
Domain Specific Languages and Model Transformation

What‘s the difference between models and code?

An Approach to Model Transformation/Code Generation

Composition of Domain Specific Languages:

• Meta-modelling using a building blocks approach.

• If a set of model elements are introduced into a DSL, all transformation rules that rely on this set could be reused.

• The concept of free transformation rules build the basis for this kind of language composition.

We write this:

But mean that:

Which is

equivalent to:

Component c insert Java-Class(Name = c.Name, Visibility = public) jc {

insert Constructor(Name = jc.Name);

Port (Type == "sender") p insert Method(Name = c.Name+"_"+p.Name){…};

Port (Type == "receiver") p insert Method(Name = c.Name+"_"+p.Name){…},

insert Method(Name = "CS"+c.Name+"_"+p.Name){…},

insert Attribute(Name = "isCalled_"+p.Name, Type = boolean);

DataElement d GenAttr;

}

GenAttr : DataElement d insert Attribute(Name = d.Name, Type = string);

Declaration Expression

1

Identifier

n n

1

Identifier

Statement_Block

11

n n

the same entity!

m

Identifier Expression
n m

Declaration
n1

The semantics of models/languages lie in what you can transform them to.

 Generation rules in a declarative manner

 Respecting the syntax of the target-language

 Defining mappings between spanning trees of the source- and the target-model (graph traversal)

Identifier Identifier IdentifierIdentifierIdentifier

Declaration DeclarationDeclaration Expression

Statement_Block

Context-sensitive rules

Motivation

- Weak code generation techniques: Mostly template-based, hard to read and understand, difficult to maintain, code is treated as plain text.

- Lack of reuse of language-concepts (syntactic and semantic), e.g. arithmetic expressions.

 Fundamental question: Where can you find the expressiveness of data modelling techniques in the Chomsky Hierarchy?

Ordinary models are represented as data (often XML or proprietary file formats) whereas languages are defined by their (context-free) grammar.

Intention

Martin Feilkas

Software & Systems Engineering

