
Performance-Driven Development

Michael J. A. Smith

M.J.A.Smith@sms.ed.ac.uk

Introduction

Ask the average developer to think about performance, and you might as well

ask them in Chinese. Except for in a few specialised areas, there is a general

culture of “write first, optimise later.” This is worrying, because improving

software performance is largely not about optimising algorithms. If you

have a distributed system, its communication architecture will have the

single biggest impact on performance, and fixing this afterwards will be too

late!

Performance requirements need to be addressed throughout the develop-

ment process. To encourage developers to do this, we need to give them

some help. In the world of performance modelling, we have many high level

languages, such as stochastic process algebras [2], which can describe a

system’s behaviour as a stochastic process that can be solved analytically.

This sort of modelling is too difficult and time-consuming for the majority of

developers, so we need to give them a tool that does it automatically. This

means analysing and deriving a model from real code!

Our view a performance-driven development process is shown above. The

most important steps are the extraction of a model from source code (in

this case in PEPA, a stochastic process algebra [see below]), and the sim-

plification of the model to a manageable size. This can then be applied to

partially completed code, so that the developer can iteratively modify the

implementation, based on feedback from the model about properties such as

utilisation, throughput and response time.

Performance Evaluation Process Algebra (PEPA)

PEPA [2] is a high-level modelling language, in which a system is a set of concur-

rently running components, which cooperate over certain activities. Each activity

has a rate associated with it, which parameterises an exponential distribution de-

termining its duration. Hence a PEPA model maps onto a continuous-time Markov

chain. PEPA has the following syntax:

S := (α, r).S (prefix - action α at rate r)

| S1 + S2 (choice - behave as either S1 or S2)

| A (constant - behave as component A)

P := P1
⊲⊳
L

P2 (cooperation - over actions in L)

| P/L (hiding - actions in L are hidden)

| S (sequential component)

Stochastic Abstraction of Code

The first step in the above process is to arrive at a PEPA model from user

code. The goal is to do this automatically, but we need some help from the

user, in the form of annotations. This is discussed in more detail in [3]. The

two main stages are modelling the system, or how all the user’s functions

fit together with the network, and modelling each function. The former is

where we need the user annotations.

Modelling a function requires abstraction of both the data environments

and control-flow. Since integer variables can take on such a large number

of values, we abstract this using intervals. For example, if we have an if-

statement that tests whether ‘x < 0’, then just by knowing whether the value

of x lies in the interval [−∞,−1] or [0,∞], we can determine which branch

is taken. In abstracting control-flow, the main difficulty comes from loops.

To keep the state space manageable, we only model a single iteration of the

loop, and then determine the probability of re-entering the loop based on

the current data environment.

Model Simplification

Even after abstracting the code, the state space can easily be too large to

analyse. Model simplification means reducing the size and complexity of the

model to make it small enough to solve, whilst keeping the behaviour

close to the original. One approach is state aggregation, where we use a

single state to approximate a collection of states with similar behaviour. But

most approximate solution methods give no formal treatment of the errors

involved, and exact methods can rarely be applied to real-world models.

A more sound approach is to use stochastic bounds. For a Markov chain M ,

we find upper and lower bounding chains, MU and ML, such that their steady

state distributions are upper and lower bounds of the actual steady state. If

we construct MU and ML so that they can be exactly aggregated, then we can

solve them, and get an exact bound on the aggregated steady state of M .

Fourneau et al [1] give an algorithm for constructing such bounds for Markov

chains. In our recent work, we have extended this to PEPA models, allowing

stochastic bounds to be constructed compositionally.

Further Work

The implementation of this work is ongoing, and there are many technicalities

when dealing with real-world languages such as C, but we have an algorithm

for model extraction from a restricted subset of C [4], and a stochastic abstract

interpretation for PEPA, to produce compositional stochastic bounds. Apart

from the implementation, the two important next steps are to formalise the

model extraction process as an abstract interpretation, and to improve the

accuracy of stochastic bounds when we simplify.

References
[1] J. M. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an irreducible and lumpable strong stochastic

bound. Linear Algebra and its Applications, 386:167–185, 2004.

[2] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[3] M. J. A. Smith. Towards stochastic model extraction: Performance evaluation, fresh from the source. In
Proceedings of Process Algebra and Stochastically Timed Activities (PASTA) 2006, 2006.

[4] M. J. A. Smith. Stochastic modelling of communication protocols from source code. In Proceedings of the
5th Workshop on Quantitative Aspects of Programming Languages (QAPL), 2007.


