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4+ analyse CVS transactions for code additions

4 for each added method call in a code location make a
cross 3 in a table labelled with methods/locations

"Results \
’/Mining Results and Statistics (Eclipse 3.2M3)
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v high precision
¥ scalability to industrial-sized systems
¥ fast and efficient (on average 1 msec per transaction)

Status (1 year into PhD) \

C Demo & Prototype "HAM" (History-Based Aspect Mining)

4 Publications

Mining Aspects from Version History. S. Breu, T. Zimmermann.
21st International Conference on Automated Software Engineering (ASE).

Mining Eclipse for Cross-Cutting Concerns. S. Breu, T. Zimmermann,
and C. Lindig.
3rd International Workshop on Mining Software Repositories at ICSE (MSR).

4 large programs contain functionality that resists clean mo-
dularisation, also referred to as cross-cutting concern (CCC)

4+ typical examples include logging, debugging, and resource
management (lock/unlock)

4 such scattered functionality is a weakness of current
systems: it makes them hard to maintain, extend or change

4 aspect-oriented programming (AOP) tries to remedy that
by factoring this out into code-entities called aspects

4+ for existing code to benefit from AOP, aspects have to be
identified first, a task also called aspect mining
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Concept Lattice

' The Idea - Step 2

[ Formal Concept Analysis

Table with Blocks
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4+ find maximal blocks in table as they represent CCCs
or so-called aspect candidates

4+ each block is also a concept in a lattice, which can be
computed efficiently using formal concept analysis
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= 4 Tool support:
build Eclipse plugin

Aspect Candidates 52

|| 4 Deployment by
programmers:
is technique useful?

4 Extension to find
refactorings:
include code deletions

4+ Automatic tracking of (evolution of) CCCs:
avoid re-mining after code changes

4 Understanding concerns over time: how do they evolve?

And What Do You Think?

Your opinion counts! Feel free to give your feedback below,
or leave your email address and I'll get back to you.




