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L INTRODUCTION

GOALS ° Pixel-wise segmentation of objects using class models.

* Compact representation of class models.

Training data

Microsoft research Cambridge object recognition database:

* rough pixel-wise segmentation of objects (colours correspond to

object classes)

* the objects in one training image are called exemplar in the
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Training

Training

S1: Extract Features: square
patches (NxN, dense for each pixel).
Raw Lab values are used as
descriptor (dim. feature = NxNx3) SraTnin

$2: Form the visual vocabulary (V nages

words) by vector quantizing the
descriptors (k-means clustering)

Testing

S3: Compute textonmaps (assigning
the closest visual word to each
descriptor)

Testing
images

S4: Learning the class-histograms
(class-models)

Testing

* use sliding window, to retrieve pixel-wise
classification

* sliding windows (size W) often contain at
most two different object classes (white
rectangles)

* few exceptions with more classes (red
rectangle)
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* class models are histograms of visual words computed from the training a;

T Dgr(allb) = Zailogb—i
l

* classification is performed by assigning the closest class model

histogram to the query histogram. Kullback-Leibler, Eucledian or Chi- D;»(a, b Z

Square distance as distance measures are used za( ~

Single class histograms

* combining the histograms from the
training regions into single histograms
(class models), in an optimal fashion

* the distance of all exemplar
histograms p] to the single class
histogram q’is minimized E,, yielding q
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4 HISTOGRAMMIXTURE MODEL """

* the query histogram is modeled as a

mixture of class histograms, thus leading Y o .
to a mixed classification for each pixel h = «a T (1 OC)b with  a # b
* the mixture model provides additional leads to following minimization for all i,j:

cues about the object borders

* it can avoid the training of an additional
background class

ZLlhi log (aa, 4 ) subject to 0 < o < 1
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Influence of Parameters: | B
N=3 or 5; V=500 ... 16000; W=2x+1 ( x=5 ... 100 ) |

* Classification accuracy with different parameters V and W
visualized on the right and the table underneath

Pixel-wise classification:

* O-class database and KL vyields 75.2% accuracy (using a
Eucledian yields 58.7%)

* Confusion matrix shows pixel-wise classification
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* combination of o

exemplar histograms into |
_single class histograms

- Cl;ss' - leads to multimodal 4-

distributions (see cow
model on the right, and

>

reordered histogram bins
_underneath)
exemplar 2 * sketch of multi-modal
‘ CIaSS histog ram and 1000 2000 3000 4000 5000 G000 7000 8000
corresponding exemplar
histograms shown on the 1
T T T T T T T |eft
exemplar 1 |
Advantages of Kullback-Leibler (KL): |

* KL does not penalize missing modes in the query 3t
histogram as much as Euclidean distance does

distributions

* KL is principally better suited to compare multi-modal |
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Image Ground Truth stronger mix. Comp. Alpha map weaker mix. Comp.
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