

Visualizations Everywhere:

A Multiplatform Infrastructure for Linked Visualizations

Danyel Fisher, Steven M. Drucker, Roland Fernandez, and Scott Ruble

Abstract—In order to use new visualizations, most toolkits require application developers to rebuild their applications and distribute

new versions to users. The WebCharts Framework take a different approach by hosting Javascript from within an application and

providing a standard data and events interchange.. In this way, applications can be extended dynamically, with a wide variety of

visualizations. We discuss the benefits of this architectural approach, contrast it to existing techniques, and give a variety of

examples and extensions of the basic system.

Index Terms—Visualization systems, toolkit design, data transformation and representation.

1 INTRODUCTION

New visualization techniques are constantly being invented: for

example, the InfoVis 2009 conference featured over twenty novel

visualizations that addressed established problems and introduced

new domain-specific opportunities. We can divide the potential users

of these visualizations into three (often overlapping) audiences: end-

users who want to apply the visualizations to their own data;

visualization writers who wish to create new visualizations, and

application developers that want to enable others to use the new

visualizations with their applications. End-users often have no choice

but to become adept at moving data between applications or wait for

updates to their favourite applications that may or may not include

the new capabilities. Visualization developers often need to create

the visualization from scratch or they may build upon visualization

toolkits (such as Prefuse [12] or the Information Visualization

Toolkit [9]). In order to use the toolkit, they are forced to use the

language and data structures that the toolkit requires and their

visualization, in turn, will only be useful to people who are using

those toolkits. Finally, application developers, hoping to incorporate

one of the visualizations themselves, either must adopt the toolkits or

translate the visualization code into their own data structures and

rendering systems.

We have chosen a different route, which is to add visualizations to

applications dynamically, without requiring recompilation of the

existing application. The WebCharts framework enables this

functionality by allowing applications to host arbitrary

visualizations. Any application that uses this infrastructure can add

any compatible visualization, dynamically and at runtime. The

application developer does not need to know the types of

visualizations that might be applied to their application; the

visualization designer does not need to know what applications

might serve as host.

As a result, application developers now have a much easier task:

they must build infrastructure only once, in the language of their

choice, and add a mechanism to select particular visualizations.

Visualization developers write their visualization, using their favorite

visualization framework or toolkit, and add support for the

WebCharts interface, and post them on the internet. Other developers

can even write a thin WebChart adapter to translate existing

visualizations into our interface. Finally, end-users can use the

WebCharts-enabled application of their choice without waiting for

an update that incorporates the latest visualizations.

WebCharts takes advantage of the growing popularity of

Javascript as a language to communicate between components; and

of the ability to embed web browsers within client applications, to

support visualizations in rich client applications. The host application

provides a generic drawing surface, and translates both tabular data

and commands from the host application into a standard Javascript

Figure 1: The WebCharts framework accommodates multiple types of visualizations, embedded in multiple types of applications.

In this figure, four different host applications (around the outside) each dynamically add any WebCharts enabled visualization

available on the web (center).

• Danyel Fisher, Steven Drucker, and Roland Fernandez are with Microsoft

Research. {danyelf, sdrucker, rfernand}@microsoft.com

• Scott Ruble is with Microsoft Corporation. sruble@microsoft.com

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

1157

 1077-2626/10/$26.00 © 2010 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

format. The charting client, written in a web-based language such as

Silverlight, Flash, or Javascript, responds to these commands, and

renders the visualization. By storing the web-based code locally,

visualizations can be generated offline, without web access.

This paper discusses the WebCharts framework. It looks at the

problem of extensibility and different ways that it has been

approached. It then discusses the system design of WebCharts. Last,

it provides several use cases in different environments, and hosting a

broad variety of visualizations.

2 EXTENSIBILITY FOR V ISUALIZATIONS

WebCharts allows users to assemble visualization components

within an application, using their data from that application. Tools

that support a set of different visualizations are common: tools like

Tableau [21] and Spotfire [20] and Dashiki [17] allow users to

assemble dashboards using a fixed suite of visualizations. These

applications provide mechanisms for importing data, choosing

visualization from a fixed set, aggregating values, and assigning data

columns to aspects of the visualization. These tools do not, however,

accommodate extensibility. There have been a variety of research

and commercial projects meant to accommodate the developing

needs of data visualization. In this section, we first outline a variety

of approaches to visualization extensibility, and then compare our

approach to other web-based architectures.

2.1 Extensible Toolkits

A number of visualization toolkits have been developed to help

developers more rapidly create visualizations. Most toolkits support

building visualizations that are compiled into applications. For

example, Pad++ [3] and later Piccolo & Jazz [4][5] provide libraries

for common tasks such as zooming and object models. The Infovis

Toolkit (IVTK) [9], Borner’s XML Infovis Toolkit [1], and Prefuse

[12] are Java toolkits that provide base classes and package several

common visualizations. All of these systems offer additional libraries

that help the application collect or manage data, communicate with

external sources, or take care of common tasks. Flare [10], written in

Actionscript, provides similar functionality. In contrast to these

systems, the WebCharts framework encourages developers to create

visualizations in whatever system they are most comfortable, with

the caveat that it must be embeddable within a web browser.

Other visualization systems, such as Processing [19] and Protovis

[6], are primarily languages for expressing visualizations, without a

containing application. Protovis is written in Javascript, and so is

optimized for deployment on the internet. Protovis, given its focus

on web technology, is particularly well suited to being incorporated

into the WebCharts framework.

Several of these systems provide functionality over the

visualizations that are worth considering. IVTK provides a shared

“magic lens” system, for example, which applies across any

visualization. Weaver [23] provides a shared selection and

interaction layer. WebCharts supports brushing and linking between

disparate visualizations in a similar fashion.

In each of these systems (with the exception of Protovis), a

developer adds relevant libraries to their application as part of the

development process, and then compiles their visualization. In

Protovis, visualizations are controlled by the website developer who

has embedded the visualization. Our focus is extending application

dynamically, at run-time, so that end-users can choose what

visualizations they will need.

2.2 Visualization on the Web

WebCharts leverage deployment across the web, and uses internet

protocols as a communication mechanism. Increasingly, the internet

is being used as a delivery mechanism for visualizations.

There are several common architectures for constructing

visualizations on the web. Visualizations can be generated as image

files that can be embedded in a webpage (e.g. [8]). Alternatively,

client-side JavaScript code, Flash objects, and Java objects have

been used to actually compute the visualization on the user’s

computer. For example, Many Eyes [22] uses this mechanism: the

Java applet that runs in the user’s browser connects to the website,

downloads the data, and renders the visualization. WebChart

visualization can use either strategy (server or client rendering), but

visualizations that support offline visualizations must support client

rendering.

Several tools allow site designers to build visualizations easily.

VisGets [7] and Exhibit [13] provide infrastructure that allow a web

developer to assemble a coordinated series of visualizations that can

be embedded in a web page. The web developer can choose from a

variety of provided visualizations; the end-user can switch between

views, select and filter data, and explore the resultant data.

Perhaps the closest analogue to WebCharts is the Google

Visualizations [11]. Google Visualizations are componentized

visualizations packaged in Javascript. All Google Visualizations

share a small set of Javascript commands, including an ability to set

data and a callback to monitor selection. A web developer can

incorporate several Google Visualizations into a webpage by placing

their data into a single table, and applying the table to the

visualizations. In addition, Google Spreadsheet allows users to add

arbitrary Google Visualizations to their spreadsheets. Google

Visualization is a client-only solution: it does not have an ability to

accommodate visualizations in desktop applications, nor can it work

when a user does not have an internet connection. The WebCharts

framework includes an application-side component, which

accommodates aggregation, small multiples, and remapping data

between columns.

3 SYSTEM DESCRIPTION OF WEBCHARTS

WebCharts enables visualizations to be dynamically added to

applications. In order to do so, both the visualization and the

application must support the WebCharts interface.

Figure 2 shows a system schematic of WebCharts. The top half

describes the design of the visualization; the bottom half describes

the design of the client application, which we refer to as the ‘Host.’

In general, our scheme is to have the application embed a web

browser control. Many web browsers at this point come in

embeddable form; applications with embedded web browsers can

typically send Javascript commands to the browser. The browser

control is used to contain the visualization, which is implemented in

HTML, or any language that can be embedded in a web browser,

such as Silverlight, Javascript, Java, or Flash. The host application

sends data and commands to the chart; the chart sends back events.

We have provided two libraries to help developers add WebCharts

support to the applications and visualizations. The HostLib library is

used on the host application, and provides communication with the

visualizations. The ChartLib handles communications for a

visualization, and also includes an optional lightweight visualization

Figure 2: System Diagram of WebCharts. Host applications contain a

web browser control in which a visualization is rendered.

1158 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

framework. Our current implementations are written in C# (for

hosts) and in Silverlight or Javascript (for visualizations); however,

there is nothing in our design that would preclude interoperability

with applications and visualizations written in any other language or

framework.

We have implemented an extension to Microsoft Excel 2007 using

the standard add-in mechanisms and we will use that to illustrate

many examples. We will illustrate other host applications of the

system in later sections.

In the following sections, we discuss the design of visualizations

and the design of the host. Next, we discuss the interaction

mechanisms that allow the visualization to send back events to the

host. We discuss aggregation and column selection, which allows

visualizations to show appropriate subsets of data. We discuss

styling and theming, which allows visualizations to share a

common visual appearance. Last, we discuss persistence and

security, which allows host applications to store and save

visualizations, and address data privacy issues.

3.1 Defining a visualization

In our framework, a visualization can be thought of as a web page

which receives data from a host application. Visualizations maintain

a very simple interface (Figure 3): they must accept data. In addition,

they may be able to communicate a selection, take color and theme

updates, and share custom parameters. Visualizations communicate

entirely through a Javascript bridge; the Javascript calls these

commands on the chart.

The communication mechanism is managed by HostLib, a library

which runs on the host side, and ChartLib, which is available on the

chart side. The host application communicates with the visualization

through Hostlib; the visualization, in turn, receives all its messages

through ChartLib commands. HostLib and ChartLib are responsible

for serializing and deserializing data (respectively), and for

packaging other commands.

From a hosting perspective, an application developer includes a

reference to HostLib, and adds a ChartHost control to their

application. Hostlib manages the web browser component, the

network connection, and the Javascript communication. The Host

can make the calls in Figure 3, and can register for callbacks.

Figure 3: Host/Visualization communication

Figure 4 : Excel spreadsheet showing some visualizations using the WebCharts Framework. Tag Clouds, Maps, TreeMaps, and a Focus +

Context visualization have all been added to a spreadsheet. At the top, a palette offers more visualizations.

1159FISHER ET AL: VISUALIZATIONS EVERYWHERE: A MULTIPLATFORM INFRASTRUCTURE…

Similarly, from a chart’s perspective, a visualization developer

includes Chartlib, which is implemented in both Silverlight and

Javascript. They can register for events from the ChartLib, which

will handle incoming messages to the visualization. The Silverlight

version of ChartLib is useful for building custom visualizations,

while the Javascript version is useful for wrapping prewritten

visualizations.

3.1.1 Basic ChartLib Commands

SetChartData is the basic call of WebCharts, and must be

implemented by every visualization. This command takes a dataset

(in XML), consisting of one or more tables as a parameter. A data

table consists of a series of named and typed columns and a number

of rows. Most data structures can be represented in tabular form

readily (see section 3.2.1); the HostLib and ChartLib libraries

provide support for translating a dataset to and from XML.

In addition to this command, every Chart and Host can choose to

support additional commands which provide a richer experience.

SetChartSelection and SetHostSelection are sent from the host to

the visualization and back (respectively) to communicate the rows

and columns that are logically selected by the host, or other

visualizations This forms the basis for brushing and linking support

as well as the ability for visualizations to filter data based on the

selection (see Section 3.3).

SetHostData allows the visualization to request that the host

change the data based on actions in the visualization. (see section

3.1.4)

SetPartFormat allows the host to send styles and themes to the

visualization. These are described in section 3.4

SetCustomParams allows the visualizations to accept custom

parameters. Host applications that support customizable user

interfaces can send parameters to the visualization. Conversely,

when parameters are changed from the visualization (such as when a

map is moved or an axis is altered), the new values are sent back

through this command. These custom parameters are also persisted

with the visualizations by the host (see section 3.5)

3.1.2 Declaring Custom Parameters

Each visualization may have its own custom parameters; and each

visualization has its own capabilities. If a visualization requires, for

example, a field of type ‘ordinal’, than mapping it to a string value

may not be useful. Visualizations may declare their interfaces by

providing an optional manifest file, called WebCharts.xml. This file

specifies the capabilities of the visualization, and which columns of

data it can accept. In addition, it can describe any custom parameters

that it supports and can announce any other relevant metadata. By

providing a separate capabilities file, users can search for certain

capabilities amongst a large number of charts stored on a web site

without needing to invoke and examine each of them.

3.1.3 Updating and Modifying Data

One advantage of embedding visualizations into a host application is

that there can be a tight integration between the user editing and

updating their data and the visualization. If the visualization is

embedded in a spreadsheet, the user need not switch context from the

visualization application to a spreadsheet to correct data errors, then

switch back to update the visualization. Instead, the user can

interactively modify or correct data, and see it instantly updated in

the visualization or manipulate the data in the visualization and have

it update the data in the host. One way of accomplishing this is for

the host application to detect changes to the data and automatically

send the data to the visualization.

Data updating can work in both directions: visualizations can

choose to call SetHostData to update data on the host, perhaps as a

result of the user manipulating shapes within the visualization. In

this case, the host application must provide a protection mechanism

to help prevent accidental data changes by the user.

3.2 Aggregating Data and Choosing Columns

Two different approaches to datasets seem to be common among

visualization packages. First, the package can visualize input data

without transformation, as is done with Microsoft’s Excel. In Excel,

two columns of data are understood as x and y axes. In other

packages, such as Tableau (and Excel’s PivotTables), visualizations

implicitly contain aggregation: a user chooses a dimension and

measure; the application adds, averages, or counts the measure in

order to visualize the values. Since the goal of WebCharts is to

conveniently allow the embedding of a variety of visualizations, we

wanted to make aggregation capabilities available without requiring

support from, the visualization. Of course, some visualization, such

as histograms, prefer to do their own aggregations; this is an optional

aspect of the system.

Aggregation is supported on the host, within HostLib. HostLib can

transform a data table, given a few parameters. These parameters are

similar to those that drive VizQL [21]: columns of the data table can

be used as aggregation values, filters, and sort orders. The

aggregated values then can be sent to the visualization; columns of

the aggregation can be split off to enable small multiples. The host

maintains mapping objects, which maintain a mapping from

unaggregated rows to their aggregated results. These allow the host

to subsequently map selection rows from the visualization to the host

domain, or from the host to the visualization domain (between the

pre/post query data rows).

The aggregation is performed by the host rather than the

visualization for two reasons. First, this allows aggregation to be

implemented for any visualization, including those that are unable to

scale to large datasets. Second, the host level can also provide

significant optimization, since the individual visualizations do not

need to be sent or store the entire datatable, but only the data that is

actually visualized. A huge dataset can be reduced to only few

datapoints in some of the aggregations. Alternatively, there are

already visualizations that aggregate or optimize the renderings of

data based on the view (for instance, a scatterplot with dense areas

can choose not to render every data instance). This is still supported

by sending all the data to the visualization.

3.2.1 Non-Rectangular and Multi-Table Data

The SetChartData command sends data via a data table, which

represents columnar data easily. Other common data structures can

be readily normalized into tabular form. The Host is responsible for

normalizing its native datastructures into a tables that the

visualization can use.

For instance, hierarchical data can be represented as name, parent,

metadata as seen in Table 1.

Table 1: Hierarchical data represented in tabular form. Used for

TreeMap visualization.

Name Parent Metadata

(hierarchy level)

Bill Gates None 1

Steve Ballmer Bill Gates 2

Steven Sinofsky Steve Ballmer 3

Stephen Elop Steve Ballmer 3

Network models can be represented with two tables, one each for

nodes, the other for edges. Table 2 illustrates a sample graph format.

1160 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

Table 2: Two tables used to represent graphical data. The first

represents edges while the second represents node data.

Node1 Node2 Metadata

(Distance, in miles)

Boston New York 190

Boston San Francisco 2708

Seattle San Francisco 679

Seattle Boston 2484

Node Metadata

(population, in people)

Boston 620535

Seattle 602000

New York 8214000

San Francisco 809000

3.3 Interactivity: Brushing and Linking WebCharts

There has been a great deal of research showing the benefits of

linking together multiple visualizations via selection and

highlighting behaviors. Becker [2] proposed early brushing behavior

in scatterplots, and the systems proposed by both North and Weaver

[18][23] both support coordinated views. North provides a taxonomy

of types of actions that can be propagated across brushing and

linking, including selecting subsets of data, providing detail on a

particular item, and restricting and filtering data. WebCharts

implicitly supports all of these by providing a universal selection

mechanism.

In the WebCharts framework, a selection is created by the user in

either the host application or in a visualization. If the user has made a

selection within a visualization, that selection is sent back to the host

as the set of data rows which correspond to the selection. Hostlib

provides infrastructure for translating the selection back to the

original dataset. (In the case of aggregation, for instance, this means

computing which rows of original data correspond to the aggregated

values). With the selection now in the domain of the original data,

the host can now both reflect the selection in its own user interface,

if appropriate, and then send the selection to other visualizations that

refer to the data.

Each visualization can respond to the selection as is most

appropriate. In many visualizations, for example, selection

commands correspond to highlighting particular shape objects within

the display. However, we have also implemented a ‘details on

demand’ visualization that merely prints all values from selected

columns, and resolves image URLs as pictures (Figure 4).

3.4 Styling and Theming

A host can choose to support styling and theming for its hosted

visualizations. A style is a collection of typefaces, text sizes, and

colors. Styles specify the color and typeface for standard parts of a

chart, such as the background color, the color of foreground objects,

and the typeface for captions. A theme is a collection of styles that,

together, describe the way that a chart is rendered. Using styles and

themes, a host can ensure that all charts use the same color palette

and similar typefaces. Implementation of styles for a visualization is

optional; a chart implementation can choose to act on or ignore any

portion of these commands. A theme typically includes color

selections for both selected and unselected items, for multiple series

of data.

Styles and themes are also used to enable small multiples and

other grouped visualizations. In a small multiple, it is desirable to

hide axis captions and legends that are shared between the several

charts. The style information includes a “hidden” label, which allows

the host to request that the visualization hide its unneeded axis

labels.

3.5 Persistence: Save-Load and Copy-Paste

It is useful for applications often provide persistence for operations

such as saving and loading. When the embedding application is

saved, the visualization should be saved with it; users should be able

to copy and paste visualizations into other applications. Hostlib

provides a mechanism for persisting (and reloading) a visualization.

It includes the original URL, a reference to the source data, and any

parameter settings that the user has set, and its current style settings.

Optionally, the persisted version can include an offline executable

version of the visualization code (the HTML page and related

resources). Last, the persistent form of the visualization can include a

bitmap snapshot of the visualization, to be used as a fallback when

executing the visualization is not possible.

3.6 Offline Use, Privacy, and Security

Two great concerns that are associated with web based visualizations

is the ability to use them when not connected to the internet and

privacy/security issues. Visualizations that do not require the internet

can be used offline, while some cannot. Offline use is possible for

those visualizations that support disconnected operation from the

internet. This means that once acquired via the net, the visualization

will continue to function if all the code is available and the

visualization does not require external data.

We have investigated three types of visualizations:

• Visualizations that, once downloaded, can continue to function

without an active connection.

• Visualizations that can run locally, but require external data.

This is the case for the world map pictured above. When the

user pans or zooms, other tiles are downloaded from the tile-

server. In addition, this visualization uses an external service

for turning city names into longitude and latitude coordinates.

While data such as city names is sent to the network, most of

the data stays resident on the local system.

These visualizations continue to work as long as no new external

information is needed and the data is not sent out on the internet. The

third case of visualizations cannot be moved offline:

• Visualizations that run externally. These are cases where the

visualization is created on a separate server, and either a

bitmap, or laid out graphical objects are sent to the client.

These visualizations can only be run when connected.

Related to the online issue is privacy. Systems such as ManyEyes

and Tableau Public require all data to be shared their data with the

world. This can be inconvenient for sensitive information.

Visualizations of the first type do not share their data at all with

the external world. Visualizations of the second type share some

information, but the actual visualization is still computed and

Figure 5: Brushing and linking within WebCharts. All communication

channels work as usual, except that selection is routed through the

ChartHost.

1161FISHER ET AL: VISUALIZATIONS EVERYWHERE: A MULTIPLATFORM INFRASTRUCTURE…

rendered locally. Visualizations of the third type require sharing their

visualization with the external service. We are now investigating

effective UI indicators to help users understand which sort of

visualization they are using, and what behavior they can expect both

offline and with regards to their privacy.

Any system that loads programs from the web represents potential

security concerns, both with the data that is being shared with it and

to other data resident on local client. Since the visualization is

embedded in a browser, the same security conditions that is used for

general internet browsing are in place – that is the code runs in a

sandbox and does not have access to data except that which is

explicitly passed to it.

3.7 Performance

The WebCharts scheme requires using a hosted web browser, and

communicating with it via Javascript calls. This means that all data

must be flattened into a string form for Javascript, and then expanded

outward back to a datatable in the visualization. As a result,

WebCharts imposes some overhead above and beyond the needs of

the visualization.

Performance issues can be broken down into 4 stages.

• Capture: is the time to capture data from the host application

(in the case of the tests shown here, Excel)

• Shape: is time spent selecting columns and organizing the data

into tabular form in order to prepare it for the chart

• Marshal: is the time spent converting the data to a string,

sending to the visualization, and converting back to data

• Build: is the time spent by the visualization creating and laying

out shapes.

In order to evaluate the impact of these phases, we evaluated the

application against a moderate workload of 4200 rows. We

computed the timing for generating a chart of all 4200 rows; the

timing for generating an aggregated chart of just 4 rows, and of

generating a trivial chart of one row. The following data is from a

desktop PC, core i7 with 6GB of memory working on a typical sales

spreadsheet with 4200 rows and 20 columns of data in msecs.

We note that capture appears to be proportionate to the number of

rows processed, that shape currently dominates the run, and that

marshal and build are proportionate to the number of rows

transmitted. This suggests that larger aggregations can continue to

scale, and that visualization designers can gain by optimizing their

own code.

Table 3: Performance numbers for communicating with a visualization

in WebCharts.

���������� �	
���� ��	
� �	���	�� ������ ���	��

�������	

��
	���

������������ ���� ���� ��� ���� �����

����

��
	����

��������� ���� ���� �� ��� ����

������
 ��!����������� �� ���� �� ��� ����

3.8 Versioning

Because WebCharts are deployed to and loaded from web URLs, any

time a visualization is created or opened (or refreshed), by default,

the latest version of the visualization will be downloaded and used.

The benefits of this behavior include always running the latest (and

presumably best) version of the visualization. The downsides include

users having to deal with broken features and unexpected new

behaviours, often at very inconvenient times.

We believe most users would like host applications to default to an

automatic “version capture” mode, where the first time they

download the visualization to their application, it captures that

version (when possible) and keeps providing it to the user (via a web

service, and local caching), until the user requests to move to another

version. This can be supplemented by unobtrusive notifications of

newer versions of visualizations becoming available.

4 CASE STUDIES

In this section, we discuss several instances of how these elements

have been brought together to add visualizations to different

applications.

4.1 Wrapping existing visualizations

While we have implemented some new visualizations for use directly

within the WebCharts framework (including TagClouds, and a

special purpose Map Control), it is the ease with incorporating

existing visualizations that sets WebCharts apart. We have written

small wrappers that translate between the WebChart API and the

Google Visualization API. In addition, we have written an adaptor

for the Silverlight Toolkit, which enables TreeMaps, animated

charts, and scatter-plots. Since Java applets, including those written

in Processing can be embedded within a web page, we can

potentially write adaptors for those as well, but we have not done so

as yet.

4.1.1 Exhibit in Excel

Exhibit [13] is a multi-dimensional faceted browser implemented in

pure Javascript. It creates curated visualizations based on web-based

datasets. An author can easily select structured data, choose columns,

and add visualizations. A user can switch between the visualizations,

and can choose filters on the dataset. Exhibit requires datasets that

are placed on the web.

We embedded Exhibit in Excel using WebCharts. Thus, Exhibit

used Excel-based data, but maintained the curated set of

visualizations. We wrote a very small wrapper which translated the

SetData call’s XML format into JSON. We then mapped by hand the

column names with the exhibit attributes. The entire procedure took

only about 15 minutes. Creating an explicit roles file within exhibit,

where we can match columns from the data with roles in the exhibit

would be a useful extension. We are also exploring the use of Dido

[15] which allows modification of the data within the web page

which could then reflect those changes back to the underlying data.

4.2 Alternate hosts 1: WebCharts in IronPython

IronPython is a scripting language that follows Python syntax, but is

based on Microsoft’s Common Language Runtime.CLR. We

implemented an IronPython extension to WebCharts using

IronPython as the host. This allows IronPython users to add

visualizations inline within their code.

The interface for users is quite simple: they can invoke a

visualization by creating a new Visualization object with a URL, and

then can make calls against it

v=new Visualization(“http://server/vis.html”)

v.setData(dataTable)

The setData call (implemented within IronPython) uses Hostlib to

translate the data in the table into the Javascript format that

Figure 6: Timing graphs for each condition. Condition A: non-

aggregated (4200 rows), Condition B: Aggregated (4 rows),

Condition C: Single Row

�

���

����

����

� � �

��	
�

����

����

������

1162 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

WebCharts requires. This allows visualizations to be called from a

read-eval-print loop enabling support for interactive exploration of

data from a command line environment, similar to the Matlab and R.

4.3 Alternate hosts 2: Charts as Visual Debuggers

The Visual Studio IDE allows general extensions to be added

anywhere within the user interface, including the debugger. By

embedding the web-charts framework within a Visual Studio

extension, we have enabled simple visualizations of data structures at

debug time. See figure 7. While the demonstration at present is

primarily a proof of concept, enabling visualization of memory

allocation, processor utilization, values of variables over time could

all aid in the debugging process enormously.

5 CONCLUSIONS

We have created a simple strategy and architecture by which

visualizations can be plugged in to a variety of host applications.

This empowers end-users, application designers, and visualization

designers by allowing greater reuse of existing code. End-users do

not have to wait for new revisions of existing applications to use the

latest techniques; designers of domain specific visualizations can

work on just the visualization and have them incorporated into a

variety of different host applications. The strategy helps bridge the

benefits of both the client-centric and web-centric worlds. Users can

do local processing and visualizations on their own machine, yet

obtain new visualizations from the web world where they can be

updated more frequently and the ‘long-tail’ phenomena (small

amounts of special purpose applications) are available.

ACKNOWLEDGMENTS

The authors wish to thank David Karger, for his assistance with

Exhibit.

REFERENCES

[1] Baumgartner, Jason and Börner, Katy (2002). Towards an XML

Toolkit for a Software Repository Supporting Information

Visualization Education. IEEE Information Visualization

Conference, Boston, MA, 2002. Interactive Poster.

[2] R.A. Becker and W.S. Cleveland, “Brushing Scatterplots,”

Technometrics, vol. 29, May. 1987, pp. 127-142. 1987.

[3] B.B. Bederson, J. Hollan, K. Perlin, J. Meyer, D. Bacon and G.

Furnas Pad++: A Zoomable Graphical Sketchpad for Exploring

Alternate Interface Physics. Journal of Visual Languages and

Computing, 7. 3-31. 1994.

[4] Benjamin B. Bederson, Jesse Grosjean, Jon Meyer, "Toolkit

Design for Interactive Structured Graphics," IEEE Transactions

on Software Engineering, pp. 535-546, August, 2004.

[5] Bederson, B. B., Meyer, J., and Good, L. 2000. Jazz: an

extensible zoomable user interface graphics toolkit in Java. In

Proceedings of the 13th Annual ACM Symposium on User

interface Software and Technology (San Diego, California,

United States, November 06 - 08, 2000). UIST '00. ACM, New

York, NY, 171-180.

[6] Bostock, M.; Heer, J.; , "Protovis: A Graphical Toolkit for

Visualization," Visualization and Computer Graphics, IEEE

Transactions on , vol.15, no.6, pp.1121-1128, Nov.-Dec. 2009

[7] Dork, M.; Carpendale, S.; Collins, C.; Williamson, C.; ,

"VisGets: Coordinated Visualizations for Web-based

Information Exploration and Discovery," Visualization and

Computer Graphics, IEEE Transactions on , vol.14, no.6,

pp.1205-1212, Nov.-Dec. 2008.]

[8] Dundas Chart for ASP.NET. Dundas Documentation: 2005-

2009.

http://support.dundas.com/Dashboard1.Documentation.ashx .

Assessed 2010.

[9] Fekete, J.-D., "The InfoVis Toolkit," Information Visualization,

2004. INFOVIS 2004. IEEE Symposium on , vol., no., pp.167-

174.

[10] Flare, http://flare.prefuse.org, March 2010.

[11] Google Visualization API:

http://code.google.com/apis/visualization/interactive_charts.htm

. Assessed 2010.

[12] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for

interactive information visualization. In CHI, 2005.

[13] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit:

Lightweight structured data publishing. In WWW ’07: Proc. of

the Int. World Wide Web Conf., pages 737–746. ACM Press,

2007.

[14] JSON, http://www.json.org. Online assessed 2010.

[15] Karger, D. R., Ostler, S., and Lee, R. 2009. The web page as a

WYSIWYG end-user customizable database-backed

information management application. In Proceedings of the

22nd Annual ACM Symposium on User interface Software and

Technology (Victoria, BC, Canada, October 04 - 07, 2009).

UIST '09. ACM, New York, NY, 257-260.

[16] Lienhard, A.; Kuhn, A.; Greevy, O.; , "Rapid Prototyping of

Visualizations using Mondrian," Visualizing Software for

Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE

International Workshop on Software, vol., no., pp.67-70, 24-25

June 2007.

[17] McKeon, M.;“Harnessing the Information Ecosystem with

Wiki-based Visualization Dashboards," Visualization and

Computer Graphics, IEEE Transactions on , vol.15, no.6,

pp.1081-1088, Nov.-Dec. 2009.

[18] North, C. and Shneiderman, B. 2000. Snap-together

visualization: a user interface for coordinating visualizations via

relational schemata. In Proceedings of the Working Conference

on Advanced Visual interfaces (Palermo, Italy). AVI '00. ACM,

New York, NY, 128-135.

[19] Processing.

http://processing.orghttp://processing.orghttp://processing.org,

March 2010.

[20] TIBCO Spotfire. http://spotfire.tibco.com/. Assessed 2010.

[21] Chris Stolte, Diang Tang, and Pat Hanrahan. Polaris: A system

for query, analysis, and visualization of multi-dimensional

relational databases. Transactions on Visualization and

Computer Graphics, 8(1):52–65, Jan 2002.

[22] F. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M.

McKeon. Many eyes: A site for visualization at internet scale.

IEEE Trans. On Visualization and Computer Graphics,

13(6):1121–1128, Nov/Dec 2007.

[23] Weaver, C.; "Building Highly-Coordinated Visualizations in

Improvise," Information Visualization, 2004. INFOVIS 2004.

IEEE Symposium on , vol., no., pp.159-166. 2004.

Figure 7: WebCharts embedded in a development environment

(Visual Studio) and used for debugging.

1163FISHER ET AL: VISUALIZATIONS EVERYWHERE: A MULTIPLATFORM INFRASTRUCTURE…

	tvcg-16-06-1157-1163.p1
	tvcg-16-06-1157-1163.p2
	tvcg-16-06-1157-1163.p3
	tvcg-16-06-1157-1163.p4
	tvcg-16-06-1157-1163.p5
	tvcg-16-06-1157-1163.p6
	tvcg-16-06-1157-1163.p7

