
Andrew J. Ko

Debugging games
A new approach to computing education

Debugging is one of the

most difficult parts of

software development

Developers must master…

Reproduction

Input minimization

Tools for inspecting runtime behavior

Strategies for localizing defects

2

Debugging is even more

difficult for novices

In the classroom…

We (usually) don’t teach them how to do it

We (usually) require them to do it alone

Novices inject a lot of defects

We require them to learn it while also

learning algorithms, data structures, and

programming languages
3

Debugging is even more

difficult for teen girls

Many already believe they’re not good at

“computers”, so they’re less likely to persist

when they encounter failures

Social experiences are key to engaging

girls, but debugging be quite solitary

Goode,J., Estrella,R., & Margolis,J.(2006). Lost in translation: Gender and high

school computer science. In J. M. Cohoon & W. Aspray (Eds.) Women and Information

Technology Research on Underrepresentation, 89- 114.

4

If we were to teach

debugging…

What would we teach?

How would we teach it?

How would we teach it in a way that better

engages and teaches learners who lack self-

efficacy, such as girls?

5

Existing learning tech teaches

coding, not debugging

6

Creativity +
tinkering

Tutorials Games

Alice

(and 100’s of others
in the past 50 years)

All require learners
to struggle through
the errors they
create

Most provide little
feedback about
errors and no
debugging
guidance

All coding
oriented, not
debugging
oriented

And dozens of other
competitive coding
games

We’ve been exploring a new kind

of learning technology we call a

debugging game

Led by my Ph.D. student Michael Lee,

and several others:

Margaret Burnett (Oregon State)

1 postdoc, 3 other Ph.D. students, and

12 undergraduates, and 2 high school

students

7

Why a game?

91% of U.S. kids aged 2-17 play video games

Social games are particularly popular

among teen girls in the U.S.

Teen girls particularly enjoy both

cooperative and competitive puzzle and

strategy games

NPD (2011). Kids & gaming 2011 report. NPD Group.

Ito, M., Baumer, S., Bittanti, M., boyd, d., Cody, R., Herr B., Horst, H.A., Lange, P.G.,

Mahendran, D., Martinez, K., Pascoe, C.J., Perkel, D., Robinson, L., Sims, C., and Tripp, L.

(2009). Hanging Out, Messing Around, Geeking Out: Living and Learning with New Media.

Cambridge: MIT Press.

8

Participatory design

In 2011, Mike Lee and I gathered together a

group of 10-12 year old girls and ideated

possible game designs

We arrived at a design in which a player

helps a computer that’s struggling to write

correct programs

This way, debugging was about

cooperating with a computer to solve a

problem rather than fighting with it to make

progress
9

Gidget is sent

to clean up a

chemical spill

He confides in the player that

he every program he writes fails

and he’s not sure why

10

A full IDE in the browser

11

Each feature designed for learning

12

Every level is a defective

program that the player

must repair

13

14

Programs

control

Gidget the

robot

Written in a

simple

Pythonic

language

15

Programs

operate on

objects,

each with

properties

and

functions

16

Passing the test cases

means passing the level

17

Program can be

executed one instruction

at a time, showing player

exactly how the program

executes

18

Gidget provides explanations about

language semantics and goals after

each instruction executes

19

Object state

and call stack

are fully

inspectable

Each

instruction’s

operations are

highlighted and

explained

Context-sensitive documentation on

language syntax and semantics avoid

the need for tools like Stack Overflow

20

21

In-context instructional hints on design

patterns and debugging strategies

22

In-game assessments provide positive

feedback on learning, testing ability to

mental simulate program execution and

language semantics

Playing the game

is equivalent to

debugging

Understand the tests

Execute the program

Reproduce the problem

Localize the defects(s)

Write a patch that passes

the tests

23

Curriculum

Across 27 levels, players learn

Variables, conditionals,

loops, functions, object-

orientation

Reproduction, testing

concepts, procedural algorithm

design, debugging strategies

24

Do players learn?

Yes!

Pre-post test into the game to measure CS1

learning gains

Preliminary results. Just 5 hours of game

play produces comparable learning outcomes

to weeks of CS 1 instruction

Study in progress

25

Why is it effective?

The game redirects player’s attention to

contextually appropriate instruction by

framing Gidget as a collaborator

26

When Gidget has a
face and uses personal
pronouns, players play
twice as long and repair
defects twice as fast

Lee, M.J. and Ko, A.J. (2011). Personifying Programming Tool Feedback Improves
Novice Programmers' Learning. International Computing Education Research
Workshop (ICER), 109-116.

Why is it effective?

The game leverages recent work on

preferential attention to focus player

attention on the right data

27

Players who manipulate
animate objects play
twice as long and fast as
players who manipulated
inanimate objects

Lee, M.J. and Ko, A.J. (2012). Investigating the Role of Purposeful Goals on Novices'
Engagement in a Programming Game. IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 163-166.

Why is it effective?

Contextual instruction

on debugging and

problem solving:

Used to

immediately attend to

& fix anti pattern and

potential errors

Used to create a

mental to-do list

28
Preparing for publication

Is it fun?

Over 500 rank novice programmers have

played on Mechanical Turk for an average

of ~60 minutes (paid $0.05/level)

"It did not even seem like I was learning

programming. It truly felt like I was just playing

a game. I tend to become frustrated easily yet

this held my attention and made it so I didn't

want to give up."

29

Lee, M.J. and Ko, A.J. (2011). Personifying Programming Tool
Feedback Improves Novice Programmers' Learning. International
Computing Education Research Workshop (ICER), 109-116.

Is it fun?

In pre/post surveys from 200 players:

Attitudes prior to the game were negative

“Programming is complicated and boring.”

Attitudes toward programming improved

significantly, becoming positive

“I now know that programming can be fun and

easy, also anyone can do it.”

Change occurred regardless of gender,

population density, or level of education.

30

Charters, P., Lee, M.J., Ko, A.J., Loksa, D. (2014). Challenging
Stereotypes and Changing Attitudes: The Effect of a Brief
Programming Encounter on Adults' Attitudes toward Programming
(2014) ACM Symposium on Computer Science Education,

4 week long summer camps

Two co-ed in Corvallis, OR

Two girls only in Seattle, WA

72 teens age 12-17

50 girls signed up

Played the game in pairs

31

Lee, M.J., Bahmani, F., Kwan, I., LaFerte, J., Charters, P., Horvath, A., Luor, F., Cao, J.,
Law, C., Beswetherick, M., Long, S., Burnett, M.M., Ko, A.J. (2014). Principles of a
Debugging-First Puzzle Game for Computing Education. IEEE Symposium on Visual
Languages and Human-Centric Computing, to appear.

3 days to
complete game

2 days to design
new levels to
challenge friends
and family

Laughter

during a

pre-test

32

33

Laughter while

debugging

34

Laughter while writing

new levels

35

Learners strongly

motivated by to

challenging their

parents

Future work

Can debugging games teach advanced

programming languages and skills?

Can we generate puzzles that optimize

learning and engagement?

Can we improve learning through pair

debugging?

Can we engage player’s social networks

through viral learning?

36

37

helpgidget.org

Public release this Fall

Questions?

38

This work was generously supported by

Microsoft Research and the National

Science Foundation (NSF) under Grants

CNS- 1240786, CNS-1240957, CNS-

1339131, CCF-0952733, CCF- 1339131,

IIS-1314356, IIS-1314384, and OISE-

1210205.

Any opinions, findings, conclusions or

recommendations are those of the

authors and do not necessarily reflect

the views of NSF.

