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Abstract

Concurrent with recent theoretical interest in the problem of metric embedding, a growing body of
research in the networking community has studied the distance matrix defined by node-to-node laten-
cies in the Internet, resulting in a number of recent approaches that approximately embed this distance
matrix into low-dimensional Euclidean space. There is a fundamental distinction, however, between
the theoretical approaches to the embedding problem and this recent Internet-related work: in addition
to computational limitations, Internet measurement algorithms operate under the constraint that it is
only feasible to measure distances for a linear (or near-linear) number of node pairs, and typically in a
highly structured way. Indeed, the most common framework for Internet measurements of this type is a
beacon-based approach: one chooses uniformly at random a constant number of nodes (‘beacons’) in the
network, each node measures its distance to all beacons, and one then has access to only these measure-
ments for the remainder of the algorithm. Moreover, beacon-based algorithms are often designed not for
embedding but for the more basic problem of triangulation, in which one uses the triangle inequality to
infer the distances that have not been measured.

Here we give algorithms with provable performance guarantees for beacon-based triangulation and
embedding. We show that in addition to multiplicative error in the distances, performance guarantees
for beacon-based algorithms typically must include a notion of slack — a certain fraction of all dis-
tances may be arbitrarily distorted. For metric spaces of bounded doubling dimension (which have been
proposed as a reasonable abstraction of Internet latencies), we show that triangulation-based distance
reconstruction with a constant number of beacons can achieve multiplicative error 1 4+ § on a 1 — ¢ frac-
tion of distances, for arbitrarily small constants § and e. For this same class of metric spaces, we give
a beacon-based embedding algorithm that achieves constant distortion on a 1 — € fraction of distances;
this provides some theoretical justification for the success of the recent Global Network Positioning al-
gorithm of Ng and Zhang, and it forms an interesting contrast with lower bounds showing that it is not
possible to embed all distances in a doubling metric space with constant distortion. We also give re-
sults for other classes of metric spaces, as well as distributed algorithms that require only a sparse set of
distances but do not place too much measurement load on any one node.

ACM categories and subject descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
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1 Introduction

The past decade has seen many significant and elegant results in the theory of metric embeddings (for recent
surveys, see [24, 37, 41, 25]). Embedding techniques have been valuable in the design and analysis of
algorithms that operate on an underlying metric space; many optimization problems become more tractable
when the given metric space is embedded into one that is structurally simpler.

Meanwhile, an active line of research in the networking community has studied the distance matrix
defined by node-to-node latencies in the Internet [15, 18, 20, 22, 30, 57], resulting in a number of recent
approaches that approximately embed this distance matrix into low-dimensional Euclidean space [11, 44,
47, 51]." However, there is a fundamental distinction between this Internet-related work and the large body
of theoretical work on embedding, due to the following intrinsic problem: in any analysis of the distance
matrix of the Internet, most distances are not available. The cost of measuring all node-to-node distances
is simply too expensive; instead, we have a setting where it is generally feasible to measure the distances
among only a linear (or near-linear) number of node pairs, and typically in a highly structured way. In-
deed, the most common framework for Internet measurements of this type is a beacon-based approach: one
chooses uniformly at random a constant number of nodes (‘beacons’) in the network, each node measures
its distance to all beacons, and one then has access to only these O(n) measurements for the remainder of
the algorithm. (For example, the data can be shared among the beacons, who then perform computations on
the data locally.)

This inability to measure most distances is the inherent obstacle that stands in the way of applying
algorithms developed from the theory of metric embeddings, which assume (and use) access to the full
distance matrix. Thus, to obtain insight at a theoretical level into recent Internet measurement studies, we
need to consider problems in following two genres.

(i) What performance guarantees can be achieved by metric embedding algorithms when only a sparse
(beacon-based) subset of the distances can be measured?

(i) Atan even more fundamental level, many Internet measurement algorithms are seeking not to embed
but simply to reconstruct the unobserved distances with reasonable accuracy (see e.g. [15, 18, 20, 30]).
Can we give provable guarantees for this type of reconstruction task?

Reconstruction via triangulation. Within this framework, we discuss the reconstruction problem (ii) first,
as it is a more basic concern. Motivated by the research of Francis et al. on IDMaps [15], and subsequent
work, we formalize the reconstruction problem here as follows. Let S be the set of beacons; and suppose
for each node u, and each beacon b € S, we know the distance d,;. What can we infer from this data about
the remaining unobserved distances d,,,, (When neither v nor v is a beacon), assuming we know only that we
have points in an arbitrary metric space? The triangle inequality implies that

dyp — dop| < dyp < mind d 1
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and it is easy to see that these are the tightest bounds that can be provided on d,,, if we assume only that
the underlying metric is arbitrary subject to the given distances. We will say that d,,, is reconstructed by
triangulation®, with distortion A > 1, if the ratio between the upper and lower bounds in (1) is at most A.

"We speak of Internet latencies as defining as a “distance matrix” rather than a metric, since the triangle inequality is not always
observed; however, one can view the recent networking research as indicating that severe triangle inequality violations are not
widespread enough to prevent the matrix of node-to-node latencies from being usefully modeled using notions from metric spaces.

Note that this is one of several standard uses of the term “triangulation” in the literature; it should not be confused with the
process of dividing up a region into simplices, which goes by the same name.



Since it is much cheaper for nodes to exchange messages than to actually estimate their round-trip distance
on the Internet (the latter typically requires a significant measurement period to produce a stable estimate),
triangulation can be valuable as a way to assign each node a short label — its distances to all beacons — in
such a way that the distance d,,, can later be estimated by a third party (or by one of v or v) just from their
labels. This can be viewed as a kind of distance labeling, and we discuss related work on this topic (e.g.
[16]) below.

To give performance guarantees for triangulation, we also need a notion of slack. Even in very simple
metrics, there will be some distance pairs that cannot be reconstructed well using only a constant number
of beacons. Consider for example a set of regularly spaced points on a line (or in a d-dimensional lattice);
points u and v that are very close together will have a distance d, that is much smaller than the distance
to the nearest beacon, rendering the upper bound obtainable from (1) useless. We therefore say that a set
of beacons achieves a triangulation with distortion A and slack ¢ if all but an € fraction of node pairs in the
metric space are reconstructed with distortion A.

A fundamental question is then the following. Suppose we have an underlying metric space M, and
desired levels of precision € > 0 and § > 0. Is there a function f(-,-) (independent of the size of M) so that
f (€, 6) beacons suffice to achieve a triangulation with distortion 1 + 6 and slack €? Clearly such a guarantee
is not possible for every metric; in the n-point uniform metric, with all distances equal to 1, any distance
that is not directly measured will have a lower bound from (1) equal to 0. Thus we ask: are there are natural
classes of metric spaces that are triangulable in this way?

Beacon-based embedding. The recent work of Ng and Zhang on Global Network Positioning (GNP) [44]
showed how a beacon-based set of measurements could embed all but a small fraction of Internet distances
with constant distortion in low-dimensional Euclidean space, and this result touched off an active line of
follow-up embedding studies in the networking literature (e.g. [11, 47, 51]). Note that the empirical guar-
antee for GNP naturally defines a notion of € slack for embeddings: an € fraction of all node pairs may
have their distances arbitrarily distorted. Again, it is easy to see that this notion of slack is necessary for
a beacon-based approach. The GNP algorithm forms an interesting contrast with the algorithms of Bour-
gain and Linial, London, and Rabinovich [8, 38] for embedding arbitrary metrics. These latter algorithms
use access to the full distance matrix and build coordinates in the embedding by measuring the distance
from a point to a set — in effect, sets that can be as large as a constant fraction of the space thus act as
“super-beacons” in a way that would not be feasible to implement for all nodes in the context of Internet
measurement.

In order to understand why beacon-based approaches in general, or the GNP algorithm in particular,
achieve good performance for Internet embedding in practice, a basic question is the following: are there
natural classes of metric spaces that are embeddable with constant distortion and slack ¢, using a constant
number of beacons?

The present work: Performance guarantees for beacon-based algorithms. We begin by showing that
distances in a metric space M whose doubling dimension is bounded by k can be reconstructed by triangu-
lation with distortion 1 + ¢ and slack ¢, using a number of beacons that depends only on 4, €, and dimension
k, independent of the size of M. We define the doubling dimension here to be the smallest k£ such that every
ball can be covered by at most 2% balls of half the radius; we also call such a metric space 2*-doubling.
The point here is that we are not assuming a reconstruction method that explicitly knows anything about the
doubling properties of M ; rather, as long as the number of beacons is simply large enough relative to the
doubling dimension, one obtains accurate reconstruction using upper and lower bounds obtained from the
triangle inequality alone. Doubling metrics, which generalize the distance matrices of d-dimensional point
sets in /,,, have been the subject of recent theoretical interest in the context of embedding, nearest-neighbor



search, and other problems [19, 27, 19, 33, 56]; and an increasing amount of work in the networking com-
munity has suggested that the bounded growth rate of balls may be a useful way to capture the structural
properties of the Internet distance matrix (see e.g. [14, 44, 46, 59]). Thus, given that strong triangula-
tion performance guarantees are not possible for general metrics (as noted above via the uniform metric),
this positive result for doubling metrics serves as a plausible theoretical underpinning for the success of
beacon-based triangulation in practice.

Certain non-trivial metric spaces exhibit a stronger version of triangulation that we term perfect triangu-
lation: on all but an e-fraction of node pairs, the upper and lower bounds from the triangle inequality agree
exactly (i.e. with distortion 1). For example, one can show that f(d, €) beacons suffice to achieve perfect
triangulation with slack e on the points of a d-dimensional lattice under the ¢; metric. It is thus natural to
ask how generally this phenomenon holds. Perfect triangulation turns out not be possible for all point sets
in the £; metric, but we show that it can be achieved for all balanced point sets in £1; by a balanced point set
we mean an n-point subset of R? in which the ratio of the largest to the smallest distance is O(dn'/?).

We next move on to results for beacon-based embedding. We show that every metric space can be
embedded into £, (for any p > 1) with constant distortion and slack e, using a constant number of beacons,
where the constants here depend only on €. Moreover, for doubling metrics we show that an embedding with
these properties can be achieved by a close analog of the actual GNP algorithm of Ng and Zhang, providing
further theoretical explanation for its success in practice. It is interesting to note that arbitrary metric spaces
(and even arbitrary doubling metrics) cannot be embedded into Euclidean space (or into £, for any p > 2)
with constant distortion [38, 40], so this is a case where allowing slack leads to a qualitatively different
result.

While beacon-based algorithms perform a manageable set of measurements, they do so by choosing
a small set of nodes and placing a large computational and measurement load on them. Several recent
networking papers [11, 47, 51] address the unbalanced load of beacon-based methods using uniform probing:
each node selects a small number of virtual ‘neighbors’ uniformly at random and measures distances to them;
all nodes then run a distributed algorithm that uses the measured distances. We show how an extension of
our techniques here can be used to give performance guarantees for distributed algorithms such as these.

In particular, to analyze these uniform-probing embedding algorithms, we build on the techniques we
develop for reasoning about triangulation. We consider graphs GG on the set of nodes with the property that
embeddings that approximately preserve all edge lengths in G must have constant distortion with slack e
for the full distance matrix. This is a kind of “rigidity” property (with slack) that follows naturally from the
analysis of triangulation, and we can show that graphs consisting of node-to-beacon measurements, as well
as graphs built in a more distributed fashion, can be usefully analyzed in terms of this property. We then
simulate a beacon-based algorithm: instead of measuring distances to beacons directly, nodes cooperatively
infer them from the probed distances via an appropriate distributed algorithm. The inferred distances to
beacons are in fact upper and lower bounds on the true distances that are sufficiently precise to yield a good
triangulation. To obtain an embedding from these bounds, one needs somewhat more elaborate technique
than the one for the ’pure’ beacon-based result; this is because the inferred distances do not quite obey the
triangle inequality.

The present work: Extensions. We extend the above results on beacon-based approaches in two direc-
tions. First, we consider a more restrictive notion of slack (termed e-uniform slack) when for each node
u, at most an e-fraction of node pairs (u, v) may be arbitrarily distorted. Our results on triangulation and
embedding easily extend to this notion of slack, at the cost of making the number of beacons proportional
to log n. We achieve e-uniform slack with a constant number of uniformly sampled beacons (the number of
beacons dependent only on ¢, distortion, and the doubling dimension) via a novel lemma on the structure of
doubling metrics. We also discuss an extension to infinite metric spaces.



Second, we show that stronger guarantees can be obtained in the more restrictive class of growth-
constrained metrics, in which doubling the radius of a ball increases its cardinality by at most a constant
factor. Such metric spaces can be seen as generalized grids. They have been used as a reasonable abstraction
of Internet latencies in the long line of work on locality-aware Distributed Hash Tables started by Plaxton et
al. [49] (see the intro of [21] for a short survey); they have also been considered in the context of compact
data structures [27], routing schemes [3], dimensionality in graphs [32], and gossiping protocols [28]. For
growth-constrained metrics we obtain an embedding with a more “gracefully degrading” notion of slack:
all but an e-fraction of distances are embedded with distortion A = O(log %), all but an e-fraction of the
remainder are embedded with distortion 2A; and in general, all but an ¢’ fraction are embedded with distor-
tion jA. We also show that the following simple nearest-beacon embedding is effective: select k beacons
uniformly at random, embed the beacons, and then simply position each other node at the embedded location
of its nearest beacon.

Related work. As discussed above, the questions we consider here differ from the bulk of algorithmic
embedding research (as surveyed in [24, 37, 41, 25]) because we are able to measure only a small subset
of the distances, and we allow a notion of slack in the performance guarantee. Indeed the whole problem
of triangulation, which seeks simply to reconstruct the distances, would not be of interest if we already had
access to all distances. Allowing slack changes the kinds of performance guarantees one can achieve; for
example, as mentioned above, doubling metrics become embeddable with constant distortion in Euclidean
space once a small slack is allowed. At the same time, we find that techniques from the body of previous
work on embedding, combined with our results on triangulation, are useful in designing algorithms under
these new constraints.

Work on distance labeling [16] seeks to assign a short label to each node in a graph so that the distance
between u and v can be (approximately) determined from their labels alone. This is of course analogous to
our goals in triangulation. In the most closely related work in this vein, Talwar [56] investigated distance
labels for doubling metrics.? Both the objective and the techniques in [56] differ considerably from our work
on network triangulation here, however: in [56], the concern is with labels of low bit complexity, but the
encoding of distances into short labels there makes extensive use of the full distance matrix, and it is thus
not adaptable to our setting in which distances to only a few beacons can be measured. The more extensive
use of the distance matrix in [56] comes in pursuit of a stricter goal: distance labels in which there is no
notion of slack in the performance guarantee.

Work on property testing [17] makes use of a somewhat different notion of slack in its performance
guarantees: can an e-fraction of the input be changed so that a given property holds? There has been some
research on property testing in metric spaces (see e.g. [34, 45], and related work on sampling for approx-
imating metric properties in [23]), but this work has considered problems quite different from what study
here, and makes use of different sampling models and objective functions. Metric Ramsey theory [6] also
seeks subsets of a metric space satisfying specific properties, but it tends to operate in a qualitatively dif-
ferent part of the parameter space, exploring properties that hold on the sub-metric induced by relatively
small subsets of the nodes, rather than properties that hold on a large fraction of the edges. Finally, distance
geometry [10] is a large area concerned with reconstructing point sets from sparse and imprecise distance
measurements; our use of triangulation here corresponds to the notion of triangle inequality bounds smooth-
ing in [10], but beyond this connection we are not aware of closely related work in the distance geometry
literature.

3 After the conference version [29] of this paper has appeared, distance labels for doubling metrics have also been considered
in [53, 42, 52].



Follow-up work. There is an interesting and quite natural open question raised by our work here: Can
every metric space be embedded into ¢, with constant distortion and e-slack? To this end, we demonstrate
that standard examples of metric spaces that require super-constant distortion for embeddings into £, —
bounded-degree expanders and hypercubes — do not serve as counterexamples for embeddings with slack,
since they can actually be embedded with constant distortion and e-slack into a uniform metric; see Section 7
for details. In the follow-up work [1, 9] we resolve this question in the affirmative. We achieve distortion
O(log 1); it is shown to be optimal up to constant factors.

Another open question concerns embeddings with gracefully degrading distortion: Can we extend our
result for growth-constrained metrics to more general families of metrics? Indeed, in [1, 9] we have obtained
gracefully degrading embeddings into ¢, for decomposable metrics [19, 31], a wide family of metrics that
includes doubling metrics and metrics induced by planar graphs, and for arbitrary metrics in the case when
the target space is (high-dimensional) ¢;. Subsequently, Abraham et al. [2] resolved the question in full,
achieving low-dimensional gracefully degrading embeddings for arbitrary metric spaces into any £, p > 1.

Finally, can we achieve triangulation without e-slack? In the follow-up work we considered triangu-
lations where instead of a single global set of beacons each node has a distinct beacon set, and for each
node pair (u,v) the triangle inequality is applied for every node that is a beacon for both u and v. In this
framework we achieved slack-less triangulation (with distortion 14§ and only a poly-logarithmic number of
beacons per node) for doubling metrics via a centralized construction [53, 52], and for growth-constrained
metrics via a distributed construction [55].

The line of work started by this paper (excluding [2]) has been brought together in the Ph.D. thesis of
A. Slivkins [54]. While the main open questions directly motivated by this paper have been resolved in
the follow-up work, that work has lead to a number of new open questions; see Chapter 8 of [54] for a
discussion.

Organization of this paper. The present paper is an extended version of Kleinberg et al. [29], which
includes closely related portions from Slivkins [53]. Specifically, the results on uniform slack (Section 4)
and on embedding via uniform probing (Theorem 5.10) are from [53]. We believe that such joint exposition
benefits both papers.

Sections 2 and 3 are on beacon-based triangulation and embeddings, respectively. Sections 4 concerns
uniform slack. In Section 5 we discuss approaches based on uniform probing. In Section 6 we strenghten
our results for beacon-based embeddings for the family of growth-constrained metrics. Finally, in Section 7
we discuss possible counterexamples for embeddings with slack.

1.1 Preliminaries.

Let us start with some notation that will be used throughout the paper. Unless specified otherwise, we denote
the underlying metric space by (V, d), so that d(u, v) denotes the distance between nodes u and v; we also
use d,,, whenever typographically convenient. Let B,,(r) be the closed ball of radius r around node u, i.e.
B,(r) ={v € V : dy, < r}. Let r,(¢) be the radius of the smallest closed ball around w that contains at
least en nodes. The open ball of radius r around node wu is the set of all nodes within distance strictly less
than  from w. The term ball in a metric space refers to a closed ball unless specified otherwise.

For k € N define [k] as the set {0, 1 ...k — 1}. Throughout the paper, n denotes the number of nodes in
the input graph or metric space. All metric spaces are finite except in Section 4.1.

Our results for triangulation and embedding will generally involve showing that a large enough set of
beacons sampled uniformly at random from the metric space will have a certain desired property. (For
brevity, we will refer to such a sampled subset of the space as “a constant number of randomly selected

beacons.”) Because we will be working in many cases with constant-size samples, our properties will



typically hold with a constant probability that can be made arbitrarily close to 1. Hence, in this context, we
will sometimes use the phrase “with probability close to 17 as an informal short-hand for: with a probability
that can be made arbitrarily close to 1 by increasing the sample size by a constant factor. Some of our
guarantees have a stronger form, termed with high probability, which means that by increasing the sample
size by a constant factor ¢ the failure probability can be reduced to 1/n¢.

Doubling metrics Any point set in a k-dimensional £, metric, p > 1, has the following property, called
the doubling property [5]: for some s = 0(2’“) every set of diameter d can be covered by s sets of diameter
d/2. (The diameter of a set is the maximal distance between any two points in it.) This motivates the
following definition: the doubling constant of a metric space is the smallest s such that the above property
holds. A metric space is called s-doubling if its doubling constant is at most s. The doubling property is
often characterized via the doubling dimension of a metric space, defined as the log of the doubling constant.

Doubling metrics are defined as metrics with bounded (and, intuitively, low) doubling constant. By
definition, doubling metrics generalize constant-dimensional ¢, metrics. Doubling metrics is a much wider
class of metrics: in particular, there exist doubling metrics on n nodes that need distortion Q2(1/logn) to
embed into any £, p > 2 [50, 35, 36, 19]. Interestingly, the doubling property is robust:

Lemma 1.1. The doubling dimension of a subset is no larger than that of the entire metric space.

Proof. Let « be the doubling dimension of a metric on node set 1/, and let S be a subset. Then any subset
S’ C S can be covered by 2% subsets Si,.52,53,... C V, each of diameter d/2. To obtain the desired
covering by 2% subsets of .9, just intersect each of the S;’s with S. O

Recall that the defining property of a doubling metric is that any set of diameter d can be covered by a
constant number of sets of diameter at most d/2. We will use this property via a more concrete corollary
where we cover with a constant number of balls:

Lemma 1.2. In a metric with doubling constant s, any set of diameter d can be covered by s* balls of radius
d/2F, for any integer k > 1. The desired cover can be efficiently constructed.

Proof. Consider a set S of diameter d and apply the doubling property recursively k times. It follows that
S can be covered by s” sets of diameter at most d/2*. Pick any one point from each of these sets. Then
S can be covered with s* balls of radius d/2" centered in the selected points. Moreover, it follows that the
desired cover can be efficiently constructed by a simple greedy algorithm select any node u € S, add the
ball around  to the cover, delete from S all nodes within distance d/2* from u, repeat until S is empty. [

In fact, for all our applications it suffices to redefine the doubling property in terms of covering a large
ball with balls of half the radius. Moreover, it is slightly more convenient technically; in particular, the proof
of Lemma 1.2 simplifies. However, under this definition we no longer have robustness (Lemma 1.1).

Chernoff Bounds. Throughout the paper we use Chernoff Bounds, a standard result which says that the
sum of bounded independent random variables is close to its expectation with high probability (e.g. see the
textbook of Motwani and Raghavan [43] for the proof).

Theorem 1.3 (Chernoff Bounds). Consider the sum X of n independent random variables X; € [0, y].
(a) forany p < E(X) and any € € (0,1) we have Pr[X < (1 — €)u] < exp(—e2u/2y).

(b) forany u > E(X) and any 3 > 1 we have Pr[X > (u] < [%(e/ﬁ)ﬁ]“/y.



2 Beacon-based triangulation

We start by defining a notion of beacon-based distance estimation via triangle inequality:

Definition 2.1. If F is a set of node pairs in a metric space, we say that E is an e-dense set if it includes all
but an e-fraction of all pairs. We say that F is a uniform e-dense set if it includes all but an e-fraction of all
pairs of the form (u, v) for each point w.

Definition 2.2. Given a set S of beacons, we define lower and upper distance bounds for each pair (u, v) of
points: D, = maxpes |dup — dyp| and D, = minges(dup + dpy). We say that S achieves a triangulation
with distortion 1 + & and (uniform) slack e if we have D, < (1 + §) D, for a (uniformly) e-dense set of
node pairs (u, v). For brevity, let us call it a (uniform) (¢, &)-triangulation.

As noted in the introduction, good triangulation bounds cannot be obtained for all metric spaces since,
for example, non-trivial lower bound values D, cannot be achieved in the uniform metric in which all
distances are 1. However, it is interesting to note that in every metric space, the upper bound D!, actually
does come within a constant factor of the true distance on all but an € fraction of pairs.

Theorem 2.3. If M is an arbitrary finite metric space, then a constant number of randomly selected beacons
achieves an upper bound estimate D}, < 3d,, for all but an e-fraction of pairs (u,v) with probability at

least 1 — ~y, where the constant depends on € and .

Proof. Letus fix €,y € (0,1). Let B, be the smallest ball around node u containing at least en/2 nodes.
For each point u in M, and with enough beacons, at least one point in B, will be selected as a beacon
with probability 1 — ey/2. Suppose this happens, and let b be a beacon in B,,. Then all but at most en /2
points v lie outside B,, or on its boundary; for any such point, we have d,; < dp + dyy < 2d,,, and hence
Dq—l_y < dub + dvb < duv + Qduv = 3duv

Let us say that a node u is good if for all but at most en/2 node pairs (u,v) we have D, < 3d,,,
and bad otherwise. We have proved that each node is bad with probability at most e7/2. Letting N be the
number of bad nodes, we have E[N] > % eyn, so by Markov inequality we have Pr[N > en/2] < . Itis
easy to see that if N < en /2 then for all but at most en node pairs we have D}, < 3d,. U

uv —

The upper bound of 3 in Theorem 2.3 is tight, as shown by the shortest-path metric of the complete
bipartite graph G = K, ,, with unit-distance edges. For all non-beacon pairs (u,v) on opposite sides of
G, we have Dj[v = 3d,,. With a modification of this example, we can in fact show that no algorithm
given access to each node’s distances to all beacons can estimate d,, to within a factor better than 3 for a
large fraction of pairs (u,v). Specifically, we randomly generate a graph G’ by deleting each edge from
G = K, , with probability % If w and v are on opposite sides of G’, then d,,, = 1 if the edge (u,v) is
present, and otherwise d,,, = 3 with probability 1 — o(1). But if neither u nor v is a beacon, the full set of
node-to-beacon distances gives no information about the presence or absence of the edge (u,v), and hence
one cannot resolve whether this distance is 1 or 3.

For doubling metrics, we have a much stronger result.

Theorem 2.4. In any s-doubling metric space M, a constant number of randomly selected beacons achieves
an (€, d)-triangulation with probability 1 — ~, where the constant depends on 0, €, v, and s.

Proof. Fix any point u. Let r = 7,(¢e/3), and consider a large ball B = B,,(2r/J). By our definition of
r, there are only a small number of points at distance strictly less than r from u, and we will ignore our
estimated distances to these points. By selecting enough beacons, we can ensure that with probability close
to 1 at least one beacon b lies in By, (r). Consider any point v ¢ B. Since b is close to u and relatively very
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Figure 1: Triangulation in doubling metrics.

far from v, we can argue that the upper and lower bound provided by b on the distance from u to v will be
good (see Figure 1a). In particular, if d = dy,, then dyp + dyp < d+2dy, < d+2r = (14 9)d, and similarly
dyp — dyp > (1 = 6)d.

It remains to consider the possibly large set of points in the annulus B — B, (r). For these points, a
beacon in B, (r) will not necessarily suffice to give the desired bound. Instead, we need to use the doubling
property to show that the points in the annulus can be covered with a bounded number of very small balls,
and with probability close to 1 we can ensure beacons lie in most of these. In other words, to estimate the
distance d,,,, for v € B — B,,(r), we will find a beacon close to v rather than close to u.

We would like to cover the annulus with balls of small radius 7/ = dr/2. By the doubling property,
B (and hence B — B,(r)) can be covered by s = (2/6)2!°8% balls of radius 7/, as shown in Figure 1(b).
Disregarding balls containing fewer than en/3s’ points throws out at most en/3 points. Again, if we know
that each of the remaining balls contains a beacon, then all points in these balls will have upper and lower
bounds that are within a 1 &£ ¢§ factor of their respective distances to u.

Thus, we conclude by arguing that if we chose a sufficiently large (constant) number %k of beacons,
namely k = O(s'/e)(log 1), then each ball containing en/3s" or more points will contain a beacon with
probability close to 1. So by Markov inequality with probability close to 1 a beacon will be selected in all
but an €/3 fraction of balls containing en/3s’ or more points. Combining these results shows that all but
%en points have good estimated distances to all but %en points. This is the desired result. O

Remark. The above argument uses O(2log 1) (2/5)!°¢% beacons to obtain an (e, §)-triangulation with
high probability. Note that a similar argument with O(% logn) (2/5)?1°8 ¢ beacons yields a uniform (e, §)-
triangulation. In Section 4 we obtain a uniform (¢, §)-triangulation using a number of beacons that depends
only on s, € and 9.

The following lemma is implicit in the proof of Theorem 2.4, and it will be very useful in our subsequent
discussion of doubling metrics:

Lemma 2.5. Consider an s-doubling metric space (V,d), fix €,6 € (0,1), and let e5 = § (g)mogs. Then

there exists a uniform e-dense set of node pairs (u,v) such that min(r,(€), 7y (€s)) < ddyyp.

Perfect triangulation As mentioned in the introduction, the stronger notion of perfect triangulation is
sometimes achievable, when D, = D}, = d,, for all but an e-fraction of node pairs, using only a constant



number of beacons. A natural example where this occurs is for the points of a finite d-dimensional lattice
under the ¢; metric (this is a consequence of Theorem 2.6 below). It is natural to ask whether perfect
triangulation is possible for all finite point sets in the £; metric, but this is too strong; consider for example
the union of the points {(i,n — i) : i € [n|} and {—i, —(n — ) : 7 € [n]} in the plane.

As a way to understand how general this phenomenon is, we use the following notion of a balanced
point set as a generalization of the d-dimensional lattice: We say that a finite subset of R% under the ¢;
metric is balanced if the coordinates of all points lie in the interval [0, (kn)'/?] for a constant k, and the
minimum distance between each pair of points is 1. (We will refer to k as the balancing parameter.)

Theorem 2.6. In any balanced point set M under the {1 metric, a constant number of randomly selected
beacons achieves a perfect triangulation with e slack and with probability 1 —~, where the constant depends
on €, v, the dimension, and the balancing parameter.

Proof. We start with a proof sketch and follow up with the full proof. For ease of exposition we assume that
d = 2, but the same techniques extend naturally to any constant dimension.

Given a balanced point set M in [0, v/kn]?, we divide M into square cells with width and height §v/kn,
for a small constant §. We partition these cells into two types: heavy and light, where roughly speaking the
heavy cells are those that contain at least €2(62n) points. We argue that with probability close to 1, each
heavy cell will contain a beacon. Also, we can ignore errors on pairs that involve points in light cells, or that
involve two points in the same heavy cell, since there are relatively few pairs like this. Thus, we only need
to consider pairs of points that belong to distinct heavy cells.

We then argue that for most heavy cells C, there are heavy cells K1, Ko, K3, K4 in each of the four
“quadrants” of the square [0, \/%]2 defined by treating C' as the origin. This requires a geometric argument
based on the balancing property; however, once the existence of K, Ko, K3, K4 is established, one beacon
in each K is sufficient to provide a tight lower bound on any distance pair involving a point in C'. Analo-
gously, for the upper bound, we show by another application of the balancing property that for most pairs of
heavy cells C' and C”, there is a heavy cell K in the rectangle with corners at C' and C’; one beacon in K is
sufficient to provide a tight upper bound on distances between points in C' and C’. This completes the proof
sketch.

Let us proceed with the full proof. Consider a balanced point set M in [0, \/%]2 Divide M into cells
with width and height & Vkn, for some § to be chosen later. There will be 5% cells. Let ¢ and y¢ denote the
row and column of cell C. Define h = min(d?n/4k, 6*ne/3), and call a cell C heavy if it contains at least
h points, and light otherwise. The idea is that we will be able to ensure that with high probability, nearly all
heavy cells will contain beacons, and that a negligible number of points fall outside of the heavy cells. We
will then argue that for most pairs of points that lie in heavy cells, triangulation will give matching upper
and lower bounds.

Since no two points in M are within a distance of 1, no cell can have more than 462nk points. So if we
let o be the fraction of cells that are heavy, then (omitting some easy arithmetic) o > 1/(4k + 1).

We will begin by proving that the lower bound is correct for most pairs. Say two cells C, D are aligned
if ¢ = xp or yo = yp. Let A¢ be the set of cells aligned with C. Note that the removal of A¢ partitions
the area into four quadrants, which we label C'1, Co, C3, and Cy, as shown in Figure 2(a). Say a heavy cell
C'is good if each of its four quadrants contain at least one heavy cell, and bad otherwise. Observe that if C'
is good, and all heavy cells contain beacons, then each point x € C' will have correct lower bounds to each
point y € M — Ac. (This is due to the fact that the quadrant C; opposite to y contains a beacon.)

We now need to show that most heavy cells are good. Any heavy cell that is not good can attribute its
badness to one of its quadrants. Define BB; for 1 < ¢ < 4 to be the set of heavy cells lacking a heavy cell
in their i** quadrant. Consider cells C, D € B; and note that ¢ + yc # xp + yp, since otherwise one of
these cells would be to the upper-left of the other, violating our assumption. Therefore |B;| < % (see Figure
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Figure 2: Balanced point sets: (a) a cell C, the set A¢ in gray, and the corresponding quadrants; (b) a band
of bad heavy cells.

2(b) for a possible B; set). The argument is symmetric for all four quadrants, so in total, there can be no
more than % bad cells. Since any cell contains at most 46°nk points, the total number of points in bad cells
is at most 326nk. Choosing § = 55 ensures that only £n points are in bad cells.

By our definition of A, the total number of points that are in light cells is also at most §n. Lastly, for
those points in any good cell C', we have no guarantee about the lower bound to points in .A¢. But this set
contains % — 2 cells, and hence fewer than £n points. Hence, by selecting a large enough number of beacons,
we can ensure with high probability that all but an € fraction of distances have correct lower bounds.

The same general idea works for the upper bound as well. The primary difference is we need the idea of
a heavy cell D being bad relative to some cell C', meaning there are no heavy cells in the rectangular region
bounded by C' and D. It is this region that needs to contain a beacon for us to have a good upper bound on
distances from C' to D. As before, we can show that only a small number of cells are bad relative to any
other cell, and for all other cells, the calculated upper bound will be correct. The same choice of § used
above gives the desired result. O

3 Beacon-based embeddings

We now turn to the problem of beacon-based embedding. Let f map the points of M into some target metric
space X with distance function d*'; we say that f is an embedding of M, and for nodes u, v € M, we write
d,, for d;((u% F(v)- We define the distortion of f on a set of node pairs E C M x M to be the ratio between
the maximum amount by which distances are expanded, max, .)eg d.,,/duy, and the minimum amount
min, e d.,,,/duy. We will say that f has non-contracting distortion A on F if no distance in E is shrunk
under f, and no distance is expanded by more than a factor of A. Following our discussion earlier, we can
say that f has distortion A with slack € if f has distortion A on some e-dense set of pairs.
We will be able to use our triangulation analysis via the following definition.

Definition 3.1. Consider a set S C V of beacons. Let E be the set of all node pairs (u,v) such that some
beacon b € S lies within distance dd,,,, from u or v. Let us call S a (uniform) (e, d)-base if E is a (uniform)
e-dense set of edges.

Note that any such set achieves a (uniform) (e, 39)-triangulation. Let us restate the conclusions from the

10



proof of Theorem 2.4 as follows:

Theorem 3.2. Consider an s-doubling metric on n nodes. Let kg = O(%) (2/8)!°¢%. Then:
(a) (kolog %) randomly selected nodes form an (e, §)-base with probability close to 1.
(b) (kologn) randomly selected nodes form a uniform (e, 0)-base with high probability.

For a set S of beacons, let Fg be the set of all node pairs (u,v) where at least one of u or v belongs
to S. We show that if beacons form an (e, d)-base, for a sufficiently small J, then in order to guarantee a
low-distortion embedding with slack it suffices to achieve low distortion on Fg.

Lemma 3.3. Consider a metric space M with an (e, 0)-base S, and suppose an embedding f : M — X

has non-contracting distortion A on Eg, where A < %. Then the embedding has distortion O(A) with
slack e. Furthermore, if S is a uniform (e, §)-base, then the embedding has distortion O(A) with e-uniform

slack.

Proof. This lemma is subsumed by Lemma 5.2 in Section 5. This is because in the terminology of that
section, the edge set E'g is an (¢, §)-frame. O

In fact, for any beacon set S we are be able to guarantee distortion A = O(log |S|) on Eg.

Lemma 3.4. There exists an absolute constant co with the following property. Consider a metric space
(V,d) and a set S C 'V of k beacons. Then for any p > 1 there exists an embedding into £, with O(k log k)
dimensions that achieves distortion (co log k) on the edge set Eg. Moreover, in this embedding the coordi-
nates of every given node u are defined as a function of its distances to the nodes in S, and can be efficiently
computed.

Proof Sketch. We first embed S using the algorithm of Bourgain [8, 38]. Recall that this involves choosing,
for each i = 1,2,..., [log k], a collection of x subsets of S of size 2¢, each uniformly at random. Let Sij
denote the j*" of these. We assign each node b € S a coordinate corresponding to each set Sij, defined to
be d(b, S;;), the minimum distance between b and any point in S;;.

Having embedded the beacons, we then embed every other node  using these same sets {S;; }; for each
Sij, node u constructs a coordinate of value d(u, S;;). In the approach of Linial et al., z = O(log k) sets
of each size are chosen. Here, by way of contrast, we take x = ©(k); we claim that with this choice of
random sets {.5;;} in the embedding, the set of node-beacon pairs is embedded with distortion O(log k) with
probability close to 1.

To establish this claim, we give upper and lower bounds on the embedded distances; the calculations
here differ from [8, 38] in that we will be taking a union bound over subsets of beacons, rather than over the
much larger set of all node pairs. The upper bound is straightforward, so we focus on the lower bound. Here,
we fix i and let A and A’ be two disjoint subsets of S of size k/2° and 2k/2° respectively. One can show
there is a constant ¢ so with probability at least ¢, a given S;; has the property that it hits A and misses A’.
Thus the expected number of S;;’s with this property is ck, so applying the Chernoff bound, for large enough
x = O(k) the probability that at most cz/2 of S;;’s do not have this property is at most e~°*/8 < 272k,
Therefore with probability close to 1 for all 4, for every pair A, A" of disjoint subsets of S of the right size,
this property holds for Q(k) sets S;;. Once this is true, consider embedding any given node u, separately
from all other non-beacon nodes; an analog of the telescoping-sum argument from [38] gives the desired
lower bound. O

Let us define a (uniform) e-base as a (uniform) (e, ﬁ)-base S such that A = ¢glog |S|. Combining
the previous two lemmas, we obtain a beacon-based embedding whenever the beacons form an e-base.
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Theorem 3.5. Consider a metric space (V,d) and a set S C V of k beacons. If S is a (uniform) e-base,
for some € € (0, 1), then there exists a O(k log k)-dimensional embedding of V' into {,, which has distortion
O(log k) with e-(uniform) slack. In this embedding, the coordinates of every given node u are defined as a
function of its distances to the beacons in S, and can be efficiently computed.

We will use this theorem to obtain improved embeddings with uniform slack (Theorem 4.1); moreover,
this embedding technique will be essential for our result on fully distributed embeddings in the next section.

In view of the above theorem, we need to make sure that a small set of beacons forms a (uniform) e-base.
Indeed, by Theorem 3.2 such beacon sets exist and can be constructed via random node selection:

Corollary 3.6. Consider an s-doubling metric space on n nodes. Let S be the set of k > 4 randomly
selected nodes. Then there exists a constant c such that:

(a) if k> (s/€)¢1°8198(5/) then S is an e-base with probability close to 1.

(b) ifk > gcloglogz 4 — 2logmn, then S is a uniform e-base with high probability.

Proof Sketch. Let cy be the constant from Lemma 3.4. We start with &k and define § = (4cg log k)~!. Take
ko = O(2) (2/6)?'°8* from Theorem 3.2. Then it suffices to check that k > kqlog 2 for part (a), and that
k > kg logn for part (b). ]

Theorem 3.5 does not quite capture the full power of Lemma 3.3 and Lemma 3.4. We can further exploit
these two lemmas to obtain a beacon-based embedding with a novel black-box flavor: beacons are embedded
first (by inspecting only the distances between the beacons), and then the coordinates of every non-beacon
node u can be computed separately by any black-box procedure that inspects the distances from u to the
beacons and minimizes distortion on these distances. This closely mimics the behavior of GNP.

Definition 3.7. Consider a metric space (V,d), node set S C V, an embedding f : S — X, and a node
u ¢ S. Then a (u, A)-extension of f is an embedding g : S U {u} — X that coincides with f on S and
has distortion A on all node pairs (u,v) withv € S.

Theorem 3.8. Fix p > 1 and let ¢ be the constant from Lemma 3.4. For every metric space (S, d) there

(IS|1og [S])

exists an embedding f(s q) : S — Eg) with distortion cglog | S| and the following property (*):

Property (*). Consider a metric space (V,d) and a beacon set S C V. Let f = fgq) and let A =
cp log |S].
(a) Foreach node u ¢ S there exists a (u, A)-extension of f. Let g,, be any such extension.
(b) Let g : V' — £, be an embedding that coincides with f on .S, and equals to g, (u) for every node
u ¢ S.If Sis a (uniform) (e, ﬁ)—base, then g achieves distortion O(A) with e-(uniform) slack.

Remark. In part (a), in order to construct a suitable g, it suffices to inspect only the coordinates of the
beacons under f and the distances from w to the beacons. A key feature of this theorem is that it requires
neither any specific embedding g,, nor any specific procedure to compute it: any black-box procedure that
computes a (u, A)-extension of f would work.

We also provide a different embedding algorithm that achieves qualitatively similar bounds: constant
distortion with e-slack, using a constant number of beacons. This alternate algorithm offers somewhat better
quantitative guarantees but is less useful in justifying GNP. We state the result precisely as follows:

Theorem 3.9. For any s-doubling source metric space (V,d), any target metric space {,, p > 1, and any
parameter € > 0, we give the following two O(log ?)-distortion embeddings:

(a) with e-slack into O(log? %) dimensions, and

(b) with e-uniform slack into O(lognlog %) dimensions.
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These embeddings can be computed with high probability by randomized beacon-based algorithms that use,
respectively, only O(% log %) and O(£ logn) beacons.

Proof. We capture the dependence on the doubling constant s via a parameter 3 = ¢/2s5. Recall that
by Lemma 2.5 there exists a uniform e-dense set E of node pairs (u,v) such that min(r,(5),r,(3)) <
%duv. We will give a randomized algorithm that embeds any s-doubling metric d into £, with dimension
O(log % log %) slack € and and distortion O(log %) using only O(% log %) beacons, with success proba-
bility at least 1 — 4. In particular, there exists an embedding with dimension O (log? %), slack € and distortion
O(log %) that uses only O(% log %) beacons. Note that log % = O(log 2).

The algorithm is essentially Bourgain’s algorithm [8, 38] without the smaller length scales. For each
i € [log %], choose £k = O(log %) sets of beacons of size 1/(2'3), call them S,;. Each set is cho-
sen independently and uniformly at random. Embed each node v into £, so that the ij-th coordinate is
k=P d(v, S;;), where d(v, S) = min,eg d(u, v) is the distance between node v and set .

Let dp(u, v) be the embedded uv-distance For simplicity we consider the case p = 1 first. Since for any
set S we have dy,, > |d(u, S) —d(v, S)|, it follows that d; (u, v) < O(dy, log %) The hard part is the lower
bound: dy(u,v) = Q(dyy)-

Fix a node pair uv € E. Let d = dy,. Let p; = min(r,(32%),7,(82%),d/2). Note that the sequence p;
is increasing with py < d/4 and p; = d/2 for i > i( for some i.

For each i we claim that with failure probability at most 5/ log % the total contribution to dy (u,v) of
all sets S;; is (pi+1 — pi). Once this claim is proved, with failure probability at most e/ the sum of these
contributions telescopes:

di(u,0) =Y Qpi1 — pi) = piy — po) = 2(d).

Using Markov inequality, we have that with failure probability O(J) this holds for an e-dense set of node
pairs. To make this happen for a uniform e-dense set of node pairs (actually, for all of ') we need to replace
the Markov inequality by the union bound, which is achieved by increasing the parameter & to O(logn).

It remains to prove the claim. Fix i and let v = 2°3. Without loss of generality assume that p; < d/2
and that the ball around u reaches size yn before the ball around v does: p; = 7, () < (7). A given set
S;j contributes at least %(piﬂ — p;) to di(u,v) as long as it hits B = By(p;) and misses the open ball B
of radius p;41 around v. By Lemma 3.10 the probability of this happenning is at least ¢ (since the two balls
are disjoint, |B| > vn and |B’| < 2yn). Thus the expected number of S;;’s with this property is ck, so
applying the Chernoff bound, for big enough & = O(log %) the probability that less than ck/2 of S;;’s have
this property is at most e~¥/8 < €§/ log % This proves the claim, and completes the proof of the theorem
for the case p = 1.

To extend the theorem to general p, follow [38]. Let z;; = |d(u, Si;) — d(v, Si;)| be the contribution of
the set S;;, and let z = log % Then dj,(u,v) = (1 > xfj)l/p, S0

1/p

1 1
— 1/ D 1/ U S U/ | _ 1/p-1
dp(u,v) = a'/P oy %j Ty > /P e %j xij | =P dy(u,v) =2 /P7Q(d).

1/p
For the upper bound, recall that z;; < d, so dp(u,v) < (% Zij dp> — 21/Pd. Therefore the (two-sided)
distortion is at most x, as required. O

We use the following lemma in the proof of Theorem 3.9. The proof is implicit in [38] but we include it
for the sake of completeness.
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Lemma 3.10. There is a constant ¢ > 0 with the following property. Consider a probability space with
two disjoint events E and E' such that Pr[E]| > ~ and Pr[E'] < 2. Let S be a set of 1/~ points sampled
independently from this probability space. Then with probability at least ¢, S hits E and misses E'.

Proof. Let p = Pr[E] and p’ = Pr[E’]. Then p’ < min(2p, 1 — p) < 2. Treat sampling a given point as
two independent random events: first it misses £’ with probability 1 — p’, and then (if it indeed misses) it
hits £ with probability 7 fp, . Without loss of generality rearrange the order of events: first for each point we
choose whether it misses E’, so that

NP /Y 2
Pr[all points miss £'] = (1 —p/)"/7 = ((1 - p’)l/p) < ((1 — %)3/2) = .
Then upon success choose whether each point hits E. Then at least one point hits £ with probability at least
1—(1—p)Y7 > 1~ 1. So the total success probability is at least c = (1 — 1)/27. O

4 Triangulation and embedding with uniform slack

Recall our results on triangulation and embeddings with uniform slack required the number of beacons
which was proportional to log n. It turns out that for doubling metrics we can get rid of this dependency on
n and further, we extend our results to infinite metric spaces. We note in passing that the notion of e-slack
can be replaced by a similar notion defined with respect to an arbitrary underlying measure. We state and
prove our result for finite metric spaces, and then sketch an extension to infinite metric spaces and arbitrary
measures.

Theorem 4.1. Consider an s-doubling metric space and fix ¢ > 0.

(a) For every 6 > 0 there exists a uniform (e,0)-base of size k = % [O(5)]'°8%. Moreover, a set of

O(klog k) randomly chosen nodes forms a uniform (e, d)-base with probability close to 1. Recall
that using any uniform (€, §)-base as a set of beacons leads to a uniform (e, §)-triangulation.

(b) For every p > 1 there exists an embedding into Eg(klog ®) with distortion O(log k) and e-uniform

slack, where k = (f)o(log log(s/€)) - such embedding can be computed with high probability by a
beacon-based algorithm with k beacons selected uniformly at random.

The key to this theorem is the following structural lemma:

Lemma 4.2. Consider a (possibly infinite) complete metric space with doubling constant s, equipped with a
probability measure pi. Let r,,(¢, j1) be the radius of the smallest ball around u that has measure €. Then for
every € > 0 there exists an (e, p)-packing: a family F of disjoint balls of measure at least ¢/s* each, such
that for any node u there exists a ball B, (r) € F such that dy, + r < 6ry(€, ). Moreover, if the metric is
finite then such F can be efficiently computed.

In this subsection we will use (e, it)-packings such that 1 is the counting probability measure (a measure
 such that p(u) = 1/n for every node u). We will need the full generality of this lemma in Section 4.1.

Proof of Lemma 4.2: Let us fix € and let r, = 7,(€, ). For a given node u, say a ball B, () is u-zooming
if it is a subset of B,,(3r,), has measure at least ¢/s%, and B, (4r) has measure at most e.

We claim that for every node u either there exists a u-zooming ball, or there exists a node b,, € B,,(3ry,)
of measure at least e.

Suppose the claim does not hold for a given node u. Let r = r,,. By the doubling property of the metric
(see Lemma 1.2), B,(r) can be covered by s balls of radius 7/8. At least one of these balls, say B, (r/8),
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has cardinality at least €/s%; since without loss of generality B, (r/8) overlaps with B, (r), it follows that
dyy < %r and B,(r/2) C B,(2r). Since there is no u-zooming ball, in particular the ball B,(r/8) is not
u-zooming, so B, (7/2) has measure at least e.

In fact, the above argument can be easily extended to prove the following statement: for each i € N
there exists a some node v; such that d(u,v;) < 2 (r — p;) and p(By,(p;)) > €, where p; = r/2%. (The
proof proceeds by induction on z.)

If the metric space is finite, then for large enough i the ball By, (p;) consists of only one node v;, which
therefore has measure at least €, contradiction. Now if the metric space is infinite, then we have an infinite
Cauchy sequence of nodes {v;}. Since the metric space is complete, this sequence has a limit, call it v;
note that v € B,,(3r). Then for each i the ball B, (3p;) contains ball B,,(p;), hence has measure at least €.
Therefore node v has measure at least ¢, contradiction. Claim proved.

In accordance with the above claim, for every given node u we define B,, to be a u-zooming ball if such
a ball exists, or else we define B,, = {b,} where b, is a node in B,,(3r,,) that has measure at least e. Note
that in the finite case, a suitable B,, can be efficiently computed by simply checking whether each ball is
u-zooming, and then checking each node in By, (2r,).

Let F be a maximal collection of disjoint balls B,. Note that such F can be computed in polynomial
time by sequentially going through all balls B,,, and including a given B,, in F if it is disjoint from other
balls that are already in . We will show that F is the desired (e, ut)-packing. It suffices to prove the
following claim: for each node v, some ball B,, € F lies within B, (67).

Suppose that for a given v the claim is false. From the definition of a v-zooming ball B,, C B,(3r,), and
thus B, ¢ F. Since F is maximal, B, overlaps with some ball B,, € F. If B,, = {b, } then it trivially lies
in By, (3r,), contradiction. So B, is a u-zooming ball; say w is its center, and r is its radius. By definition of
a u-zooming ball, By, (4r) has measure at most €. If 47 > d,,, + 7, then ball B,,(4r) contains ball B, (r,);
as the latter ball has measure at least ¢, the two balls coincide, and thus B,, lies in B, (r,), contradiction.
Therefore 4r < dyy + To.

Recall that ball B,, overlaps with ball B,; let x be a node that lies in both balls. Since B, C B, (3r,),
applying triangle inequality to the triple (u, v, x) yields dy,, < 3r, + r. Plugging this into the previous
inequality, we obtain 3r < 4r,,. It follows that r + d,,, < 67,. Consequently, ball B,, = B,,(r) lies in the
ball B, (6r,), contradiction. Claim proved. O

Proof Sketch of Theorem 4.1: For part (a), let us fix €,6 € (0,1) and take €5 = 3 €(5/2)?1°8° as in
Lemma 2.5. Let p be the counting probability measure, and let F5 be an (es, it)-packing guaranteed by
Lemma 4.2. Say S C V is a 0-hitting set if it hits a ball of radius 67, (es) around every node u. Note that S
is 0-hitting if it hits every ball in F5. Moreover, since the balls in F; are disjoint and have measure at least
€* = €5/s* each, it follows that O(1/¢*)log(1/€*) randomly chosen nodes suffice to form a §-hitting set
with probability close to 1.

Let Hs be a d-hitting set. We claim that Hj; /6 is a uniform (¢, §)-base. Indeed, recall that by Lemma 2.5
for each node u there exists a set .S, of measure at least 1 — e which has the following property: for every
v € S, aball around u or v of radius dd,,, has measure at least 5. Therefore for every v € S, some node
in H; lies within distance 64d,, from u or v. Claim proved. It immediately follows that we can use Hy /6 as
the beacon set to obtain the desired uniform (e, §)-triangulation.

For part (b), we claim that a set S of &k = (f)o(log log(s/€)) randomly selected beacons is an e-base with
probability close to 1. Indeed, we need to use part (a) to check that S is an (e, §)-base for § = (4cglog k) ™1,
where cg is the constant from Lemma 3.4; we omit the details. Now part (b) follows by Theorem 3.5. [
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4.1 Infinite metric spaces and arbitrary measures

Our results for beacon-based approaches are defined for finite metric spaces; e-dense sets are (essentially)
defined with respect to the counting measure. Let us extend them to infinite metric spaces and arbitrary
probability measures. Specifically, suppose we are given a probability measure p on V. This measure
induces a product measure on node pairs. We can define an (e, 0, ju)-triangulation and embeddings with
a (e, pu)-slack, where the desired properties hold for a set of edges of measure at least 1 — e. Also, we
can define a uniform (e, d, u)-triangulation and embeddings with a (e, p1)-uniform slack; here the desired
properties hold for all node pairs (u,v), v € S, where ;(S,) > 1 —e.

Our result on beacon-based embeddings (Theorem 3.9) extends to the (uniform) (e, 11)-slack setting in
a straightforward way. In the embedding algorithm, instead of selecting beacons uniformly at random (i.e.
with respect to the counting measure) we select them with respect to measure y; the proof carries over
without much modification. Moreover, part (a) (the part about (e, 1t)-slack) extends to infinite metric spaces.

In order to achieve similar extensions for triangulation and for embeddings with e-uniform slack, we
need the machinery in this section. Specifically, for any probability measure p on V' we can prove the
analog of Theorem 4.1 with (e, 0, it)-base instead of (¢, §)-base, uniform (e, d, pt)-triangulation instead of
uniform (e, d)-triangulation, and (e, xt)-uniform slack instead of e-uniform slack.

Roughly speaking, the proof of such a theorem proceeds as follows. First we note that Lemma 3.3
extends to the new setting: it suffices to guarantee low distortion on distances to beacons as long as they
form an (e, 0, uu)-base for a sufficiently small §. Consequently Theorem 3.5 extends to the new setting, too.
Then we just mimic the proof of Theorem 4.1 using (the full generality of) Lemma 4.2.

S Fully distributed approaches

Recent work in the networking literature has considered so-called ‘fully distributed’ approaches to triangula-
tion and embedding problems, in which no single node has to participate in a large number of measurements
[11, 47, 51]. Instead, for a relatively small parameter k, each node selects k virtual ‘neighbors’ uniformly
at random and measures distances to them; let E}, denote the set of all pairs (u,v) where v is one of the
selected neighbors of u. All nodes then run a distributed algorithm that uses the measured distances on the
pairs E to embed the full metric. The distributed algorithms in these papers are based on different heuris-
tics: Vivaldi [11] simulates a network of physical springs, Lighthouse [47] uses global-local coordinates,
and [51] claims to simulate the Big Bang explosion. They offer no proofs, but their experimental results are
quite strong. In particular, Vivaldi [11] uses the testbed from the GNP algorithm [44] and claims slightly
better performance. Here we consider what kinds of theoretical guarantees can be obtained for algorithms
of this type; as in previous sections, we focus on doubling metrics.

First, suppose we view the distributed embedding heuristic as a black box that embeds the nodes with
distortion at most A on the pairs E}. Is this enough to provide a guarantee for the full metric?

Definition 5.1. Given a set E of node pairs in a metric space, we can consider the weighted graph G(F)
in which these pairs form the edges, and each edge (u,v) is labeled with the distance d,,,. We say that a
uv-path P in G(F) is d-skewed if for some e € P, the total edge weight of P \ {e} is at most dd,,, and e
is incident to one of u or v — in other words, P consists of an initial “long hop” followed by a number of
short ones. Finally, we say that the set of pairs F is a (uniform) (e, §)-frame if G(E) contains a J-skewed
path for all pairs in a (uniform) e-dense set. We will assume throughout this section that ¢ is sufficiently
small: § < 1/4.

Frames have a useful “rigidity” property, as the following result shows: an embedding with bounded
distortion on the pairs in £ must also have bounded distortion on all but an e-fraction of node pairs. In
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this sense, frames have a similar flavor to spanners, but they include a slack parameter and also require the
approximately distance-preserving paths to have a particular “skewed” structure.

Lemma 5.2. Consider a metric space M with a (€, d)-frame E, and suppose an embedding f : M — X
has non-contracting distortion A on E, where A < %. Then the embedding has distortion O(A) with slack
€. Furthermore, if E is a uniform (e, §)-frame, then the embedding has this distortion with e-uniform slack.

Proof. Let dX be the distance function on X; for nodes u,v € M, let us write d?,, for d;((u)’ F)"

Suppose the pair (u,v) has a d-skewed path P in G(E), with long edge (u, p). By the definition of a
frame combined with the triangle inequality, we have (1 — d)dy, < dyp < (14 6)dy,. Since the embedding
has non-contracting distortion A on E, we have (1 — ) < dy,/du, < A(1+ 9) and dyp < Addy,; hence,
using the assumptions that d¥ is a metric and that § < 1/4, we have

dy, € [dyy, — di, diy + diyp) C duy [L =6 — A8, A1+ 26)] C duw [3, SA].

vp?
It follows that the distortion of f is O(A) on the set of all pairs that have a §-skewed path. U

By Lemma 5.2, it suffices to show that the set of pairs Fj, forms an (e, §)-frame for § < ﬁ; then we
have an embedding of the full metric with distortion O(A) and slack e.

Theorem 5.3. Let M be a doubling metric space. There exists k = (2log n)o(l) such that for any € and
§ that are each at least Q(1/10g®M) n), the set Ej, of probed edges is a uniform (e, 8)-frame with high
probability.

The proof uses expanders; let us briefly introduce the relevant background. For an undirected graph, the
Ial(ssl)l

vertices, and O(S) stands for the set of edges with exactly one endpoint in S. For a pre-defined absolute
constant, an expander is an undirected graph whose expansion is at least this constant. Expanders are well-
studied and have rich applications, see [39, 4, 43, 58] for more background. We will use two standard

results:

(edge) expansion is defined as min where the minimum is over all nonempty sets .S of at most n/2

Theorem 5.4 (Folklore). An undirected graph of degree d and expansion v has diameter at most %d log n.

Theorem 5.5 (Folklore). Fix an n-node set V and a subset () C V. Suppose for each node v € Q we
choose at least 31og n nodes independently and uniformly at random from Q, and create undirected links
between u and these nodes. Then the induced graph on Q) is an expander with high probability.

Remark. If we choose 3 random links per node, then the resulting induced graph is an expander, but the
failure probability is bounded in terms of |Q)|. We choose 3logn random links per node because for our
applications we need to bound the failure probability in terms on n.

Proof of Theorem 5.3: Let s be the doubling constant of M. For some constant ¢ to be defined later, set
§* = 6/(2clog®n) and €* = £(5*/2)?!°8%. Using Chernoff bounds and taking

k= O(& logn) < O(7) ()18 5OV (log ) 4108 @

suffices to make sure that with high probability each node has at least 3 log n neighbors, and at most O(log n)
neighbors, in a ball of size €*n around every other node. By Lemma 2.5, for a uniform e-dense set of node
pairs uwv, a ball of size €*n around one of the nodes (say v) has radius at most d*d,,,,. As we argued, u has
a neighbor in this ball, call it w. Now, each node in this ball has at least 3 log n neighbors inside the same
ball, chosen uniformly at random. Therefore by Theorem 5.5 the graph induced on this ball by E}, contains
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an O(logn)-degree expander with high probability, and hence by Theorem 5.4 has diameter at most ¢ log?n
for some constant c. This is the ¢ that we use in the definition of 6* and €*. In particular, Ej contains a
vw-path with at most ¢log?n hops, each of length at most 26*d,,,, so the metric length of this path is at
most ddy,,. Therefore the edge set E}, is a uniform (¢, §)-frame with high probability. O

Theorem 5.3 already helps provide some underpinning for the success of distributed embedding heuris-
tics in recent networking research. But to go beyond this black-box result to concrete distributed algorithms,
we need to think about techniques for triangulation and embedding that operate in a decentralized fashion
on the graph G(E},). In this section, we focus on the problem of distributed triangulation in particular.

Here’s a schematic description of a distributed triangulation algorithm. First, a (small) number of nodes
S declare themselves to be beacons. Messages are then passed over the edges of the graph G(E}), at the
end of which each node u has, for each beacon b, a pair of upper and lower bounds D_;, < d; < D:{b. This
is the crux: unlike standard beacon-based algorithms, node u never actually measures its distance to beacon
b (unless they happen to be neighbors in G(E},)), so it must infer bounds on the distance from the distributed
algorithm. Finally, the distance between two non-beacon nodes u and v can be estimated via

- + - + o +
IgleaSX (D'vb - Dub’ Dub - Dvb) < duy < leélél (Dub + Dvb) :

We denote the left-hand and the right-hand sides by D, and D/, respectively, and say such process is a
(uniform) (¢, §)-triangulation if D}, < (1+ §) D,,, for a (uniform) e-dense set of node pairs. Note that this
definition of triangulation generalizes the one for the beacon-based triangulation in Section 2: if we measure
the distance between node u and beacon b, then we just set D;rb =D, = dy.

Given a set ), of measured distances as in Theorem 5.3, our goal is to perform triangulation with only
a small number of messages passed between nodes. Our algorithm completes in poly-logarithmic time, in

an asynchronous message-passing model where sending or receiving a unit of data takes a unit time.

Remark. The distinction between synchronous and asynchronous models of computation is not essential to
our analysis. It is perhaps more intuitive for our purposes to consider a simplistic synchronous model where
in each communication round each node can send and receive a poly-logarithmic number of messages of
poly-logarithmic size. Extending our result to the asynchronous model is trivial.

Theorem 5.6. Let M be a doubling metric space, and suppose that every node has k neighbors chosen
independently and uniformly at random. Then for any € and ¢ that are each at least Q(1/ logo(l) n) there
exists k = (2logn)W) such that an (e, §)-triangulation can be achieved with high probability in time
polylogarithmic in n, with only a polylogarithmic load per node, taking into account the work for distance
measurements, storage, and the number of bits sent and received.

Proof. We will use the following multi-stage algorithm:

Algorithm 5.7. Suppose each node knows (e, d,n) and chooses (¢*, k, c) as in Theorem 5.3.

1. Each node selects k neighbors* uniformly at random, measures distances to them, and decides (inde-
pendently, with probability k/n) whether it is a beacon.

2. Beacons announce themselves to their neighbors. Specifically, each beacon b sorts its measurements
from low to high and estimates r,(€*) by the measurement ranked 2€*k. Call this measurement Ty,
Then it sends a message M (b, ry, 1) to all its neighbors, where i is the number of hops that the message
has traversed, initially set to 0.

“Neighbors are undirected, in the sense that if u selects v as a neighbor, then u becomes a neighbor of v, too.

18



3. When node u receives M (b, 1y, 1) from v, node u updates its existing bounds on dy; using the new
bounds d, + 2iry. Say the message is new if u does not already store M (b,ry,1") with i' < i. If
so and moreover d,, < 2r, and i < clogn, then u stores it and forwards M (b, ry, 1 + 1) to all its
neighbors but v.

We now analyze this algorithm. Let K = clog?n. Each message is forwarded at most K times,
yielding the claimed running time. Each can broadcast the message from a given beacon at most K times.
Therefore a given node can receive this message at most K times from each of its O(k) neighbors. It follows
that the total number of messages sent and received by a given node is poly-logarithmic. Thus, a message
waits at most a poly-logarithmic time at a given node before it is forwarded, so the total completion time is
poly-logarithmic.

When M (b, ry, ©) is forwarded, all hops but possibly the last one have length at most 2 1, so the distance
bounds in step 3 are valid.

By a straightforward application of Chernoff bounds, it holds with high probability for every beacon b
that at most 2¢*k neighbors lie within distance r;,(¢*) from b, and at least 2¢*k neighbors lie within distance
rp(4e*) from b, so ry(e*) < 1y < rp(4e*).

Let b be a beacon, and let B}, be the smallest ball around b that has size at least ¢*n. In the proof of
Theorem 5.3 we saw that the graph induced by this ball in the edge set E has diameter at most K with high
probability. Since r, > r(€*), each w € By, will receive a message from b via a path of at most K hops
of length at most 2r;, each, so w will upper-bound d,,; by D:Eb < 2rp K. Moreover, since (by the proof of
Theorem 5.3) every node u has a neighbor w € By, node u will receive a message from beacon b via this
node w, and consequently bound d,; by d,,, & D:;b, which is (at worst) d,; = 37, K. We have proved the
following:

Claim 5.8. With high probability for each node u and beacon b bounds be lie within d, + O(rp logn).

Now, by Lemma 2.5 there exists an e-dense set of node pairs (u,v) such that the ball B around u or v
of radius 7 = O(dd,,/logn) has at least 4¢*n points. With high probability, each such ball B contains a
beacon, call it b. Since By(2r) contains B, r, < rp(4€*) < 2r. We have proved the following:

Claim 5.9. With high probability for each node pair (u,v) in a uniform e-dense edge-set, there exists a
beacon b such that min(dyp, dyp) < 7 and ry, < r, for some r = O(ddy, /[ logn).

It is easy to see that such beacon b yields bounds on d,, that are within d,,, (1 £ O(0)). O

Now let us extend the above algorithm for triangulation to a fully distributed algorithm that computes a
low-dimensional embedding into #,,, p > 1 which has low distortion with slack. In fact, for any given € > 0
we compute an embedding with e-slack that has dimension and distortion that depend only on the doubling
constant and the parameter €, not on the number of nodes in the system.

Theorem 5.10. Let M be a doubling metric space, and suppose that every node has k = (2log n)Q(l)
neighbors chosen independently and uniformly at random. Then there exists a fully distributed algorithm
that given € > (logn) =M with high probability constructs an O(k log k)-dimensional embedding into £,
p > 1 which has distortion O(log k) with e-uniform slack. In this algorithm the per-node load and the total
completion time are at most O(k?log®n).

In the remainder of this section we prove Theorem 5.10.

Let s be the doubling constant of M. Let us fix (¢, s) and assume that they are known to the participating
nodes. Take 0 = ¢/ logn, where c is a constant to be specified later, and let k be defined by (2).

The high-level algorithm is simple. First the nodes compute an (¢, §)-triangulation using Algorithm 5.7;
note that such triangulation uses at most O(k) and at least (k) beacons with high probability. Then
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the beacons measure distances to one another and broadcast them to the entire network using a uniform
gossip [48]; in this phase each beacon broadcasts one message of size O(k), the total per-node load being
at most O(k?logn). Upon receiving this information nodes update the bounds D on their distances to
beacons accordingly, by running a shortest-paths algorithm on the available distances. (Note that in this step
D™ can only decrease, but not below the true distance; in particular, Claim 5.8 still holds.) Finally, nodes
run the embedding algorithm in Theorem 3.5 with the same beacon set, using the upper bounds D™ instead
of the latent true distances to the beacons.

Our proof outline follows that of Theorem 3.5, but the details are quite different and significantly more
complicated. As in Theorem 3.5, first we bound the distortion on node-to-beacon distances, then use those
to bound distances between other node pairs. However, we need to compensate for the fact that DT, the
distance function that we are actually embedding, is not necessarily a metric. In particular, in our proof D™
is more than just a function that approximately obeys the triangle inequality: it is essential that D™ is close
to a specific metric, as expressed by Claim 5.8 and Claim 5.9. We will use these two claims to reason about
the embedded distances to beacons, which is why we use the same set of beacons for both triangulation and
embedding.

For completeness let’s restate the embedding algorithm. Let Spe,c be the beacon set from the (e, d)-
triangulation; for simplicity assume there are exactly k& beacons. Let Ny = [logk]. For each i € [Ny]
choose ©(k) random subsets of Speqe Of size 2¢ each; let S;;j be the j-th of those. Here N is the number
of ”size scales”. These subsets 5;; are broadcasted to the entire network using a uniform gossip [48]: one
message of size O(k?) is broadcasted, incurring a per-node load at most O(k?logn). Then every node
u embeds itself into £, as follows. The dimensions are indexed by pairs (7, 7). The coordinate in each
dimension ¢j is defined as

pij(u) = %Ngffl D*(u,S;j), where DT (u,S) = rvneigD,jv.

Recall that we use O(k) beacon sets of each size scale, not ©(log k) as [38], in order to guarantee the
following claim from the proof of Lemma 3.4:

Claim 5.11. With high probability for any i € [Ny.] and any pair of disjoint subsets S, S’ C Speqc of size at
least k /2" and at most 2k /2%, respectively, it is the case that at least Q(k) sets S;; hit S and miss S'.

Then, letting dy, be the uv-distance in the embedding, we can bound the embedded node-to-beacon
distances:

Lemma 5.12. Whp for each node u and every beacon b we have d;, < d;,; < O(log k)D:b.

Now by Claim 5.9 with high probability for an e-dense set of node pairs (u, v) there is a beacon b within
distance O(r) from u or v (say, from v) such that r, < O(r), for some r = O(ddy,/logn). Therefore by
Claim 5.8 for any such node pair (u, v) we have

(1= O(0))du < 5 < O(l0g k)
and d}, < O(log k)dd,,, so it follows that
duo /2 < dyy — dyy < dyy < dyyy + dy < O(log k)duy

as long as the constant ¢ that defines ¢ is small enough.

To complete the proof of Theorem 5.10 it remains to prove Lemma 5.12. For the upper bound thereof,
we will argue that D is a reasonable notion of distance. Specifically, we will prove that it satisfies the
following relaxed version of triangle inequality:
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Claim 5.13. |D7j' ;= D;;),] < SDIb for any node u and any two beacons b, V.

Proof. Consider the beacon b, that is closest to u with respect to DT; let z = D™ (u, b,) and y = d(b', by,).
The beacons measure distances to each other directly, so DZ?;/ = dpy. Thus,

ly — D;g,| = |d(by,b") — d(b, V)| < d(b,b,) < d(u,b) + d(u,b,) < 2D3b. 3)
Node u has updated D:b, according to the measurements, so D;’b, < z + y. Moreover,
Dl—fb/ > dub’ > d(bla bu) - d(u7 bu) > Yy—x.
Therefore ]D:b, —yl <z < D;fb, s0, using (3),

DY, — D})| <|y—Dj | +|D}, —y| <3D,. O

Now one can use a standard metric argument to extend Claim 5.13 to sets of beacons. We write out the
proof for the sake of completeness.

Corollary 5.14. D" (u,S) — D*(b,5) < BDZb for any node u, any beacon b, and any set of beacons S.
Proof. Suppose DV (u, S) > DT (b, S). Let b/ be a beacon such that D (b, S) = Dj},. Then
D, > D" (u,S) > D"(b,S) =D},
so by Claim 5.13 it follows that
|D*(u, S) — D*(b,S)| = D" (u,S) — DT (b,S) < D}, — D}, <3DJ,.
The case DT (u, S) < Dt (b, S) proceeds similarly. O

Proof of Lemma 5.12: For a node set S and any pair uv of nodes define D}, (S) = |D " (u, S)—D™ (v, S)|.
Then the embedded uwv-distance is

1/p

" 1
duv = Ne EN. E va—v(sij)p )
N
ij

where the sum is taken over all beacon sets S;;. Now if b is a beacon then by Corollary 5.14 we have
D (8;) < Dyp, which implies the claimed upper bound.

For the lower bound we will use a version of the telescoping sum argument from [8, 38]. For simplicity
consider the case p = 1 first. Let S, (r) be the set of beacons b such that D;rb < r. For a fixed node u and
beacon b, let p; = min(py (i), py(2), dyp/2), where py, (i) is the smallest  such that S, (1) contains at least
k/2¢ beacons.

We claim that for each given  the sum X; = > g D:[b(SZ-j) is at least (k) (pi—1 — pi). Indeed, fix 7 and
without loss of generality assume that p,, (i) < pp(2). Note that the sets S = S, (p;) and the interior S’ of
Sy(pi—1) are disjoint since if a node v belongs to both S and S’ then

dub S du'u + dbv S D:'L_v + D;; < Pi + Pi—1 S dub7

contradiction. Therefore by Claim 5.11 with high probability for each i at least (k) sets S;; hit .S and miss
S’, thus contributing at least p;_1 — p; each to X;. This proves the claim.
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Let t = |log k| and note that by definition p(¢) = 0 (since S,(0) contains at least one beacon, namely
b itself), so p, = 0. Summing up the X;’s we get &}, > Q(k)(p1 — pr) = Q(k)dyp as desired, as long as
p1 > dyp/4. Now suppose p1 < d,p/4 and assume that p, (1) < py(1) (the case p, (1) > pp(1) is treated
similarly). Then the sets S = S, (dyp/4) and S’ = Sheac \ S are disjoint and have size at least k/2 and at
most k /2, respectively. Therefore by Claim 5.11 with high probability at least (k) sets Sy, hit .S and miss
S’, thus contributing at least D}, /2 = €)(d,;) each to X, so that d¥, > €(k)d,,, as desired. This completes
the proof of the lower bound for p = 1.

To extend the lower bound to an arbitrary p > 1, denote the embedded uwv-distance by dgﬁ, and observe

that by the Generalized Mean Inequality we have dl(ﬁj) > dq(}v) > dyp. O

This completes the proof of Theorem 5.10.

6 Improved embeddings for growth-constrained metrics

We can obtain a number of improvements to our results when the underlying metric is growth-constrained,
i.e. when doubling the radius of any ball increases the number of points by at most a constant factor.

We start with some background. For a k-dimensional grid and & = n + O(1), the following property
holds: for any x > 2 the cardinality of any ball is at most z times smaller than the cardinality of a ball
with the same center and z times the radius.” This motivates the following definition: the grid dimension
of a metric space is the infimum of all & such that the above property holds. Clearly, grid dimension of any
n-node metric space is at most log n. Growth-constrained metrics are metrics such that the grid dimension
is bounded by a constant.

Grid dimension is a useful notion of low-dimensionality, e.g. see [49, 21, 27, 3, 32]. It is a more
restrictive notion than the doubling dimension: the latter is at most a constant times the grid dimension [19].
The converse is not true; in fact, there exist doubling metrics whose grid dimension is logn. For a simple
example consider the exponential line, which is the point set V = {2 : i € [n]} equipped with a standard
metric d(z,y) = |z — y|. Unlike the doubling dimension, grid dimension is not robust, in the sense that the
dimension of a subset can be larger than the dimension of the entire metric space. For instance, consider
the set [n] with a standard metric d(x,y) = |z — y|. The grid dimension of such set is 1, but for a subset
[n/2] U {n — 1} the grid dimension is Q(logn).

Let us state our results. Firstly, we show that the following simple nearest-beacon embedding is effective
in growth-constrained metrics: select k£ beacons uniformly at random, embed the beacons with distortion
O(log k) (e.g. using the Bourgain’s algorithm [8, 38]), and then simply position each non-beacon node at
the embedded location of its nearest beacon. The sufficient number of beacons is then a function of grid
dimension and slack e.

Theorem 6.1. Consider a metric space with grid dimension o. Then for any € > 0 the nearest-beacon
embedding with k = O(4%) (1 log 1) beacons has distortion O(cv + log L) with slack e.

Combined with the fully distributed triangulation from Section 5, the nearest-beacon embedding yields
a fully distributed (Vivaldi-style) embedding for growth-constrained metrics. Specifically, fix ¢ > 0, choose
k as in the above theorem, set § = 1/0(log k) and perform a fully distributed (e, §)-triangulation from
Theorem 5.6. Then for each non-beacon node u, choose the nearest beacon with respect to the triangulation
(say, with respect to the upper bound D), and position u at the embedded location of this beacon. The
proof proceeds similarly.

3In the literature this property is often defined for z = 2 only. This is essentially equivalent but slightly less convenient
technically because in order to use this property one needs to round x up to the nearest power of two.
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It is worth noting, on the other hand, that there are doubling metrics in which this nearest-beacon embed-
ding does not yield good results. Specifically, consider the exponential line defined earlier in this section.
Suppose we choose a set S of k£ beacons in this metric space. Then for any node u € V the nearest
beacon is b(u) = max{b € S : b < wu}. It is easy to argue that for most node pairs (u,v) we have
d(u,v) > |b(u) — b(v)|. Indeed, if for some u € V and 3 > 0 there is no beacon in the interval (u/2”, u]
then b(u) < u/2°, so for any v < u/2% we have d(u,v) > 2% |b(u) — b(v)|. Call such note pairs 3-bad.
Then for any choice of beacons all but O(%) fraction of node pairs are 3-bad (we omit the easy details).

Our second result is an embedding with gracefully degrading distortion. Recall that an embedding has
gracefully degrading distortion f(e) if for each e > 0 all but an e-fraction of distances are embedded with
distortion f(e).

Theorem 6.2. Consider a metric space with grid dimension «. Then it can be embedded into £, p > 1
with O(log® n) dimensions and gracefully degrading distortion f(e) = O(a + log %) In particular, such
embedding is achieved by Bourgain’s algorithm [8, 38].

A beacon-based version of the above theorem produces “gracefully degrading distortion with slack™:

Theorem 6.3. Consider a metric space with grid dimension . For any €* > (O there exists a beacon-based
algorithm which uses O( 2 log n) beacons and computes an embedding into £y, p > 1 with O(log n)(log )
dimensions and the following property: for any ¢ > €*, distortion on all but an e-fraction of edges is
O(a+log?).

Remark. The embedding in Theorem 6.3 is the Bourgain’s embedding [8, 38] with O(log 6%) higher distance
scales (i.e., scales with lower sampling density), just like in Theorem 3.9. The proof is very similar to that
of Theorem 6.3 and is omitted.

Let us proceed to the proofs. We will use the grid dimension via the following simple corollary:

Lemma 6.4. Suppose d is a metric space with grid dimension . Fix any two nodes u,v and let | = d(u,v).
Then for any positive r, r* such that l;"—r > 2 we have |B,(r)| < (T‘%)“\Bv (r*)].

Proof. Since By (r) C By(l+ 1), we have | By (r)| < By(l + 1) < |By(r*)] (K2)e. O
f. ,

We use Lemma 6.4 to derive some further structural properties which will be essential to our results.
Recall that for a node w and € € (0, 1], r,,(¢) denotes the smallest radius of a ball around u that contains at
least en nodes. For brevity, let us denote 7}, (¢) = max(ry(€), r,(€)).

Lemma 6.5. Consider a metric d with grid dimension o, and fix positive € > 0. Then:
(a) forany 6 € (0,1] there exists an e-dense set of node pairs (u,v) such that v}, (€ 6%) < §dy.
(b) if dyy > 1y (€2%) for some node pair (u,v) then dy, > ry,(€).
(¢) for any x > 1 it is the case that 7, (ex) > /%, (€).

Proof. For part (a), fix node u and let r = r,, (€ §%). Let B be the open ball around u of radius 7 /9.
To prove the lemma, it suffices to prove that there exist at least (1 — €)n nodes v such that d,,,, > /9.
Equivalently, we show |B| < en. Indeed, by Lemma 6.4 for any = > 0 we have

|Bu(r/8 = )] < (5)°|Bu(r = 2/8)| < (5)%|Bu(r)| < en.

It follows that |B| = lim,_, 1o |Byu(r/d — )| < en. This proves part (a).
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For part (b), suppose not. Let d = d,, and r = 7,(€2). Then the ball B,(d) contains less than en
nodes. By Lemma 6.4 it follows that

(€2%)n < [Bu(r)] < [Bu(d)] (455)™ < (€2%)m,

contradiction. This proves part (b).
For part (c), let r = r,(¢). Note that by Lemma 6.4 for any y > 0 we have

/a (0% (0%
\Bu(rxl/a)’ < |By(r — y)|(%> < exn(rfy) .

By taking the limit y — 40 we have | B, (r 2'/®)| < (ez)n, which proves part (c). O

Proof of Theorem 6.1 on the nearest-beacon embedding: Let us fix ¢ > 0 and set €* = €/4“. Suppose
we choose k = O(2 log ) beacons uniformly at random. If the constant in O(-) is sufficiently large, then
with probability close to 1 it is the case that for at least (1 — €)n nodes u, there is a beacon among the €*n
nodes closest to u.

Now Lemma 6.5(a) there exists an e-dense set of node pairs (u,v) such that 7} (¢*) < dy,/4 and
moreover there are beacons among the €*n nodes closest to u and among the €*n nodes closest to v. Let by,
and b, be the beacons closest to u and v, respectively. It follows that d(b,, b,) = ©O(dy,). So, letting d* be
the distance in the nearest-beacon embedding, we have

Qdyy) < d*(u,v) = d*(by, by) < O(dyy logk).
(Without loss of generality we assume that we embed the beacons using a non-contracting embedding.) [J

Proof of Theorem 6.2 on gracefully degrading distortion: Recall that Bourgain’s embedding [8, 38] uses
random sets ;; of size 2%, foreach i € [logn] and j € [k], where k = O(logn). The dimensions are indexed
by pairs (i, j); the corresponding coordinate of node w is defined as k~/? d(u, S;;). Thus, the embedded
uv-distance is

() = (£ 3y . 55) — diw.si)P)

For simplicity consider the case p = 1 first. Then the lower bound d;(u,v) > €(dy,) holds by the
original Bourgain’s proof.

Fix ¢ € (0,1]. Let us say that an edge (u,v) is long if dy, > min(r,(e2%), r,(€2%)). Clearly,
all but an (e2%)-fraction of edges are long. To prove the theorem, it suffices to prove the upper bound
di(u,v) < O(dyy) (o + log 2) for all long edges (u,v). Note that the upper bound from the original
Bourgain’s argument is only d; (u,v) < O(dy, logn).

Let us consider a long edge (u, v). Denote the contribution of each set S;; by

x5 = |d(u, Sij) — d(v, Sij)|-

Since x;; < dy, it suffices to show that

> ) 2y < O(duy ka). )

i>log(1/€) jElk]
Let ip = log L. Fix i > ip and lett = (i — i) /2.
Claim 6.6. Pr[d(u,S;;) > duy 274/ < exp(—2").
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Proof. Consider [ such that i > [ > ig and let 7 = r,,(27!). By Lemma 6.5(bc) we have
dyy > 1y(€) = ru(2_l 2l—i0) > g(l—io)/a .

Therefore

Pr [d(u, Sij) > duyy 20070/ < Pr[S,; misses B, (r)] = (1 — 2l)24 < exp ( 2171) .

The claim follows if we take [ = H;O . O
Let Y; be an indicator variable for the random event {x;; > dy, 2~ t/ “}. Then Z Y is a sum of

independent random variables. By Claim 6.6, its expectation is at most = k exp(— 2t) We would like to
argue that this sum is not much larger than p, with probability large enough to take a Union Bound over all
long edges (u, v). A standard application of Chernoff Bounds would give

Pr(Sjep s < O(w)] > 1 -0 )

Note that for large ¢ the failure probability in (5) is too large. Instead, let us use a non-standard version of
Chernoff Bounds (Lemma 6.7 with [ = 2%) to show that

Pr[Sem Vi < Ok27H)] >1-n7", ©6)

Now we can take a Union Bound in (6) over all long edges (u, v). So we can assume that the high-probability
event in (6) holds for the specific long edge that we are considering.

S iy < Oldun) 3 (27 +Y5) = Olduy k)27 + 27
' jE[K]

= O(dyy k) 27(70)/2 (7)

Summing (7) over all ¢+ > iy we obtain the desired upper bound (4), completing the proof of Theorem 6.1
for the case p = 1.

To extend this theorem to an arbitrary p < 1 we need a more complicated calculation than the one in [38]

and Theorem 3.9. As before, fix € > 0, let ;g = log %, and consider a fixed long edge (u,v) and a fixed
i > 4. Let J be the set of all j € [k] such that Y; = 1. Then, letting d = d,,,, we have

Yo=Y ali+ Y al < ||+ k(a2 )V
je

jeJ ielk]\J
= O(kdP) (27t + 27t/

. sz” <o)y (2—t + 2—“?/0‘)

i>i0 J t>0

i>19 J 1<ig J

0]
1/p
o= (12T E T
0]

(d)(io + a/p) /P
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For the lower bound, we claim that 7, (¢/4%) < d,, /4 Indeed, by Lemma 6.4
en < |By(ru(€))| < 4% [Bu(ru(e)/4)| < 4% [Bu(d/4)].

So ball B, (d/4) contains at least (¢/4%)n nodes, and the claim follows. (We can also prove a similar claim
for node v, although we won’t use it here.) Let us denote [ = 9+ 2s. Given the above claim, the telescoping
argument in the proof of Theorem 3.9 shows that >, > xij > Q(kd). Therefore,

1/p 1/p

1 1 1
%Zzwz _\r Ezzxfj > [1/p HZZ%

i<l j i<l j i<l j
> Q(d)(ip + )P

dp(u,v)

v

So the total (two-sided) distortion is at most O(x + «) as required. O
In the proof of the above theorem, we have used the following version of Chernoff bounds:

Lemma 6.7. Let Xj, j € [k] be independent O-1 random variables such that Pr[X; = 1] < e~! where
> 16. Then ) ;cq Xj < k/U with probability at least 1 — e k/2,

Proof. Let X = Zje[k] X, u=ke'and 6 = €'/l — 1. Then using Chernoff Bounds we get

e (1+6)p (el)l/l k
PI'[X > %] = PI'[X > (1 + 5)/,11} < €_M (1”) < T < €_k/2

since (el)'/! < \/e for any | > 16. O

Proof of Theorem 6.3 proceeds similarly to that of Theorem 6.2; we omit the details.

7 Embeddings with slack: beyond doubling metrics

There is an interesting and quite natural open question raised by our work here:
(*) Can every metric space be embedded into ¢,,, p > 1 with constant distortion and e slack?

To this end, we consider bounded-degree expanders® — a standard example of metric spaces that require
super-constant distortion for embeddings into ¢,, p > 1. Specifically, it is known that they can be embedded
into any £, p > 1 with distortion no better than 2(log n) [38, 40]. Similarly, hypercubes require distortion
Q(log n) for embedding into ¢ [12]. Therefore we ask: do constant-degree expanders or hypercubes provide
a counterexample for (*)? We answer this question in the negative, by showing that both can be embedded
with constant distortion and slack into a uniform metric.’

In fact, we will use an even stronger notion of affinity to a uniform metric:

%The expansion of an undirected graph G = (V, E) is defined as mingcv.i<|s|<n/2 %, where §(S) is the set of all edges
with exactly one endpoint in S. G is an expander if its expansion is at least some pre-defined constant.

A metric is uniform if all distances are the same. (Another term used in the literature is equilateral.) Considering uniform
metrics suffices since they can be embedded into ¢,, p > 1 with constant distortion. Isometric embedding into n dimensions
is trivial: map each node ¢ to the unit vector in the i-th dimension. Furthermore, one can obtain an embedding into O(logn)
dimensions. For p = 2 it is a direct application of the Johnson-Lindenstrauss Lemma [26]; the case p € [1,2] follows by

combining the embeddings in [26] and [13]. The general case p > 1 follows from [7].
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Definition 7.1. Let F be a family of metric spaces that contains metrics on arbitrarily many nodes. Call F
asymptotically uniform if for any given ¢, > 0 and any sufficiently large n any n-node metric space in F
can be embedded into a uniform metric with distortion 1 4+ ¢ and slack e.

We formulate the result of this section as follows.

Theorem 7.2. The shortest-path metrics of (a) bounded-degree expanders and (b) hypercubes are asymp-
totically uniform.

Proof. (a) Let us consider a bounded-degree expander. Let 5 = a//d where « is the expansion and d is the
maximal degree. Fix a node u. Any ball B, (o) of size s < n/2 has least as edges coming out of it, which
go to at least 3s distinct nodes outside of the ball. So ball B, (r + 1) has at least (1 + (3)s nodes. Iterating
this argument, ball B, (r¢ + ) has at least min((1 + 3)"s, n/2) nodes, for any » € N. In particular, letting
ro = 1y (€), it follows that
ru(1/2) < ru(e) 4 logy 1 5(1/e€). (8)
Similarly, any ball B, (rg) of size n — s > n/2 has at least as edges coming out of it, which go to at
least s distinct nodes outside of the ball. So the complement of the ball B, (r¢g + 1) has at most (1 — 3)s
nodes. Iterating this argument, we obtain n — | B, (ro+7r)| < (1—3)"s forany r € N. Forrg = r,(1/2)—1
this is at most en whenever r > log; _g(¢/2). It follows that

ru(l —€) <ru(1/2) 4 logi_g(€/2). ©)

Combining (8) and (9), we have

ru(l— ) —ru(e) < logy  5(1/€) + logy_y(e/2) = Op(log L). (10)

We claim that for an O(e)-dense set E* of node pairs, the difference between any two distances in
this set is at most Og(log ). Indeed, consider the set of all node pairs (u,v) such that dy, < ry(€) or
dyy > 14 (1 —€); these are node pairs that we ignore. Let E be the set of remaining node pairs. Then by (10)
for any two node pairs that are adjacent in E' the difference between their distances is at most O(log %) It
suffices to show that all but an O(e)-fraction of node pairs in E are within a constant number of E-hops
from each other. This follows from the density of E: since at most 2en? node pairs are ignored, all but an
O(e)-fraction of nodes have degree at least %n in F, and any two such nodes have a common neighbor in
FE. Claim proved.

It remains to show that by increasing n the distances in E* can be made arbitrarily large compared to
log % Specifically, we claim that r,,(1/2) > é log 5, for any node u. Indeed, this is because for any radius
r the ball B, (r) contains at most 7 nodes; claim proved. By (10) it follows that d,,, > % log Z — Og(log 1)
for any node pair (u, v) in E*.

(b) Now let us consider hypercubes. Fix €,6 > 0. Let a = llﬂ, b= ﬁ and ¢ = fla For each
Jj <1 < bk/2 we have

(B)=(8 )=o),

so the number of nodes within distance i < ak/2 from a given node u in a k-dimensional hypercube is

50)=r() =) () omen

Jj=0

which is less than 2* for big enough k. Distances i > (1 + §)k/2 are treated similarly. O
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