
Increasing Human-Tool Interaction via the Web

Thomas Ball Peli de Halleux Daan Leijen Nikhil Swamy
Microsoft Research

{tball,jhalleux,daan,nswamy}@microsoft.com

Abstract
Software tools researchers can accelerate their ability to learn by
exposing tools to users via web technologies, allowing them to
observe and test the interactions between humans and tools. At
Microsoft Research, we have developed a web service (http:
//www.rise4fun.com/) for such a purpose that is available for
community use.

Keywords web services, software tools

1. Human-Tool Interaction
The purpose of a software tool is to facilitate human computer
interaction so as to increase programmer productivity or improve
program quality/performance. However, software engineering and
software tools researchers seldom get to observe the interaction be-
tween humans and the tools they create. To start with, designing
and implementing a new tool is a complex endeavor; then, attract-
ing just a small community of users to the tool is an even bigger
challenge.

Today, there’s good news for researchers in software engineer-
ing in general and software tools in particular: human-tool interac-
tion is undergoing a radical shift due to web technologies, allowing
unprecedented access to users as they edit, compile, run and debug
programs.

In the past, researchers offered antiquated platform-specific
command-line interfaces to tools (not even a remote possibility
for a generation trained on smartphones and tablets), integration
with baroque editors such as emacs, or in some cases integration
with professional development environments like Eclipse. Imple-
menting these interfaces represented a significant investment of
time and energy and and the user experience was far from optimal.
As a result, deployment of software tools to users was a source of
friction, for both researcher and user.

Over the past few years, we’ve reached a turning point. Web
technologies such as HTML, CSS and JavaScript have matured,
standards are better supported by most browsers, and JavaScript
performance is good enough for hosting substantial applications.
Furthermore, as many languages can be compiled to JavaScript, it
is possible to use JavaScript to provide an end-to-end experience
with a software tool, even if this tool targets a language other than
JavaScript. This makes it much easier to reach out to users and
have them experiment with tools from the familiar interface of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PASTE’13, June 20, 2013, Seattle, WA USA
Copyright c© 2013 ACM 978-1-4503-2128-0/13/06. . . $15.00.

their web browsers, while the tools are maintained and updated on
web servers. The uniformity of the browser interface and the vast
population on the web open the door to observing the interaction
between software tools and users on a world-wide scale.

This a classic win-win situation: the burden on both software
tool researchers and users is reduced, enabling a much more fruit-
ful discussion, backed by empirical evidence, about new ideas in
software engineering. In particular, we believe that by embracing
web technologies, software engineering and tools researchers stand
to gain in at least the following ways:

• Access to many more users. The ability to simply go to a web
page and start using a tool should not be underestimated: elim-
inating the need for users to download and install software,
freeing the user from becoming enmeshed in platform require-
ments, is huge. Providing a “friction-free” experience for the
end user does not require heroic efforts on the part of the re-
searcher. For example, we have leveraged the web to make it
easy to publish on-line tutorials that can help bring users up to
speed quickly on new tools. Later, we discuss our experience
deploying many tools via web technologies.

• Detailed insights into how their tools are used. When tools are
hosted on web servers, the researcher can see all the programs
being submitted as input to their tool. Over time, such a corpus
of programs can be mined for useful data. For example, by
looking at the user history we can learn about mistakes users
make and how they fix them [6]; which tool features trip up
users and which are less error-prone; and how much various
features of a tool are used.

• Improved reliability of both theories and implementations.
Building a large regression suite for a tool is hard work. But,
by leveraging the crowd to provide test cases, we can find and
fix bugs in our implementations. For researchers who develop
formal models of existing software or hardware artifacts, the
crowd can provide a useful “experimental semantics” to cross-
validate the researcher’s math. For researchers, such as those
working in security, who work based on assumptions about the
capabilities of specific attackers, the crowd can be used to vet
the pragmatism of such assumptions.

The remainder of this short paper gives details on the basic
design choices for making software tools available on the web
(Section 2), presents a number of examples we have deployed
(Section 3), provides a basic overview of the RiSE4Fun service
(Section 4), takes a deep dive on one of the tools (Section 5)
and concludes with a call to action and discussion of open issues
(Section 6).

2. Web-based Human-Tool Interactions
Providing a browser-based software tool that meets the expecta-
tions of a modern programmer may seem to be non-trivial. Users

http://www.rise4fun.com/
http://www.rise4fun.com/

have come to expect features like syntax highlighting and correc-
tion to more elaborate features like type-based code completion in
their programming environments. Many of these features normally
require significant implementation effort.

At Microsoft Research, we have developed basic infrastructure
to simplify many of these tasks in a language-independent manner.
For example, we have developed a declarative specification lan-
guage for many services (like syntax highlighting, brace matching,
auto indentation etc.) which significantly reduces the burden placed
on tool authors. These specifications are written as JSON values
and integrate directly into the web eco-system too. Section 4.2 pro-
vides more details on this language.

Behind the browser interface itself, one needs to rethink the
architecture of the tool environment. Here we sketch three basic
architectures that we have deployed:

1. Tool hosted on a web server. In this architecture, the tool and its
associated run-time, if any, reside on a web server. Users submit
programs to the web server, which are run through the tool, and
the tool output sent back to the user. Precautions must be taken
to protect the web server from users with malicious intent via
sandboxing mechanisms, of which there are many. The service
http://rise4fun.com/ works exactly this way.

2. Tool hosted on web server, produces JavaScript as output, run
in web client. In this architecture, the tool remains on the web
server but outputs JavaScript on the backend, which is then
incorporated into a web page and executes in the browser.

3. Tool on web client. In the previous two architectures, the target
language of the tool itself is of little concern, as long as that lan-
guage can be hosted on a web server. In the third architecture,
the tool itself can be compiled to JavaScript and hosted in the
web client, allowing for much more dynamic and fine-grained
interactions.

3. Examples
In this section, we give brief descriptions of a variety of tools from
Microsoft and their deployment via web technologies, covering
all three architectures described above. The following tools are
examples of architecture #1:

• The web site www.pex4fun.com allows people to test their
programming skills on coding puzzles, where an automated test
generation tool called pex [7] runs on a web server to produce
both passing and failing tests for the user. The user responds
to the results of the test by modifying their program until pex
cannot find inputs that distinguish the user’s program from a
(secret) program stored on the server. This web site provided
valuable data on mistakes programmers make, leading to the
research reported in [6].

• Z3 is an automated theorem prover that exposes various logics
and queries via its C API. [1] A Python set of wrappers around
the C API automatically handles many coercions between Z3
types, providing scripting level support for Z3.1 This has en-
abled more people to learn Z3 on the web, where Python’s op-
erator overloading makes it possible to construct Z3 terms di-
rectly with Python’s expression and list comprehension syntax.

• Dafny is a simple object-oriented language [5] designed with
verification in mind.2 Dafny has many users in education, as
evidenced by the over 70,000 Dafny programs submitted to
RiSE4Fun during the Spring 2012 semester. The Dafny verifier

1 http://rise4fun.com/Z3Py/tutorial
2 http://rise4fun.com/Dafny/tutorial

compiles and verifies Dafny programs (using the Z3 theorem
prover) and returns the results of verification to the user.

The following tools are examples of architecture #2:

• Bek is a domain-specic language [4] for expressing text to
text transformers and for analyzing various properties of those
transformers.3 The Bek compiler has a JavaScript backend,
which allows the Bek output to be hosted and executed in the
web client, where the user can type in text and immediately see
it transformed.

• F? is a verification-oriented dialect of ML.4 Recent work uses
it to develop a translation semantics for JavaScript [2], and then
uses these semantics to prove a compiler from F? to JavaScript
fully abstract, which we provide more details on in Section 5.

• Koka is a function-oriented programming language that sepa-
rates pure values from side-effecting computations, where the
effect of every function is automatically inferred.5 Koka has
many features that help programmers to easily change their data
types and code organization correctly, while having a small lan-
guage core with a familiar JavaScript like syntax. Koka runs on
the server but can compile to JavaScript and run the resulting
programs on the client. The server that runs the Koka compiler
also implements a mode where the compiler runs as a checker:
during development of a program, the client continually sends
the (partial) program to the server which returns a list of errors
and warnings.

The last two tools represent architecture #3—the tool and runtime
are coded in JavaScript, all running within the web browser:

• TypeScript is a typed superset of JavaScript that compiles to
JavaScript. The TypeScript compiler is itself written in Type-
Script and can be hosted in the web browser. As a result, in the
TypeScript “playground”6, the user can input TypeScript code
on the left side of the web page and immediately see the com-
piled JavaScript on the right hand side, and then run it.

• TouchDevelop is a programming language and complete pro-
gramming environment for programming via touch for smart
phones and tablets. It is written entirely in TypeScript, compiled
to JavaScript and hosted in the web client.7

4. The RiSE4Fun Interface
The RiSE4Fun service provides a web front end for software en-
gineering tools, supporting architectures #1 and #2. It allows tool
developers to showcase their tools in any environment, helps re-
viewers try out tools, and helps instructors deliver classes without
worrying about putting a tool on every student machine.

4.1 Web Interface
The RiSE4Fun service is documented at http://rise4fun.com/
dev. Here we provide a brief overview of the features of the service.
The service uses the HTTP protocol carrying JSON values. To
integrate a tool into RiSE4Fun, a tool author provides a simple web
service that executes their tool on a server and returns the output.
The tool author must implement the following three interfaces:

• metadata GET, returns the current metadata information about
the tool, as well as built-in samples and, optionally, tutorials.

3 http://rise4fun.com/Bek/tutorial
4 http://rise4fun.com/fstar/tutorial
5 http://rise4fun.com/koka/tutorial
6 http://www.typescriptlang.org/Playground/
7 http://touchdevelop.com/

http://rise4fun.com/
www.pex4fun.com
http://rise4fun.com/Z3Py/tutorial
http://rise4fun.com/Dafny/tutorial
http://rise4fun.com/dev
http://rise4fun.com/dev
http://rise4fun.com/Bek/tutorial
http://rise4fun.com/fstar/tutorial
http://rise4fun.com/koka/tutorial
http://www.typescriptlang.org/Playground/
http://touchdevelop.com/

• run POST, gets the source input and returns the tool output.
The returned version number is used by RiSE4Fun to refresh
the metadata.

• language GET, (optional) returns the language syntax defini-
tion that will be used to do the syntax highlighting in the editor.
More details on the language syntax definition are given later.

In return for implementing this service, the RiSE4Fun services pro-
vides a host of capabilities, as documented at http://rise4fun.
com/rest/help, some of which include:

• ask POST: executes a tool over a program given its program
source, returning the output as a raw string;

• program/{tool} POST: uploads a program and receives a
(permalink) id back as a raw string. This is very helpful for
sharing programs with other people via RiSE4Fun.

• live/rss GET: provides a live stream of queries submitted to
RiSE4Fun, which can be filtered by tool.

Additionally, the RiSE4Fun service implements HTML/JavaScript
sandboxing, which allows tools to return HTML and JavaScript to
be interpreted in the browser.

4.2 Language Syntax Definition
An important part of many software tools is a powerful editor that
can do proper syntax highlighting, and offer support for things
like brace matching and auto indentation, extending all the way
to full intellisense, name completion, and incorporation of tool
output. As a first step we have developed a powerful declarative
specification language for enabling custom syntax highlighting.
These descriptions can be represented as a pure JSON value which
makes it very easy to share custom syntax highlighting for any
new language and tool. The following listing gives an example
specification:

displayName: ’MyLanguage’,
mimeTypes: [’text/x-mylang’],
fileExtensions: [’ml’],

keywords: [’abstract’, ’continue’, ’for’, ...],
typeKeywords: [’boolean’, ’double’, ’int’, ...],

// The main tokenizer for our language
tokenizer: {

root: [
// identifiers and keywords
[/[A-Z]\w*/,’type.identifier’],
[/[a-z_]\w*/, {

cases: { ’@typeKeywords’: ’type.keyword’,
’@keywords’: ’keyword’,
’@default’: ’identifier’ } }],

// include the rules from the whitespace state
{ include: ’@whitespace’ },
...

],
whitespace: [

[/\s+/, ’white’],
[/\/*/, ’comment’, ’@comment’],//enter comment
[/\/\/.*/, ’comment.line’],

],
comment: [

[/[^\/*]+/, ’comment’],
[/\/*/, ’comment’, ’@comment’],//nested comment
[/*\//, ’comment’, ’@pop’],
[/[\/*]/, ’comment’]

],
...

Note how it is easy to specifiy sets of names, like keywords, and
match on those. The string results, like ’type.identifier’, be-

come literal CSS class attributes in the editor rendering that can be
used to fully customize the look of the different lexical elements.
Strings that are prefixed with an @ sign refer to attributes in the
specification. This is used for example to ‘enter’ the comment state.
The lexer states are treated as a stack so we can properly process
nested comments, using the special ’@pop’ action to pop a state
and return to a previous one. Together with dynamic state suffixes,
this gives our specifications the expressive power of push-down au-
tomata and they can be used to correctly highlight many complex
lexical specifications.

As part of the syntax highlighting, we can also describe various
editor related actions like brace-completion and auto-indentation.
For example, it is easy to specify that when a user enters a left-brace
({) that a right-brace is inserted automatically (}), and when the
user follows with an enter-key, that the cursor is indented correctly
on the next line, while the right-brace is correctly outdented on
the following line. Such actions are specified using the bracket

attribute that specifies whether a recognized bracket is an open or
close bracket. The editor then uses the CSS class to match up braces
and do auto-indentation.

As an example, here is how we specify brace matching for
HTML. This is a more dynamic problem since in general we would
like to match up an arbitrary open tag, like <foo> with its closing
tag (</foo>). Here is how we can specify this:

[/<(\w+)(>?)/, { token: ’tag-$1’, bracket: ’@open’}],
[/<\/(\w+)\s*>/, { token: ’tag-$1’, bracket: ’@close’}],

Here, we use the special escape character $n to substitute the
nth capture group of the regular expression. By using this in the
returned CSS class, the editor can now dynamically match up the
brackets and do proper brace-matching and indentation.

5. Experimental Semantics with the
Full-abstraction Game

In this section, we show how a system like RiSE4Fun can enable
new ways of working with and experimentally validating the formal
semantics behind software tools. Formalizing software behavior is
an important research activity that often precedes and enables the
development of effective software analysis tools. A recent example
is the work of Guha et al. [3] who develop a translation semantics
for JavaScript. Such formal models provide a precise mathematical
understanding of the software systems in question, but, in all these
cases, the “real” objects of study are the deployed systems in wide
use. Backing up these formal semantics with conformance testing
is an important validation activity, particularly as these formalisms
start getting adopted as de facto standards. In the sequel, we de-
scribe how we used RiSE4Fun to crowd-source the experimental
validation of a theorem concerning the semantics of JavaScript.

In recent work [2], Fournet et al. take Guha et al.’s Lambda-
JS as a de facto model of JavaScript and prove that a compiler
from F? (an ML-like programming language being developed at
Microsoft Research) to JavaScript is fully abstract. Full abstraction
is the perfect property of translation—it ensures that the compiler
preserves and reflects all source properties into the target language.
Slightly more formally, the paper proves that two F? programs
e1 and e2 are contextually equivalent in F? if and only if their
compilations [[e1]] and [[e2]] and contextually equivalent in JavaScript.

To make this concrete, consider the two F? programs that im-
plement the identity function for booleans:

let idbool0 (x:bool) = x
let idbool1 (x:bool) = if x then true else false

In F?, there is no context that can distinguish these two functions.
Indeed, this is the formal justification behind code transformations
that optimize idbool1 to idbool0. Now, for such reasoning to be

http://rise4fun.com/rest/help
http://rise4fun.com/rest/help

applicable, clearly, we would like the transformations to be valid
even after the program is compiled. However, a naı̈ve translation
of the above code to JavaScript might result in the following two
JavaScript functions:

function f0(x) { return x; }
function f1(x) { return x ? true : false; }

However, f0 and f1 are not contextually equivalent in JavaScript,
as the following context demonstrates:

function ctxt(f) { alert(f("hello")); }

The function call ctxt(f0) will cause the message "hello" to pop
up, while the function call ctxt(f1) will cause the message "true"

to pop up. Thus, under this naı̈ve translation, simple reasoning prin-
ciples about source programs are invalidated. In contrast, the com-
pilation scheme developed by Fournet et al. is carefully designed to
ensure that all source reasoning principles remain applicable even
after translation to JavaScript, thus allowing an F? programmer to
reason about her programs using the semantics of F? alone without
ever being concerned with the tricky semantics of JavaScript.

To allow users to explore the concept of full abstraction and to
validate the theorem of Fournet et al. against the reality of browser
implementations of JavaScript, we used RiSE4Fun to create a “full
abstraction game”. The game proceeds as follows: the user is given
two F? values, f0 and f1, that are presumed to be contextually
equivalent in F?, e.g., these could be idbool0 and idbool1. We com-
pile these two programs to JavaScript values j0 and j1, respectively.
The user’s job, as the attacker, is to write some JavaScript code, J ,
that can reliably distinguish between j0 and j1. The game runs the
user’s code J on j0 and j1 many times, and reports if it can do
better than just randomly guessing. The user also has the ability to
provide her own candidate F? programs in the source equivalence
relation and can attempt to distinguish these programs after compi-
lation, thus making the game easily extensible.

If a user is able to win the game (i.e., do better than guessing
randomly) then she may have uncovered (1) one of the known lim-
itations of the Fournet et al.’s theorem (e.g., its vulnerability to tim-
ing or resource-exhaustion attacks); (2) an experimental behavior
in the browser that was not accurately modeled by the formal se-
mantics; (3) an error in the proof of the theorem; (4) an error in
the implementation of the compiler; or, all of the above. As such,
given the large numbers of the web, we hope this powerful full-
abstraction theorem will be scrutinized in much greater detail than
the authors could ever hope to do on their own.

The web site8 contains many more details about full abstrac-
tion and how RiSE4Fun was used to implement the full abstraction
game. The short story is that the game is written in the F? lan-
guage itself. The game consists of a function play that accepts two
F? functions as well as an attacker function, in addition to a HTM-
L/JavaScript harness for the user interface, and a set of pairs of
F? functions. The F? code is submitted to the RiSE4Fun service
for the F? tool, where it is compiled into JavaScript, inserted into
the harness, and sent back to the web browser to start the game.9

The generated game allows the user to write a JavaScript function
(which also will be sandboxed) to try and determine the difference
between the JavaScript values j0 and j1. This game takes place
solely within the web browser, as the F? code and runtime have
been compiled into JavaScript.

8 http://rise4fun.com/FStar/tutorial/jsStar
9 Here, the sandboxing features of RiSE4Fun are critical to preventing
browser-side attacks via arbitrary JavaScript.

6. Conclusion: Call to Action and Open Issues
Software tools are an important interface for human-computer in-
teraction, but often the ideas in research tools don’t have the impact
they deserve, simply because users are not able to easily experi-
ment with the tools. If you wait for someone to read your PASTE
paper and try out your ideas themselves, you’ll probably be waiting
a decade or more, if you’re lucky. By making your tool available on
the web, as outlined above, your great ideas will spread and make
the world a better place sooner. We especially encourage people to
look at http://rise4fun.com/dev as an easy way to get started.

While deploying tools on the web improves the reach of a
tool (e.g., by removing portability issues), it is not without some
difficulties.

First, deploying a tool on the web is not intended to be a com-
plete replacement for making the tool available for closer inspec-
tion by other researchers in the community. Providing access to
source code, to allow others to read it closely and modify it remains
an important element of software science. However, web-based de-
ployment is an invaluable complement to the traditional means of
disclosure.

Second, RiSE4Fun has no support for graphical user interfaces,
other than the automatically generated support for the language
editor described in Section 4.2.

Third, where previously a software tool writer may have spent a
lot of time working on portability of the tool, they may now have to
worry about security, since the tool will be run via a web interface
by potentially malicious clients. The RiSE4Fun service addresses
many of the security issues by default (e.g., by providing a sandbox
in which to run client code; running each tool within a “chroot jail”
to limit its access to sensitive resources; by running the web server
itself in a DMZ; and killing processes after a short time interval
to limit DoS attacks). Implementing all of this correctly required
additional care and, still, there may be some vulnerabilities that
remain. However, by aggregating many tools into the RiSE4Fun
site, the cost of these measures is significantly amortized.

More experience with deploying tools on the web and greater
community participation will help provide a better understanding
of these issues (and perhaps identify some others).

References
[1] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.

In TACAS: Tools and Algorithms for Construction and Analysis of
Systems, pages 337–340, 2008.

[2] C. Fournet, N. Swamy, J. Chen, P.-É. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In POPL:
Principles of Programming Languages, pages 371–384, 2013.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.
In ECOOP: European Conference on Object-Oriented Programming,
pages 126–150, 2010.

[4] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes.
Fast and precise sanitizer analysis with BEK. In USENIX Security
Symposium, 2011.

[5] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR (Dakar), pages 348–370, 2010.

[6] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback
generation for introductory programming assignments. In PLDI:
Programming Language Design and Implementation (to appear),
2013.

[7] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop. Teaching
and learning programming and software engineering via interactive
gaming. In ICSE: International Conference on Software Engineering,
Software Engineering Education (SEE) Track, 2013.

http://rise4fun.com/FStar/tutorial/jsStar
http://rise4fun.com/dev

	Human-Tool Interaction
	Web-based Human-Tool Interactions
	Examples
	The RiSE4Fun Interface
	Web Interface
	Language Syntax Definition

	Experimental Semantics with the Full-abstraction Game
	Conclusion: Call to Action and Open Issues

