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Abstract. Dynamic symbolic execution (DSE) is a well-known technique
for automatically generating tests to achieve higher levels of coverage in

a program. Two keys ideas of DSE are to: (1) seed symbolic execution

by executing a program on an initial input; (2) using concrete values
from the program execution in place of symbolic expressions whenever

symbolic reasoning is hard or not desired. We describe DSE for a simple

core language and then present a minimalist implementation of DSE for
Python (in Python) that follows this basic recipe. The code is available

at https://www.github.com/thomasjball/PyExZ3/ (tagged “v1.0”) and

has been designed to make it easy to experiment with and extend.
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1. Introduction

Static, path-based symbolic execution explores one control-flow path at a time
through a (sequential) program P , using an automated theorem prover (ATP) to
determine if the current path p is feasible [4, 11]. Ideally, symbolic execution of
a path p through program P yields a logic formula φp that describes the set of
inputs I (possibly empty) to program P such that for any i ∈ I, the execution
P (i) follows path p.

If the formula φp is unsatisfiable then I is empty and so path p is not feasible;
if the formula is satisfiable then I is not empty and so path p is feasible. In this
case, a model of φp provides a witness i ∈ I. Thus, an ATP that can provide
such models can be used in conjunction with symbolic execution to automatically
generate tests to cover paths in a program. Combined with a search strategy, one
gets, in the limit, an exhaustive white-box testing procedure, for which there are
many applications [2, 3, 9].

The formula φp is called a path-condition of the path p. We will see that a
given path p can induce many different path-conditions. A path-condition ψp for
path p is sound if every input assignment satisfying ψp defines an execution of
program P that follows path p [7]. By its definition, the formula φp is sound and
the best representation of p (as for all sound path-conditions ψp, we have that
ψp =⇒ φp). In practice, we attempt to compute sound under-approximations



i = an input to program P

while defined(i):

p = path covered by execution P(i)

cond = pathCondition(p)

s = ATP(Not(cond))

i = s.model()

Figure 1. Pseudo-code for dynamic symbolic execution

of φp such as ψp. However, we also find it necessary (and useful) to compute
unsound path-conditions.

A path-condition can be translated into the input language of an ATP, such
as Z3[5], which provides an answer of “unsatisfiable”, “satisfiable” or “unknown”,
due to theoretical or practical limitations in automatically deciding satisfiability
of various logics. In the case that the ATP is able to prove “satisfiable” we can
query it for satisfying model in order to generate test inputs. A path-condition
for p can be thought of as function from a program’s primary inputs to a Boolean
output representing whether or not p is executed under a given input. Thus, we
are asking the ATP to invert a function when we ask it to decide the satisfiabil-
ity/unsatisfiability of a path-condition.

The static translation of a path p through a program P into the most pre-
cise path-condition φp is not a simple task, as programming languages and their
semantics are very complex. Completely characterizing the set of inputs I that
follow path p means providing a symbolic interpretation of every operation in the
language so that the ATP can reason about it. For example, consider a method
call in Python. Python’s algorithm for method resolution order (see MRO) de-
pends on the inheritance hierarchy of the program, a directed, acyclic graph that
can evolve during program execution. Symbolically encoding Python’s method
resolution order is possible but non-trivial. There are other reasons it is hard or
undesirable to symbolically execute various operations, as will be explained in
detail later.

1.1. Dynamic symbolic execution

Dynamic symbolic execution (DSE) is a form of path-based symbolic execution
based on two insights. First, the approach starts by executing program P on
some input i, seeding the symbolic execution process with a feasible path [10,
12, 13]. Second, DSE uses concrete values from the execution P (i) in place of
symbolic expressions whenever symbolic reasoning is not possible or desired [1, 8].
The major benefit of DSE is to simplify the construction of a symbolic execution
tool by leveraging the concrete execution behavior (given by actually running the
program). As DSE combines both concrete and symbolic reasoning, it also has
been called “concolic” execution [14].

The pseudo-code of Figure 1 shows the high level process of DSE. The variable
i represents an input to program P. Execution of program P on the input i traces
a path p, from which a logical formula pathCondition(p) is constructed. Finally,
the ATP is called with the negation of the path-condition to find a new input

http://z3.codeplex.org/
https://www.python.org/download/releases/2.3/mro/


def max2(s,t):

if (s < t):

return t

else:

return s

def max4(a,b,c,d):

return max2(max2(a,b),max2(c,d))

Figure 2. Easy example: computing the maximum of four numbers in Python.

(that hopefully will cover a new path). This pseudo-code elides a number of details
that we will deal with later.

Consider the Python function max4 in Figure 2, which computes the max-
imum of four numbers via three calls to the function max2. Suppose we ex-
ecute max4 with values of zero for all four arguments. In this case, the ex-
ecution path p contains three comparisons (in the order (a < b), (c < d),
(a < c)), all of which evaluate false. Thus, the path-condition for path p is
(not(a<b) and not(c<d) and not(a < c)). Negating this condition yields
((a<b) or (c<d) or (a<c)). Taking the execution ordering of the three com-
parisons into account, we derive three expressions from the negated path-condition
to generate new inputs that will explore execution prefixes of path p of increasing
length:

� length 0: (a<b)
� length 1: not (a<b) and (c<d)
� length 2: not (a<b) and not (c<d) and (a<c)

The purpose of taking execution order into account should be clear, as the com-
parison (a<c) only executes in the case where (not (a<b) and not (c<d))
holds.
Integer solutions to the above three systems of constraints are:

� a == 0 and b == 2 and c == 0 and d == 0

� a == 0 and b == 0 and c == 0 and d == 3

� a == 0 and b == 0 and c == 2 and d == 0

In the three cases above, we sought solutions that kept as many of the variables
as possible equal to the original input (in which all variables are equal to 0). Exe-
cution the max4 function on the input corresponding to the first solution produces
the path-condition ((a<b) and not(c<d) and not(b < c)), from which we
can produce more inputs. For this (loop-free function), there are a finite number
of path-conditions. We leave it as an exercise to the reader to enumerate them
all.

1.2. Leveraging concrete values in DSE

We now consider several situations where we can make use of concrete values
in DSE. In the realm of (unbounded-precision) integer arithmetic (e.g., bignum



def fermat3(x,y,z):

if (x > 0 and y > 0 and z > 0):

if (x*x*x + y*y*y == z*z*z):

return "Fermat and Wiles were wrong!?!"

return 0

Figure 3. Hard example for symbolic execution

def dart(x,y):

if (unknown(x) == y):

return 1

return 0

Figure 4. Another hard example for symbolic execution

integer arithmetic, as in Python 3.0 onwards), it is easy to come up with tiny
programs that will be very difficult, if not impossible, for any symbolic execution
tool to deal with, such as the function fermat3 in Figure 3.

Fermat’s Last Theorem, proved by Andrew Wiles in the late 20th cen-
tury, states that no three positive integers x, y, and z can satisfy the equa-
tion xn + yn = zn for any integer value of n greater than two. The function
fermat3 encodes this statement for n = 3. It is not reasonable to have a com-
puter waste time trying to find a solution that would cause fermat3 to print the
string "Fermat and Wiles were wrong!?!". In cases of complex (non-linear)
arithmetic operations, such as x*x*x, we might choose to handle the operation
concretely.

There are a number of ways to deal with the above issue: one is to recognize
all non-linear terms in a symbolic expression and replace them with their con-
crete counterparts during execution. For the fermat3 example, this would mean
that during DSE the symbolic expression (x*x*x + y*y*y == z*z*z) would be
reduced to the constant False by evaluation on the concrete values of variables
x, y and z.

Besides difficult operations (such as non-linear arithmetic), other examples of
code that we might treat concretely instead of symbolically include functions that
are hard to invert, such as cryptographic hash functions, or low-level functions
that we do not wish to test (such as operating system functions). Consider the
code in Figure 4, which applies the function unknown to argument x and compares
it to argument y. By using the name unknown we simply mean to say that we
wish to model this function as a black box, with no knowledge of how it operates
internally.

In such a case, we can use DSE to execute the function unknown on a specific
input (say 5013) and observe its output (say 42). That is, rather than execute
unknown symbolically and invoke an ATP to invert the function’s path-condition,
we simply treat the call to unknown concretely, substituting its return value (in this
case 42) for the specialized expression unknown(5013) == y to get the predicate
(42 == y).



Adding the constraint (x == 5013) yields the sound but rather specific
path-condition (x == 5013) and (42 == y). Note that the path-condition
(42 == y) is not sound, as it admits any value for the variable x, which likely
includes many values for which (unknown(x) == y) is false.

1.3. Overview

This introduction elides many important issues that arise in implementing DSE
for a real language, which we will focus on in the remainder of the paper. These
include how to:

� Identify the code under test P and the symbolic inputs to P ;
� Trace the control flow path p taken by execution P (i);
� Reinterpret program operations to compute symbolic expressions;
� Generate a path-condition from p and the symbolic expressions;
� Generate a new input i′ by negating (part of) the path-condition, translating

the path-condition to the input language of an ATP, invoking the ATP, and
lifting a satisfying model (if any) back up to the source level;

� Guide the search to expose new paths.

The rest of this paper is organized as follows. Section 2 describes an instrumented
typing discipline where we lift each type (representing a set of concrete values)
to a symbolic type (representing a set of pairs of concrete and symbolic values).
Section 3 shows how strongest postconditions defines a symbolic semantics for
a small programming language and how strongest postconditions can be refined
to model DSE. Section 4 describes an implementation of DSE for the Python
language in the Python language that follows the instrumented semantics pat-
tern closely (full implementation and tests available at PyExZ3, tagged “v1.0”).
Section 5 describes the symbolic encoding of Python integer operations using two
decision procedures of Z3: linear arithmetic with uninterpreted functions in place
of non-linear operations; fixed-width bitvectors with precise encodings of most op-
erations. Section 6 offers a number of ideas for projects to extend the capabilities
of PyExZ3.

2. Instrumented Types

We are given a universe of classes/types U ; a type T ∈ U carries along a set of
operations that apply to values of type T , where an operation o ∈ T takes an
argument list of typed values as input (the first being of type T ) and produces a
single typed value as output. Nullary (static) operations of type T can be used
to create values of type T (such as constants, objects, etc.)

A program P has typed input variables v1 : T1 . . . vk : Tk and a body from
the language of statements S:

S → v := E
| skip
| S1 ; S2

| if E then S1 else S2 end
| while E do S end

https://github.com/thomasjball/PyExZ3/
https://github.com/thomasjball/PyExZ3/


The language of expressions (E) is defined by the application of operations to val-
ues, where constants (nullary operations) and program variables form the leaves
of the expression tree and non-nullary operators form the interior nodes of the
tree. For now, we will consider all values to be immutable. That is, the only source
of mutation in the language is the assignment statement.

To introduce symbolic execution into the picture, we can imagine that a type
T ∈ U has (one or more) counterparts in a symbolic universe U ′. A type T ′ ∈ U ′

is a subtype of T ∈ U with two purposes:

� First, a value of type T ′ represents a pair of values: a concrete value c of
(super)type T and a symbolic expression e. A symbolic expression is a tree
whose leaves are either nullary operators (i.e., constants) of a type in U or
are Skolem constants representing the (symbolic) inputs (v1 . . . vk) to the
program P , and whose interior nodes represent operations from types in
U . We refer to Skolem constants as “symbolic constants” from this point
on. Note that symbolic expressions do not contain references to program
variables.

� Second, the type T ′ redefines some of the operations o ∈ T , namely those
for which we wish to compute symbolic expressions. An operation o ∈ T ′

has the same parameter list as o ∈ T , allowing it to take inputs with types
from both U and U ′. The return type of o ∈ T ′ generally is from U ′ (though
it can be from U). Thus, o ∈ T ′ is a proper function subtype of o ∈ T . The
purpose of o ∈ T ′ is to: (1) perform operation o ∈ T on the concrete values
associated with its inputs; (2) build a symbolic expression tree rooted at
operation o whose children are the trees associated with the inputs to o.

Figure 5 presents pseudo code for the instrumentation of a type T via a type T ′.
The class Symbolic is used to hold an expression tree (Expr). Given a class T ∈ U ,
a symbolic type T ′ ∈ U ′ is defined by inheriting from both T and Symbolic. This
ensures that a T ′ can be used wherever a T is expected.

A type such as T ′ only can be constructed by providing a concrete value c of
type T and a symbolic expression e to the constructor for T ′. This will be done
in exactly two places:

� by the creation of symbolic constants associated with the primary inputs
(v1 . . . vk) to the program;

� by the instrumented operations as shown in Figure 5.

An instrumented operation o on arguments (this, f1, . . . , fk) first invokes its
corresponding underlying operator T.o on arguments (this, f1, . . . , fk) to get
concrete value c. It then constructs a new expression tree e rooted at operator
T.o, whose children are the result of mapping the function expr over (this, f1,
. . . , fk). The helper function expr(v) evaluates to an expression tree in the case
that v is of Symbolic type (representing a type in U ′) and evaluates to v itself, a
concrete value of some type in U , otherwise. Finally, having computed the values
c and e, the instrumented operator returns R′(c,e), where R is the return type
of operator T.o, and R′ is a subtype of R from universe U ′.



class T ′ : T, Symbolic {
T ′(c:T, e:Expr) : T(c), Symbolic(e) {}

override o(this:T, f1:T1, ... , fk:Tk) : R′ {
var c := T.o(this, f1, ... ,fk)

var e := new Expr(T.o, expr(self), expr(f1), ..., expr(fk))

return new R′(c,e)

}
...

}

class R′ : R, Symbolic { ... }

function expr(v) = v instanceof Symbolic ? v.getExpr() : v

Figure 5. Type instrumentation to carry both concrete values and symbolic ex-
pressions.

Looked at another way, the universe U ′ represents the “tainting” of types
from U . Tainted values flow from program inputs to the operands of operators. If
an operator has been redefined (as above) then taintedness propagates from its
inputs to its outputs. On the other hand, if the operator has not been redefined,
then it will not propagate taintedness. In the context of DSE, “taintedness” means
that the instrumented semantics carries along a symbolic expression tree e along
with a concrete value c.

The choice of types from the universe U ′ determines how symbolic expressions
are constructed. For each T ∈ U , the “most symbolic” (least concrete) choice is the
T ′ that redefines every operator of T (as shown in Figure 5). The “least symbolic”
(most concrete) choice is T ′ = T which redefines no operators. Let symbolic(T )
be the set of types in U ′ that are subtypes of T . The types in symbolic(T ) are
partially ordered by subset inclusion on the set of operators from T they redefine.

3. From Strongest Postconditions to DSE

The previous section showed how symbolic expressions can be computed via a
set of instrumented types, where the expressions are computed as a side-effect
of the execution of program operations. This section shows how these symbolic
expressions can be used to form a path-condition (which then can be compiled into
a logic formula and passed to an automated theorem prover to find new inputs
to drive a program’s execution along new paths). We derive a path-condition
directly from the strongest postcondition (symbolic) semantics of our programming
language, refining it to model the basic operations of an interpreter.

3.1. Strongest Postconditions

The strongest postcondition transformer SP [6] is defined over a predicate P rep-
resenting a set of pre-states and a statement S from our language. The trans-



former SP (P, S) yields a predicate Q such that for any state s satisfying pred-
icate P , the execution of statement S from state s, if it does not go wrong or
diverge, yields a state s′ satisfying predicate Q. The strongest postcondition for
the statements in our language is defined by the following five rules:

1. SP(P , x := E )
4
= ∃y . (x = E [ x → y ]) ∧ P [ x → y ]

2. SP(P , skip)
4
= P

3. SP(P ,S1; S2)
4
= SP(SP(P ,S1), S2)

4. SP(P , if E then S1 else S2 end)
4
=

SP(P ∧ E ,S1) ∨ SP(P ∧ ¬E ,S2)

5. SP(P ,while E do S end)
4
=

SP(P , if E then S ; while E do S end else skip end)

Rule (1) defines the strongest postcondition for the assignment statement. The
assignment is modelled logically by the equality x = E where any free occurrence
of x in E is replaced by the existentially quantified variable y, which represents
the value of x in the pre-state. The same substitution ([x→ y]) is applied to the
pre-state predicate P .

Rules (2)-(5) define the strongest postcondition for the four control-flow state-
ments. The rules for the skip statement and sequencing (;) are straightforward.
Of particular interest, note that the rule for the if-then-else statement splits cases
on the expression E. It is here that DSE will choose one of the cases for us, as
the concrete execution will evaluate E either to be true or false. This gives rise
to the path-condition (either P ∧E or P ∧ ¬E). The recursive rule for the while
loop unfolds as many times as the expression E evaluates true, adding to the
path-condition.

3.2. From SP to DSE

Assume that an execution begins with the assignment of initial values c1 . . . ck
to the program P ’s inputs V = {v1 : T1 . . . vk : Tk}. To seed symbolic execution,
some of the types Ti are replaced by symbolic counterparts T ′

i , in which case vi is
initialized to the value sci = T ′

i (ci, SC(vi)) instead of the value ci, where SC(vi)
is the symbolic constant representing the initial value of variable vi. The symbolic
constant SC(vi) can be thought of as representing any value of type Ti, which
includes the value ci.

Let Vs and Vc partition the variables of V into those variables that are treated
symbolically (Vs) and those that are treated concretely (Vc). The initial state of
the program is characterized by the formula

Init = (
∧
vi∈Vs

vi = sci) ∧ (
∧
vi∈Vc

vi = ci) (1)

Thus, we see that the initial value of every input variable is characterized by a
symbolic constant sci or constant ci. We assume that every non-input variable in
the program is initialized before being used.



The strongest postcondition is formulated to deal with open programs, pro-
grams in which some variables are used before being assigned to. This surfaces in
Rule (1) for assignment, which uses existential quantification to refer to the value
of variable x in the pre-state.

By construction, we have that every variable is defined before being used.
This means that the precondition P can be reformulated as a pair < σ,Pc >,
where σ is a store mapping variables to values and Pc is the path-condition, a list
of symbolic expressions (predicates) corresponding to the expressions E evaluated
in the context of an if-then-else statement. Initially, we have that :

σ = {(vi, sci)|vi ∈ Vs} ∪ {(vi, ci)|vi ∈ Vc} (2)

representing the initial condition Init, and Pc = [], the empty list. We use σ′ to
refer to the formula that the store σ induces:

σ′ =
∧

(v,V )∈σ

(v = V ) (3)

Thus, the pair < σ,Pc > represents the predicate P = σ′ ∧ (
∧
c∈Pc

c). A store
σ supports two operations: σ[x] which denotes the value that x maps to under
σ; σ[x 7→ V ], which produces a new store in which x maps to value V and is
everywhere else the same as σ.

Now, we can redefine strongest postcondition for assignment to eliminate the
use of existential quantification and model the operation of an interpreter, by
separating out the notion of the store:

1. SP(< σ, Pc >, x := E )
4
= < σ[x 7→ eval(σ,E )], Pc >

where eval(σ,E) evaluates expression E under the store σ (where every occurrence
of a free variable v in E is replaced by the value σ[v]). This is the standard
substitution rule of a standard operational semantics.

We also redefine the rule for the if-then-else statement so that it chooses which
branch to take and appends the appropriate symbolic expression (predicate) to
the path-condition Pc:

4. SP(< σ, Pc >, if E then S1 else S2 end)
4
=

let choice = eval(σ,E ) in
if choice then SP(< σ, Pc :: expr(choice) >,S1)
else SP(< σ, Pc :: ¬expr(choice) >,S2)

The other strongest postcondition rules remain unchanged.

3.3. Summing it up

We have shown how the symbolic predicate transformer SP can be refined into
a symbolic interpreter operating over the symbolic types defined in the previous
section. In the case when every input variable is symbolic and every operator is



redefined, the path-condition is equivalent to the strongest postcondition of the
execution path p. This guarantees that the path-condition for p is sound. In the
case where a subset of the input variables are symbolic and/or not all operators
are redefined, the path-condition of p is not guaranteed to be sound. We leave
it as an exercise to the reader to establish sufficient conditions under which the
use of concrete values in place of symbolic expressions is guaranteed to result in
sound path-conditions.

This section does not address the compilation of a symbolic expression to the
(logic) language of an underlying ATP, nor the lifting of a satisfying assignment
to a formula back to the level of the source language. This is best done for a
particular source language and ATP, as detailed in the next section.

4. Architecture of PyExZ3

In this section we present the high-level architecture of a simple DSE tool for the
Python language, written in Python, called PyExZ3. Figure 6 shows the class dia-
gram (dashed edges are “has-a” relationships; solid edges are “is-a” relationships)
of the tool.

Figure 6. Classes in PyExZ3

4.1. Loading the code under test

The Loader class takes as input the name of a Python file (e.g., foo.py)
to import. The loader expects to find a function named foo inside the file
foo.py, which will serve as the starting point for symbolic execution. The
FunctionInvocation class wraps this starting point. By default, each parameter

https://github.com/thomasjball/PyExZ3/


to foo is a SymbolicInteger unless there is decorator @symbolic specifying the
type to use for a particular argument.

The loader provides the capability to reload the module foo.py so that
the function foo can be reexecuted within the same process from the same
initial state with different inputs (see the class ExplorationEngine) via the
FunctionInvocation class.

Finally, the loader looks for specially named functions expected result

(expected result set) in file foo.py to use as a test oracle after the path explo-
ration (by ExplorationEngine) has completed. These functions are expected to
return a list of values to check against the list of return values collected from the
executions of the foo function. The presence of the function expected result

(expected result set) yields a comparison of the two lists as bags (sets). We use
such weaker tests, rather than list equality, because the order in which paths are
explored by the ExplorationEngine can easily change due to small differences
in the input programs.

4.2. Symbolic types

Python supports multiple inheritance and, more importantly, allows user-defined
classes to inherit from its built-in types (such as object and int). We use these
two features two implement symbolic versions of Python objects and integers,
following the instrumented type approach defined in Section 2.

The abstract class SymbolicType contains the symbolic expression tree and
provides basic functions for constructing and accessing the tree. This class does
double duty, as it is used to represent the (typed) symbolic constants associated
with the parameters to the function, as well as the expression trees (per Section 2).
Recall that the symbolic constants only appear as leaves of expression trees. This
means that the expression tree stored in a SymbolicType will have instances of a
SymbolicType as some of its leaves, namely those leaves representing the symbolic
constants. The abstract class provides an unwrap method which returns the pair
of concrete value and expression tree associated with the SymbolicType, as well
as a wrap method that takes a pair of concrete value and expression tree and
creates a SymbolicType encapsulating them.

The class SymbolicObject inherits from both object and SymbolicType

and overrides the basic comparison operations ( eq , neq , lt , le ,
gt , and ge ). The class SymbolicInteger inherits from both int and

SymbolicObject and overrides a number of int’s arithmetic methods ( add ,
sub , mul , mod , floordiv ) and bitwise methods ( and , or ,
xor , lshift , rshift ).

4.3. Tracing control-flow

As Python interprets a program, it will evaluate expressions, substituting the
value of a variable in its place in an expression, applying operators (methods) to
parameter values and assigning the return values of methods to variables. Value
of type SymbolicInteger will simply flow through this interpretation, without
necessitating any change to the program or the interpreter. This takes care of



the case of the strongest-postcondition rule for assignment, as elaborated in Sec-
tion 3.2.

The strong-postcondition rule for a conditional test requires a little more
work. In Python, any object can be tested in an if or while condition or as the
operand of a Boolean operation (and, or, not) The Python base class object

provides a method named bool that the Python runtime calls whenever it
needs to perform such a conditional test. This hook provides us what we need to
trace the conditional control-flow of a Python execution. We override this method
in the class SymbolicObject in order to inform the PathToConstraint object
(defined later) of the symbolic expression for the conditional (as captured by the
SymbolicInteger subclass).

Note that the use of this hook in combination with the tainted types will
only trace those conditionals in a Python execution whose values inherit from
SymbolicObject; by definition, “untainted” conditionals do not depend on sym-
bolic inputs so there is no value in adding them to the path-condition.

4.4. Recording path-conditions

A Predicate records a conditional (more precisely the symbolic expression found
in SymbolicInteger) and which way it evaluated in an execution. A Constraint

has a Predicate, a parent Constraint and a set of Constraint children.
Constraints form a tree, where each path starting from the root of the tree rep-
resents a path-condition. The tree represents all path-conditions that have been
explored so far.

The class PathToConstraint has a reference to the root of the tree
of Constraints and is responsible for installing a new Constraint in the
tree when notified by the overridden bool method of SymbolicObject.
PathToConstraint also tracks whether or not the current execution is following
an existing path in the tree and grows the tree as needed. In fact, it actually
tracks whether or not the current execution follows a particular expected path in
the tree.

The expected path is the result of the ExplorationEngine picking a con-
straint c in the tree, and asking the ATP if the path-condition consisting of the
prefix of predicates up to but not including c in the tree, followed by the negation
of c’s predicate is satisfiable. If the ATP returns “satisfiable” (with a new input i),
then the assumption is that path-condition prefix is sound (that is, the execution
of the program on input i will follow the prefix).

However, it is possible for the path-condition to be unsound and for the
executed path to diverge early from the expected path, due to the fact that not
every operation has a symbolic encoding. The tool simply reports the divergence
and continues to process the execution as usual (as a diverging path may lead to
some other interesting part of the code).

4.5. From symbolic types to Z3

As we have explained DSE, the symbolic expressions are represented at the level
of the source language. As detailed later in Section 5, we must translate from the



source language to the input language of an automated theorem prover (ATP),
in this case Z3. This separation of languages is quite useful, as we may have the
need to translate a given symbolic expression to the ATP’s language multiple
times, to make use of different features of the underlying ATP. Furthermore, this
separation of concerns allows us to easily retarget the DSE tool to a different
ATP.

The base class Z3Expression represents a Z3 formula. The two subclasses
Z3Integer and Z3BitVector represent different ways to model arithmetic rea-
soning about integers in Z3. We will describe the details of these encodings in
Section 5.

The class Z3Wrapper is responsible for performing the translation from the
source language (Python) to Z3’s input language, invoking Z3, and lifting a Z3
answer back to the level of Python. The findCounterexample method does all
the work, taking as input a list of Predicates (called assertions) as well as a
single Predicate (called the query). The assertions represent a path-condition
prefix derived from the Constraint tree that we wish the next execution to follow,
while query represents the predicate following the prefix in the tree that we will
negate.

The method constructs the formula

(
∧

a∈asserts
a) ∧ ¬query (4)

and asks Z3 if it is satisfiable. The method performs a standard syntactic “cone
of influence” (CIF) reduction on the asserts with respect to the query to shrink
the size of the formula. For example, if asserts is the set of predicates {(x <
a), (a < 0), (y > 0)} and the query is (x = 0), then the CIF yields the set
{(x < a), (a < 0)}, which does not include the predicate (y > 0), as the variable
y is not in the set of variables (transitively) related to variable x.

If the formula is satisfiable a model is requested from Z3 and lifted back to
Python’s type universe. Note that because of the CIF reduction, the model may
not mention certain input variables, in which case we simply keep their values
from the execution from which the asserts and query were derived.

4.6. Putting it all together

The class ExplorationEngine ties everything together. It kicks off an execution
of the Python code under test using FunctionInvocation. As the Python code
executes, building symbolic expressions via SymbolicType and its subclasses, call-
backs to PathToConstraint create a path-condition, represented by Constraint

and Predicate. Newly discovered Constraints are added to the end of a deque
maintained by ExplorationEngine.

Given the first seed execution, ExplorationEngine starts the work of explor-
ing paths in a breadth-first fashion. It removes a Constraint c from the front
of its deque and, if c has not been already “processed”, uses Z3Wrapper to find
a new input (as discussed in the previous section) where c is the query (to be
negated) and the path to c in the Constraint tree forms the assertions.
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A Constraint c in the tree is considered “processed” if an execution has
covered c′, a sibling of c in the tree that represents the negation of the predicate
associated with c, or if constraint c has been removed from the deque.

5. From Python Integers to Z3 Arithmetic

In languages such as C and Java, integers are finite-precision, generally limited
to the size of a machine word (32 or 64 bits, for example). For such languages,
satisfiability of finite-precision integer arithmetic is decidable and can be reduced
to Z3’s theory of bit-vectors, where each arithmetic operation is encoded by a
circuit. This translation permits reasoning about non-linear arithmetic problems,
such as ∃x, y, z : x ∗ z + y ≤ (z/y) + 5.

Python (3.0) integers, however, are not finite-precision. They are only lim-
ited by the size of machine memory. This means, for example, that Python in-
tegers don’t overflow or underflow. It also means that we can’t hope to decide
algorithmically whether or not a given equation over integer variables has a solu-
tion in general. Hilbert’s famous 10th problem and its solution by Matiyasevich
tells us that it is undecidable whether or not a polynomial equation of the form
p(x1, . . . , xn) = 0 with integer coefficients has an solution in the integers.

This means that we will resort to heuristic approaches in our use of the Z3
ATP. The special case of linear integer arithmetic (LIA) is decidable and sup-
ported by Z3. In order to deal with non-linear operations, we use uninterpreted
functions (UF). Thus, if Z3 returns “unsatisfiable” we know that there is no so-
lution, but if the Z3 “satisfiable”, we must treat the answer as a “don’t know”.
The class Z3Integer is used to translate a symbolic expression into the theory
LIA+UF and check for unsatisfiability. We leave it as an implementation exercise
to check if a symbolic expression can be converted to LIA (without the use of
UF) in order to make use of “satisfiable” answers from the LIA solver.

If the translation to Z3Integer does not return “unsatisfiable”, we use Z3’s
bit vector decision procedure (via the class Z3BitVector) to heuristically try to
find satisfiable answers, even in the presence of non-linear arithmetic. We start
with bitvectors of size N = 32 and bound the values of the symbolic constants
to fit within 8 bits in order to find satisfiable solutions with small values. Also,
because Python integers do not overflow/underflow, the bound helps us reserve
space in the bitvector to allow the results of operations to exceed the bound while
not overflowing the bitvector. As long as Z3 returns “unsatisfiable” we increase
the bound. If the bound reaches N , we increase N by 8 bits, leaving the bound
where it is and continue.

If Z3 returns “satisfiable”, it may be the case that Z3 found a solution that
involved overflow in the bitvector world of arithmetic (modulo 2N−1). Therefore,
the solution is validated back in the Python world by evaluating the formula
under that solution using Python semantics. If the formula does not evaluate to
the same value in both worlds, then we increase N by 8 bits (to create a gap
between the bound and N) and continue to search for a solution.

The process terminates when we find a valid satisfying solution or N = 64
and the bound reaches 64 (in which case, we return “don’t know”).
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6. Extensions

We have presented the basics of dynamic symbolic execution (for Python). A more
thorough treatment would deal with other data types besides integers, such as
Python dictionaries, strings and lists, each of which presents their own challenges
for symbolic reasoning. There are many other interesting challenges in DSE, such
as dealing with user-defined classes (rather than built-in types as done here) and
multi-threaded execution.
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