‘The Challenge

Aspect Mining for Large Systems

Silvia Breu
University of Cambridge

silvia@ieee.org

(I_I serve()

Lock

N— 7

Y

code (methods, classes)

1

Transaction 191 as Table

" The Idea - Step 1

[Analysis of Version Archives

Transaction 191

\
\\af’“e*‘ o“\o&::\rethods
hasNext()
cIose():H

createl() 'f'_ﬁ

EEEE— . nlock() serve(| 00
B “
<
A
S
S

4+ analyse CVS transactions for code additions

4 for each added method call in a code location make a
cross 3 in a table labelled with methods/locations

"Results \
’/Mining Results and Statistics (Eclipse 3.2M3)

100

O _

wn
e

precision (%)

Aspect Candidates (=8 locations)

10 20 30 40

top-n candidates

v high precision
¥ scalability to industrial-sized systems
¥ fast and efficient (on average 1 msec per transaction)

Status (1 year into PhD) \

C Demo & Prototype "HAM" (History-Based Aspect Mining)

4 Publications

Mining Aspects from Version History. S. Breu, T. Zimmermann.
21st International Conference on Automated Software Engineering (ASE).

Mining Eclipse for Cross-Cutting Concerns. S. Breu, T. Zimmermann,
and C. Lindig.
3rd International Workshop on Mining Software Repositories at ICSE (MSR).

4 large programs contain functionality that resists clean mo-
dularisation, also referred to as cross-cutting concern (CCC)

4+ typical examples include logging, debugging, and resource
management (lock/unlock)

4 such scattered functionality is a weakness of current
systems: it makes them hard to maintain, extend or change

4 aspect-oriented programming (AOP) tries to remedy that
by factoring this out into code-entities called aspects

4+ for existing code to benefit from AOP, aspects have to be
identified first, a task also called aspect mining

1

Concept Lattice

' The Idea - Step 2

[Formal Concept Analysis

Table with Blocks

methods

locations

e

4+ find maximal blocks in table as they represent CCCs
or so-called aspect candidates

4+ each block is also a concept in a lattice, which can be
computed efficiently using formal concept analysis

1

= 4 Tool support:
build Eclipse plugin

Aspect Candidates 52

|| 4 Deployment by
programmers:
is technique useful?

4 Extension to find
refactorings:
include code deletions

4+ Automatic tracking of (evolution of) CCCs:
avoid re-mining after code changes

4 Understanding concerns over time: how do they evolve?

And What Do You Think?

Your opinion counts! Feel free to give your feedback below,
or leave your email address and I'll get back to you.

