Machine Learning in Health Care

A. Criminisi

Machine learning for image content recognition

Machine learning for image content recognition

induction

Application: Kinect for Xbox gaming

Task: assigning body part labels to each pixel in Kinect-acquired depth videos

Input test depth image

Body part segmentation

image measurements made relative to pixel

e.g. depth, color, neighbors

per-pixel prediction of class label

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, **Efficient Human Pose Estimation from Single Depth Images**, in *Trans. PAMI*, IEEE, 2012

Decision trees

- Try several hyperplanes, chosen at random
- · Keep hyperplane that best separates data
 - information gain
- Recurse

Learning a conditional structure of discriminative features.

- Try several hyperplanes, chosen at random
- Keep hyperplane that best separates data
 - information gain
- Recurse

• Try several hyperplanes, chosen at random

- · Keep hyperplane that best separates data
 - information gain
- Recurse

Learning a conditional structure of discriminative features.

• Try several hyperplanes, chosen at random

- · Keep hyperplane that best separates data
 - information gain
- Recurse

Learning a conditional structure of discriminative features.

Training objective function

- Used to decide which candidate **split function** is best
- Typically an "information gain" a very general and flexible formulation

Examples of split functions

Efficient (one feature at a time)

Decision trees: test time prediction

Decision forests

0

0

0

Better generalization than individual trees

Aggregating tree predictions

Effect of tree depth and randomness

Free code available!

Advances in Computer Vision and Pattern Recognition

A. Criminisi J. Shotton *Editors*

Decision Forests for Computer Vision and Medical Image Analysis

A. Criminisi and J. Shotton, **Decision Forests for Computer Vision and Medical Image Analysis**, Springer, February 2013

Are forests sufficient?

 \bigcirc \bigcirc 0 \bigcirc

- Memory issues:
 - Number of nodes in trees grows exponentially with depth
- Amount of training data
 - Training data is quickly diluted with depth
 - Yet, training deeper trees (on enough data) yields highest test accuracy (several real applications, e.g. Kinect, have "infinite" data available)

From trees to DAGs: node merging

- Each internal node has 2 children (like in binary trees)
- Each non-root node can have more than 1 parent

Decision jungles

- A "jungle" is an ensemble of *rooted* decision DAGs
- We train each DAG layer by layer, jointly optimizing both
 - the structure of the DAG
 - the split node features

Properties of jungles

Limited memory consumption

- e.g. by specifying a width at each layer in the DAG
- Potentially improved generalization
 - fewer parameters
 - less "dilution" of training data

How do DAGs help in practice?

A toy example on classifying images of cows, sheep and grass

Training data

brightness

Axis-aligned splits only

Too many model parameters: overfitting

0.8 -0.7 0.6 -0.4 -0.3 0.2 -0.1 -0

Ι

Merged nodes help capture appearance invariance

Anatomy Localization in 3D Computed Tomography Scans

Input CT scan

Output anatomy localization

Anatomy localization: why is it hard?

High variability in appearance, shape, location, resolution, noise, pathologies ...

Anatomy localization: the ground-truth database

Different image cropping, noise, contrast/no-contrast, resolution, scanners, body shapes/sizes, patient position...

Anatomy localization: regression forest

Anatomy localization: automatic landmark discovery

Here the system is trained to detect left and right kidneys.

The system learns to use bottom of lung and top of pelvis to localize kidneys with highest confidence.

Input CT scan and detected landmark regions

Automatic segmentation of brain tumour

Segmentation of tumorous tissues:

---- Active cells ---- Necrotic core ---- Edema ---- Background

3D MRI input data

Training a voxel-wise forest classifier

Testing the voxel-wise forest classifier

New Patient, previously unseen

Glioblastoma segmentation results

Glioblastoma segmentation results

Low-res diffusion MRI (faster acquisition, cheaper)

Learned voxel predictor

High-res diffusion MRI

Problem statement

learning to predict the value of the **high-res voxels** from the **low-res voxels**.

- Training data can be easily obtained
- Well defined accuracy measure

Direction-encoded colour FA maps for various reconstructed DTIs

Comparison of ground truth NODDI parameter maps with various fitting techniques

Reconstruction errors for NODDI parameter maps

D. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI, in MICCAI, Springer, 2014

Modern, efficient machine learning has the potential to revolutionize medicine!