rather than define an explicit parametric representation
for the curves, the eidolaktic set will be represented as an
occupancy function over the pixels in the second image.
Thus, each pixelx in one image has an associated value
p(x′) in the other which, loosely speaking, describes the

1From eidolon (ειδω̂λoν, image reflected in mirror) and aktin (ακτιν,
ray or beam). The difficulty with the word “epipolar” is that it implies two
central projection cameras, which is a special case of the situation covered
here.
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Figure 3: Rig sequence.Two of 220 stereo images (size
120x160) taken with two cheap PC cameras that are roughly
synchronized. The cameras have substantial lens distortion
and imaging noise.

probability that pixelsx′ andx could be images of the same
3D point. The following sections show how a simple algo-
rithm can be used to computep given a set of images.

For the remainder of this discussion, we assume that
each pixelx in the left image is treated independently, so
throughout the following,x is fixed. A 3D pointX rep-
resents a scene point with colourC. This point is im-
aged in the first camera at pixel positionx, with inten-
sity I(x). I(x) is generally a 3-vector describing the pixel
colour in some appropriate colourspace, for example CIE
or HSV. The same point is imaged in the second camera at
x′, with intensityI ′(x′). With identical perfect cameras,
and diffuse surfacesI andI ′ will be identical if x andx′

are viewing the same point. In practice, because of dis-
tortions, noise in the imaging process, and non-diffuse sur-
faces, the imaged intensities will not be identical, but will
be drawn from a joint probability distribution characteristic
of the camera and class of scenes under investigation. Let
ν(I, I ′) : R3×R3 7→ R be the density function for this joint
distribution, which we assume is available. Section 5 de-
scribes howν is empirically computed for our experimental
stereo setup. In the absence of empirical evidence, it may
be appropriate to model the difference‖I − I ′‖ as being
Gaussian distributed with varianceσ:

ν(I, I ′) = Zν exp
(
−‖I − I ′‖2

σ2

)
whereZν is a normalizing constant to ensure thatν is a pdf.
In addition, we assume knowledge of the prior joint density
ν̄(I, I ′) whenI andI ′ are not the intensities of correspond-
ing points. For quantized images, this density can often be

modelled as uniform over the range of intensities, e.g.

ν̄(I, I ′) =
1

2553

Given these densities, we would like to determine the like-
lihood that a given pixelx′ is the projection of a 3D point
on the ray corresponding to pixelx in the left image. The
ideal 3D ray is the set

Rx = {X(λ), 0 < λ < ∞}.

Parametrizing 3D space by the 2D coordinates ofx′ and the
distance along the rayλ, we denote byp(x′, λ) the likeli-
hood that right-image pixelx′ is the image of the 3D point
X(λ). A given pair of imagesI, I ′ is observing a specific
scene, and consequently we can compute this likelihood for
the specific, but unknown, value ofλ thus:

pλ(x′) = ν(I(x), I ′(x′)) + ν̄(I(x), I ′(x′)). (1)

Note that this is not a probability density, but merely the
evaluation of a likelihood at each location in the right image.
Because each pair of images gives us an estimate ofp(x′, λ)
for a different value ofλ, we can compute the sum overpλ

p(x′) =
∑
λ∈Λ

pλ(x′)

whereΛ is simply the set of depths from whichI(x) was
sampled over the training sequence. If the training sequence
is representative, so that the sample density of depths inΛ
approximates the priorp(λ) then p(x′) approximates the
marginal

∫
p(x′, λ)p(λ)dλ. Implementation of this compu-

tation using a discrete sampling of pixels in both images
leads to an algorithm to computep, as will be described
below.

3. The Algorithm
Given a set of stereo images, or a video sequence in which
the world (depth map) changes smoothly, we wish to collect
evidence about the eidolaktic set for each pixel. The input
to the algorithm is a set ofn stereo image pairs,{Ii, I

′
i}n

i=1.
The desired output is the occupancy functionp(x,x′) which
encodes, for every pair of pixels in the left and right images,
a measure of whether those two pixels are in corresponding
eidolaktic sets. (It is clear thatp is symmetric: ifx′ is in the
eidolaktic set ofx, then the eidolaktic set ofx′, which is the
set of pixels whose rays intersect the rayRx′ , includes the
pixel with rayRx, namelyx.) The algorithm is described
entirely in the left-right direction, computingp(x,x′) for a
fixed value ofx. The other direction is directly analogous.
The algorithm steps are summarized in figure 4, and we will
illustrate these steps for the stereo configuration of figure 3.
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(a) (b) (c) (d)

Figure 5: Steps in the algorithm for one left-pixelx. (a) Pixelx marked in the left image. Rowi corresponds to pairi.
(b) Region of interestS highlighted in right image. (c) Similarity functionpi(x,x′) plotted forx′ in S. (d) Accumulated
eidolaktic occupancy functionp(x,x′). The epipolar curve ofx goes through the dark dots in the accumulator.

1. For each left-pixelx

(a) InitializeP (x′) = 0 ∀ right-pixelsx′

(b) For each input image pairIi, I
′
i

i. For each right-pixelx′

Computepi(x′) from eq.1(see§5)

ii. Normalize so that
∑

x′ pi(x′) = 1
iii. AccumulateP (x′) = P (x′) + pi(x′) ∀x′

(c) Recordp(x,x′) = P (x′) ∀x′.

2. Impose smoothness priorsp(x,x′) ≈ p(y,y′) for
y,y′ nearx,x′.

Figure 4: Algorithm to compute the occupancy function
p(x,x′)—a soft discretization of the indicator function
which is 1 whenx andx′ are on corresponding epipolar
curves, and 0 otherwise.

First, each pair of training images gives an estimate of
pi(x,x′) for the particular scene depths in that pair. The es-
timate comes from application of the pixel similarity mea-
sure embodied in equation 1, and will have high values
where image pixels have similar colours. See section 5 for
precise details of its implementation. The third column of
figure 5 shows the discretization ofpi(x,x′) computed over
a region of interest in the second image. The sequence of
images contains examples of frames where the matches for
pixelx are highly ambiguous (large dark areas in the array),

and where the match is unambiguous (a single black peak
in the array).

Second, at each step, the estimate ofpi is normalized
to sum to one, and then added to the accumulator array
p(x,x′). The key to the success of the algorithm lies in
this aggregation step. False matches tend to be suppressed
at this stage, due to the following observation. As the ei-
dolaktic set is a one dimensional region in a two dimen-
sional space (the range ofp for fixed x), correct matches
will populate more densely than false matches. For exam-
ple, if the lengthL of the epipolar curve is proportional to
the image width, then each correct match has probability
1
L of accumulating whereas an erroneous match has prob-
ability 1

L2 . This means that for sufficiently many training
images, the eidolaktic set will be prominent in the image of
p(x, ·). Figure 5, column (d) shows the evolving accumu-
lator, with the epipolar curve (for this is a smooth camera)
becoming clearly defined as more images are added.

After all images have been processed, for all left-pixels
x, the arrayp(x,x′) encodes the set of pixels where cor-
respondence has been observed. For a dense sampling of
space, this is the entire epipolar geometry of the system.

Two further observations about this process concern am-
biguous pixels, and unmatched pixels:

• Because
∑

x′ p(x,x′) is normalized to unity at each
step, pixelsx which have many matching pixels in the
right image will have a reduced contribution to the final
estimate. Therefore ambiguous pixels, such as those in
areas of low texture, are automatically downweighted
without any artificial thresholding.
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(a) PDF collected from 200 images
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(b) Cluster centres and line directions.
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(c) Fitted eidolaktic curve.

Figure 6: Imposing smoothness constraints. Epipolar curve for one pixel of the “rig” sequence. (a) Shows the eidolaktic
occupancy function for one pixel. (b) Shows the weighted-covariance cluster centers along with their principal directions.
(c) A spline-fitted estimate of the epipolar curve.

• A left pixel x may have no correct match in the
right image due to occlusion or unmodelled specu-
lar lighting effects. If there is no strong incorrect
match, p(x,x′) is dominated by pixels for which
the pixel similarity measureν has very small val-
ues, and normalization might yield a pdf with ran-
domly placed large peaks. However, the addition of
the small “no-match” term̄ν to every estimate means
that everywhere-small estimates are normalized to an
uninformative uniform distribution.

In the absence of further information, the above algo-
rithm can determine calibration for arbitrary camera geome-
tries extremely simply. However, in order to obtain a dense
sampling of the eidolaktic sets, a large number of images is
required. Each pixel must see a reasonable number of un-
ambiguous colours at each depthλ in the stereo system’s
workspace. Although this is relatively easily achieved by
waving a colourful poster in front of the stereo head for a
minute, we should like to calibrate from fewer images of
less constrained scenes, which is the subject of the next sec-
tion.

4. Smoothness constraints
For many systems the eidolaktic sets are smooth epipolar
curves, and the shapes of the epipolar curves vary slowly
across the image. Integrating this constraint into the estima-
tion allows the use of fewer images, with less informative
texture, for the calibration.

The smoothness constraints fall into two classes:
smoothness of the epipolar curve itself, and slow variation
of the shape of the curve as the pixel (of whose ray it is the
image) moves in the image plane.

Smoothness of the epipolar curve.For camera systems
such as a smooth lens observing a smooth mirror, the im-
age of a 3D ray will form a smooth curve in the im-
age. Even for cameras which observe multiple mirrors,
inducing cusps in the epipolar curves, the positions of
the cusps are easily indicated, and are constant over the
training set, so the curves are piecewise smooth. There-

fore these curves can be extracted from the sparse eidolak-
tic occupancy functionp(x,x′) by interpolating the occu-
pancy function. Consider the sampled array of values of
p(x,x′) for a given value ofx, and denote itv(i, j). The
strategy we have found effective is to fit lines in small
windows of v, and use the line directions to build a di-
rectional “flow” field over the right image. Points on
the lines are given by the weighted centroidsc(i, j) =∑

(i′,j′)∈N(i,j) v(i, j)(i, j), and the line directionsd(i, j)
are the short eigenvectors of the2× 2 weighted covariance
matricesΛ(i, j) =

∑
(i′,j′)∈N(i,j) v(i, j)(i, j)>(i, j). Here

the notationN(i, j) denotes the set of pixels within a neigh-
bourhood of(i, j). The size of the neighbourhood is cho-
sen such that the eidolaktic set is expected to be sampled at
least twice in the neighbourhood. Note that this does not as-
sume video input, as the order of the frames doesn’t matter
here. The neighbourhood should be large enough to include
many positive matches. Larger neighbourhoods mean more
smoothness in the recovered curve but increased chance of
including outliers. In the limit,N is the size of the image
and the direction field is defined by one main axis (i.e. it is
a straight line).

Given the direction field, there are at least two strategies
to fit smooth curves. Splines may be fitted, as illustrated in
figure 6, where the sparsely sampled eidolaktic occupancy
function is converted into a smooth epipolar curve. On the
other hand, if a complex parametric model of the system is
available, which could not be fitted by RANSAC-like strate-
gies because of a surfeit of degrees of freedom, it may well
be sufficiently constrained by the flow field to be usefully
estimated.

Smoothness in the image plane. A second class of
smoothness constraint arises when it is known that adja-
cent image pixels sample from rays which are similar in
space. In this case, the constraint we wish to maintain is
that occupancy functions for adjacent left-pixels are simi-
lar. Specifically, ifx andy are neighbours in the left image,
thenp(x, ·) andp(y, ·) should be similar 2D functions over
the right image. A rigorous imposition of this constraint is
somewhat complex, but a good approximation can be com-
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puted by taking the occupancy functions for all left-pixels,
morphologically dilating, and using these as a prior distri-
bution for neighbouring pixels in a second pass of the algo-
rithm.

Temporal smoothness: Video sequences.The exposition
to this point has taken no account of temporal dependence
between the training images. This can help and hinder.
It can help, because we may assume that good matches
are temporally correlated, so that modelling that correlation
will reinforce them, and that bad matches are sometimes un-
correlated, so they will fade. We achieve this by penalizing
matches that have no temporal coherence. Video can hin-
der because frames which are too close may not provide a
representative sampling of the prior over scene depthsp(λ).
In particular, the algorithm as presented here is sensitive
to stationary scenes. If one frame appears 1000 times it
will vastly dominate the output. Although this case is eas-
ily detected and corrected for, more subtle deviations from
representative sampling may not be so easily accounted for.
Note also that there is no independence assumption between
frames, as the temporal process is integrating rather than
multiplying the “probability densities” represented by the
occupancy functionspi.

5. Implementation

The main implementation issue is in the computation of
pi(x, x′). The important aspects are computation ofν(I, I ′)
and windowing the response.

Evaluating pixel similarity. An important component of
the algorithm as described is the evaluation of the pixel sim-
ilarity. The joint densityν was determined empirically by
manually verifying 281 point correspondences between the
images of a captured stereo pair. The point correspondences
yield corresponding RGB samples{Ci = (ri, gi, bi), C ′

i =
(r′i, g

′
i, b

′
i)}281

i=1. From these correspondences, a Gaussian
approximation toν was computed. If using a Gaussian ap-
proximation, a good estimate forσ significantly reduces the
amount of images needed for the algorithm. A value too big
results in a blurry occupancy function whereas too small a
value will reject all matches.

Neighbourhood selection.The second aspect of a success-
ful implementation is in the use of a local window around
each pixelx andx′ in order to compute the match simi-
larity. Two options in particular present themselves. The
pixel intensityI can be computed as an average over a local
neighbourhood, so that a low-pass filtered version of the im-
age is used. Otherwise, similarity can be computed between
windows centred onx andx′, with appropriate invariances
built in, as in wide-baseline stereo matching. In either case,
careful modelling of the statistics of the similarity measure
will improve performance.
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Figure 7: Comparison with conventional Fundamental
matrix model. (a) A left image point and its correspond-
ing epipolar line in the right image obtained by fitting the
Fundamental matrix to point correspondences. (b) Zoomed
view of the PDF with the fitted eidolaktic curve.

6. Experiments

Comparison with parametric techniques. The first ex-
periment is to compare epipolar geometry computed using
the nonparametric approach to a conventional parametric
method—robust fitting of a parametric model method using
only one image pair. A camera was placed on a mirror and
a sequence captured while a textured surface was moved
in front of the system. The fundamental matrix was fit to
about 250 point correspondences manually indicated. The
points were chosen to lie on at least two planes in the scene.
The resulting epipolar lines agreed with the fitted points
to an RMS of 0.6 pixels, and an example of a point and
its corresponding epipolar curve is shown in figure 7. The
learnt curve from the nonparametric algorithm is shown in
the lower half of figure 7, and demonstrates agreement with
the parametric model to within about 0.5 pixels. This is an
impressive result as it shows that the nonparametric model
with 20 images can compete with the parametric model. Of
course, the scene contains ideal random texture, so is a good
case for the nonparametric algorithm, but the implications
for more general situations remain positive.

A second example in which a conventional stereo rig was
used is illustrated in figure 9. In this case, 215 stereo pairs
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Figure 8: Dense epipolar direction field computed for “rig”
sequence.

were captured by a hand-held stereo camera in an apartment
building. Two epipolar curves are shown for two points,
showing again that the technique accurately models the oc-
cupancy function of the joint image space.

This establishes that the method produces epipolar
curves of satisfactory quality for conventional stereo rigs
with little radial distortion. Its power is exemplified in the
following two cases where more perverse camera configu-
rations appear.

Stereo rig with radial distortion. This is the case dealt
with in figure 6. The camera pair has significant radial lens
distortion and the recovered epipolar curve models this rea-
sonably accurately. In this case the spline model is probably
too general, as the kink in the curve in the figure indicates.
However the recovered geometry is more than adequate to
guide a point-based matching algorithm, greatly improving
its reliability. Figure 8 shows the dense direction field for a
section of the right image. The motion was computed over
the area marked in 5(b) and the resulting tangent fields (di-
rections of the epipolar curves) are shown overlaid on the
confidence collected from the algorithm where dark regions
denote more confident areas. Most computed tangents are
correct though there are regions that are wrong due to the
flat areas of the photograph and the constant background.
Future work is to apply a restoration algorithm to this field
to obtain a smooth set of epipolar curves.

Stereo rig and spherical mirror. This is an example of a
camera system where the cameras do not have well defined
centres of projection. Figure 10 shows the various stages
of the algorithm in operation on this sequence. As reflec-
tion off the sphere shrinks the image, there is little parallax
which makes it hard to recover the correct epipolar direc-
tion. Figure 10 shows the computation of one pixel from
only 30 images. At the 10th frame, the match measure is

Figure 9:Room Sequence. Two frames from 215 captured
in a domestic setting. In each case a point in the left image is
shown in blue and a curve of local maxima of the eidolaktic
occupancy function is highlighted in green in the right. The
blue rectangle is the region in which the occupancy function
was computed.

ambiguous and is thus smeared. At the 20th frame it is still
ambiguous but now the ambiguity is over different regions.
After adding 30 frames we get a sharp peak with the correct
position. The small parallax is enough to get an estimate of
the direction, even for this short sequence.

7. Discussion
This paper has described how the epipolar geometry for a
stereo rig can be learned from a set of captured image pairs.
The novelty of the approach is that no parameterized model
of the system geometry is used—the epipolar curves (or
their generalization, theeidolaktic sets) are represented as
a probabilistic occupancy grid over thejoint image[12]. In
one sense, we have discovered the embedding of 3D space
in R4. The primary implication of the work, apart from sat-
isfaction of scientific curiosity, is the simplification of point
matching for non-pinhole camera configurations—because
the search space for point correspondences is limited to the
1D eidolaktic set, the correspondence problem is drastically
simplified. Because the model need not be known, the pro-
cess can apply to archive footage of stereo sequences, for
example, sports events.

The technique depends on having a large number (tens to
hundreds) of images in order to obtain a representative cal-
ibration, which may not be possible in some environments.
The paper has discussed some techniques for imposing vari-
ous types of smoothness on the recovered geometry, in order
to reduce the number of images required, and more work on
these might be a profitable area of endeavour.

One feature of the procedure is that the recovered epipo-
lar curve may be finite in length in the image. This oc-
curs for two reasons. First, the training sequence may not
contain a representative sample of the depth range. Sec-
ond, even with a representative sample, the epipolar curve
may be finite in length. Consider railway tracks going into
the distance. The infinite line from “here” to the horizon
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Figure 10: (Top) Algorithm applied to Sphere sequence. (Bottom) Recovered epipolar curve for one point.

projects to a finite line segment in the image. For many
camera configurations, this is the case, and our algorithm
will identify only the finite extent of the line. On the other
hand, if the output is to be used as a matching constraint
it is sensible to restrict search to the areas where matching
points can be found.
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