
FPH: First-class polymorphism for Haskell

Extended Version

Dimitrios Vytiniotis

dimitriv@cis.upenn.edu

Computer and Information Science Department

University of Pennsylvania

May 2008

joint work with Simon Peyton Jones and Stephanie Weirich



Outline

Abstract ii

1 Introduction 1

2 Type inference for first-class polymorphism 2

2.1 Marking impredicative instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Expressive power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Limitations of FPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Declarative specification of the FPH type system 5

3.1 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 The subsumption rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Higher rank types and System F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Predictability and robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 An equivalent declarative specification 11

5 Syntax-directed specification 13

6 Algorithmic implementation 18

6.1 The basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2.1 Bounds, and the meaning of constraints . . . . . . . . . . . . . . . . . . . . . 20

6.2.2 Inference implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2.3 Instance checking and unification . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.4 Summary of the algorithmic implementation properties . . . . . . . . . . . . 27

6.3 Detailed algorithm metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.1 Unification termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.2 Unification soundness properties . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.3 Unification completeness lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.4 Main algorithm soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.5 Main algorithm completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Discussion 53

7.1 Bidirectionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 η-conversion and deep instance relations . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Alternative design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Related work 57

9 Future work and conclusions 60

i



Abstract

Languages supporting polymorphism typically have ad-hoc restrictions on where polymorphic types
may occur. Supporting “first-class” polymorphism, by lifting those restrictions, is obviously desir-
able, but it is hard to achieve this without sacrificing type inference. We present a new type system
for higher-rank and impredicative polymorphism that improves on earlier proposals: it is an exten-
sion of Damas-Milner; it relies only on System F types; it has a simple, declarative specification; it is
robust to program transformations; and it enjoys a complete and decidable type inference algorithm.

ii



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

1 Introduction

Consider this program fragment1:

($) :: forall a b. (a->b) -> a -> b
runST :: forall r. (forall s. ST s r) -> r
foo :: forall s. Int -> ST s Int

...(runST $ foo 4)...

Here ($) , whose type is given, is the apply combinator, often used by Haskell programmers to avoid
writing parentheses.2 From a programmer’s point of view there is nothing very complicated about
this program, yet it goes well beyond the traditional Damas-Milner type system (Damas and Milner
1982), by using two distinct forms of first-class polymorphism:

• runST takes an argument of polymorphic type—runST has a higher-rank type.

• The quantified type variable a in the type of ($) is instantiated to the polymorphic type
∀s.Int → STs Int . Allowing the instantiation of quantified type variables with polytypes is
called impredicative polymorphism.

Our goal, which we share with other authors (Le Botlan and Rémy 2003; Leijen 2007a), is to make
such programs “just work” by lifting the restrictions imposed by the Damas-Milner type system.

Although there are several competing designs with the same general goal, the design space is now
becoming clear, so this paper is not simply “yet another impenetrable paper on impredicative poly-
morphism”. We give a detailed comparison in Section 8, but meanwhile the distinctive feature of
our system is this: rather than maximizing expressiveness or minimizing implementation complex-
ity, we focus on programmer accessibility by minimizing the complexity of the specification. More
specifically, we make the following contributions:

• We describe and formalize a new type system, FPH, based on System F, capable of expressing
impredicative polymorphism (Section 3). We show that FPH can express all of System F
(Section 3.4).

• FPH is unusually small and simple for its expressive power. It can be explained informally in a
few paragraphs (Section 2), and in particular has the following delightfully simple rule for when
a type annotation is required: a type annotation may be required only for a let -binding or
λ-abstraction that has a non-Damas-Milner type (Section 2.2). For example, a nested function
call, such as (f (g x) (h (t y))) , may involve lots of impredicative instantiation, but
never requires a type annotation.

• We give a syntax-directed variant of the type system (Section 5), and prove it sound and
complete with respect to the earlier declarative rules.

• We have a sound and complete inference algorithm for FPH, which we sketch in Section 6.
Internally, this implementation uses type schemes with bounded quantification in the style
of ML

F (Le Botlan and Rémy 2003), but this internal sophistication is never shown to the
programmer; it is simply the mechanism used by the implementation to support the simple
declarative specification.

Our system is fully compatible with the standard idea of propagating annotations via a so-called
bidirectional type system. We discuss this and other design variants in Section 7.

Finally, with the scaffolding now in place, Section 8 amplifies our opening remarks by showing in
detail how the various current designs relate to each other.

1We use Haskell syntax, and will often prefix examples with type signatures for any functions used in the fragment.
2The example is equivalent to (runST (foo 4)) .

1



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Auxiliary material accompanying this paper can be found at:

www.cis.upenn.edu/˜dimitriv/fph/

2 Type inference for first-class polymorphism

To describe the main difficulty with first-class polymorphism, we first distinguish between Damas-
Milner types (types permitting only top-level quantification) and rich types (types with ∀ quantifiers
under type constructors). For example, Int → Int and ∀a. a → a are Damas-Milner types; but
Int → [∀a. a → a] and ∀a. (∀b. b)→ [a] are rich types.

Both forms of first-class polymorphism (higher-rank and impredicative) result in a lack of principal
types for expressions: a single expression may be typeable with two or more incomparable types,
where neither is more general than the other. As a consequence, type inference cannot always choose
a single type and use it throughout the scope of a let -bound definition.

1. With higher-rank polymorphism, functions that accept polymorphic arguments may be typed
with two or more incomparable System F types. For example, consider the function f below:

f get = (get 3, get True)

It is clear that get must be assigned a polymorphic type in the environment, since we must
be able to apply it to both 3 and True . But what is the exact type of f ? For example,
both (∀a. a → a) → (Int ,Bool ), and (∀a. a → Int ) → (Int , Int ) are valid types for f ,
but there exists no principal type for f such that all others follows from it by a sequence of
instantiations and generalizations. Previous work has suggested that the programmer should
be required to supply a type annotation for any function argument that must be polymorphic,
so that the type of f is no longer ambiguous—the above code would fail to type check, but
the annotation below would fix the problem:

f (get :: forall a. a->a) = (get 3, get True)

2. The presence of impredicative instantiation of type variables leads to a second case of incom-
parable types. For example:

choose :: forall a. a -> a -> a
id :: forall b. b -> b

g = choose id

In a traditional Damas-Milner type system, g would get the type ∀b. (b → b) → (b → b).
However, if choose may be instantiated with a polymorphic type, g is also typeable with the
incomparable type (∀b. b → b) → (∀b. b → b). This problem has been identified in the ML

F

work and circumvented by extending the type language to include instantiation constraints.
This extended type language can express a principal type for g, namely ∀(a ≥ ∀b. b → b). a →
a. However, if one wants to remain within the type language of System F, the type system
must specify which of these incomparable types is assigned to g. In FPH, g is typeable with
its best Damas-Milner type ∀b. (b → b) → (b → b), but the type (∀b. b → b) → (∀b. b → b)
is also available by using an explicit type signature, as follows:

g = choose id :: (forall b.b->b) -> (forall b.b->b)

The focus of this paper is on impredicativity (item (2) above), since earlier work has essentially
solved the question of higher-rank types (e.g. (Peyton Jones et al. 2007)). The core type system
we present in Section 3 therefore does not support λ-abstractions with higher-rank types, focusing
exclusively on impredicative instantiations. A practical system must accommodate higher-rank types
as well, and we describe how previous work can be adapted to our setting in Sections 3.4 and 7.1.

2



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

2.1 Marking impredicative instantiation

We present a flavor of FPH in this section, and use several examples to motivate its design principles.
Consider this program fragment:

str :: [Char]
ids :: [forall a. a->a]
length :: forall b. [b] -> Int

l1 = length str
l2 = length ids

First consider type inference for l1 . The polymorphic length returns the length of its argument list,
where the type [b] means “list of b”. In the standard Damas-Milner type system, one instantiates
the type of length with Char , so that the occurrence of length has type [Char] → Int , which
marries up correctly with length ’s argument, str . In Damas-Milner, a polymorphic function can
only be instantiated with monotypes, where a monotype τ is a type containing no quantification:

τ ::= a | τ1 → τ2 | T τ

This Damas-Milner restriction means that l2 is untypeable, because here we must instantiate
length with ∀a.a → a. We cannot simply lift the Damas-Milner restriction, because that directly
leads to the problem identified at the start of this section: different choices can lead to incomparable
types. However, l2 also shows that there are benign uses of impredicative instantiation. Although
we need an impredicative instantiation to make l2 type check, there is no danger here—the type of
l2 will always be Int . It is only when a let -binding can be assigned two ore more incomparable
types that we run into trouble.

Our idea is to mark impredicative instantiations so that we know when an expression may be typed
with different incomparable types. Technically, this means that we instantiate polymorphic functions
with a form of type τ ′ that is more expressive than a mere monotype, but less expressive than an
arbitrary polymorphic type:

τ ′ ::= a | τ ′1 → τ ′2 | T τ ′ | σ
σ ::= ∀a.σ | a | σ → σ | Tσ

Unlike a monotype τ , a boxy monotype τ ′ may contain quantification, but only inside a box, thus σ .
Idea 1 is this: a polymorphic function is instantiated with boxy monotypes. A boxy type marks
the place in the type where “guessing” is required to fill in a type that makes the rest of the typing
derivation go through.

Now, when typing l2 we may instantiate length with ∀a.a → a . Then the application length ids
has a function expecting an argument of type [ ∀a.a → a ] , applied to an argument of type [ ∀a.a →
a] . Do these types marry up? Yes, they do, because of Idea 2: when comparing types, discard all
boxes. The sole purpose of boxes is to mark polytypes that arise from impredicative instantiations.
That completes the typing of l2 .

Boxes are ignored when typing an application, but they play a critical role in let polymorphism.
Idea 3 is this: to make sure that there is no ambiguity about guessed polytypes, the type envi-
ronment contains no boxes. Let us return to the example g = choose id given above. If we
instantiated choose with the boxy monotype ∀a.a → a , the application (choose id) would
marry up fine, but its result type would be ∀a.a → a → ∀a.a → a . However, Idea 3 prevents that
type from entering the environment as the type for g, so this instantiation for choose is rejected. If
we instead instantiate choose with c → c, the application again marries up (this time by instanti-
ating the type of id with c), so the application has type (c → c)→ c → c, which can be generalized
and then enter the environment as the type of g. This type is the principal Damas-Milner type
of g—all Damas-Milner types for g are also available without annotation. What we have achieved
effectively is that, instead of having two or more incomparable types for g, we have allowed only
those typing derivations for g that admit a principal type.

However, if the programmer actually wanted the other, rich, type for g, she can use a type annotation:

3



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

g = choose id :: (forall b.b->b) -> (forall b.b->b)

Such type annotations use Idea 2—when typing an annotated expression e:: σ, ignore boxes on
e’s type when comparing with σ (which is box-free, being a programmer annotation). Now we may
instantiate choose with ∀a.a → a , because the type annotation is compatible with the type of
(choose id) , ∀a.a → a → ∀a.a → a .

2.2 Expressive power

As we have seen, a type annotation may be required on a let -bound expression, but annotations
are never required on function applications, even when they are nested and higher order, or involve
impredicativity. Here is the example from the Introduction, with some variants:

runST :: forall a. (forall s. ST s a) -> a
app :: forall a b. (a -> b) -> a -> b
revapp :: forall a b. a -> (a -> b) -> b
arg :: forall s. ST s Int

h0 = runST arg
h1 = app runST arg
h2 = revapp arg runST

All definitions h0 , h1 , h2 are typeable without annotation because, in each case, the return type is
a (non-boxy) monotype Int .

Actually, we have a much more powerful guideline for programmers, which does not even require
them to think about boxes:

Annotation Guideline. Write your programs as you like, without type annotations at
all. Then you are required to annotate only those let -bindings and λ-abstractions that
you want to be typed with rich types.

For instance, for a term consisting of applications and variables to be let -bound (without any type
annotations), it does not matter what impredicative instantiations may happen to type it, provided
that the result type is an ordinary Damas-Milner type! For example, the argument choose id to
the function f below involves an impredicative instantiation (in fact for both f and choose ), but
no annotation is required whatsoever:

f :: forall a. (a -> a) -> [a] -> a
g = f (choose id) ids

In particular choose id gets type ∀a.a → a → ∀a.a → a . However, f ’s arguments types can be
married up using Idea 2, and its result type (ignoring boxes) is a Damas-Milner type (∀a. a → a ),
and hence no annotation is required for g.

Since the Annotation Guideline does not require the programmer to think about boxes at all, why
does our specification use boxes? Because the Annotation Guideline is conservative: it guarantees
to make the program typeable, but it adds more annotations than are necessary. For example:

f’ :: forall a. [a] -> [forall b. b -> b]
g’ = f’ ids

Notice that the rich result type [forall b. b -> b] is non-boxy, and hence no annotation is
required for g’ . In general, even if the type of a let -bound expression is rich, if that type does
not result from impredicative instantiation (which is the common case), then no annotations are
required. Boxes precisely specify what “that type does not result from impredicative instantiation”
means. Nevertheless, a box-free specification is an attractive alternative design, as we discuss in
Section 7.3.

4



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Types σ ::= ∀a. ρ
ρ ::= τ | σ → σ | T σ
τ ::= a | τ → τ | T τ

Boxy Types σ′ ::= ∀a. ρ′

ρ′ ::= τ ′ | σ′ → σ′ | T σ′

τ ′ ::= a | σ | τ ′ → τ ′ | T τ ′

Environments Γ ::= Γ, (x :σ) | ·

Figure 1: Syntax

2.3 Limitations of FPH

Although the FPH system, as we have described it so far, is expressive, it is also somewhat con-
servative. It requires annotations in a few instances, even when there is only one type that can be
assigned to a let -binding, as the following example demonstrates.

f :: forall a. a -> [a] -> [a]
ids :: [forall a. a -> a]

h1 = f (\x -> x) ids -- Not typeable
h2 = f (\x -> x) ids :: [forall a. a->a] -- OK

Here f is a function that accepts an element and a list and returns a list (for example, f could be
cons ). Definition h1 is not typeable in FPH. We can attempt to instantiate f with ∀a.a → a , but
then the right hand side of h1 has type [ ∀a.a → a ] , and that type cannot enter the environment.
The problem can of course be fixed by adding a type annotation, as h2 shows.

You may think that it is silly to require a type annotation in h2 ; after all, h1 manifestly has only one
possible type! But suppose that f had type ∀ab.a → b → [ a] , which is a more general Damas-Milner
type than the type above. With this type for f , our example h1 now has two incomparable types,
namely [ ∀a.a → a] as before, and ∀a.[ a → a] . Without any annotations we presumably have to
choose the same type as the Damas-Milner type system would; and that might make occurrences of
h1 ill typed. In short, making the type of f more general has caused definitions in the scope of h1
to become ill-typed! This is bad; and that is the reason that we reject h1 , requiring an annotation
as in h2 .

Requiring an annotation on h2 may seem an annoyance to programmers, but it is this conservativity
of FPH that results in a simple and declarative high-level specification. FPH allows let -bound
definitions to enter environments with many different types, as is the case in the Damas-Milner type
system.

3 Declarative specification of the FPH type system

We now turn our attention to a systematic treatment of FPH, beginning with the basic syntax of types
and environments in Figure 1. Types are divided into box-free types σ-, ρ-, and τ -types, and boxy
types σ′, ρ′, and τ ′ types. Polymorphic types, σ and σ′, may contain quantifiers at top-level, whereas
ρ and ρ′ types contain only nested quantifiers. The important difference between box-free and boxy
types occurs at the monotype level. Following previous work by Rémy et al. (Garrigue and Rémy
1999; Le Botlan and Rémy 2003), τ ′ may include boxes containing (box-free) polytypes. As we
discussed in Section 2.1, these boxes represent the places where “guessed instantiations” take place.
The syntax of type environments, Γ, directly expresses Idea 3 in Section 2.1 by allowing only
box-free types σ.

5



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Γ ⊢ e : σ′

(x :σ) ∈ Γ
var

Γ ⊢ x : σ

Γ ⊢ e1 : σ′1 → σ′2 Γ ⊢ e2 : σ′3 ⌊σ′3⌋ = ⌊σ′1⌋
app

Γ ⊢ e1 e2 : σ′2

Γ, (x :τ) ⊢ e : ρ
abs

Γ ⊢ λx . e : τ → ρ

Γ ⊢ u : σ Γ, (x :σ) ⊢ e : ρ′
let

Γ ⊢ let x = u in e : ρ′

Γ ⊢ e : σ′1 ⌊σ′1⌋ = σ
ann

Γ ⊢ (e:: σ) : σ

Γ ⊢ e : ∀a. ρ′
inst

Γ ⊢ e : [a 7→ τ ′]ρ′

Γ ⊢ e : ρ′ a#Γ
gen

Γ ⊢ e : ∀a. ρ′

Γ ⊢ e : ρ′1 ρ′1 �⊑ ρ
′
2
subs

Γ ⊢ e : ρ′2

Figure 2: The FPH system

3.1 Typing rules

The declarative (i.e. not syntax-directed) specification of FPH is given in Figure 2. As usual, the
judgement form Γ ⊢ e : σ′ assigns the type σ′ to the expression e in typing environment Γ. A
non-syntactic invariant of the typing relation is that, in the judgement Γ ⊢ e : ∀a.ρ′, no box may
intervene between a variable quantified inside ρ′ and the occurrences of that variable. Thus, for
example, ρ′ cannot be of form (∀b. b ) → Int , because the quantified variable b appears inside a
box. The top-level quantified variables may, however, appear inside boxes.

The rules in Figure 2 are modest (albeit carefully-chosen) variants of the conventional Damas-
Milner rules. Indeed rule var is precisely as usual, simply returning the type of a variable from the
environment.

Rule app infers a function type σ′1 → σ′2 for e1, infers a type σ′3 for the argument e2, and checks that
the argument type matches the domain of the function type modulo boxy structure, implementing
Idea 2 of Section 2.1. This compatibility check is performed by stripping the boxes from σ′1 and σ′3,
then comparing for equality. The notation ⌊σ′⌋ denotes the non-boxy type obtained by discarding
the boxes in σ′:
Definition 3.1 (Stripping). We define the strip function ⌊·⌋ on boxy types as follows:

⌊a⌋ = a
⌊σ ⌋ = σ
⌊σ′1 → σ′2⌋ = ⌊σ′1⌋ → ⌊σ

′
2⌋

⌊∀a. ρ′⌋ = ∀ab. ρ where ⌊ρ′⌋ = ∀b. ρ

Equality between types is ordinary α-equivalence. Stripping is also used in rule ann, which handles
expressions with explicit programmer-supplied type annotations. It infers a boxy type for the expres-
sion and checks that, modulo its boxy structure, it is equal to the type required by the annotation
σ. In effect, this rule converts the boxy type σ′1 that was inferred for the expression to a box-free
type σ. If the annotated term is the right-hand side of a let binding x = e:: σ, this box-free type
σ can now enter the environment as the type of x (whereas σ′ could not, by Idea 3).

Rule abs infers types for λ-abstractions. It first extends the environment with a monomorphic, box-
free typing x : τ , and infers a ρ-type for the body of the function. Notice that we insist (syntactically)
that the result type ρ both (a) has no top-level quantifiers, and (b) is box-free. We exclude top-level
quantifiers (a) because we wish to attribute the same types as Damas-Milner for programs that
are typeable by Damas-Milner; in the vocabulary of (Peyton Jones et al. 2007), we avoid “eager
generalization”. Choice (b), that a λ-abstraction must return a box-free type, may require more
programmer annotations, but turns out to permit a much simpler type inference algorithm. We
return to this issue in Section 7.3.

6



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Rule abs is the main reason that the type system of Figure 2 cannot type all of System F, even with
the addition of type annotations: abs allows only abstractions of type τ → ρ, whereas System F has
λ-abstractions of type σ1 → σ2. Rule abs is however just enough to demonstrate our approach to
impredicative instantiation (the contribution of this paper), while previous work (Peyton Jones et al.
2007) has shown how to address this limitation. It is easy to combine the two, as we show in
Section 3.4.

Following Idea 3 of Section 2.1, rule let first infers a box-free type σ for the right-hand side
expression u, and then checks the body pushing the binder x with type σ in the environment.

Generalization (gen) takes the conventional form, where a#Γ means that a is disjoint from the free
type variables of Γ. In this rule, note that the generalized variables a may appear inside boxes in
ρ′, so that we might, for example, infer Γ ⊢ e : ∀a.a → a.

Instantiation (inst) is largely conventional, but it follows Idea 1 by allowing us to instantiate a
type with a boxy monotype τ ′. However, we need to be a little careful with substitution in inst:
since ρ′ may contain a inside boxes, a naive substitution might leave us with nested boxes, which are
syntactically ill-formed. Hence, we define a form of substitution that preserves the boxy structure
of its argument.
Definition 3.2 (Monomorphic substitutions). We use letter ϕ for monomorphic substitutions, that
is, ϕ denotes finite maps of the form [a 7→ τ ′]. We let ftv(ϕ) be the set of the free variables in the
range and domain of ϕ. We define the operation of applying ϕ to a type σ′ as follows:

ϕ(a) = τ ′ where [a 7→ τ ′] ∈ ϕ
ϕ(σ ) = ⌊ϕ(σ)⌋
ϕ(σ′1 → σ′2) = ϕ(σ′1)→ ϕ(σ′2)
ϕ(∀a. ρ′) = ∀a. ϕ(ρ′) where a#ftv(ϕ)

We write [a 7→ τ ′]σ′ for the application of the [a 7→ τ ′] to σ′.

3.2 The subsumption rule

The final rule, subs, is tricky but important. Consider the code fragment in Example 3.3.
Example 3.3 (Boxy instantiation).

head :: forall a. [a] -> a
h = head ids 3

Temporarily ignoring rule subs in Figure 2, the application head ids can get type ∀a. a → a ,
and only that type. Hence, the application (head ids) 3 cannot be typed. This situation would
be rather unfortunate as one would, in general, have to use type annotations to extract polymorphic
expressions out of polymorphic data structures. For example, programmers would have to write:

h = (head ids :: forall b. b -> b) 3

This situation would also imply that some expressions which consist only of applications of closed
terms, and are typeable in System F, could not be typed in FPH.

Rule subs addresses these limitations. Rule subs modifies the types of expression in two ways
with the relation �⊑, which is the composition of two relations, �, and ⊑. The relation �, called
boxy instantiation, simply instantiates a polymorphic type within a box. The relation ⊑, called
protected unboxing, removes boxes around monomorphic types and pushes boxes congruently down
the structure of types. The most important rules of this relation are tbox and refl. The first
simply removes a box around a monomorphic type, while the second ensures reflexivity. If a ρ′ type
contains only boxes with monomorphic information, then these boxes can be completely dropped
along the ⊑ relation to yield a box-free type.

7



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

σ′
1
⊑ σ′

2

tbox
τ ⊑ τ

refl
σ′ ⊑ σ′

σ′1 ⊑ σ
′′
1 σ′2 ⊑ σ

′′
2

cong
σ′1 → σ′2 ⊑ σ

′′
1 → σ′′2

ρ′ ⊑ ρ′′

a unboxed in ρ′, ρ′′
poly

∀a. ρ′ ⊑ ∀a. ρ′′

σ1 ⊑ σ
′
1 σ2 ⊑ σ

′
2

conbox
σ1 → σ2 ⊑ σ

′
1 → σ′2

σ′
1
� σ2

bi
∀a. ρ � [a 7→ σ]ρ

br
σ′ � σ′

Figure 3: Protected unboxing and boxy instantiation relation

Because subs uses �⊑ instead of merely ⊑, h in Example 3.3 is typeable. When we infer a type for
head ids , we may have the following derivation:

Γ ⊢ head ids : ∀a. a → a
∀a. a → a � a → a ⊑ a → a

subs
Γ ⊢ head ids : a → a

gen
Γ ⊢ head ids : ∀a. a → a

Therefore, no annotation is required on h. Incidentally, because the ⊑ relation can remove boxes
around monomorphic types, it also follows that

h = head ids

is typeable. More generally, we have the following lemma.
Lemma 3.4. If Γ ⊢ e : ∀a. τ then Γ ⊢ e : ∀a. τ .

Proof. By rule bi we have ∀a. τ � τ where without loss of generality a#Γ, and by rule tbox we
get τ ⊑ τ , hence ∀a. τ �⊑ τ . Applying rule subs to the derivation of Γ ⊢ e : ∀a. τ gives Γ ⊢ e : τ ,
and by rule gen we get Γ ⊢ e : ∀a. τ , as required.

3.3 Properties

The FPH system is type safe with respect to the semantics of System F. The following lemma is an

easy induction after observing that whenever σ′1 �⊑ σ
′
2, it is the case that ⊢

F
⌊σ′1⌋ ≤ ⌊σ

′
2⌋, where ⊢

F

is the System F type instance relation. The relation ⊢
F

specifies typeability of an expression of one
type with another type through a series of instantiations and generalizations, and is given by the
rule below:

b#ftv(∀a. ρ)
fsubs

⊢
F
∀a. ρ ≤ ∀b. [a 7→ σ]ρ

The (implicitly typed) System F typing relation is given in Figure We additionally define a function

8



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Γ ⊢
F

eF : σ  e

(x :σ) ∈ Γ
fvar

Γ ⊢
F

x : σ

Γ ⊢
F

e1 : σ1 → σ2 Γ ⊢
F

e2 : σ1
fapp

Γ ⊢
F

e1 e2 : σ2

Γ ⊢
F

e : ∀a. ρ
finst

Γ ⊢
F

e : [a 7→ σ]ρ

Γ ⊢
F

e : ρ a#Γ
fgen

Γ ⊢
F

e : ∀a. ρ

Γ, (x :σ1) ⊢
F

e : σ2
fabs

Γ ⊢
F
λx . e : σ1 → σ2

Γ ⊢
F

u : σ1 Γ, (x :σ1) ⊢
F

e : σ
flet

Γ ⊢
F

let x = u in e : σ

Figure 4: Implicitly typed System F (with local definitions)

(·)♭ from terms of FPH, that removes any annotations from terms. Its definition follows:

x ♭ = x
(e:: σ)♭ = e♭

(λx . e)♭ = λx . e♭

(e1 e2)
♭ = e♭

1 e♭
2

(let x = u in e)♭ = let x = u♭ in e♭

Lemma 3.5. If Γ ⊢ e : σ′ then Γ ⊢
F

e♭ : ⌊σ′⌋.

Proof. Straightforward induction.

Moreover, FPH is an extension of the Damas-Milner type system. The idea of the following lemma
is that instantiation to τ ′ types always subsumes instantiation to τ types.
Lemma 3.6 (Extension of Damas-Milner). Assume that Γ contains only types with top-level quan-

tifiers and e is annotation-free. Then Γ ⊢
DM

e : σ implies that Γ ⊢ e : σ.

Proof. Straightforward induction.

We conjecture that the converse direction is also true, that is, unannotated programs in contexts
that use only Damas-Milner types are typeable in Damas-Milner if they are typeable in FPH, but
we leave this result as future work.

3.4 Higher rank types and System F

As we remarked in the discussion of rule abs in Section 3.1, the system described so far deliberately
does not support λ-abstractions with higher-rank types, and hence cannot yet express all of System
F. For example:
Example 3.7.

f :: forall a. a -> [a] -> Int
foo :: [Int -> forall b.b->b]

bog = f (\x y ->y) foo

Here, foo requires the λ-abstraction \x y -> y to be typed with type Int → ∀b. b → b, but no
such type can be inferred for the λ-abstraction, as it is not of the form τ → ρ. We may resolve this
issue by adding a new syntactic form, the annotated λ-abstraction, thus (λx . e : : : σ1 → σ2). This

9



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Γ ⊢
F

eF : σ  e

(x :σ) ∈ Γ
fvar

Γ ⊢
F

x : σ  x

Γ ⊢
F

e1 : σ1 → σ2  e3 Γ ⊢
F

e2 : σ1  e4
fapp

Γ ⊢
F

e1 e2 : σ2  e3 e4

Γ ⊢
F

e : ∀a. ρ e1
finst

Γ ⊢
F

e : [a 7→ σ]ρ e1

Γ ⊢
F

e : ρ e1 a#Γ
fgen

Γ ⊢
F

e : ∀a. ρ e1

Γ, (x :τ1) ⊢
F

e : τ2  e1
fabs0

Γ ⊢
F
λx . e : τ1 → τ2  λx . e1

Γ, (x :σ1) ⊢
F

e : σ2  e1
fabs1

Γ ⊢
F
λx . e : σ1 → σ2  (λx . e1 : : : σ1 → σ2)

Figure 5: Type-directed translation of System F

construct provides an annotation for both argument (σ1, instead of a monotype τ) and result (σ2

instead of ρ). Its typing rule is simple:

Γ, (x :σ1) ⊢ e : σ′2 ⌊σ′2⌋ = σ2
abs-ann

Γ ⊢ (λx . e : : : σ1 → σ2) : σ1 → σ2

With this extra construct we can translate any implicitly-typed System F term into a well-typed
term in FPH, using the translation of Figure 5. This type-directed translation of implicitly typed

System F is specified as a judgement Γ ⊢
F

eF : σ  e where e is a term that type checks in our
language. Notice that the translation requires annotations only on λ-abstractions that involve rich
types3.

A subtle point is that the translation may generate open type annotations. For example, consider
the implicitly typed System F below:

⊢ λx . e : ∀a. (∀b. b → a)→ a

Translating this term using Figure 5 gives

⊢ (λx . e : : : (∀b. b → a)→ a)

Note that the type annotation mentions a which is nowhere bound. Although we have not empha-
sized this point, FPH already accommodates such annotations.

The following theorem captures the essence of the translation.

Theorem 3.8. If Γ ⊢
F

e : σ  e1 then Γ ⊢ e1 : σ′ for some σ′ such that ⌊σ′⌋ = σ.

Proof. The proof is by induction on the derivation of Γ ⊢
F

e : σ  e1. The case for fvar is

trivial. For fapp we have that Γ ⊢
F

e1 e2 : σ2  e3 e4 given that Γ ⊢
F

e1 : σ1 → σ2  e3 and

Γ ⊢
F

e2 : σ1  e4. By induction we have that Γ ⊢ e1 : σ′0 such that ⌊σ′1⌋ = σ1 → σ2. This implies
that σ′0 ⊑ σ′1 → σ′2 such that ⌊σ′1⌋ = σ1 and ⌊σ′2⌋ = σ2. Hence by rule subs and reflexivity of �
we get that Γ ⊢ e1 : σ′1 → σ′2. Also by induction we get that Γ ⊢ e2 : σ′′1 such that ⌊σ′′1 ⌋ = σ1. By
applying rule app we get that Γ ⊢ e1 e2 : σ′2 for which we know that ⌊σ′2⌋ = σ2, as required. For

rule finst we have that Γ ⊢
F

e : [a 7→ σ]ρ  e1 where Γ ⊢
F

e : ∀a. ρ  e1. By induction Γ ⊢ e : σ′

such that ⌊σ′⌋ = ∀a. ρ. Hence, by a sequence of inst and perhaps subs with bi we get the result.
For rule fgen the result follows by induction hypothesis and rule gen. For rule fabs0 we have that

Γ ⊢
F
λx . e : τ1 → τ2  λx . e1, given that Γ, (x :τ1) ⊢

F
e : τ2  e1. By induction Γ, (x :τ1) ⊢ e1 : σ′2

3Of course, it would be fine to annotate every λ-abstraction, but the translation we give generates smaller terms.

10



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

such that ⌊σ′2⌋ = τ2. Because τ2 is monomorphic it must be that σ′2 �⊑ τ2. Consequently, by rule
subs, Γ, (x :τ1) ⊢ e1 : τ2, and by rule abs Γ ⊢ λx . e1 : τ1 → τ2 as required. The case for rule fabs1

follows from induction hypothesis and rule abs-ann.

In practice, however, we do not recommend adding annotated λ-abstractions as a clunky new syn-
tactic construct. Instead, with a bidirectional typing system we can get the same benefits (and more
besides) from ordinary type annotations e:: σ, as we sketch in Section 7.1.

3.5 Predictability and robustness

A key feature of FPH is that it is simple for the programmer to figure out when a type annotation
is required. We gave some intuitions in Section 2, but now we are in a position to give some specific
results. The translation of System F to FPH of Section 3.4 shows that one needs only annotate
let -bindings or λ-abstractions that must be typed with rich types. This is a result of combining
Theorem 3.8 and Lemma 3.4.

For example, every applicative expression—one consisting only of variables, constants, and applications—
that is typeable in System F is typeable in FPH without annotations. We began this paper with
exactly such an example, involving runST , and it would work equally well if we had used reverse
application instead of $.

Theorem 3.9. If e is an applicative expression and Γ ⊢
F

e : σ, then Γ ⊢ e : σ′ for some σ′ with
⌊σ′⌋ = σ.

Proof. This result follows from Theorem 3.8 by observing that whenever e is applicative and Γ ⊢
F

e : σ  e1 then e1 = e, that is, the translation never adds any annotations to applicative terms.

Additionally, a let -binding can always be inlined at its occurrence sites. More precisely if Γ ⊢
let x = u in e : σ′, then Γ ⊢ [x 7→ u]e : σ′. This follows from the following lemma:
Lemma 3.10. If Γ ⊢ u : σ and Γ, (x :σ) ⊢ e : σ′ then Γ ⊢ [x 7→ u]e : σ′.

Proof. Straightforward induction.

The converse direction cannot be true in general (although it is true for ML and ML
F) because of the

limited expressive power of System F types, as we discussed briefly in Section 2. Let σ1 = (∀b. b →
b)→ (∀b. b → b), σ2 = ∀b. (b → b)→ b → b, f1 : σ1 → Int , and f2 : σ2 → Int . One can imagine
a program of the form:

. . . (f1 (choose id )) . . . (f2 (choose id )) . . .

which may be typeable, but it cannot be the case that: let x = choose id in . . . (f1 x ) . . . (f2 x ) . . .
is typeable, as x can be bound with only one of the two incomparable types (in fact only with
∀b. (b → b)→ b → b).

However, notice that if an expression is typed with a box-free type at each of its occurrences in a
context, it may be let -bound out of the context. For example, since λ-abstractions are typed with
box-free types, if C[λx . e] is typeable, where C is a multi-hole context, then it is always the case that
let f = (λx . e) in C[f ] is typeable.

4 An equivalent declarative specification

It will be convenient to introduce at this point a slight variation of the basic type system of Fig-
ure 2 where we have pushed some instantiations and generalizations in the applications and type

annotation nodes. The modified system is given in Figure 6, with the relation Γ ⊢
int

e : σ′ (⊢
int

for
intermediate)

11



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Γ ⊢
int

e : σ′

(x :σ) ∈ Γ
var

Γ ⊢
int

x : σ

Γ ⊢
int

e1 : σ′
1 → σ′

2 Γ ⊢
int

e2 : σ′
3 ⊢

F

⌊σ′
3⌋ ≤ ⌊σ

′
1⌋

app
Γ ⊢

int

e1 e2 : σ′
2

Γ, (x :τ) ⊢
int

e : ρ
abs

Γ ⊢
int

λx . e : τ → ρ

Γ ⊢
int

u : σ Γ, (x :σ) ⊢
int

e : ρ′

let
Γ ⊢

int

let x = u in e : ρ′

Γ ⊢
int

e : ρ′ ρ′(�⊑)ρ′′

subs
Γ ⊢

int

e : ρ′′

Γ ⊢
int

e : ∀a. ρ′

inst
Γ ⊢

int

e : [a 7→ τ ′]ρ′

Γ ⊢
int

e : ρ′ a#Γ
gen

Γ ⊢
int

e : ∀a. ρ′

Γ ⊢
int

e : σ′
1 ⊢

F

⌊σ′
1⌋ ≤ σ

ann
Γ ⊢

int

(e:: σ) : σ

Figure 6: The type system with System F instance

The differences with respect to the type system of Figure 2 are in rules app and ann. However, the
two type systems type exactly the same programs.

Theorem 4.1. If Γ ⊢ e : σ′ then Γ ⊢
int

e : σ′.

Proof. Straightforward induction, observing that ⌊σ′1⌋ = ⌊σ′2⌋ implies ⊢
F
⌊σ′1⌋ ≤ ⌊σ

′
2⌋.

Theorem 4.2. If Γ ⊢
int

e : σ′ then Γ ⊢ e : σ′.

Proof. By induction on the derivation of Γ ⊢
int

e : σ′. The only interesting case is really the

application case (the annotation case is similar), where we have that Γ ⊢
int

e1 e2 : σ′2 where Γ ⊢
int

e1 :

σ′1 → σ′2 and Γ ⊢
int

e2 : σ′3 such that ⊢
F
⌊σ′3⌋ ≤ ⌊σ

′
1⌋. By induction Γ ⊢ e1 : σ′1 → σ′2 and Γ ⊢

int
e2 : σ′3.

It must also be the case that ⌊σ′3⌋ = ∀a. ρ and ⌊σ′1⌋ = ∀b. [a 7→ σ]ρ, where b#ftv(∀a. ρ) and without
loss of generality assume also that b#Γ. Let us consider two cases for σ′3.

• σ′3 = ∀a1. ∀a2. ρ such that a = a1a2, and assume without loss of generality that a#Γ. Then
by rule inst we get that Γ ⊢ e2 : ∀a2. ρ and by rule subs and rule bi we get Γ ⊢ e2 : ρ . By

rule gen we get Γ ⊢ e2 : ∀a. ρ and by inst we get Γ ⊢ e2 : [a 7→ σ]ρ . By rule gen we get

finally that Γ ⊢ e2 : ∀b. [a 7→ σ]ρ , and rule app is applicable to finish the case.
• σ′3 = ∀a. ρ′ such that ρ = ⌊ρ′⌋. Then by rule inst we get that Γ ⊢ e2 : [a 7→ σ ]ρ′ and by rule

gen we get that Γ ⊢ e2 : ∀b. [a 7→ σ ]ρ′. Then, rule app is applicable and finishes the case.

In fact, as the previous theorem suggests, System F instance can be simulated by subsumptions,
instantiations and generalizations in our type system.

Lemma 4.3. If Γ ⊢ e : σ′1 and ⊢
F
⌊σ′1⌋ ≤ ⌊σ

′
2⌋ then Γ ⊢ e : σ′3 such that ⌊σ′3⌋ = ⌊σ′2⌋.

Proof. Straightforward.

Hence, the two declarative systems are equivalent. The type system of Figure 6 is more convenient

to work with in the rest of this document, and hence we simply write ⊢ instead of ⊢
int

below.

12



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Γ ⊢
sd

e : ρ′

(x :σ) ∈ Γ ⊢
inst

σ ≤ ρ′

sdvar
Γ ⊢

sd
x : ρ′

Γ ⊢
sd

e1 : ρ′ ρ′(�⊑→)σ′1 → σ′2
Γ ⊢

sd
e2 : ρ′3 a = ftv(ρ′3)− ftv(Γ)

⊢
F
⌊∀a. ρ′3⌋ ≤ ⌊σ

′
1⌋ ⊢

inst
σ′2 ≤ ρ

′
2

sdapp
Γ ⊢

sd
e1 e2 : ρ′2

Γ, (x :τ) ⊢
sd

e : ρ′

ρ′(�⊑)ρ a = ftv(τ → ρ)− ftv(Γ)
sdabs

Γ ⊢
sd
λx . e : [a 7→ σ ](τ → ρ)

Γ ⊢
sd

u : ρ′ ρ′(�⊑)ρ

a = ftv(ρ)− ftv(Γ) Γ, (x :∀a. ρ) ⊢
sd

e : ρ′1
sdlet

Γ ⊢
sd

let x = u in e : ρ′1

Γ ⊢
sd

e : ρ′1 a = ftv(ρ′1)− ftv(Γ)

⊢
F
⌊∀a. ρ′1⌋ ≤ σ ⊢

inst
σ ≤ ρ′

sdann
Γ ⊢

sd
(e:: σ) : ρ′

⊢
inst

σ′ ≤ ρ′

sdinst
⊢
inst
∀a. ρ′ ≤ [a 7→ σ ]ρ′

σ′ ⊑→ σ′
1
→ σ′

2

boxuf
σ1 → σ2 ⊑

→ σ1 → σ2

nboxuf
σ′ ⊑→ σ′

Figure 7: Syntax-directed type system

5 Syntax-directed specification

We now show how FPH may be implemented. The first step in establishing an algorithmic imple-
mentation is to specify a syntax-directed version of the type system of Figure 6, where uses of the
non-syntax-directed rules (subs, inst, and gen) have been pushed to appropriate nodes inside the
syntax-tree. Subsequently we may proceed with a low-level implementation of the syntax-directed
system (Section 6). Our syntax-directed presentation appears in Figure 7.

Rule sdvar instantiates the type of a variable bound in the environment, using the auxiliary judge-

ment, ⊢
inst

σ′ ≤ ρ′. The latter instantiates the top-level quantifiers of σ′ to yield a ρ′ type. However,
we instantiate with boxes instead of τ ′ types, which is closer to the actual algorithm as boxes
correspond to fresh “unification” variables.

Rule sdapp deals with applications. It infers a type ρ′ for the function, and uses � (Figure 3) and
⊑→ (a subset of ⊑) to expose an arrow constructor. The latter step is called arrow unification. Then
sdapp infers a ρ′3 type for the argument of the application, generalizes over free variables that do
not appear in the environment and checks that the result is more polymorphic (along the System F
type instance) than the required type. Finally sdapp instantiates the return type.

Rule sdabs uses a τ type for the argument of the λ-abstraction, and then forces the returned type
ρ′ for the body to be unboxed to a ρ-type using ρ′ �⊑ ρ. Finally, we consider all the free variables
of the abstraction type that do not appear in the environment, and substitute them with arbitrary
boxes. The returned type for the λ-abstraction is [a 7→ σ ](τ → ρ).

13



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

This last step, of generalization and instantiation, is perhaps puzzling. After all rule abs (in the
declarative specification of Figure 2) seems to only force λ-abstractions to have box-free types. Here
is an example to show why it is needed:
Example 5.1 (Impredicative instantiations in λ-abstractions). The following derivation holds: Γ ⊢
(λx . x ) ids : [∀a. a → a] .

To construct a derivation for Example 5.1 observe that we can instantiate λx . x with a polymorphic
argument type, as follows:

Γ, (x :a) ⊢ x : a
abs

Γ ⊢ λx . x : a → a
gen

Γ ⊢ λx . x : ∀a. a → a
inst

Γ ⊢ λx . x : [∀a. a → a] → [∀a. a → a]

The use of gen and inst are essential to make the term applicable to ids : [ ∀a.a → a] . The gener-
alization and instantiation in sdabs ensure that gen and inst are performed at each λ-abstraction,
much as sdlet ensures that gen is performed at each let -binding.

Rule sdlet is straightforward; after inferring a type for u which may contain boxes, we check that
the boxes can be removed by �⊑ to get a ρ-type, which can subsequently be generalized and pushed
in the environment.

Finally, rule sdann infers a type ρ′1 for the expression e, generalizes over its free variables not in
the environment, and checks that this type is more polymorphic than the annotations. As the final
step, the annotation type is instantiated.

We can now establish the soundness of the syntax-directed system with respect to the declarative
one (of Figure 6):

Theorem 5.2 (Soundness of ⊢
sd

). If Γ ⊢
sd

e : ρ′ then Γ ⊢ e : ρ′.

Proof. Straightforward induction.

To prove the converse direction we need some additional machinery. First, we introduce the pred-

icative restriction of the ⊢
F

relation, given below:

b#ftv(∀a. ρ)
shsubs

⊢
DM
∀a. ρ ≤ ∀b. [a 7→ τ ]ρ

This relation is the relation used in the original Damas-Milner type system. We additionally write

⊢
DM

Γ2 ≤ Γ1 if for every (x :σ1) ∈ Γ1, there exists a σ2 such that (x :σ2) ∈ Γ2, and ⊢
DM

σ2 ≤ σ1.

We have the following lemmas about the System F, and the Damas-Milner instance relations.

Lemma 5.3 (Transitivity of ⊢
DM

and ⊢
F
). If ⊢

DM
σ1 ≤ σ2 and ⊢

DM
σ2 ≤ σ3 then ⊢

DM
σ1 ≤ σ3. If

⊢
F
σ1 ≤ σ2 and ⊢

F
σ2 ≤ σ3 then ⊢

F
σ1 ≤ σ3.

Proof. Easy inductions.

Lemma 5.4 (⊢
F

substitution stability). If ⊢
F
σ1 ≤ σ2 then ⊢

F
⌊ϕσ1⌋ ≤ ⌊ϕσ2⌋.

Proof. Easy induction.

Lemma 5.5. If ⊢
DM

σ1 ≤ σ2 then ftv(σ1) ⊆ ftv(σ2).

Proof. Easy check.

Lemma 5.6. If ⊢
F
σ1 ≤ σ2 then ftv(σ1) ⊆ ftv(σ2).

14



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Proof. Easy check.

The next folklore lemma is particualrly useful for establishing type inference completeness, and in
essence is a commutation property between substitutions and generalizations.

Lemma 5.7 (Gen-subs commutation for ⊢
DM

). Assume that ϕ is box-free. Let a = ftv(ρ) − ftv(Γ)

and b = ftv(ϕρ)− ftv(ϕΓ). It follows that ⊢
DM

ϕ(∀a. ρ) ≤ ∀b. ϕρ.

Proof. Easy unfolding of the definitions.

Lemma 5.8 (⊢
inst

substitution stability). If ⊢
inst

σ′ ≤ ρ′ then ⊢
inst

ϕσ′ ≤ ϕρ′.

Proof. Assume σ′ = ∀a. ρ′1 such that a#ftv(ϕ). Then we know that ρ′ = [a 7→ σ ]ρ′1 and hence

ϕρ′ = ϕ[a 7→ σ ]ρ′1 = [a 7→ ⌊ϕσ⌋ ]ϕρ′1 as required.

Lemma 5.9 (⊑ substitution stability). If σ′1 ⊑ σ
′
2 then ϕσ′1 ⊑ ϕσ

′
2.

Proof. Easy induction.

Corollary 5.10 (�⊑ substitution stability). If σ′1 �⊑ σ
′
2 then ϕσ′1 �⊑ ϕσ

′
2.

Proof. Follows by Lemma 5.4 and Lemma 5.9.

Lemma 5.11 (⊑ transitivity). If σ′1 ⊑ σ
′
2 and σ′2 ⊑ σ

′
3 then σ′1 ⊑ σ

′
3.

Proof. Easy induction on the sums of the heights of the two derivations.

Lemma 5.12 (Bijection substitution). If Γ ⊢
sd

e : ρ′ and ϕ is a variable bijection then ϕΓ ⊢
sd

e : ϕρ′

and the new derivation has the same height.

Proof. Easy induction.

Theorem 5.13 (Substitution). If Γ ⊢
sd

e : ρ′ and dom(ϕ)#ftv(Γ) then Γ ⊢
sd

e : ϕρ′.

Proof. By induction on the height of the derivation of Γ ⊢
sd

e : ρ′. We have the following cases to
consider:

• Case sdvar. We have that Γ ⊢
sd

x : ρ′ given that (x :σ) ∈ Γ and ⊢
inst

σ ≤ ρ′. By inverting ⊢
inst

we know that σ = ∀a. ρ and ρ′ = [a 7→ σ ]ρ. But ftv(∀a. ρ)#dom(ϕ) and assuming without

loss of generality that a#ftv(ϕ) we only need show that: Γ ⊢
sd

x : ϕ[a 7→ σ ]ρ But then:

ϕ[a 7→ σ ]ρ = [a 7→ ⌊ϕσ⌋ ]ϕρ = [a 7→ ⌊ϕσ⌋ ]ρ

To finish the case by rule sdvar we only need show that ⊢
inst
∀a. ρ ≤ [a 7→ ⌊ϕσ⌋ ]ρ, which is

true.
• Case sdabs. In this case we have that: Γ ⊢

sd
λx . e : [a 7→ σ ](τ → ρ), given that Γ, (x :τ) ⊢

sd

e : ρ′, ρ′ �⊑ ρ, and a = ftv(τ → ρ) − ftv(Γ). Let us assume using Lemma 5.12 that

a#ftv(ϕ). Then we need to show that Γ ⊢
sd
λx . e : ϕ[a 7→ σ ](τ → ρ). But ϕ[a 7→ σ ](τ →

ρ) = [a 7→ ⌊ϕσ⌋ ]ϕ(τ → ρ). But notice that ftv(τ → ρ) = a ∪ (ftv(τ → ρ) ∩ ftv(Γ)). Hence

ϕ(τ → ρ) = τ → ρ. Hence we only need to show that Γ ⊢
sd
λx . e : [a 7→ ⌊ϕσ⌋ ](τ → ρ), which

follows by applying directly rule sdabs.

15



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

• Case sdapp. We have in this case that: Γ ⊢
sd

e1 e2 : ρ′2, given that Γ ⊢
sd

e1 : ρ′, ρ′ �⊑→ σ′1 →

σ′2, Γ ⊢
sd

e2 : ρ′3, a = ftv(ρ′3)−ftv(Γ), ⊢
F
⌊∀a. ρ′3⌋ ≤ ⌊σ

′
1⌋, and finally ⊢

inst
σ′2 ≤ ρ

′
2. By induction

hypothesis we have that: Γ ⊢
sd

e1 : ϕρ′, and we can observe that ϕρ′ �⊑→ ϕσ′1 → ϕσ′2.
Moreover, let us assume that a#ftv(ϕ) by appealing to Lemma 5.12. Hence ϕ(⌊∀a. ρ′3⌋) =

⌊∀a. ρ′3⌋. Then, we know that: ⊢
F
⌊∀a. ρ′3⌋ ≤ ⌊σ

′
1⌋ and hence: ⊢

F
⌊ϕ(∀a. ρ′3)⌋) ≤ ⌊ϕ(σ′1)⌋ by

appealing to the ⊢
F

substitution property. The case is finished with rule sdapp if we show that

⊢
inst

ϕσ′2 ≤ ϕρ
′
2, which holds by Lemma 5.8.

• Case sdlet. In this case we have that Γ ⊢
sd

let x = u in e : ρ′1 given that Γ ⊢
sd

u : ρ′, ρ′ �⊑ ρ,

a = ftv(ρ) − ftv(Γ). and Γ, (x :∀a. ρ) ⊢
sd

e : ρ′1. By know that Γ ⊢
sd

u : ρ′. We can apply the

induction hypothesis then to get that Γ, (x :∀a. ρ) ⊢
sd

e : ϕρ′1, since ftv(∀a. ρ) ⊆ ftv(Γ) and
hence also dom(ϕ)#ftv(∀a. ρ), and the case is finished.

• Case sdann. In this case we have that Γ ⊢
sd

(e:: σ) : ρ′ given that Γ ⊢
sd

e : ρ′1, a =

ftv(ρ′1) − ftv(Γ), and ⊢
F
⌊∀a. ρ′1⌋ ≤ σ. Let us assume by appealing to Lemma 5.12 that

a#ftv(ϕ). Then we know that ϕ⌊∀a. ρ′1⌋ = ⌊∀a. ρ′1⌋. By stability of System F instance under

substitution we then get that ⊢
F
⌊∀a. ρ′1⌋ ≤ ϕσ, and applying Lemma 5.8 and rule sdann

finishes the case.

Lemma 5.14 (Arrow unification). If σ′ ⊑ σ′1 → σ′2, then

• σ′ = σ1 → σ2 with σ1 ⊑ σ
′
1 and σ2 ⊑ σ

′
2, or

• σ′ = σ′′1 → σ′′2 with σ′′1 ⊑ σ
′
1 and σ′′2 ⊑ σ

′
2.

Proof. Easy induction on ⊑.

Lemma 5.15 (Transitivity of �⊑). If σ′1 �⊑ σ
′
2 and σ′2 �⊑ σ

′
3 then σ′1 �⊑ σ

′
3.

Proof. Assume that σ′1 �⊑ σ
′
2 and σ′2 �⊑ σ

′
3. We consider cases on σ′2.

• Assume that σ′2 = σ . By inversion on ⊑, since σ′1 �⊑ σ , it must be that σ′1 � σ , and hence
we have two cases by inversion on �:

– Case σ′1 = σ (using rule br). Then, we know by assumption that σ = σ′2 �⊑ σ′3, and
therefore the case is finished.

– Case σ′1 = ∀a. ρ and σ = [a 7→ σa ]ρ (using rule bi). Moreover we know by assumptions

that [a 7→ σa ]ρ �⊑ σ′3. We consider cases on whether ρ = a ∈ a or not. If ρ = a

then assume that σa = ∀b. ρb in which case we know that σa � [b 7→ σb ]ρb ⊑ σ′3. But

in that case, also σ′1 = ∀a. ρ = ∀a. a � [b 7→ σb ]ρb ⊑ σ′3. Consequently, σ′1 �⊑ σ′3
as required. If on the other hand ρ 6= a, this means that [a 7→ σa ]ρ ⊑ σ′3. Hence,

σ′1 = ∀a. ρ � [a 7→ σa ]ρ ⊑ σ′3, that is σ′1 �⊑ σ
′
3.

• Assume that σ′2 6= σ for any σ. It follows by inversion on � that σ′2 ⊑ σ
′
3. Therefore we have

σ′1 �⊑ σ
′
2 ⊑ σ

′
3, and by transitivity of ⊑ we get σ′1 �⊑ σ

′
3.

Theorem 5.16 (Completeness of syntax-directed system). Assume that Γ1 ⊢ e : ∀a. ρ′. Then, for

all Γ2 with ⊢
DM

Γ2 ≤ Γ1 and for all σ there exists a ρ′0 such that Γ2 ⊢
sd

e : ρ′0 and ρ′0 �⊑ [a 7→ σ ]ρ′.

Proof. By induction on the derivation of Γ1 ⊢ e : ∀a. ρ′. We consider the following cases:

16



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

• Case var. We have in this case that (x :σ1) ∈ Γ1 and Γ1 ⊢ x : σ1. Then (x :σ2) ∈ Γ2 and more-

over ⊢
DM

σ2 ≤ σ1. Assume that σ2 = ∀a. ρ and σ1 = ∀b. [a 7→ τ ]ρ given that b#ftv(∀a. ρ).
Then, let us pick σ. We need to find σa such that [a 7→ σa ]ρ �⊑ [b 7→ σ ][a 7→ τ ]ρ. For
this we can simply pick each σa to be the type ⌊[b 7→ σ ]τ⌋, and it is actually [a 7→ σa ]ρ ⊑
[b 7→ σ ][a 7→ τ ]ρ. With reflexivity of �, we get [a 7→ σa ]ρ �⊑ [b 7→ σ ][a 7→ τ ]ρ as required.
• Case abs. We have that Γ1 ⊢ λx . e : τ → ρ given that Γ1, (x :τ) ⊢ e : ρ. By induction

hypothesis we get that Γ2, (x :τ) ⊢
sd

e : ρ′0 such that ρ′0 �⊑ ρ. Then, consider all a ∈
ftv(τ, ρ) − ftv(Γ2). Consider the substitution: [a 7→ a ] and [a 7→ a ](τ → ρ) �⊑ τ → ρ, as

required if we apply rule sdabs to get that Γ2 ⊢
sd
λx . e : [a 7→ a ](τ → ρ).

• Case inst. We have in this case that Γ1 ⊢ e : [a 7→ τ ′]ρ′ given that Γ1 ⊢ e : ∀a. ρ′. By induction

hypothesis we have that for all vectors σ, we have Γ2 ⊢
sd

e : ρ′0 such that ρ′0 �⊑ [a 7→ σ ]ρ′.
We need to show that ρ′0 �⊑ [a 7→ τ ′]ρ′. By picking σ = ⌊τ ′⌋, we know that:

ρ′0 �⊑ [a 7→ ⌊τ ′⌋ ]ρ′ ⊑ [a 7→ τ ′]ρ

and by transitivity of ⊑, we get ρ′0 �⊑ [a 7→ τ ′]ρ as required.
• Case gen. We have that Γ1 ⊢ e : ∀a. ρ′ given that Γ1 ⊢ e : ρ′ and a#Γ1. By induction

hypothesis we get that Γ2 ⊢
sd

e : ρ′0 such that ρ′0 �⊑ ρ′. We need to find a ρ′′0 such that

ρ′′0 �⊑ [a 7→ σ ]ρ′. Because ⊢
DM

Γ2 ≤ Γ1 it is easy to prove that also a#Γ2. Then, by

Theorem 5.13 we get that: Γ2 ⊢
sd

e : [a 7→ σ ]ρ′0. Let ρ′′0 = [a 7→ σ ]ρ′0. Because ρ′0 �⊑ ρ′, by
substitution stability for �⊑ we can get [a 7→ σ ]ρ′0 �⊑ [a 7→ σ ]ρ′ as required.
• Case subs. We have that Γ1 ⊢ e : ρ′′ given that Γ1 ⊢ e : ρ′ and ρ′ �⊑ ρ′′. By induction

hypothesis we get that Γ2 ⊢
sd

e : ρ′0 such that ρ′0 �⊑ ρ
′ and by transitivity of �⊑ (Lemma 5.15)

we get ρ′0 �⊑ ρ
′′ as required.

• Case let. In this case we have that: Γ1 ⊢ let x = u in e : ρ′, given that Γ1 ⊢ u : ∀a. ρ
and Γ1, (x :∀a. ρ) ⊢ e : ρ′. By induction hypothesis we get that for all vectors σ there exists

a ρ′0 such that: Γ2 ⊢
sd

u : ρ′0 and ρ′0 �⊑ [a 7→ σ ]ρ. Pick in particular the ρ′0 such that
ρ′0 �⊑ [a 7→ a ]ρ. Then, it is easy to see that [a 7→ a ]ρ ⊑ ρ and hence ρ′0 �⊑ ρ by transitivity

of ⊑. Since ⊢
DM

Γ2 ≤ Γ1 it is the case that ftv(Γ2) ⊆ ftv(Γ1) (by Lemma 5.5), and hence for

b = ftv(ρ)− ftv(Γ2) we get that ⊢
DM
∀b. ρ ≤ ∀a. ρ. By induction hypothesis then we get that

Γ2, (x :∀b. ρ) ⊢
sd

e : ρ′1 such that ρ′1 �⊑ ρ
′. Applying rule sdlet finishes the case.

• Case ann. We have that Γ1 ⊢ (e:: σ) : σ, given that Γ1 ⊢ e : σ′1 and ⊢
F
⌊σ′1⌋ ≤ σ. Assume

that σ′1 = ∀a. ρ′1. Then, by induction we get that for all σ there exists a ρ′0 with: Γ2 ⊢
sd

e : ρ′0
such that ρ′0 �⊑ [a 7→ σ ]ρ′1. Pick in particular the ρ′0 that makes true that ρ′0 �⊑ [a 7→ a ]ρ′1.

Then let b = ftv(ρ′0) − ftv(Γ2). If ⊢
F
⌊∀a. ρ′1⌋ ≤ σ then it must also be ⊢

F
⌊∀b. ρ′0⌋ ≤ σ, by

using transitivity of ⊢
F

since, ⊢
F
⌊∀b. ρ′0⌋ ≤ ⌊∀a. ρ′1⌋. The case concludes by appealing to rule

sdann in the same way as in the case of rule var.
• Case app. We have that Γ1 ⊢ e1 e2 : σ′2 given that Γ1 ⊢ e1 : σ′1 → σ′2, Γ1 ⊢ e2 : σ′3, and

⊢
F
⌊σ′3⌋ ≤ ⌊σ

′
1⌋. By induction hypothesis we have that Γ2 ⊢

sd
e1 : ρ′1 such that ρ′1 �⊑ σ

′
1 → σ′2.

Let ρ′′1 be the particular type such that ρ′1 � ρ′′1 ⊑ σ′1 → σ′2. Then, by Lemma 5.14 we have
two cases:

– ρ′′1 = σ1 → σ2 with σ1 ⊑ σ
′
1 and σ2 ⊑ σ

′
2, or

– ρ′′1 = σ′′1 → σ′′2 with σ′′1 ⊑ σ
′
1 and σ′′2 ⊑ σ

′
2.

Let σ′11 be either σ′′1 or σ1 . In any case it is the case that ⌊σ′11⌋ = ⌊σ′1⌋. And let σ′22 be either
σ′′2 or σ2 . Moreover, let us assume that σ′3 = ∀b. ρ′3. Then, by induction hypothesis there

exists a ρ′′3 such that Γ2 ⊢
sd

e3 : ρ′′3 and ρ′′3 �⊑ [b 7→ b ]ρ′3. Moreover let a = ftv(ρ′′3)− ftv(Γ2).

It must be the case that: ⊢
F
⌊∀a. ρ′′3⌋ ≤ ⌊∀b. ρ′3⌋ and we know that ⊢

F
⌊σ′3⌋ ≤ ⌊σ

′
1⌋. By

transitivity of ⊢
F

then we get that ⊢
F
⌊∀a. ρ′′3⌋ ≤ ⌊σ

′
1⌋ = ⌊σ′11⌋. To conclude the case using rule

sdapp we have the following. Assume that σ′2 = ∀c. ρ′2. Pick any vector σ. We need to find
an instantiation of σ′22, ρ

′
22 such that ρ′22 �⊑ [c 7→ σ ]ρ′2. We take cases according to the form

of σ′22:

17



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

– Case σ′22 = σ2 . Then it is the case that σ2 ⊑ ∀c. ρ′2, which means that c = ∅ and σ2 is a
ρ-type, by inversion on the ⊑ relation. In which case we have the required result because
σ′22 cannot be further instantiated.

– Case σ′22 = σ′′2 ⊑ ∀c. ρ′2 = σ′2. By inversion again we either get that σ′′2 = ∀c. ρ′2, or that
σ′′2 = ∀c. ρ′′2 with ρ′′2 ⊑ ρ

′
2 and by the substitution lemma for ⊑ we get that [c 7→ σ ]ρ′′2 ⊑

[c 7→ σ ]ρ′2, i.e. by reflexivity of �, [c 7→ σ ]ρ′′2 �⊑ [c 7→ σ ]ρ′2 ⊢
inst

σ′22 ≤ [c 7→ σ ]ρ′′2 , as
required.

To see an example of this theorem, consider the following context Γ = {head :∀a. [a]→ a, ids:[∀b. b →
b]}. Now, one can see that Γ ⊢ (head ids) : ∀c. c → c → ∀c. c → c but in the syntax-directed sys-

tem we only get Γ ⊢
sd

(head ids) : ∀a. a → a , and it is the case that ∀a. a → a �⊑ ∀c. c → c →
∀c. c → c .

We are now in a state to give the completeness of the syntax-directed specification with respect to
the declarative system.

Corollary 5.17. If Γ ⊢ e : ρ′ then Γ ⊢
sd

e : ρ′0 such that ρ′0 �⊑ ρ
′.

Proof. The result follows by Theorem 5.16, observing that ⊢
DM

is reflexive.

We also state one further corollary, which is a key ingredient to showing the implementability of the
syntax-directed system by a low-level algorithm (to be described in Section 6).

Corollary 5.18 (Strengthening). If Γ1 ⊢
sd

e : ρ′1 and ⊢
DM

Γ2 ≤ Γ1 then Γ2 ⊢
sd

e : ρ′2 such that
ρ′2 �⊑ ρ

′
1.

Proof. The corollary follows by appealing to Theorem 5.2 and Theorem 5.16.

Corollary 5.18 means that if we change the types of expressions in the environments to be the most

general according to the predicative ⊢
DM

, typeability is not affected. This property is important for
type inference completeness for the following reason: All types that are pushed in the environment

are box-free and hence can only differ by each other in ⊢
DM

relation—their polymorphic parts are
determined by annotations. In fact the algorithm will choose the most general of them according

to ⊢
DM

. Therefore, if an expression is typeable in the declarative type system with bindings in
the environments that do not have their most general types, the above corollary shows that the
expression will also be typeable if these bindings are assigned their most general types, that is, the
types that the algorithm infers for them.

6 Algorithmic implementation

The syntax-directed specification of Figure 7 can be implemented by a low-level constraint-based
algorithm, which resembles the algorithm of ML

F (Le Botlan and Rémy 2003). To ease the transition
into the detailed low-level description of the algorithm, we present an approximate description of the
basic ideas behind the implementation in Section 6.1, and we elaborate in Section 6.2. We present
the metatheory of the implementation in Section 6.3.

6.1 The basic ideas

Like Hindley-Damas-Milner type inference (Damas and Milner 1982; Milner 1978), our algorithm
creates fresh unification variables to instantiate polymorphic types, and to use as the argument
types of abstractions. In Hindley-Damas-Milner type inference these variables are unified with other

18



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

types. Hence, a Hindley-Damas-Milner type inference engine maintains a set of equality constraints
that map each unification variable to some type, updating the constraints as type inference proceeds.

Our algorithm uses a similar structure to Hindley-Damas-Milner type inference, but maintains both
equality and instance constraints during type inference, so we use the term constrained variable
instead of unification variable. A constrained variable in the algorithm corresponds to a box in
the high-level specification. To distinguish between constrained variables and (rigid) quantified
variables, we use greek letters α, β, for the latter. Therefore, the algorithm manipulates types with
the following syntax:

τ ::= a | τ → τ | T τ | α
ρ ::= τ | σ → σ | T σ
σ ::= ∀a. ρ

An algorithmic type with no constrained variables can be viewed as an ordinary System F (box-free)
type, and we will ommit explicit coercions when we need to do this.

The need for instance constraints can be motivated by the typing of choose ids from the intro-
duction. First, since choose has type ∀a. a → a → a, we may instantiate the quantified variable
a with a fresh constrained variable α. However, when we meet the argument id , it becomes un-
clear whether α should be equal to β → β (that would arise from instantiating the type of id ), or
∀b. b → b (if we do not instantiate id ). In the high-level specification we can clairvoyantly make a
(potentially boxed) choice that suits us. The algorithm does not have the luxury of clairvoyance, so
rather than making a choice, it must instead simply record an instance constraint. In this case, the
instance constraint specifies that α can be any System F instance of ∀b. b → b. To express this, at
first approximation, we need constraints of the form α ≥ σ.

However, we need to go slightly beyond this constraint form. Consider the program f (choose id)
where f has type ∀c. c → c. After we instantiate the quantified variable c with a fresh variable γ,
we must constrain γ by the type of choose id , thus

γ ≥ (principal type of choose id )

But, the principal type of choose id must be a type that is quantified and constrained at the same
time: [α ≥ ∀b. b → b]⇒α→ α. Following ML

F (Le Botlan and Rémy 2003), this scheme captures
the set of all types for choose id , such as ∀d . (d → d)→ (d → d) or (∀b. b → b)→ (∀b. b → b).
We hence extend the bounds of constrained variables to include γ ≥ ς, where ς is a scheme. Schemes
ς are of the form [c1, . . . , cn ] ⇒ ρ, where each constraint ci is of the form (α ≥ ς), or (α = σ),
or (α ⊥). 4 The constraint α ⊥ means that α is unconstrained. Ordinary System F types can be
viewed as schemes whose quantified variables are unconstrained, and hence the type ∀b. b → b can be
written as [β ⊥]⇒β → β. The meaning of the constraint γ ≥ ς is that γ belongs in the set of System
F types that ς represents, which we write [[ς]]. For example, if ς = [α ≥ ([β ⊥]⇒β → β)]⇒(α→ α),
then we have:

(∀b. b → b)→ (∀b. b → b) ∈ [[ς]]
∀c. (c → c)→ c → c ∈ [[ς]]

∀c. ([c]→ [c])→ [c]→ [c] ∈ [[ς]]

6.2 Description of the algorithm

We immediately proceed to the detailed description of the low-level algorithmic implementation of
the syntax-directed type system in Figure 7. The formal language of types and constraints that we
use in the implementation is given in Figure 8. Monomorphic types τ contain “rigid” variables a (such
as quantified variables), and constrained (unification) variables α, β, . . .. As outlined previously,
constrained variables represent the boxes of the high-level type system. A box that is filled in with
some type should be viewed as two components: a constrained variable, and a substitution that

4In reality, the syntax of constraints involves also special flags on variables. As a first approximation we may ignore

this detail, but we will be precise in the detailed description of the algorithm, in the next section.

19



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Algorithm types σ ::= ∀a. ρ
ρ ::= τ | σ → σ
τ ::= a | α | τ → τ

Constraints C ::= αµ bnd
Flags µ ::= m | ⋆
Schemes ς ::= [C ]⇒ρ
Bounds bnd ::= (≥ ς) | (= σ) | ⊥

Flagsets ∆ ::= αµ

Figure 8: Algorithmic types, schemes, and constraints

satisfies the constraint that is attached to the variable, and which maps the variable to the contents
of the box.

Constraints C are finite maps of the form αµ bnd . Every variable α is mapped to a flag µ and a
bound bnd . The domain of a constraint C , written as dom(C ), is the set {α | (αµ bnd) ∈ C}.
As described previously, bounds bnd specify either flexible constraints, rigid constraints, or the fact
that a constrained variable is yet completely unconstrained.

The new bit, compared to our previous description, is the presence of the flags µ. These flags are used
to ensure that the variables that enter the environments are never unified with types that contain
quantifiers, and are hence monomorphic. This is important to ensure that abstraction argument
types are kept monomorphic, as the high-level specification requires. Those constrained variables
that must be kept monomorphic are flagged with m, whereas variables with no restrictions are
flagged with ⋆.

Flagsets ∆ are a notational convenience, and can be viewed as special constraints that only give
information about the flags of the variables of a constraint. For a constraint C , we write ∆C for
the flagset of the domain of C . Additionally, and overloading notation, we write fcv(·) (for free
cosntrained variables) for the set of constrained variables of the argument. For example, fcv(C ) is
the set of all constrained variables appearing anywhere in C . We write ∆(β) = µ whenever βµ ∈ ∆,
and dom(∆) for the domain of ∆. We write ∆1∆2 for the disjoint union of the two flagsets with
respect the variables in their domains.

We elaborate in the next section on the form of the bounds bnd , as well as the meaning of constraints.

6.2.1 Bounds, and the meaning of constraints

Figure 8 presents the concrete syntax for constraints and schemes. Apart from the flexible bounds
of the form ≥ ς we additionally need rigid bounds that stand for equalities and are of the form
= σ. Equalities arise because of invariant data type constructors. Unrestricted bounds ⊥ impose
no constraints. Schemes are of the form [C ]⇒ρ. The variables that appear in the domain of C are
considered bound in ρ. Hence the domain of C can be viewed as a set of quantified but constrained
variables.

Because schemes [D ]⇒ρ bind the constrained variables in the domain of D inside the body ρ we
can assume without loss of generality that D can be concatenated with any external constraint C ,
to form the constraint C•D . This corresponds to ensuring freshness of the constrained variables in
the domain of D .
Definition 6.1 (Constraint disjoint concatenation). For two constraints C and D , we write C•D
to denote their union whenever dom(D)#fcv(C ).

20



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

∆ ⊢ C

(a) dom(C )#dom(∆)

(b) for all (αµ bnd) ∈ C , α /∈ bC (bnd) and fcv(bnd) ⊆ dom(C ) ∪ dom(∆)
(c) for all (αm bnd) ∈ C , for all β ∈ fcv(bnd), ∆∆c(β) = m and (bnd = ⊥ or bnd = τ)
(d) for all (αµ ≥ ς) ∈ C , ∆∆C ⊢ ς and µ = ⋆

cwf
∆ ⊢ C

∆ ⊢ σ ∆ ⊢ ς

fcv(σ) ⊆ dom(∆)
wft

∆ ⊢ σ

(a) ∆ ⊢ D fcv([D ]⇒ρ) ⊆ dom(∆)
(b) for all γ ∈ dom(D), ∆D(γ) = ⋆
(c) if ρ = γ then (γ⋆ ⊥) ∈ D or ∆(γ) = m

wfs
∆ ⊢ [D ]⇒ρ

Figure 9: Well formed constraints, types, and schemes

We now define the reachable variables of types and schemes through a constraint, with the (over-

loaded) function Ĉ (·), below:

bC (α) | α /∈ dom(C ) = {α}
bC (α) | (αµ ⊥) ∈ C = {α}
bC (α) | (αµ = σ) ∈ C = {α} ∪ bC (σ)
bC (α) | (αµ ≥ ς) ∈ C = {α} ∪ bC (ς)
bC (a) = ∅
bC (σ1 → σ2) = bC (σ1) ∪ bC (σ2)
bC (∀a. ρ) = bC (ρ)
bC ([D ]⇒ρ) = Ĉ•D(ρ, dom(D))− dom(D)

In the case for schemes, Ĉ ([D ]⇒ρ), we gather all variables reachable from ρ and the domain of
D through C•D except those quantified by the scheme (dom(D)). However, an invariant of our
algorithm will be that there exist no useless quantified variables in dom(D) in any scheme of the

form [D ]⇒ρ —hence in reality it will suffice to only consider Ĉ•D(ρ)− dom(D).

Finally, the function Ĉ (·) exists since any constraint involves a finite set of constrained variables,
and we can compute it by an iteration process, that adds new variables from the constraint C at
each step. Although formally this corresponds to a guaranteed-to-exist fixpoint, we will simply be
using the above set of equalities as the actual definition of Ĉ (σ). We can now define fcv(·) using

the reachable variables through the empty constraint. In particular fcv(ς) = ∅̂(ς).

We now need to define the meaning of constraints and bounds. Before presenting the actual defini-
tion, we give conditions on the constraints that will help get insights about their meaning. Figure 9
presents the necessary conditions on constraints, types, and schemes, with the notations ∆ ⊢ C ,
∆ ⊢ σ, and ∆ ⊢ ς respectively.

The judgement ∆ ⊢ C ensures that the constraint C is well-formed in a given flagset ∆. In rule cwf,
condition (a) ensures that the domain of C consists of fresh variables with respect to ∆. Condition
(b) ensures that there exist no cycles in C and that all constrained variables in the bounds of C
belong either in the domain of C or in the external dom(∆). Condition (c) ensures that if a variable
is flagged as monomorphic with m then it must be either unrestricted (bound to ⊥) or mapped
rigidly to some type τ whose constrained variables must be themselved flagged as m either in ∆ or
∆C . Condition (d) ensures that all flags of flexibly bound variables are ⋆. It makes no sense for a
variable that must be monomorphic to be flexibly bound to a scheme, since a monomorphic variable
can only be equal to an instance of the scheme. Finally, condition (d) also asserts that in all bounds
of the form α⋆ ≥ ς, the constraint ς must itself be well-formed in the extended flagset ∆∆C .

21



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

The judgement ∆ ⊢ σ simply ensures that all constrained variables appear in the flagset ∆. The
judgement ∆ ⊢ ς ensures that the scheme ς is well-formed in the flagset ∆. Let us examine in detail
the conditions of rule wfs, which asserts that ∆ ⊢ [D ]⇒ρ. Condition (a) ensures that the constraint
D of the scheme is well-formed in ∆, and that all the free constrained variables of [D ]⇒ρ belong in
the domain of ∆. Condition (b) states that all constrained variables in dom(D) cannot be flagged
as m. The reason is the following: If such a variable were flagged with m then it must have been the
case that some variable from the environment has been mapped to it—in order to force its flagging.
It follows that such a variable could not have been quantified in the scheme anyway, because schemes
are constructed as results of generalization. Condition (c) ensures that the scheme [D ]⇒ρ is normal.
That is, if the body is a single variable, then it must either be bound to ⊥ in dom(D) or it must be
monomorphically flagged in ∆. During inference a normalization procedure ensures that schemes
are normal and our unification algorithm preserves normal schemes. We return to this condition in
Section 6.2.2.

We are particularly interested in constraints that are well-formed in their own flagsets, i.e. con-
straints C where ⊢ C . Our type inference algorithm produces and manipulates such constraints.
Well-formed constraints correspond to sets of substitutions from constrained variables to constrained-
variable-free types, generalizing the interpretation of schemes as sets of constrained-variable-free
(System F) types. The idea exists in the ML

F line of work, and we take it a step further, to formal-
ize type inference using this interpretation of constraints, instead of employing a syntactic instance
relation that encodes set semantics. In order to present the interpretation of constraints and schemes
we need to introduce the quantifier rank of a constraint.
Definition 6.2 (Constraint quantifier rank). The quantifier rank of a constraint C , written q(C ),
is defined as:

q(C ) = |dom(C )|+
∑

(αµ≥[D]⇒ρ)∈C

q(D)

Intuitively the metric q(C ) sums up the number of all constrained variables in C , icluding the
constrained variables of all schemes appearing in C .
Definition 6.3 (Well-formed constraint interpretation). A substitution θ from constrained variables
to constrained-variable-free (System F) types satisfies C , written θ |= C , iff:

1. for all (αm bnd) ∈ C , it is the case that θα is quantifier-free.
2. for all (αµ = σ) ∈ C , it is the case that θα = θσ.
3. for all (αµ ≥ ς) ∈ C , it is the case that θα ∈ [[θς]].

where:
[[[D ]⇒ρ]] = {∀b. θDρ | b#ftv([D ]⇒ρ) and θD |= D}

Of course we will be interested mainly in the interpretation of well-formed constraints, but the
definition is valid for arbitrary constraints, so long that θ grounds all constrained variables to System
F types.

Condition (1) ensures that all monomorphic variables are indeed mapped to monomorphic types.
Condition (2) ensures that equalities are respected. Condition (3) realizes our set interpretation of
schemes. We observe that the domain of θ must be a superset of the domain of C and hence in clause
(3), θς contains no free constrained variables. The interpretation [[[D ]⇒ρ]] is nothing more than a
generalization of System F instance. It requires the existence of a substitution θD that satisfies D ,
and we can generalize over type variables (b) that θD introduced (condition b#ftv([D ]⇒ρ). Notice
that, because of the well-formedness condition (c) in rule wfs, θDρ may add no top-level quantifiers
on ρ. Finally, the mutual definition of satisfying substitutions and scheme interpretations is well-
formed by using as metric the quantifier rank q(C ) for θ |= C , and q(D) for the interpretation of
[D ]⇒ρ.

As an example, let us see how we can derive that

∀b. (b → b)→ (b → b) ∈ [[[α⋆ ≥ ([β⋆ ⊥]⇒β → β)]⇒(α→ α)]]

22



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Consider the substitution θα = [α 7→ (b → b)]. Since (b → b)→ (b → b) = θα(α→ α) it suffices to
show that θα |= (α⋆ ≥ [β⋆ ⊥]⇒β → β). This will be the case if θαα ∈ [[[β⋆ ⊥]⇒β → β]], that is, if
b → b ∈ [[[β⋆ ⊥]⇒β → β]]. This follows by picking θβ = [β 7→ b].

6.2.2 Inference implementation

We proceed with explaining the basic ideas behind the reference implementation. The top-level
inference algorithm is given with the function infer , that follows the syntax-directed presentation of
Figure 7, and has signature:

infer : Constraint × Env × Term → Constraint × Type

The function infer accepts a constraint C1, an environment Γ, and a term e. A call to infer(C1,Γ, e)
either fails with fail or returns an updated constraint C2 and a type ρ. The most interesting case,
which demonstrates the power of schemes, is the application case:

infer(C ,Γ, e1 e2) = E1, ρ1 = infer(C ,Γ, e1)
E2, σ1 → σ2 = instFun(E1,Γ, ρ1)
E3, ρ3 = infer(E2,Γ, e2)
E4, ς3 = generalize(Γ,E3, ρ3)
E5 = subsCheck(E4, ς3, σ1)
inst(E5, σ2)

In a call to infer(C ,Γ, e1 e2) we peform the following steps:

• We first infer a type ρ1 for e1 and an updated constraint E1, by calling infer(C ,Γ, e1).
• However, type ρ1 may itself be a constrained type variable, that is, it may correspond to a

single box in the syntax-directed specification. The function instFun(E1,Γ, ρ1) implements
the relation �⊑→. Intuitively, if ρ1 is a variable α that is not monomorphic in E1, that is
if (α⋆ = ∀a. ρ) ∈ E1 or (α⋆ ≥ [D ]⇒ρ) ∈ E1, it is replaced by an instantiation of its bound
(that is, with [a 7→ α]ρ for fresh α, or ρ respectively). This is achieved with a function called
normalize (a subcall of generalize), that accepts a constraint and a type and inlines/instantiates
all constraint bounds if the type is a single variable. For example

normalize((α⋆ = ∀b. b → b), α) = [β⋆ ⊥]⇒β → β
normalize((α⋆ ≥ [β⋆ ⊥]⇒β), α) = [β⋆ ⊥]⇒β
normalize((α⋆ = σ), α→ α) = [α⋆ = σ]⇒α→ α

With this step we have effectively performed an instantiation along �. To push boxes down
along ⊑→ we consider two cases: if the inlined and instantiated type was a function type we
simply return it, otherwise we attempt to unify the inlined type with some function type β → γ
consisting of fresh unification variables β and γ. We return the resulting type as σ1 → σ2.

• Subsequently, we infer a type and an updated constraint for the argument e2 with E3, ρ3 =
infer(E2,Γ, e2).

• At this point we need to compare the function argument type σ1 to the type that we have
inferred for the argument. However, we do not know the precise type of the argument at this
point and hence we call generalize(Γ,E3, ρ3) to get back a new constraint E4 and a scheme
ς3. The scheme ς3 expresses the set of all possible types of the argument e2. We return to
generalize later in this section.

• Now that we have a scheme ς3 expressing all possible types of the argument e2 we must check
that the required type σ1 belongs in the set that ς3 expresses. This is achieved with the call
to subsCheck(E4, ς3, σ1), which simply returns an updated constraint E5.

• Finally, type σ2 may be equal to some type ∀a. ρ2, which we instantiate to [a 7→ α]ρ2 for fresh

α. This is achieved with the call to inst(E5, σ2), which implements the ⊢
inst

judgement of the
syntax-directed presentation.

23



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

eqCheck : Constraint × Type × Type → Constraint

e1 eqCheck(C , a, a) = C

e2 eqCheck(C , α, σ) = updateRigid(C , α, σ)
e3 eqCheck(C , σ, α) = updateRigid(C , α, σ)
e4 eqCheck(C , σ1 → σ2, σ3 → σ4) = E = eqCheck(C , σ1, σ3)

eqCheck(E , σ2, σ4)

e5 eqCheck(C , ∀a. ρ1, ∀a. ρ2) = E = eqCheck(C , [a 7→ b]ρ1, [a 7→ b]ρ2)

if b#E then return E else fail

e6 eqCheck(C , , ) = fail

subsCheck : Constraint × Scheme × Types → Constraint

s1 subsCheck(C , ς, β) = updateFlexi(C , β, ς)

s2 subsCheck(C , [D ]⇒ρ1, ∀c. ρ2) = ρ3 = [c 7→ b]ρ2

E = eqCheck(C•D , ρ1, ρ3) and γ = bE(dom(C ))

if b#Eγ then return Eγ else fail

ur1 updateRigid(C , α, α) = return C

ur2 updateRigid(C , α, β) | ((βµ = γ) ∈ C ) = updateRigid(C , α, γ)
ur3 updateRigid(C , α, β) |

((βµ ≥ [D ]⇒γ) ∈ C ) ∧ (γ /∈ dom(D)) = updateRigid(C , α, γ)

ur4 updateRigid(C , α, σ) = if α ∈ bC (σ) then fail else doUpdateR(C , α, σ)
dr1 doUpdateR(C , α, σ) | ((αm ⊥) ∈ C ) = E = mkMono(True,C , σ)

return (E ← (αm = σ))
dr2 doUpdateR(C , α, σ) | ((α⋆ ⊥) ∈ C ) = return (C ← (α⋆ = σ))
dr3 doUpdateR(C , α, σ) | ((αµ ≥ ςa) ∈ C ) = E = subsCheck(C , ςa , σ)

return (E ← (αµ = σ))
dr4 doUpdateR(C , α, σ) | ((αµ = σa) ∈ C ) = eqCheck(C , σa , σ)

uf1 updateFlexi(C , α, [D ]⇒γ) | γ /∈ dom(D) = updateRigid(C , α, γ)

uf2 updateFlexi(C , α, ς) = if α ∈ bC (ς) then fail else doUpdateF (C , α, ς)
df1 doUpdateF (C , α, [D ]⇒ρ) | ((αm ⊥) ∈ C ) = E = mkMono(True,C•D , ρ)

return (E < −(αm = ρ))
df2 doUpdateF (C , α, ς) | ((α⋆ ⊥) ∈ C ) = return (C < −(α⋆ ≥ ς))
df3 doUpdateF (C , α, ς) | ((αµ = σa) ∈ C ) = subsCheck(C , ς, σa)
df4 doUpdateF (C , α, ς) | ((αµ ≥ ςa) ∈ C ) = E , ςr = join(C , ςa , ς)

return (E ← (αµ ≥ ςr ))

join : Constraint × Scheme × Scheme →
Constraint × Scheme

j1 join(C , [D ]⇒α, ς2) | (αµ ⊥) ∈ D = (C , ς2)
j2 join(C , ς1, [D ]⇒α) | (αµ ⊥) ∈ D = (C , ς1)
j3 join(C , [D1]⇒ρ1, [D2]⇒ρ2) = E = eqCheck(C•D1•D2, ρ1, ρ2)

δ = bE(ρ1)− bE(dom(C ))
return (EbE(dom(C)), [Eδ]⇒ρ1)

mkMono : Bool × Constraint × Type → Constraint

m1 mkMono(f ,C , ∀a. ρ) = if (f ∧ a 6= ∅) then fail else mkMono(f ,C , ρ)
m2 mkMono(f ,C , σ1 → σ2) = E = mkMono(f ,C , σ1)

mkMono(f ,E , σ2)
m3 mkMono(f ,C , a) = C

m4 mkMono(f ,C , α) | (αm bnd) ∈ C = C

m5 mkMono(f ,C , α) | (αµ ≥ [D ]⇒ρ) ∈ C ) = E = mkMono(True,C•D , ρ)
return (E ← (αm = ρ))

m6 mkMono(f ,C , α) | (αµ = σ) ∈ C = E = mkMono(True,C , σ)
return (E ← (αm = σ))

m7 mkMono(f ,C , α) | (α⋆ ⊥) ∈ C = return (C ← (αm ⊥))

Figure 10: Unification and instance checking

24



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

inst : Constraint × Type → Constraint × Type

inst inst(C , ∀a. ρ) = return (C•(α⋆ ⊥), [a 7→ α]ρ)

normalize : Constraint × Type → Scheme

n1 normalize(C , α) | (α⋆ ≥ [D ]⇒ρ) ∈ C = return ([C•D − α]⇒ρ)
n2 normalize(C , α) | (α⋆ = σ) ∈ C = normalize(C − α, σ)
n3 normalize(C , ∀a. ρ) = return ([C•(α· ⊥)]⇒[a 7→ α]ρ)
n4 normalize(C , ρ) = return ([C ]⇒ρ)

gen generalize(C , Γ, ρ) = β = bC (ρ)− bC (Γ)
[E ]⇒ρ1 = normalize(Cβ , ρ)

return (C − β, [E ]⇒ρ1)

instFun : Constraint × Env × Type → Constraint × Type

if1 instFun(C , Γ, α) = E1, ([Eg ]⇒ρg) = generalize(C , Γ, α)
E2 = eqCheck(E1•Eg•(β⋆ ⊥)•(γ⋆ ⊥), ρg , β → γ)
return (E2, β → γ)

if2 instFun(C , Γ, σ1 → σ2) = return (C , σ1 → σ2)
if3 instFun(C , Γ, ) = fail

instMono : Constraint × Env × Type → Constraint × Type

im1 instMono(C , Γ, α) = E1, ([Eg ]⇒ρg) = generalize(C , Γ, α)
E2 = mkMono(E1•Eg ,True, ρg)
return (E2, ρg)

im2 instMono(C , Γ, ρ) = E = mkMono(C ,False, ρ) ; return (E , ρ)

infer : Constraint × Env × Term → Constraint × Type

ivar infer(C , Γ, x ) = if (x :σ) ∈ Γ then inst(C , σ) else fail

iapp infer(C , Γ, e1 e2) = E1, ρ1 = infer(C , Γ, e1)
E2, σ1 → σ2 = instFun(E1, Γ, ρ1)
E3, ρ3 = infer(E2, Γ, e2)
E4, ς3 = generalize(Γ,E3, ρ3)
E5 = subsCheck(E4, ς3, σ1)
inst(E5, σ2)

ilet infer(C , Γ, let x = u in e) = E1, ρ1 = infer(C , Γ, u)
E2, ρ2 = instMono(E1, Γ, ρ1)
ρ3 = zonkType(E2, ρ2)

α = cE2(ρ3)−cE2(Γ) β = α ∩ fcv(ρ3) a fresh

infer(E2 − E2α, Γ, (x :∀a. [β 7→ a]ρ3), e)
iann infer(C , Γ, (e:: σ)) = E1, ρ = infer(C , Γ, e)

E2, ς = generalize(E1, Γ, ρ)
E3 = subsCheck(E2, ς, σ)
inst(E3, σ)

iabs infer(C , Γ, λx . e) = E1, ρ = infer(C•(βm ⊥), (Γ, (x :β)), e)
E2, ρ1 = instMono(E1, (Γ, (x :β)), ρ)

α = cE2(β → ρ1)−cE2(Γ)

E
↑

2α = {(α⋆ bnd) | (αµ bnd) ∈ E2α}

return ((E2 − E2α)•E↑

2α, (β → ρ1))

z1 zonkType(C , α) | (αµ = σ) ∈ C = zonkType(σ)
z2 zonkType(C , α) | (αµ ⊥) ∈ C = α
z3 zonkType(C , a) = a

z4 zonkType(C , σ1 → σ2) = zonkType(C , σ1)→ zonkType(C , σ2)
z5 zonkType(C , ∀a. ρ) = ∀a. zonkType(C , ρ)

Figure 11: Main inference algorithm

25



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

We now turn to generalize with the following signature:

generalize : Env × Constraint × Type → Constraint × Scheme

The generalize function accepts an evnironment, a constraint, and a ρ type which is typically the
result of a prior call to infer , and returns a scheme which is well-formed and expresses the set of all
possible System F types that can be generalized from ρ. The definition of generalize is:

generalize(Γ,C , ρ) = β = Ĉ (ρ)− Ĉ (Γ)
ς = normalize(Cβ , ρ)

return (C − β, ς)

The first step is to locate which variables can be generalized. These are the β which are the reachable
variables of ρ through C , except for those that are reachable from the environment Γ through C .
Notice that if the reachable variables of Γ through the constraint C were monomorphic this implies
that there are no monomorphic variables in β. Hence we could at this point return [Cβ ]⇒ρ (Cβ is

the restriction of C to β) and condition (b) of rule cwf would not be violated. However condition
(c) could be violated, and hence we must normalize ρ in order to inline any polymorphism of ρ, if
ρ is a plain variable. After the call to normalize, the returned scheme ς is a normal scheme that
satisfies condition (c). Finally, in the returned constraint we can safely discard all the bounds of β.

A different interesting part of the function infer is related to forcing monomorphism of the con-
strained variables of let -bound expressions, or abstraction bodies. Intuitively, after inferring a
type for a let -bound expression we need to implement the instantiation along �⊑ to a box-free
type. In much the same way as the call to instFun we normalize the inferred type if it is a single
variable and subsequently traverse the inlined type flagging variables as monomorphic and ensuring
that all flexible bounds are instantiated and all variables are m-flagged and equal to quantifier-free
types. This is achieved with the instMono function. The generalization step proceeds then just like
generalization in a traditional Hindley-Damas-Milner implementation.

Finally, function abstractions are first typed by creating a fresh m-flagged variable for the argument
type, inferring a type for the body, forcing it to be monomorphic and lifting the m flags from the
variables that could be generalized.

Importance of normal schemes The case for applications illustrates why it is important for
schemes to be normal. Consider the following code fragment:

head :: forall d. [d] -> d
foo :: (forall b. b -> b) -> Int

h = foo (head id)

The application is certainly typeable in the specification. First we instantiate the type of head
with [∀b. b → b ] → ∀b. b → b and the application head id can be typed with ∀b. b → b . Sub-

sequently it is straightforward to check that ⊢
F
∀b. b → b ≤ ∀b. b → b as rule sdapp requires.

However let us consider the algorithm operation. The type that will be inferred for head alls
will simply be γ where (γ⋆ = ∀b. b → b) is bound in the constraint. The non-normalized scheme
is [γ⋆ = ∀b. b → b]⇒γ whereas the normalized one would be [β⋆ ⊥]⇒β → β. But now notice that
according to Definition 6.3 it is not the case that (∀b. b → b) ∈ [[[γ⋆ = ∀b. b → b]⇒γ]]. However,
with the normal scheme, [β⋆ ⊥]⇒β → β, it is the case that (∀b. b → b) ∈ [[[β⋆ ⊥]⇒β → β]].

In short, non-normal schemes, when interpreted with Definition 6.3, do not capture all of the desired
System F types. Either the interpretation should be different, or we should be using normal schemes.
We chose to use normal schemes.

26



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

6.2.3 Instance checking and unification

The main type inference algorithm relies on the subsCheck function, which checks whether a type
belongs in the interpretation of a scheme. The subsCheck function is mutually defined with several
other functions, that together constitute our unification algorithm. The signatures of these functions
are given below:

subsCheck : Constraint × Scheme × Type → Constraint
eqCheck : Constraint × Type × Type → Constraint
updateRigid : Constraint ×Var × Type → Constraint
updateFlexi : Constraint ×Var × Scheme → Constraint
join : Constraint × Scheme × Scheme → Constraint × Scheme

With the call to subsCheck(C1, ς, σ) = C2 we check that σ belongs in the interpretation of the
scheme ς and produce an updated constraint C2. With eqCheck(C1, σ1, σ2) = C2 we check that σ1

can be equated to σ2 and produce an updated constraint C2. The call to updateRigid(C1, α, σ) = C2

updates the bounds of α in C1 to be rigidly equal to σ. The call to updateFlexi(C1, α, ς) = C2

updates the bounds of α to ensure that any instantiation of α will belong in the interpretation of
ς. Finally the call join(C1, ς1, ς2) = C2, ς updates the constraint and produces a new well-formed
scheme whose interpretation is the intersection of the interpretations of ς1 and ς2. The join function
is the heart of the algorithmic implementation.

6.2.4 Summary of the algorithmic implementation properties

The algorithm satisfies several properties. In this section we outline the most important propositions,
and we proceed with their detailed proofs in the next section.

The first observation is that the functions that constitute our instance checking and unification
terminate; and as an easy corollary the overall algorithm terminates.

Proposition (see Theorem 6.28): Assume that ⊢ C1 and ∆C ⊢ ς and ∆C ⊢ σ. Then the call to
subsCheck(C1, ς, σ) either returns fail or terminates and returns a constraint C2.

Unsurprisingly, the proof of termination is very similar to the termination proof for the ML
F unifica-

tion algorithm. It involves a metric that is a lexicographic triple whose first component is the sum of
the quantifier ranks of the argument C1 and the constraint of the scheme ς1, its second component
involves the sizes of ς and σ, and the third component involves the sizes of the sets of reachable
variables of ς and σ through C1.

The following proposition states soundness of instance checking and unification.

Proposition (see Section 6.3.2): Assume in all cases that ⊢ C1 and all the schemes and types
below are well-formed in ∆C1

. Then, the following are true:

1. If eqCheck(C1, σ1, σ2) = C2 and θ |= C2 then θ |= C1 and moreover θσ1 = θσ2.
2. If subsCheck(C1, ς, σ) = C2 and θ |= C2 then θ |= C1 and moreover θσ ∈ [[θς]].
3. If updateRigid(C1, α, σ) = C2 and θ |= C2 then θ |= C1 and moreover θα = θσ.
4. If updateRigid(C1, α, ς) = C2 and θ |= C2 then θ |= C1 and moreover θα ∈ [[θς]].
5. If join(C1, ς1, ς2) = C2, ς and θ |= C2 then θ |= C1 and moreover [[θς]] ⊆ [[θς1]] ∩ [[θς2]].

Completeness of unification with respect to the set semantics is true, as the following proposition
states.

Proposition (see Section 6.3.3): Assume in all cases that ⊢ C1 and all the schemes and types
are well formed in ∆C1

and that dom(θ) = dom(C1). Then, the following are true:

1. If θσ1 = θσ2 then eqCheck(C1, σ1, σ2) = C2 and there exists a θr such that θθr |= C2.
2. If θσ ∈ [[θς]] then subsCheck(C1, ς, σ) = C2 and there exists a θr such that θθr |= C2.

27



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

3. If θα = θσ then updateRigid(C1, α, σ) = C2 and there exists a θr such that θθr |= C2.
4. If θα ∈ [[θς]] then updateFlexi(C1, α, ς) = C2 and there exists a θr such that θθr |= C2.
5. If σ ∈ [[θς1]] ∩ [[θς2]] then join(C1, ς1, ς2) = C2, ς and there exists a θr such that θθr |= C2 and
σ ∈ [[θθr ς]].

It is particularly illuminating to observe the unification soundness and completeness for the join
function. Soundness and completeness of unification show that join computes precisely a scheme
that expresses the intersection of the interpretation of the argument schemes.

We now turn our focus to the main inference function. In order to state the soundness and com-
pleteness properties of the algorithm we have to define the notion of a boxy substitution.
Definition 6.4 (Boxy substitution). Given a substitution θ from constrained variables to constrained-
variable-free types, we define the boxy substitution of θ on σ, denoted with θ[σ], that substitutes
the range of θ in a boxed and capture-avoiding fashion inside σ.

For example, if θ = [α 7→ σ] then θ[α → α] = σ → σ . We may use boxy substitutions to recover
specification types from algorithmic types, provided that all their constrained variables appear in
the domains of the substitutions. Additionally we write C ⊢ Γ when for all (x :σ) ∈ Γ it is the case

that ∆C ⊢ σ, and additionally it is the case that α ∈ Ĉ (Γ) iff ∆C (α) = m. Intuitively, the notation
C ⊢ Γ means that all variables of Γ are in C and monomorphically flagged, and the reachable
variables from Γ are the only m-flagged variables in C . We are now ready to state soundness:

Proposition (see Lemma 6.70): If ⊢ C1 and C1 ⊢ Γ and infer(C1,Γ, e) = C2, ρ then for all

θ |= C2 it is the case that θ |= C1 and θΓ ⊢
sd

e : θ[ρ].

Notice that we need not apply θ in a boxy fashion to Γ, since all the variables of Γ will be monomor-
phic in C1, and θ can only map them to monomorphic types. A corollary is soundness with respect
to the declarative specification:
Corollary 6.5. If ⊢ C1 and C1 ⊢ Γ and infer(C1,Γ, e) = C2, ρ then for all θ |= C2 it is the case
that θ |= C1 and θΓ ⊢ e : θ[ρ].

We are now ready to state the main completeness proposition.

Proposition (see Lemma 6.77): If ⊢ C1 and C1 ⊢ Γ and θ |= C1 and dom(θ) = dom(C1) and

θΓ ⊢
sd

e : ρ′ then infer(C1,Γ, e) = C2, ρ and there exists a θr such that θθr |= C2 and θ[ρ] �⊑ ρ′.

The proof is an induction on the size of e in the derivation of θΓ ⊢
sd

e : ρ′. The cases for let -
bound expressions and abstractions rely on Lemma 5.7 and a Damas-Milner strengthening property
(can be found in the main paper), and are similar to the corresponding cases for ordinary Hindley-
Damas-Milner inference. However the cases for applications and annotations crucially rely the two
propositions below:

Proposition 6.6. If ⊢ ς, σ1 ∈ [[ς]] and ⊢
F
σ1 ≤ σ2 then σ2 ∈ [[ς]].

Proposition (See Lemma 6.75): Assume that ⊢ C1 and C1 ⊢ Γ and C1 ⊢ ρ and θ |= C1 and
ftv(ρ) = ∅ and E , ς = generalize(C1,Γ, ρ) and a = ftv(θρ)− ftv(θΓ). Then ⌊∀a. θ[ρ]⌋ ∈ [[θς]].

Notice that the last proposition can be viewed as a generalization of Lemma 5.7 that involves
schemes. The following corollary is then true, by observing that �⊑ is transitive:
Corollary 6.7. If ⊢ C1 and C1 ⊢ Γ and θ |= C1 and dom(θ) = dom(C1) and θΓ ⊢ e : ρ′ then
infer(C1,Γ, e) = C2, ρ and there exists a θr such that θθr |= C2 and θ[ρ] �⊑ ρ′.

Together Corollary 6.5 and Corollary 6.7 ensure the implementability of the declarative specification
of Figure 2.

6.3 Detailed algorithm metatheory

We present in this section the detailed metatheory of the algorithmic implementation. We first need
to extend the quantifier rank definition to schemes and types.
Definition 6.8 (Scheme quantifier rank). If ς = [D ] ⇒ ρ, we let q(ς) = q(D). Overloading the
notation we let q(σ) = 0.

28



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

6.3.1 Unification termination

Definition 6.9 (Acyclicity). A constraint C is acyclic, written acyclic (C ) for the smallest relation

that asserts that, for all (αm ∈ bnd) ∈ C , α /∈ Ĉ (bnd); and moreover for every (αµ ≥ [D ]⇒ ρ) ∈ C
it is acyclic (D).
Definition 6.10 (Closedness). A constraint C is closed, written closed (C ) if fcv(C ) ⊆ dom(C ).
Lemma 6.11 (mkMono domain monotonicity). If mkMono(C1, f , σ) = C2 then dom(C1) ⊆ dom(C2).

Proof. Easy induction on the number of recursive calls to mkMono.

Lemma 6.12 (Domain monotonicity). The following are true:

1. If eqCheck(C1, σ1, σ2) = C2 then dom(C1) ⊆ dom(C2).
2. If eqCheck(C1, σ1, σ2) = C2 then dom(C1) ⊆ dom(C2).
3. If subsCheck(C1, ς, σ) = C2 then dom(C1) ⊆ dom(C2).
4. If updateRigid(C1, α, σ) = C2 then dom(C1) ⊆ dom(C2).
5. If doUpdateR(C1, α, σ) = C2 then dom(C1) ⊆ dom(C2).
6. If updateFlexi(C1, α, ς) = C2 then dom(C1) ⊆ dom(C2).
7. If doUpdateF (C1, α, ς) = C2 then dom(C1) ⊆ dom(C2).
8. If join(C1, ς1, ς2) = C2, ςr then dom(C1) ⊆ dom(C2).

Proof. The proof is by simultaneous induction, appealing also to Lemma 6.11. For each case we
assume that the property is true for all other cases when they terminate in a smaller number of
recursive calls.

The following lemma asserts that m-flagged variables never have their flags lifted during unification.
Lemma 6.13. If ∆C1

(β) = m and mkMono(C1, f , σ) = C2 then ∆C2
(β) = m.

Proof. Easy induction on the number of recursive calls to mkMono.

Lemma 6.14 (Monomorphic domain monotonicity). The following are true:

1. If ∆C1
(β) = m and eqCheck(C1, σ1, σ2) = C2 then ∆C2

(β) = m.
2. If ∆C1

(β) = m and subsCheck(C1, ς, σ) = C2 then ∆C2
(β) = m.

3. If ∆C1
(β) = m and updateRigid(C1, α, σ) = C2 then ∆C2

(β) = m.
4. If ∆C1

(β) = m and doUpdateR(C1, α, σ) = C2 then ∆C2
(β) = m.

5. If ∆C1
(β) = m and updateFlexi(C1, α, ς) = C2 then ∆C2

(β) = m.
6. If ∆C1

(β) = m and doUpdateF (C1, α, ς) = C2 then ∆C2
(β) = m.

7. If ∆C1
(β) = m and join(C1, ς1, ς2) = C2, ςr then ∆C2

(β) = m.

Proof. Easy simultaneous induction, using Lemma 6.12 and Lemma 6.13 and observing that we
never lift a m flag during unification; instead we merely convert ⋆ flags to m.

Lemma 6.15 (mkMono preserves closedness). If closed (C1), C1 ⊢ σ, and mkMono(C1, f , σ) = C2

then closed (C2).

Proof. Induction on the number of recursive calls to mkMono. Case m1 follows by induction hypoth-
esis. Case m2 follows by two uses of the inductive hypothesis and Lemma 6.11. Cases m3 and m4 are
trivial. For case m5 we have that closed (C1) and fcv([D ]⇒ ρ) ⊆ dom(C1); hence closed (C1•D)
and fcv(ρ) ⊆ dom(C1•D). By induction hypothesis closed (E ). To finish the case we need to show
that fcv(ρ) ⊆ dom(E ← (αm = ρ)). By Lemma 6.11 we know that fcv(ρ) ⊆ dom(E ) and also that
α ∈ dom(E ), hence fcv(ρ) ⊆ dom(E ← (αm = ρ)). The case of m6 is similar, and m7 is trivial.

Lemma 6.16 (Restriction preserves closedness). If closed (C ) and γ = Ĉ (β) then closed (Cγ).

29



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Proof. Assume by contradiction that there exists a γ ∈ bnd and (αµ bnd) ∈ Cγ such that γ /∈

dom(Cγ). It follows that (αµ bnd) ∈ C and it also follows that α ∈ Ĉ (β). But in this case it must

also be that γ ∈ Ĉ (β), and hence γ ∈ dom(Cγ)—a contradiction.

Theorem 6.17 (Unification preserves closedness). The following are true

1. closed (C1) ∧ fcv(σ1, σ2) ⊆ dom(C1) ∧ eqCheck(C1, σ1, σ2) = C2 =⇒ closed (C2)
2. closed (C1) ∧ fcv(ς, σ, σ0) ⊆ dom(C1) ∧ subsCheck(C1, ς, σ, σ0) = C2 =⇒ closed (C2)
3. closed (C1) ∧ fcv(α, σ) ⊆ dom(C1) ∧ updateRigid(C1, α, σ) = C2 =⇒ closed (C2)
4. closed (C1) ∧ fcv(α, σ) ⊆ dom(C1) ∧ doUpdateR(C1, α, σ) = C2 =⇒ closed (C2)
5. closed (C1) ∧ fcv(α, σ) ⊆ dom(C1) ∧ updateFlexi(C1, α, ς) = C2 =⇒ closed (C2)
6. closed (C1) ∧ fcv(α, ς) ⊆ dom(C1) ∧ doUpdateF (C1, α, ς) = C2 =⇒ closed (C2)
7. closed (C1) ∧ fcv(ς1, ς2) ⊆ dom(C1) ∧ join(C1, ς1, ς2) = C2, ς =⇒ closed (C2) ∧ fcv(ς) ⊆

dom(C2)

Proof. We prove the cases simultaneously by induction on the number of recursive calls. For each
case we assume that all hold for calls that terminate in a smaller number of recursive calls.

1. Case e1 is trivial. Case e2 follows by induction hypothesis for updateRigid , and similarly
case e3. For e4 we have that closed (C1) and fcv(σ1, σ2, σ3, σ4) ⊆ dom(C1). Moreover
eqCheck(C1, σ1 → σ2, σ3 → σ4) = C2 where E = eqCheck(C1, σ1, σ3) and C2 = eqCheck(E , σ2, σ4).
By induction hypothesis we get that closed (E ). By Lemma 6.12 we get that fcv(σ2, σ4) ⊆
dom(E ). Consequently, by induction hypothesis we get that closed (C2), as required. For
case e5 we have that closed (C1) and fcv(∀a. ρ1,∀a. ρ2) ⊆ dom(C1). Consequently also
fcv([a 7→ b]ρ1, [a 7→ b]ρ2) ⊆ dom(C1), and by induction hypothesis closed (E ), where C2 =
E . Case e6 cannot happen.

2. Case s1 follows by induction hypothesis for updateFlexi . For case s2 we have that closed (C1)
and fcv([D ] ⇒ ρ1,∀c. ρ2) ⊆ dom(C1). It follows that fcv(ρ1, ρ2) ⊆ dom(C1•D) and more-
over we get that closed (C1•D). By induction hypothesis then closed (E ). Because γ =

Ê (dom(C1)), it must also be closed (Eγ), by Lemma 6.16.
3. Case ur1 is trivial. For ur2, we show that fcv(α, γ) ⊆ dom(C1). But we know that fcv(α, β) ⊆

dom(C1), and moreover closed (C1). Since (βµ = γ) ∈ C1, it must be that γ ∈ dom(C1). We
can then apply the induction hypothesis to get that closed (C2). The case for ur3 is similar.
Case ur4 follows by induction hypothesis for doUpdateR.

4. For case dr1 we know that fcv(α, σ) ∈ dom(C1) and closed (C1). It follows that by
Lemma 6.15 that closed (E ). To finish the case it is enough to show that fcv(σ) ⊆ dom(E−α).
We know that α /∈ fcv(σ) and hence it suffices to show that fcv(σ) ⊆ dom(E ). But that follows
by Lemma 6.12. Case dr2 is similar. For the case of dr3 we know by induction hypothe-
sis that closed (E ). Moreover to finish the case we need to show that fcv(σ) ⊆ dom(E ←
(αm = σ)). But we know that fcv(σ) ⊆ dom(E ) by Lemma 6.12 and also α ∈ dom(E ), and
we are done. Case dr4. We know that closed (C1) and fcv(α, σ) ⊆ dom(C1), hence also
fcv(σα) ⊆ dom(C1). Applying the induction hypothesis for eqCheck finishes the case.

5. For case uf1 we know that closed (C1) and fcv(α, [D ] ⇒ γ) ⊆ dom(C1)—it follows that
fcv(α, γ) ⊆ dom(C1) and induction hypothesis for updateRigid finishes the case. For case uf2

appealing to induction hypothesis for doUpdateF shows the goal.
6. Cases df1, df2, df3 are similar to the corresponding cases of doUpdateR. For df4 we know

that closed (C1) and fcv(α, ς) ⊆ dom(C1), hence also fcv(ςa , ς) ⊆ dom(C1). By induction
hypothesis then for join we get that closed (E ) and fcv(ςr ) ⊆ dom(E ), hence also fcv(ςr ) ⊆
dom(E ← (αµ ≥ ςr )).

7. Case j1 follows trivially, and case j2 is similar. For j3 we have that closed (C1) and
fcv([D1] ⇒ ρ1, [D2] ⇒ ρ2) ⊆ dom(C1). It follows that closed (C1•D1•D2) and fcv(ρ1, ρ2) ⊆
dom(C1•D1•D2). By induction E is closed, and EbE(dom(C1))

also closed (by Lemma 6.16). To

finish the case we need to show that fcv([Eδ]⇒ ρ1) ⊆ dom(EbE(dom(C1))
). Pick then a variable

α ∈ fcv([Eδ] ⇒ ρ1). It must be that α /∈ (Ê (ρ1) − Ê (dom(C1))). Hence we have two cases.

30



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

If α ∈ Ê (ρ1) then it must be that α ∈ Ê (dom(C1)), hence α ∈ dom(EbE(dom(C1))
), because it

must be that α ∈ dom(E ) (by domain monotonicity). On the other hand, if α /∈ Ê (ρ1) then
α /∈ fcv([Eδ]⇒ ρ1), a contradiction.

Lemma 6.18 (mkMono single-variable separation). If α /∈ Ĉ1(σ, σ0) and α ∈ dom(C1), and
mkMono(C1, f , σ) = C2, then mkMono(C1 − α, f , σ) = C2 − α in the same number of steps, and

α /∈ Ĉ2(σ, σ0).

Proof. By induction on the number of steps that mkMono performs. Cases m1, m3, and m4 are
straightforward. For case m2 we have that α /∈ Ĉ1(σ1 → σ2, σ0) and mkMono(C1, f , σ1 → σ2) = C2

where E = mkMono(C1, f , σ1) and C2 = mkMono(E , f , σ2). By induction hypothesis E − α =

mkMono(C1−α, f , σ1) and moreover α /∈ Ê (σ1, σ2, σ0). By Lemma 6.11 we know that α ∈ dom(E ).

Hence, by induction hypothesis C2 − α = mkMono(E − α, f , σ2) and α /∈ Ĉ2(σ2, σ1, σ0). That is,

α /∈ Ĉ2(σ1 → σ2, σ0). For case m5, we have that β /∈ Ĉ1(α, σ0) and mkMono(C1, f , α) = (E ←
(αm = ρ)) whenever E = mkMono(C1•D , ρ) and (αµ ≥ [D ] ⇒ ρ) ∈ C1. Then we know that

β /∈ Ĉ1•D(ρ) − dom(D) but also that β ∈ dom(C1); hence it is not in the domain of D and

consequently, β /∈ Ĉ1•D(ρ). By induction hypothesis then (E − β) = mkMono((C1 − β)•D , ρ) and

β /∈ Ê (ρ, σ0). Consequently mkMono(C1 − β, f , α) = (E − β) ← (αm = ρ) as required. Case m6 is
similar to case m5. Case m7 is an easy check.

Lemma 6.19. If acyclic (C ) and acyclic (D), then acyclic (C•D).

Proof. Easy check.

Below, we use the symbol ;E for the reachability relation induced by the bounds of a constraint E .
Each edge in this graph corresponds to a set of edges between a bound variable α and the fcv(bnd),
in any constraint of the form (αµ bnd) ∈ E .
Lemma 6.20 (Monomorphization preserves acyclicity). If acyclic (C1) and mkMono(C1, f , σ) =
C2 then acyclic (C2).

Proof. By induction on the number of recursive calls to mkMono. Case m1 is trivial, and m2 follows
by two uses of the induction hypothesis. Cases m3 and m4 are trivial. For m5, we first know that
mkMono(C1•D , f , ρ) = E . The constraint C1•D must then be acyclic as well, and by induction
acyclic (E ). We want to show now that acyclic (E ← (αm = ρ)). However we know that

α /∈ Ĉ1•D(ρ) since α ∈ domC1 and acyclic(C1). In this case, in order for E ← (αm = ρ) to have
a cycle it must be that the cycle “closes-off” by some edge induced by αm = ρ. In other words,
there exists a variable γ ;E−α αm = ρ ;E−α γ. Which means that ρ ;E−α α. But α /∈ Ê (ρ) by
Lemma 6.18, and it cannot be that ρ ;E−α α either. For m6 the proof is similar. Case m7 does
not affect the reachability graph induced by the constraint, and hence the proof follows.

The following are two “separation” lemmas. Parts of the constraints that are not touched by the
algorithm appear intact in the output constraint. We write C1C2 for the disjoint union of two
constraints C1 and C2 with resept to their domains, without any extra conditions whatsoever (as in
C1•C2).
Theorem 6.21 (mkMono separation). If closed (C1), fcv(σ) ⊆ dom(C1), and mkMono(C1Cr , f , σ) =
C then mkMono(C1, f , σ) = C2 in the same number of recursive calls, and such that C = C2Cr .

Proof. By induction on the number of recursive calls to mkMono. Cases m1, m3, and m4 are tirival.
For m2 we have that closed (C1), fcv(σ1 → σ2) ⊆ dom(C1). Additionally, mkMono(C1Cr , f , σ1) =
E and C = mkMono(E , f , σ2). We have by induction that mkMono(C1, f , σ1) = C2 such that
E = C2Cr . Moreover by Theorem 6.17 we get that closed (C2) and by Lemma 6.11 fcv(σ2) ⊆

31



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

dom(C2). It follows by induction hypothesis that mkMono(C2, f , σ2) = E2 such that C = E2Cr ,
as required. For m5 we have that closed (C1), α ∈ dom(C1), and mkMono(C1Cr , f , α) = (E ←
(αm = ρ)), where E = mkMono(True,C1Cr•D , ρ) and (αµ ≥ [D ] ⇒ ρ) ∈ C1. We know however
that closed (C1•D) since closed (C1) and α ∈ dom(C1). It also follows that fcv(ρ) ⊆ dom(C1•D).
By induction hypothesis then E2 = mkMono(True,C1•D , ρ) and E = E2Cr . Since α ∈ dom(C1) it
follows that α ∈ dom(E2) and hence E ← (αm = ρ) = (E2 ← (αm = ρ))Cr as required. The case
for m6 is similar. The case for m7 is straightforward.

Theorem 6.22 (Unification separation). The following are true:

1. If closed (C1), fcv(σ1, σ2) ⊆ dom(C1), and eqCheck(C1Cr , σ1, σ2) = C then there exists a
C2 such that eqCheck(C1, σ1, σ2) = C2, and moreover C = C2Cr .

2. If closed (C1), fcv(ς, σ) ⊆ dom(C1), and subsCheck(C1Cr , ς, σ) = C then there exists a C2

such that subsCheck(C1, ς, σ) = C2, and moreover C = C2Cr .
3. If closed (C1), fcv(α, σ) ⊆ dom(C1), and updateRigid(C1Cr , α, σ) = C then there exists a

C2 such that updateRigid(C1, α, σ) = C2, and moreover C = C2Cr .
4. If closed (C1), fcv(α, σ) ⊆ dom(C1), and doUpdateR(C1Cr , α, σ) = C then there exists a C2

such that doUpdateR(C1, α, σ) = C2, and moreover C = C2Cr .
5. If closed (C1), fcv(α, ς) ⊆ dom(C1), and updateFlexi(C1Cr , α, ς) = C then there exists a C2

such that updateFlexi(C1, α, ς) = C2, and moreover C = C2Cr .
6. If closed (C1), fcv(α, ς) ⊆ dom(C1), and doUpdateF (C1Cr , α, ς) = C then there exists a C2

such that doUpdateF (C1, α, ς) = C2, and moreover C = C2Cr .
7. If closed (C1), fcv(ς1, ς2) ⊆ dom(C1), and join(C1Cr , ς1, ς2) = C , ςr then there exists a C2

such that join(C1, ς1, ς2) = C2, ςr , and moreover C = C2Cr .

Moreover, in each case the number of recursive calls is preserved.

Proof. We prove the cases simultaneously by induction on the number of recursive calls. We assume
that all cases are true for a smaller number of recursive calls. We have the following:

1. Case e1 follows trivially. Cases e2 and e3 follow by the induction hypothesis for updateRigid .
Case e4 follows by two applications of the induction hypothesis, the second one enabled by
making use of Lemma 6.12 and Theorem 6.17. Case e5 follows directly by induction hypothesis,
and case e6 cannot happen.

2. Case s1 follows directly by induction hypothesis for updateFlexi . We now turn our attention
fo case s2 (which is actually the only really interesting case along with case j3). In this case
we have the following:

closed (C1) (1)

fcv([D ]⇒ ρ1,∀c. ρ2) ⊆ dom(C1) (2)

eqCheck(C1Cr , [D ]⇒ ρ1,∀c. ρ2) = C (3)

where

ρ3 = c 7→ b]ρ2 (4)

E = eqCheck(C1Cr•D , ρ1, ρ2) (5)

γ = Ê (dom(C1Cr )) b#Eγ (6)

From (1) and (2) we confirm that fcv(ρ1, ρ3) ∈ dom(C1•D), and additionally closed (C1•D).
By induction hypothesis then for (5) we get that eqCheck(C1•D , ρ1, ρ2) = E2 such that E =
E2Cr . To finish the case we need to show that:

(E2Cr )Ê2Cr (dom(C1Cr ))
= E

2cE2(dom(C1))
Cr

We consider each direction separately:

32



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

• Assume (γµ bnd) ∈ E
2cE2(dom(C1))

Cr . If (γµ bnd) ∈ Cr then clearly (γµ bnd) ∈ E2Cr

and γ ∈ Ê2Cr (dom(C1Cr )) as required. If on the other hand (γµ bnd) ∈ E2 and

γ ∈ Ê2(dom(C1)), it also follows that (γµ bnd) ∈ E2Cr and γ ∈ Ê2Cr (dom(C1Cr ))
as required.

• Assume now that:

(γµ bnd) ∈ E2Cr (7)

γ ∈ Ê2Cr (dom(C1Cr )) (8)

First of all, if (γµ bnd) ∈ Cr then directly (γµ bnd) ∈ E
2cE2(dom(C1))

Cr as required.

Assume now that (γµ bnd) ∈ E2 and γ /∈ dom(Cr ). Then we may have two cases:

– Purely (i.e. without involving Cr ) it is γ ∈ Ê2(dom(C1)), in which case we are done;
otherwise

– we have the following path:

α ∈ dom(C1) ;E2
β 7→Cr

;E2Cr γ

Let us explain: There is a variable α ∈ dom(C1). Now because this variable is not in
the domain of Cr it can only be mapped to some other type first by some uses of E2,
hence the ;E2

notation. But at some point we will reach a variable β /∈ dom(E2)
that will be mapped via Cr to some other type (hence the notation β 7→Cr

). But
E2 is closed, and by Lemma 6.12 dom(C1) ⊆ dom(E2). It follows that this case is
impossible, and we are done.

3. Case ur1 is trivial. Case ur2 follows by closedness of C1, the assumptions, and induction
hypothesis. Case ur3 is similar. Case ur4 follows by closedness of C1, the assumptions, and
induction hypothesis.

4. Case dr1 and dr2 are straightforward, appealing to Theorem 6.21. Case dr3 and case dr4

use the induction hypothesis.
5. Cases uf1,uf2 are similar to ur1 and ur4 respectively.
6. Cases df1 and df2 are straightforward, appealing to Theorem 6.21. Cases df3 and case df4

use the induction hypothesis.
7. Cases j1 and j2 are straightforward. The interesting case is j3 which follows in a similar way

as the case for s2.

We overload below the notation acyclic (·) to schemes. We write acyclic ([D ] ⇒ ρ) to mean
acyclic (D).
Theorem 6.23 (Unification preserves acyclicity). Assume that in all cases, the constrained variables
of the arguments are contained within the domain of C1. Then, the following are true:

1. closed (C1) ∧ acyclic (C1) ∧ eqCheck(C1, σ1, σ2) = C2 =⇒ acyclic (C2)
2. closed (C1) ∧ acyclic (C1, ς) ∧ subsCheck(C1, ς, σ, σ0) = C2 =⇒ acyclic (C2)
3. closed (C1) ∧ acyclic (C1) ∧ updateRigid(C1, α, σ) = C2 =⇒ acyclic (C2)

4. closed (C1) ∧ acyclic (C1) ∧ α /∈ Ĉ1(σ) ∧ doUpdateR(C1, α, σ) = C2 =⇒ acyclic (C2)
5. closed (C1) ∧ acyclic (C1, ς) ∧ updateFlexi(C1, α, ς, σ0) = C2 =⇒ acyclic (C2)

6. closed (C1) ∧ acyclic (C1, ς) ∧ α /∈ Ĉ1(ς) ∧ doUpdateF (C1, α, ς) = C2 =⇒ acyclic (C2)
7. closed (C1) ∧ acyclic (C1, ς1, ς2) ∧ extJoin(C1, ς1, ς2) = C2, ς =⇒ acyclic (C2, ςr )

Proof. The proof is straightforward induction on the number of recursive calls, and the only inter-
esting cases are those that update the constraint. Let us examine one case, the case for dr3. In this

33



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

case we know that:

closed (C1) ∧ acyclic (C1) (9)

doUpdateF (C1, α, σ) = E ← (αµ = σ) (10)

(αµ ≥ ς) ∈ C1 (11)

E = subsCheck(C1, ςa , σ) (12)

Induction hypothesis here gives us that E is acyclic, hence also E − α is acyclic. Assume that by
adding αµ = σ closes-off a cycle. Hence there is a γ ;E−α αµ = σ ;E−α γ, which means that

α ∈ Ê − α(σ). It hence suffices to show that α /∈ Ê (σ).

Consider the set of variables γ = Ĉ1(ςa , σ) and the restriction of C1 to these variables C1γ ; let Cr

be such that C1γCr = C1. It must be that C1γ is acyclic and closed and hence by Theorem 6.22

E1 = subsCheck(C1γ , ςa , ς) and E = E1Cr . Then we want to show essentially that α /∈ Ê1Cr (σ)
given that α ∈ dom(Cr ), α /∈ fcv(σ). But this follows as E1 is closed and we can only remain within
its domain as we move along reachability.

Lemma 6.24 (mkMono preserves quantifier rank). If mkMono(C1, f , σ) = C2 then q(C2) ≤ q(C1).

Proof. Straightforward induction on the number of recursive calls to mkMono.

In what follows, we use Lemma 6.15, Theorem 6.17, Lemma 6.20, and Theorem 6.23, in order to en-
able the induction hypotheses. We additionally use the domain monotonicity properties, Lemma 6.11
and Lemma 6.12. In order to focus on the interesting parts of the proofs we ommit explicitly refering
to their uses.
Lemma 6.25 (Unification preserves quantifier rank). The following are true, assuming that the
argument variables belong each time in the input constraint C1.

1. closed (C1) ∧ acyclic (C1) ∧ eqCheck(C1, σ1, σ2) = C2 =⇒ q(C2) ≤ q(C1)
2. closed (C1) ∧ acyclic (C1) ∧ subsCheck(C1, ς, σ, σ0) = C2 =⇒ q(C2) ≤ q(C1) + q(ς)
3. closed (C1) ∧ acyclic (C1) ∧ updateRigid(C1, α, σ) = C2 =⇒ q(C2) ≤ q(C1)

4. closed (C1) ∧ acyclic (C1) ∧ α /∈ Ĉ1(σ) ∧ doUpdateR(C1, α, σ) = C2 =⇒ q(C2) ≤ q(C1)
5. closed (C1) ∧ acyclic (C1) ∧ updateFlexi(C1, α, ς, σ0) = C2 =⇒ q(C2) ≤ q(C1) + q(ς)

6. closed (C1) ∧ acyclic (C1) ∧ α /∈ Ĉ1(ς) ∧ doUpdateF (C1, α, ς) = C2 =⇒ q(C2) ≤ q(C1) +
q(ς)

7. closed (C1) ∧ acyclic (C1) ∧ join(C1, ς1, ς2) = C2, ς =⇒ q(C2)+q(ς) ≤ q(C1)+q(ς1)+q(ς2)

Proof. We prove each case by induction on the number of recursive calls. We assume all cases for a
smaller number of recursive calls.

1. Case e1 is trivial. Cases e2 and e3 follow by induction hypothesis for updateRigid . Case e4

follows by two uses of induction hypothesis, the second enabled using Theorem 6.23 and Theo-
rem 6.22 (and domain monotonicity). Case e5 follows by one use of the induction hypothesis.

2. Case s1 follows by induction hypothesis for updateFlexi . In the case for s2 we have that
q(Eγ) ≤ q(E ) ≤ q(C•D) ≤ q(C ) + q([D ]⇒ ρ) as required.

3. Case ur1 is trivial. Case ur2 follows by induction hypothesis for updateRigid . Case ur3

follows by induction hypothesis for updateRigid and case ur4 follows by induction hypothesis
for doUpdateR.

4. Case dr1 follows by Lemma 6.24. Case dr2 is straightforward. The interesting cases are dr3

and dr4. In the dr3 case we have that

α /∈ Ĉ1(σ)

(αµ ≥ ςa) ∈ C1

E = subsCheck(C1, ςa , σ)

C2 = E ← (αm = σ)

34



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

In this case consider the following set γ = Ĉ1(ςa , σ). It follows that closed(C1γ) and let Cr be
such that C1γCr = C1. From this, and Theorem 6.22 for (13) we get that subsCheck(C1γ , ςa , ς) =
E1 such that E = E1Cr . But we know that α /∈ dom(E1). Hence C2 = E1 ∪ Cr ← (αµ = σ).
We then get that:

q(C2) = q(E1) + q(Cr ← (αµ = σ))

≤ q(C1γ) + q(ςa) + q(Cr − α) + 1

= q(C1γ + q(Cr )

= q(C1)

where in the second line we made use of the inductive hypothesis for subsCheck(C1γ , ςa , ς) = E1,
as we know that it uses the same number of recursive calls as does the equation (13). The dr4

case is similar.
5. The cases for uf1 follows by appealing to the induction hypothesis for updateRigid . The case

for uf2 follows by appealing to the induction hypothesis for doUpdateF .
6. The case for df1 is straightforward appealing to Lemma 6.24. Case df2 is straightforward.

Case df3 is similar to the case for dr3. We consider now the case for df4. We have in this
case that:

α /∈ Ĉ1(ς)

(αµ ≥ ςa) ∈ C1

E , ςr = join(C1, ςa , ς)

C2 = E ← (αµ ≥ ςr )

As in the case of df3 consider the set γ = Ĉ1(ςa , ς). It follows that closed(C1γ) and let Cr be
such that C1γCr = C1. From this, and Theorem 6.22 for (13) we get that join(C1γ , ςa , ς) =
E1, ςr such that E = E1Cr . But we know that α /∈ dom(E1). Hence C2 = E1∪Cr ← (αµ ≥ ςr ).
We then get that:

q(C2) = q(E1) + q(Cr ← (αµ ≥ ςr ))

= (q(E1) + q(ςr )) + q(Cr − α) + 1

≤ q(C1γ + q(ςa) + q(ς) + q(Cr − α) + 1)

= q(C1γ + q(Cr ) + q(ς)

= q(C1) + q(ς)

where in the third line we made use of the inductive hypothesis for join(C1γ , ςa , ς) = E1, ςr ,
as we know that it uses the same number of recursive calls as equation (13).

7. Cases j1 and j2 are easy checks. For j3 we have the following: First of all C1•D1•D2 is acyclic
and closed and hence we can aply the induction hypothesis. It follows that q(EbE(dom(C )), [Eδ]⇒

ρ1) ≤ q(E ) ≤ q(C•D1•D2) ≤ q(C ) + q([D1]⇒ ρ1) + q([D2]⇒ ρ2), as required.

Theorem 6.26 (mkMono weakening). If closed (C1), fcv(σ) ⊆ dom(C1), and mkMono(C1, f , σ) =
C2 then mkMono(C1Cr , f , σ) = C2Cr in the same number of recursive calls (and the second fails if
the first fails).

Proof. Easy induction, similar to the proof of Theorem 6.21.

Theorem 6.27 (Unification weakening). The following are true:

1. If closed (C1) and fcv(σ1, σ2) ⊆ dom(C1) and eqCheck(C1, σ1, σ2) = C2 then it is the case
that eqCheck(C1Cr , σ1, σ2) = C2Cr .

35



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

2. If closed (C1) and fcv(ς, σ) ⊆ dom(C1) and subsCheck(C1, ς, σ) = C2 then it is the case that
subsCheck(C1Cr , ς, σ) = C2Cr .

3. If closed (C1) and fcv(α, σ) ⊆ dom(C1) and updateRigid(C1, α, σ) = C2 then it is the case
that updateRigid(C1Cr , α, σ) = C2Cr .

4. If closed (C1) and fcv(α, σ) ⊆ dom(C1) and doUpdateR(C1, α, σ) = C2 and it is the case that
doUpdateR(C1Cr , α, σ) = C2Cr .

5. If closed (C1) and fcv(α, ς) ⊆ dom(C1) and updateFlexi(C1, α, ς) = C2 then it is the case
that updateFlexi(C1Cr , α, ς) = C2Cr .

6. If closed (C1) and fcv(α, ς) ⊆ dom(C1) and doUpdateF (C1, α, ς) = C2 then it is the case that
doUpdateF (C1Cr , α, ς) = C2Cr .

7. If closed (C1) and fcv(ς1, ς2) ⊆ dom(C1) and join(C1, ς1, ς2) = C2, ςr then it is the case that
join(C1Cr , ς1, ς2) = C2Cr , ςr .

Moreover the number of recursive calls is preserved, and if the first call fails instead, then the second
fails as well.

Proof. Simultaneous induction on the number of recursive calls, similar to the proof of Theorem 6.22.

Theorem 6.28 (Termination). The unification algorithm terminates (written with the notation ⇓)
when given well-formed inputs. In particular

1. If closed (C1) and acyclic (C1) and fcv(σ1, σ2) ⊆ dom(C1) then eqCheck(C1, σ1, σ2) ⇓.
2. If closed (C1) and acyclic (C1, ς) and fcv(ς, σ) ⊆ dom(C1) then subsCheck(C1, ς, σ) ⇓.
3. If closed (C1) and acyclic (C1) and fcv(α, σ) ⊆ dom(C1) then updateRigid(C1, α, σ) ⇓.

4. If closed (C1) and acyclic (C1) and fcv(α, σ) ⊆ dom(C1) and α /∈ Ĉ1(σ) then it is the case
that doUpdateR(C1, α, σ) ⇓.

5. If closed (C1) and acyclic (C1, ς) and fcv(ς, α) ⊆ dom(C1) then updateFlexi(C1, α, ς) ⇓.

6. If closed (C1) and acyclic (C1, ς) and fcv(ς, α) ⊆ dom(C1) and α /∈ Ĉ1(ς) then it is the
case that doUpdateF (C1, α, ς) ⇓.

7. If closed (C1) and acyclic (C1, ς1, ς2) and fcv(ς1, ς2) ⊆ dom(C1) then join(C1, ς1, ς2) ⇓.

Proof. Assume that ̟ stands for either types or schemes. We assume that q(̟) = 0 whenever
̟ = σ, or q(̟) = q(ς) when ̟ = ς. For a triple (C1,̟1,̟2) we associate the following lexigoraphic
triple:

̺(C1,̟1,̟2) = 〈q(C1) + q(̟1) + q(̟2), |̟1|+ |̟2|, |Ĉ1(̟1)|+ |Ĉ1(̟2)|〉

where |[D ] ⇒ ρ| = 1 + |ρ| and |σ| is an ordinary size function on types. We proceed to show that
eventually in every path of recursive calls, the metric ̺ on the arguments reduces.

1. For eqCheck , case e1 is trivial. Case e2 and case e3 follow by inlining the proof for the
updateRigid function. For e4 we have that eqCheck(C1, σ1 → σ2, σ3 → σ4) relies on a call to
eqCheck(C1, σ1, σ3). First of all we know that ̺(C1, σ1, σ3) < ̺(C1, σ1 → σ2, σ3 → σ4) since
the quantifier rank is preserved but the sizes of types become smaller. It follows that either
eqCheck(C1, σ1, σ3) either fails, or returns E = eqCheck(C1, σ1, σ3). In the first case we are
trivially done. In the second case, by Lemma 6.25 we have that q(E ) ≤ q(C1). It follows that
̺(E , σ2, σ4) < ̺(C1, σ1 → σ2, σ3 → σ4), and induction hypothesis finishes the case because it
must be that eqCheck(E , σ2, σ4) ⇓. If it fails, the whole case fails, or if it succeeds we return
the output of eqCheck(E , σ2, σ4). In all other cases of eqCheck we fail (and hence terminate)
using e6.

2. For subsCheck , case s1 follows by inlining the proof of the case of updateFlexi . For case s2 we
have a call to subsCheck(C1, [D ]⇒ ρ1,∀c. ρ2). The first step ρ3 = [b 7→ c]ρ2 clearly terminates.
Then we examine the metric: ̺(C1•D , ρ1, ρ3) < ̺(C1, [D ]⇒ ρ1, ρ3) and clearly the constraint
C1•D is acyclic and closed with the variables of ρ1 and ρ3 in its domain. Induction hypothesis
give us then that the recursive call to eqCheck always terminates, and so does the original call
to subsCheck .

36



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

3. For updateRigid , the case ur1 is trivial. For the case of ur2 we have that updateRigid(C1, α, β) =

updateRigid(C1, α, γ) where (βµ = γ) ∈ C1. Hence we have that ̺(C1, α, γ) = 〈q(C1), 2, |Ĉ1(α)|+

|Ĉ1(β)|〉. But note that β /∈ Ĉ1(γ) because the constraint is acyclic, and hence: |Ĉ1(γ)| <

|Ĉ1(β)|. It follows that ̺(C1, α, γ) < ̺(C1, α, β), and hence the case terminates. The case for
ur3 is similar. Finally, the case for ur3 follows by inlining the proof for doUpdateR.

4. For doUpdateR, the cases dr1 and dr2 are trivial by an easy termination lemma on acyclic
constraints for mkMono. For case dr3 we have that (αµ ≥ ςa) ∈ C1 and we have a call to
doUpdateF (C1, α, σ). We recursively call subsCheck(C1, ς, σ). Now, it is not obvious that this

terminates. However let us consider γ = Ĉ1(ςa , σ) and C1γ . It must be that C1γ is closed and
acyclic and a subset of C1, and moreover (αµ ≥ ςa) /∈ C1γ since α is not reachable from ςa
nor σ through C1. It follows that subsCheck(C1γ , ς, σ) does terminate by induction hypothesis
because: ̺(C1γ , ςa , σ) < ̺(C1, α, σ) for the reason that (αµ ≥ ςa) /∈ C1γ . By Theorem 6.27
that the call to subsCheck(C1, ς, σ) must also terminate.

5. For updateFlexi the cases are similar to updateRigid .
6. For doUpdateF the cases are similar to doUpdateR, appealing to Theorem 6.27.
7. For join the cases j1 and j2 are obvious. For j3 observe that q(C1)+q([D1]⇒ ρ1)+q([D2]⇒
ρ2) = q(C1•D1•D2) = q(C1•D1•D2) + q(ρ1) + q(ρ2). however |[D1] ⇒ ρ1| + |[D2] ⇒ ρ2| =
2+ |ρ1|+ |ρ2| and hence, by induction hypothesis the recursive call to eqCheck terminates, and
hence the whole case j3 terminates.

6.3.2 Unification soundness properties

We start by giving a series of lemmas that ensure that unification produces well-formed outputs,
when given well-formed inputs.
Lemma 6.29. Assume that ⊢ C wf and α is some set of variables. If γ = Ĉ (α) then also ⊢ Cγ wf .

Proof. Easy unfolding of the definitions.

Definition 6.30 (Mono-flags not in scheme bounds). We write mweak(C ) for the smallest relation
that asserts that for all (αµ ≥ [D ]⇒ ρ) ∈ C , it is the case that µ = ⋆ and mweak(D).
Definition 6.31 (Well-flagged constraints). Consider the relations ∆ ⊢µ C and ∆ ⊢µ ς defined by:

(a) dom(C )#dom(∆)
(b) for all (αm bnd) ∈ C , for all β ∈ fcv(bnd),∆∆c(β) = m and (bnd = ⊥ or bnd = τ)
(c) for all (αµ ≥ ς) ∈ C ,∆∆C ⊢

µ ς ∧ µ = ⋆
smwf

∆ ⊢µ C

∆ ⊢µ D
smsch

∆ ⊢µ [D ]⇒ ρ

We write ⊢µ C whenever ∅ ⊢µ C .
Lemma 6.32 (Well-flagged mkMono preservation). If ⊢µ C1, mkMono(C1, f , σ) = C2, closed (C1),
and fcv(σ) ⊆ dom(C1) then it is the case that ⊢µ C2, and moreover ∆C2

(fcv(σ)) = m. Additionally,
if f = True then σ = τ .

Proof. Induction on the number of recursive calls. Case m1 is trivial. For the case of m2 we have
that mkMono(C1, f , σ1 → σ2) = C2 where E = mkMono(C1, f , σ1) and C2 = mkMono(E , f , σ2). By
induction hypothesis we have that ⊢µ E and ∆E (fcv(σ1)) = m. By Lemma 6.15, and Lemma 6.11 we
have that closed (E ) and fcv(σ2) ⊆ dom(E ). Hence, by induction ⊢µ C2 and ∆C2

(fcv(σ2)) = m.
But, by Lemma 6.13 we also have that ∆C2

(fcv(σ1)) = m. Consequently, ∆C2
(fcv(σ1 → σ2)) = m,

as required. Cases m3 and m4 are trivial. For case m5 we have that mkMono(C1, f , α) = E ←
(αm = ρ) where E = mkMono(C1•D ,True, ρ) and (αµ ≥ [D ] ⇒ ρ) ∈ C1. First of all, since ⊢µ C1,

37



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

µ = ⋆. Moreover it must be that ⊢µ C1•D and closed (C1•D). By induction then ⊢µ E and
∆E (fcv(ρ)) = m and ρ = τ . It follows from these last three conditions that ⊢µ E ← (αm = ρ). The
case for m6 is similar. Case m7 is an easy check.

Lemma 6.33 (Well-flagged preservation). The following are true:

1. If ⊢µ C1, closed (C1), acyclic (C1), fcv(σ1, σ2) ⊆ dom(C1), and eqCheck(C1, σ1, σ2) = C2

then ⊢µ C2.
2. If ⊢µ C1, closed (C1), acyclic (C1, ς), ∆C1

⊢µ ς, and subsCheck(C1, ς, σ) = C2 then ⊢µ C2.
3. If ⊢µ C1, closed (C1), acyclic (C1), fcv(α, σ) ⊆ dom(C1), updateRigid(C1, α, σ) = C2 then
⊢µ C2.

4. If ⊢µ C1, closed (C1), acyclic (C1), fcv(α, σ) ⊆ dom(C1), α /∈ Ĉ1(σ), and doUpdateR(C1, α, σ) =
C2 then ⊢µ C2.

5. If ⊢µ C1, closed (C1), acyclic (C1, ς), fcv(ς, α) ⊆ dom(C1), ∆C1
⊢µ ς, and updateFlexi(C1, α, ς) =

C2 then ⊢µ C2.
6. If ⊢µ C1, closed (C1), acyclic (C1, ς), fcv(ς, α) ⊆ dom(C1), α /∈ Ĉ1(ς), ∆C1

⊢µ ς, and it is
the case that doUpdateF (C1, α, ς) = C2 then ⊢µ C2.

7. If ⊢µ C1, closed (C1), acyclic (C1, ς1, ς2), fcv(ς1, ς2) ⊆ dom(C1), ∆C1
⊢µ ς1, ς2, and it is

the case that join(C1, ς1, ς2) = C2, ς then ⊢µ C2 and ∆C2
⊢µ ς.

Proof. We show the cases simultaneously by induction on the number of recursive calls, assuming
that all cases are true for calls with smaller number of recursive subcalls.

1. Case e1 is trivial, cases e2 and e3 follow by induction hypothesis for updateRigid . The case of
e4 follows by induction hypothesis, Theorem 6.17, Lemma 6.12, and a second use of induction
hypothesis. Case e5 follows directly by induction hypothesis.

2. Case s1 follows by induction hypothesis for updateFlexi . For s2 since closed (C1), acyclic (C1),
and fcv(ς) ∈ dom(C1), we have that ⊢µ C1•D , closed (C1•D), and acyclic (C1•D). It fol-
lows by induction that ⊢µ E and consequently it is straightforward to verify that ⊢µ Eγ where

γ = Ê (dom(C1)).
3. Case ur1 is trivial. Cases ur2 and ur3 follow because the constraint is closed, and appealing

to the induction hypothesis for updateRigid . Case ur4 follows by induction hypothesis for
doUpdateR.

4. The case for dr1 follows from Lemma 6.32. The case for dr2 follows by the assumptions
directly. For case dr3 we have that doUpdateR(C1, α, σ) = E ← (αµ = σ) where (αµ ≥
ςa) ∈ C1 and E = extSubsCheck(C1, ςa , σ). Because closed (C1) it must be that fcv(ςa , ς) ⊆
dom(C1). Moreover, it must also be that µ = ⋆ because ⊢µ C1. Hence, by induction hypothesis
⊢µ E . By the separation theorem (taking as the set of separating variables the reachable
variables through C1 of ςa , σ) it must be that (αµ ≥ ςa) ∈ E . and hence ⊢µ E ← (αµ = σ)
(i.e. it is not the case that ∆E (α) = m, in which case the final update would potentially break
the ⊢µ relation). Case dr4 follows by induction hypothesis.

5. Case uf1 follows by induction hypothesis for updateRigid . Case uf2 follows by induction
hypothesis for doUpdateF .

6. Case df1 is similar to the case for dr1. Case df2 is trivial Case df3 follows by induction hy-
pothesis for extSubsCheck . Finally let us examine case df4. We have that doUpdateF (C1, α, ς) =
E ← (αµ ≥ ς), where E , ςr = extJoin(C1, ς, ςr ) and (αµ ≥ ςr ) ∈ C1. It must be that µ = ⋆,
and by induction ⊢µ E . To finish the case we need to show that ⊢µ E ← (α⋆ ≥ ςr ). By
separation it must be that (αµ ≥ ς) ∈ E , so we did not un-lift some monomorphic flag from
E . Hence we must show that ∆E←(α⋆≥ςr ) ⊢

µ ςr . But we know that ∆E ⊢
µ ςr by induction,

and by separation α /∈ fcv(ςr ). It follows that ∆E←(α⋆≥ςr ) ⊢
µ ςr .

7. Cases j1 and j2 are trivial. For j3 it is the case that

join(C1, [D1]⇒ ρ1, [D2]⇒ ρ2) = EbE(dom(C1))
, [Eδ]⇒ ρ1

38



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

where E = eqCheck(C1•D1•D2, ρ1, ρ2) and δ = Ê (ρ1) − Ê (dom(C1)). Clearly the constraint
C1•D1•D2 satisfies ⊢µ, and is closed and acyclic. Consequently by induction hypothesis ⊢µ E ,
and hence ⊢µ EbE(dom(C1))

. We need to additionally show that ∆EbE(dom(C1))
⊢µ [Eδ]⇒ ρ1, which

follows because it is easy to see that ∆EbE(dom(C1))
⊢µ Eδ (since ⊢µ E ).

At this point we have shown all the structural properties of the constraints being preserved by
unification. But we have not talked yet about (i) the fact that schemes are not allowed to bind
monomorphic variables (the intuition being that these always originate in some environment variable,
and (ii) the fact that if the body of a scheme is a single variable, it is either monomorphic, or it is
quantified with ⊥ in the current scheme.
Definition 6.34 (Weak well-formedness). A constraint C1 is weakly well-formed, written wfweak (C1)
iff closed (C1) ∧ acyclic (C1) ∧ ⊢

µ C1.
Lemma 6.35. The following are true:

1. If wfweak (C1), fcv(σ1, σ2) ⊆ dom(C1), eqCheck(C1, σ1, σ2) = C2, and ∆C1
(γ) = m then

Ĉ1(γ) ⊆ Ĉ2(γ).
2. If wfweak (C1), acyclic (ς), ∆C1

⊢µ ς, fcv(ς, σ) ⊆ dom(C1), subsCheck(C1, ς, σ) = C2, and

∆C1
(γ) = m then Ĉ1(γ) ⊆ Ĉ2(γ).

3. If wfweak (C1), fcv(α, σ) ⊆ dom(C1), updateRigid(C1, α, σ) = C2, and ∆C1
(γ) = m then

Ĉ1(γ) ⊆ Ĉ2(γ).

4. If wfweak (C1), fcv(α, σ) ⊆ dom(C1), α /∈ Ĉ1(σ), doUpdateR(C1, α, σ) = C2, and ∆C1
(γ) = m

then Ĉ1(γ) ⊆ Ĉ2(γ).
5. If wfweak (C1), acyclic (ς), ∆C1

⊢µ ς, fcv(α, ς) ⊆ dom(C1), updateFlexi(C1, α, ς) = C2,

and ∆C1
(γ) = m then Ĉ1(γ) ⊆ Ĉ2(γ).

6. If wfweak (C1), acyclic (ς), ∆C1
⊢µ ς, fcv(α, ς) ⊆ dom(C1), α /∈ Ĉ1(ς), doUpdateF (C1, α, ς) =

C2, and ∆C1
(γ) = m then Ĉ1(γ) ⊆ Ĉ2(γ).

7. If wfweak (C1), acyclic (ς1, ς2), ∆C1
⊢µ ς1, ς2, fcv(ς1, ς2) ⊆ dom(C1), join(C1, ς1, ς2) = C2, ς,

and ∆C1
(γ) = m then Ĉ1(γ) ⊆ Ĉ2(γ).

Proof. Simultaneous induction on the number of recursive calls; assuming that all cases are true for
smaller number of recursive calls. We do not show explicitly the ⊢µ, closed (·), and acyclic (·)
properties are preserved, nor that the variables of the arguments are preserved in the domains of the
outputs, as these follows whenever they are needed by Lemma 6.33, Theorem 6.17, Theorem 6.23,
and Lemma 6.12.

1. Case e1 is trivial. Cases e2 and e3 follows directly from induction hypothesis for updateRigid .
For e4 wwe have that eqCheck(C1, σ1 → σ2, σ3 → σ4) = C2 where eqCheck(C1, σ1, σ3) = E and

eqCheck(E , σ2, σ4) = C2. Assume that ∆C1
(γ) = m. By induction Ĉ1(γ) ⊆ Ê (γ). Moreover

from Lemma 6.14 we get that ∆E (γ) = m. It follows by induction that Ê (γ) ⊆ Ĉ2(γ).

Consequently Ĉ1(γ) ⊆ Ĉ2(γ), as required. Case e5 follows by induction hypothesis, and case
e6 cannot happen.

2. Case s1 follows by induction hypothesis for updateFlexi . For s2 we have that wfweak (C1),
acyclic ([D ] ⇒ ρ1), ∆C1

⊢µ [D ] ⇒ ρ1, subsCheck(C1, [D ] ⇒ ρ1,∀c. ρ2) = Eγ where

ρ3 = [c 7→ b]ρ2, E = eqCheck(C1•D , ρ1, ρ3) and γ = Ê (dom(C1)). It follows by induction

hypothesis, if ∆C1•D(γ) = m then Ĉ1•D(γ) ⊆ Ê (γ). Assume now that ∆C1
(γ) = m. It follows

that γ ∈ dom(C1). But also ∆C1•D(γ) = m. Hence Ĉ1•D(γ) = Ĉ1(γ) since dom(D)#fcv(C1).

Then Ĉ1(γ) ⊆ Ê (γ). But γ ∈ dom(C1) and consequently Ê (γ) = Êγ(γ). It follows that

Ĉ1(γ) ⊆ Êγ(γ) as required.

39



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

3. Case ur1 is trivial. For case ur2 we have that wfweak (C1), and updateRigid(C1, α, β) = C2

where C2 = updateRigid(C1, α, γ) and (βµ = γ) ∈ C1. By induction hypothesis for updateRigid
we are done. The case of ur3 is similar, and the case of ur4 follows by induction hypothesis
for doUpdateR.

4. For case dr1 we have that doUpdateR(C1, α, σ) = E ← (αm = σ) where (αm ⊥) ∈ C1

and E = mkMono(True,C1, σ). Assume that ∆C1
(γ) = m. By an easy similar property

for mkMono it follows that Ĉ1(γ) ⊆ Ê (γ). But by the separation theorem Theorem 6.21

(by using as the separating set of variables the set Ĉ1(σ)) we know that (αm ⊥) ∈ dom(E ).

Consequently Ê (γ) ⊆ ̂(E ← (αm = σ))(γ) as required. Case dr2 is straightforward. For case
dr3 we have that doUpdateR(C1, α, σ) = C2 where (α⋆ ≥ ςa) ∈ C1 (since ⊢µ C1)it must be
that µ = ⋆), E = subsCheck(C1, ςa , σ), and C2 = E ← (α⋆ = σ). By the separation theorem,
Theorem 6.22, it must be that (α⋆ ≥ ςa) ∈ E , but we also have that ∆E (γ) = m and hence

α /∈ Ê (γ). By induction hypothesis we get that if ∆C1
(γ) = m, Ĉ1(γ) ⊆ Ê (γ). But beacause

⊢µ E by Lemma 6.33 and since ∆E (γ) = m, it must be that Ê (γ) = ̂E ← (α⋆ = σ)(γ). and
we are done. Case dr4 follows by induction hypothesis.

5. The cases for updateFlexi are similar to the cases for updateRigid .
6. The cases for doUpateF are similar to the cases for doUpdateR.
7. Cases j1 and j2 follow trivially. For case j3 we have that

join(C1, [D1]⇒ ρ1, [D2]⇒ ρ2) = (EbE(dom(C1))
, [Eδ]⇒ ρ1)

given that E = eqCheck(C1•D1•D2, ρ1, ρ2), and δ = Ê (ρ1) − Ê (dom(C1)). Assume that
∆C1

(γ) = m. Then also ∆C1•D1•D2
(γ) = m. By induction hypothesis we then get that

Ĉ1(γ) = ̂C1•D1•D2(γ) ⊆ Ê (γ) = ̂EbE(dom(C1))
(γ), as required.

Definition 6.36 (Quantified variable condition). We define the relations wfqvar (C ) and wfqvar (ς)
as:

for all (αµ ≥ ς) ∈ C ,wfqvar (ς)
cwfq

wfqvar (C )

wfqvar (()D) for allα ∈ dom(D),∆D(α) = ⋆
swfq

wfqvar ([D ]⇒ ρ)

Lemma 6.37. The following are true:

1. If wfweak (C1), wfqvar (C1), fcv(σ1, σ2) ⊆ dom(C1), eqCheck(C1, σ1, σ2) = C2, then wfqvar (C2)

and if ∆C2
(γ) = m then there is a β ∈ dom(C1) such that ∆C1

(β) = m and γ ∈ Ĉ2(β).
2. If wfweak (C1), wfqvar (C1, ς), acyclic (ς), ∆C1

⊢µ ς, fcv(ς, σ) ⊆ dom(C1), subsCheck(C1, ς, σ) =
C2, then wfqvar (C2) and if ∆C2

(γ) = m then there is a β ∈ dom(C1) such that ∆C1
(β) = m

and γ ∈ Ĉ2(β).
3. If wfweak (C1), wfqvar (C1), fcv(α, σ) ⊆ dom(C1), updateRigid(C1, α, σ) = C2, then wfqvar (C2)

and if ∆C2
(γ) = m then there is a β ∈ dom(C1) such that ∆C1

(β) = m and γ ∈ Ĉ2(β).

4. If wfweak (C1), wfqvar (C1), fcv(α, σ) ⊆ dom(C1), α /∈ Ĉ1(σ), doUpdateR(C1, α, σ) = C2,
then wfqvar (C2) and if ∆C2

(γ) = m then there is a β ∈ dom(C1) such that ∆C1
(β) = m and

γ ∈ Ĉ2(β).
5. If wfweak (C1), wfqvar (C1, ς), acyclic (ς), ∆C1

⊢µ ς, fcv(α, ς) ⊆ dom(C1), updateFlexi(C1, α, ς) =
C2, then it is the case that wfqvar (C2) and if ∆C2

(γ) = m then there is a β ∈ dom(C1) such

that ∆C1
(β) = m and γ ∈ Ĉ2(β).

6. If wfweak (C1),wfqvar (C1, ς), acyclic (ς), ∆C1
⊢µ ς, fcv(α, ς) ⊆ dom(C1), α /∈ Ĉ1(ς), and

moreover doUpdateF (C1, α, ς) = C2, then wfqvar (C2) and if ∆C2
(γ) = m then there is a

β ∈ dom(C1) such that ∆C1
(β) = m and γ ∈ Ĉ2(β).

7. If wfweak (C1), wfqvar (C1, ς1, ς2), acyclic (ς1, ς2), ∆C1
⊢µ ς1, ς2, fcv(ς1, ς2) ⊆ dom(C1),

join(C1, ς1, ς2) = C2, ς, then wfqvar (C2, ς) and if ∆C2
(γ) = m then there is a β ∈ dom(C1)

such that ∆C1
(β) = m and γ ∈ Ĉ2(β).

40



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Proof. We prove all the cases simultaneously by induction on the number of recursive calls. For each
case we assume that they all hold for sub-calls. In the recursive cases we make use of Lemma 6.33,
Theorem 6.17, Theorem 6.23 to show the necessary well-formedness conditions. In the case of e4

we need to appeal to Lemma 6.35. All the rest cases are straightforward except for the cases for s2

and j3. We focus on these particular cases:

• Case s2. In this case we have that wfweak (C1), wfqvar (C1, ς), acyclic (ς), and fcv(ς, σ) ⊆
dom(C1), where ς = [D ] ⇒ ρ1 and σ = ∀c. ρ2. Moreover subsCheck(C1, [D ] ⇒ ρ1,∀c. ρ2) =

Eγ where ρ3 = [c 7→ b]ρ2, E = eqCheck(C1•D , ρ1, ρ2) and γ = Ê (dom(C1)). We have that
wfweak (C1•D), wfqvar (C1•D), fcv(ρ1, ρ2) ⊆ dom(C1•D). Hence by induction hypothesis
we have that wfqvar (E ) and consequently wfqvar (Eγ) as well. Now, pick a variable γ
such that ∆Eγ

(γ) = m. By induction hypothesis there exists a β ∈ dom(C1•D) such that

∆C1•D(β) = m and γ ∈ Êγ(β). But wfqvar ([D ]⇒ ρ1) and hence ∆C1
(β) = m, and the case

is finished.
• Case j3. In this case we have that wfweak (C1), acyclic ([D1]⇒ ρ1, [D2]⇒ ρ2), wfqvar ([D1]⇒
ρ1, [D2]⇒ ρ2) and wfqvar (C1). Moreover join(C1, [D1]⇒ ρ1, [D2]⇒ ρ2) = EbE(dom(C1))

, [Eδ]⇒

ρ1 where E = eqCheck(C1•D1•D2, ρ1, ρ2), δ = Ê (ρ1) − Ê (dom(C1)). First, we can confirm
that wfweak (C1•D), wfqvar (C1•D1•D2), fcv(ρ1, ρ2) ⊆ dom(C1•D1•D2), Hence by induc-
tion hypothesis wfqvar (E ) and consequently also wfqvar (EbE(dom(C1))

). Next, we need to

show that wfqvar ([Eδ]⇒ ρ1). Hence, we have to show two things:

– For all γ ∈ dom(Eδ), ∆Eδ
= ⋆. Assume by contradiction that there exists a γ such that

∆Eδ
(γ) = m. It follows that ∆E (γ) = m. By induction then there exists a β such that

∆C1•D1•D2
(β) = m such that γ ∈ Ê (β). But it must be the case that ∆C1

(β) = m

because wfqvar ([D1]⇒ ρ1, [D2]⇒ ρ2), and hence γ /∈ δ, a contradiction!
– That Eδ itself satisfies wfqvar (Eδ). But we know that wfqvar (E ) and Eδ is only a

restriction of E .

To finish the case assume a variable ζ such that ∆EbE(dom(C1))
(ζ) = m. It follows that ∆E (ζ) = m

and by induction there exists a variable δ such that ∆C1•D1•D2
(δ) = m such that ζ ∈ Ê (δ).

But, since wfqvar ([D1] ⇒ ρ1, [D2] ⇒ ρ2) it must be the case that ∆C1
(δ) = m and ζ ∈

̂EbE(dom(C1))
(δ) as required.

Definition 6.38 (Well-formed scheme bodies). Consider the relations ∆ ⊢b C and ∆ ⊢b ς whenever:

(a) dom(C )#dom(∆)
(b) for all (αµ ≥ ς) ∈ C ,∆∆C ⊢

b ς
cbwf

∆ ⊢b C

∆ ⊢b D
if ρ = γ then (γ⋆ ⊥) ∈ D or ∆∆D(γ) = m

sbwf
∆ ⊢b [D ]⇒ ρ

We write ⊢b C whenever ∅ ⊢b C .
Definition 6.39 (Well-formedness). We write wf (C1) iff wfweak (C1) ∧ wfqvar (C1) ∧ ⊢

b C1.
Lemma 6.40. If wf (C1), fcv(σ1) ⊆ dom(C1), mkMono(C1, f , σ) = C2 then ⊢b C2.

Proof. Easy induction appealing to previous lemmas for mkMono: 6.11, 6.32, 6.15, 6.20.

Lemma 6.41 (Well-formed scheme bodies preservation). The following are true:

1. If wf (C1), fcv(σ1, σ2) ⊆ dom(C1), eqCheck(C1, σ1, σ2) = C2 then ⊢b C2.
2. If wf (C1), acyclic (ς), wfqvar (ς), ∆C1

⊢b/µ ς, fcv(ς, σ) ⊆ dom(C1), subsCheck(C1, ς, σ) =
C2 then ⊢b C2.

3. If wf (C1), fcv(α, σ) ⊆ dom(C1), updateRigid(C1, α, σ) = C2 then ⊢b C2.

4. If wf (C1), fcv(α, σ) ⊆ dom(C1), α /∈ Ĉ1(σ), doUpdateR(C1, α, σ) = C2 then ⊢b C2.

41



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

5. If wf (C1), wfqvar (ς), acyclic (ς), ∆C1
⊢b/µ ς, fcv(α, ς) ⊆ dom(C1), updateFlexi(C1, α, ς) =

C2 then ⊢b C2.
6. If wf (C1), wfqvar (ς), acyclic (ς), ∆C1

⊢b/µ ς, fcv(α, ς) ⊆ dom(C1), α /∈ Ĉ1(ς), doUpdateF (C1, α, ς) =
C2 then ⊢b C2.

7. If wf (C1), acyclic (ς1, ς2), wfqvar (ς1, ς2), ∆C1
⊢b/µ ς1, ς2, fcv(ς1, ς2) ⊆ dom(C1), join(C1, ς1, ς2) =

C2, ς then ⊢b C2 and ∆C2
⊢b ς.

Proof. The proof is by simulateneous induction on the number of recursive calls. For each case we
assume that the corresponding case is true for the recursive subcalls. Most cases are straightforward,
except for the cases of extJoin. The cases for j1 and j2 are straightforward. For j3 we have that
wf (C1), acyclic (ς1, ς2), wfqvar (ς1, ς2), ∆C1

⊢b/µ ς1, ς2, fcv(ς1, ς2) ⊆ dom(C1) and ς1 = [D1]⇒ ρ1,
ς2 = [D2] ⇒ ρ2. We also have that join(C1, [D1] ⇒ ρ1, [D2] ⇒ ρ2) = EbE(dom(C1))

, [Eδ] ⇒ ρ1 where

E = eqCheck(C1•D1•D2, ρ1, ρ2), δ = Ê (ρ1) − Ê (dom(C1)). By induction it is easy to show that
⊢b E , and consequently ⊢b EbE(dom(D1))

(since it is a closed constraint). To finish the case we need

to show that ∆EbE(dom(D1))
⊢b [Eδ] ⇒ ρ1. First of all clearly ∆EbE(dom(C1))

⊢b Eδ. Assume now that

ρ1 = γ. Then, it must have been that either (γ⋆ ⊥) ∈ D1, in which case we are done (because this
branch of the algorithm cannot have been taken). Or it must be that ∆C1

(γ) = m. In which case it
must be by preservation of the monomorphic domain (Lemma 6.14) that also ∆EbE(dom(C1))

(γ) = m,

as is required to finish the case.

Corollary 6.42. If ⊢ C1 wf , ∆C1
⊢ σ, and mkMono(C1, f , σ) = C2 then ⊢ C2 wf .

Proof. The proof is by putting together the following Lemmas or Theorems: 6.11, 6.15, 6.20, 6.32,
and 6.40.

Corollary 6.43 (Well-formedness preservation). The following are true:

1. If ⊢ C1 wf , ∆C1
⊢ σ1, σ2, and eqCheck(C1, σ1, σ2) = C2 then ⊢ C2 wf .

2. If ⊢ C1 wf , ∆C1
⊢ ς, σ, subsCheck(C1, ς, σ) = C2 then ⊢ C2 wf .

3. If ⊢ C1 wf , ∆C1
⊢ α, σ, updateRigid(C1, α, σ) = C2 then ⊢ C2 wf .

4. If ⊢ C1 wf , α /∈ Ĉ1(σ), ∆C1
⊢ α, σ, and doUpdateR(C1, α, σ) = C2 then ⊢ C2 wf .

5. If ⊢ C1 wf , ∆C1
⊢ α, ς, updateFlexi(C1, α, ς) = C2 then ⊢ C2 wf .

6. If ⊢ C1 wf , α /∈ Ĉ1(ς), ∆C1
⊢ α, ς, and doUpdateF (C1, α, ς) = C2 then ⊢ C2 wf .

7. If ⊢ C1 wf , ∆C1
⊢ ς1, ς2, join(C1, ς1, ς2) = C2, ςr then ⊢ C2 wf and ∆C2

⊢ ςr .

Proof. The proof is by putting together the following Lemmas or Theorems: 6.17, 6.23, 6.33, 6.37,
and 6.41.

Up to this point we have shown that unification preserves our (rather complex) notion of well-formed
constraints. For the rest of this section, we turn to the actual soundness of unification proofs, which
relies—for the inductive cases to go through—on Corollary 6.42 and Corollary 6.43. We additionally
make two extra assumptions:

1. In every constraint of the form [D ]⇒ ρ encountered in the algorithm, all quantified variables

of D (dom(D)) appear in the reachable variables D̂(ρ) (i.e. there exist no useless quanti-
fied variables in schemes). Rule j3 which is the only rule that creates quantification clearly
preserves this invariant.

2. An additional requirement is that no System F types with unused quantified variables (such as
∀ab.γ or ∀ab.a → a) are encountered during type inference, and that our substitutions never
substitute for types with unused quantified variables.

Definition 6.44 (Logical constraint entailment). We write C1 ⊢ C2 iff for every θ |= C1 it is θ |= C2.

42



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Lemma 6.45. If ⊢ C1 wf , ∆C1
⊢ σ and mkMono(C1, f , σ) = C2 then C2 ⊢ C1. Moreover

∆C2
(fcv(σ)) = m and if f = True then σ = τ .

Proof. The second part follows from Lemma 6.32. We show the first goal by induction on the
number of recursive calls to mkMono. Case m1 is straightforward. Case m2 follows by the induction
hypothesis, Corollary 6.42 and Lemma 6.11. Case m3 and case m4 are straightforward. For m5

we have that mkMono(C1, f , α) = E ← (αm = ρ) given that (αµ ≥ [D ] ⇒ ρ) ∈ C1 and E =
mkMono(True,C1•D , ρ). Assume that θ |= E ← (αm = ρ). By separation consider the constaint
C0 = (C1•D)

Ĉ1•D(ρ)
and Cr the rest such that C0Cr = C1•D and then E = E0Cr . However it must

be that α ∈ dom(Cr ). Then θ |= E0 and by induction (the call with C0 as the starting constraint
takes the same number of recursive calls and clearly ⊢ C0 wf ) θ |= C0. Additionally θ |= Cr − α.
Consequently θ |= C0(Cr − α), that is θ |= C1•D − α. It follows (since α /∈ dom(D)) that θ |= D .
Then θα = θρ ∈ [[θ([D◦]⇒ ρ◦)]], where the ◦ symbol denotes a freshening of the domain of D and
ρ to fresh constrained variables. That is because θα must be monomorphic, and hence it suffices to
find a substitution ψ |= θ(D◦) and such that θρ = ψθ(ρ◦). But simply take ψ = θ◦

dom(D) (i.e. the

restriction of θ to the dom(D) variables, where we rename its domain accordingly. Hence, θ |= C1•D
and θ |= C1 as required. Case m6 is similar, and case m7 is straightforward.

Lemma 6.46 (Satisfiability of well-formed constraints). If ⊢ D wf then there always exists a θ such
that θ |= D.

Proof. Simply instantiate all flexible bounds to convert them to equalities. The result is an acyclic
equality constraint which is always solvable by ordinary first-order unification (by first creating a
unifier for the m-flagged variables).

We prove the rest of the lemmas in this section simultaneously by induction on the number of the
steps that the algorithm performs. For each lemma we assume that all other lemmas are true for
any sub-calls of the algorithm.
Lemma 6.47. If ⊢ C1 wf , ∆C1

⊢ σ1, σ2, eqCheck(C1, σ1, σ2) = C2, for all θ such that θ |= C2 it is
the case that θ |= C1 and θσ1 = θσ2.

Proof. The case for e1 is straightforward. Case e2 and e3 follow from induction hypothesis for
Lemma 6.48. For case e4 the result follows from induction hypothesis, Corollary 6.43, Lemma 6.12,
and a second use of induction hypothesis. Case e5 gives us that eqCheck(C1,∀a. ρ1,∀a. ρ2) = C2

where we have that C2 = eqCheck(C1, [a 7→ b]ρ1, [a 7→ b]ρ2) for some fresh b and additionally b#C2.
Assume that θ |= C2. Induction hypothesis gives θ |= C1 and θ[a 7→ b]ρ1 = θ[a 7→ b]ρ2. Let us
assume without loss of generality that a#ftv(θ). Now we know that b#C2 and θ |= C2. Let θ0 =
[b 7→ d ]θ, where d completely fresh. By an easy renaming property we see that θ0 |= C2. Then by
induction hypothesis also θ0[a 7→ b]ρ1 = θ0[a 7→ b]ρ2, therefore ∀b. θ0[a 7→ b]ρ1 = ∀b. θ0[a 7→ b]ρ2.
Now b#ftv(θ0) and hence we have that θ0(∀b. [a 7→ b]ρ1) = θ0(∀b. [a 7→ b]ρ2). Then, θ0(∀a. ρ1) =
θ0(∀a. ρ2). Finally since neither ∀a. ρ1 or ∀a. ρ2 contain b or d , by another renaming we get:
θ(∀a. ρ1) = θ(∀a. ρ2), as required to finish the case.

Lemma 6.48. If ⊢ C1 wf , ∆C1
⊢ α, σ, updateRigid(C1, α, σ) = C2, for all θ such that θ |= C2 it is

the case that θ |= C1 and θα = θσ.

Proof. Case ur1 is trivial. For ur2 we have that updateRigid(C1, α, β) = C2 where (βµ = γ) ∈ C1

and C2 = updateRigid(C1, α, γ). Assume θ |= C2. By induction θα = θγ and θ |= C1. Since
(βµ = γ) ∈ C1 it must be that θβ = θγ. It follows as well that θα = θβ. For case ur3 we
have that updateRigid(C1, α, β) = C2 where (βµ ≥ [D ] ⇒ γ) ∈ C1, γ /∈ dom(D), and C2 =
updateRigid(C1, α, γ). Assume that θ |= C1 and θα = θγ. Moreover, since γ /∈ dom(D) we know
that ∆C1

(γ) = m. It follows that θγ is monomorphic. Hence we have that θβ ∈ [[[θD ]⇒ θγ]] (because
θD must be empty). It follows that (assuming that our substitutions add no useless quantifiers)
that θβ = θγ. Consequently θα = θβ as required. Case ur4 follows from the inductive hypothesis
for Lemma 6.49.

43



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Lemma 6.49. If ⊢ C1 wf , ∆C1
⊢ α, σ, α /∈ Ĉ1(σ), doUpdateR(C1, α, σ) = C2, for all θ such that

θ |= C2 it is the case that θ |= C1 and θα = θσ.

Proof. We have the following cases to consider:

• Case dr1. In this case we have doUpdateR(C1, α, σ) = C2 where (αm ⊥) ∈ C1. Moreover
E = mkMono(True,C1, σ) and C2 = E ← (αm = σ). Assume that θ |= E ← (αm = σ). It
must be by the separation theorem however that (αm ⊥) ∈ E . Consequently, θα = θσ and
θ |= E . By Lemma 6.45, θ |= C1 and we are done.
• Case dr2. We have that doUpdateR(C1, α, σ) = C1 ← (α⋆ = σ) where (α⋆ ⊥) ∈ C1. Assume

that θ |= C1 ← (α⋆ = σ). It follows that θ |= C1 since θα can be any type in order to satisfy
the (α⋆ ⊥) bound in C1. Moreover θα = θσ as required.
• Case dr3. We have that doUpdateR(C1, α, σ) where (αµ ≥ ςa) ∈ C1, E = extSubsCheck(C1, ςa , σ),

and C2 = E ← (αµ = σ). By well-formedness of the constraint C1 we know that µ = ⋆. As-
sume that θ |= E ← (αµ = σ). consider the restriction of C1 to the reachable variables of ςa , σ
through C1, call it C0. The C1 = C0Cr and E = E0Cr such that E0 = subsCheck(C0, ςa , ς) in
the same number of steps (by Theorem 6.22). Since α /∈ dom(E0) it follows that θ |= E0 and
by induction hypothesis θ |= C0 and θσ ∈ [[θς]]. But also θ |= E − α, that is θ |= E0(Cr − α)
and hence θ |= C0(Cr − α) = C1 − α. But since θσ ∈ [[θς]] it follows that θ |= C1. Finally
θα = θσ, because θ |= E ← (αµ = σ).
• Case dr4. We have that doUpdateR(C1, α, σ) = C2 where (αµ = σa) ∈ C1 and C2 =

eqCheck(C1, σa , σ). Assume θ |= C2. By induction hypothesis for Lemma 6.47 it follows
that θ |= C1 and θσa = θσ. Since (αµ = σa) ∈ C1 it must be that θα = θσa . It follows that
θα = θσ as required.

Lemma 6.50. If ⊢ C1 wf and ∆C1
⊢ ς, σ, and subsCheck(C1, ς, σ) = C2 then for all θ such that

θ |= C2 it is the case that θ |= C1 and θσ ∈ [[θς]].

Proof. The case for s1 follows by induction hypothesis for Lemma 6.51. The case for s2 is the
interesting one. Assume that subsCheck(C1, [D ] ⇒ ρ1,∀c. ρ2) = C2 where ρ3 = [c 7→ b]ρ2, E =

eqCheck(C1•D , ρ1, ρ3), γ = Ê (dom(C1)), b#Eγ , and C2 = Eγ . By the well-formedness assumptions
it must be that ⊢ C1•D wf and moreover C1•D ⊢ ρ1, ρ3, assuming that b are fresh enough.

Assume now that θ |= Eγ . Consider the restriction of θ to γ, call it θγ . Consider the permutation

of θγ such that maps b to completely fresh variables d , call it θb 7→d
γ . It follows since b#Eγ that

θb 7→d
γ |= Eγ . Since every well-formed constraint is satisfiable (Lemma 6.46), there is an extension

θ1, such that θb 7→d
γ θ1 |= E . Then by induction hypothesis we get that θb 7→d

γ θ1(ρ1) = θb 7→d
γ θ1(ρ3).

Since fcv(ρ3) ∈ γ this means that θb 7→d
γ θ1(ρ1) = θb 7→d

γ (ρ3). However induction also gives that

θb 7→d
γ θ1 |= C1•D . Let θδ = θb 7→d

γ θ1 |dom(D). Then θδ |= θb 7→d
γ θ1(D). To finish the case we need to

show that θ(∀c. ρ2) ∈ [[[θD ]⇒ θ(ρ1)]]. We know that:

θδθ
b 7→d
γ ρ1 = θb 7→d

γ ρ3 (13)

b#([θb 7→d
γ D⋆]⇒ θb 7→d

γ ρ⋆
1) (14)

where D⋆ and ρ⋆
1 have their δ = dom(D) renamed to fresh δ

⋆
. The second holds because of the

choice of choosing fresh b. Moreover, by simply renaming the δ to δ
⋆

in the first equation we get

θδ
⋆θb 7→d

γ ρ⋆
1 = θb 7→d

γ ρ3

Hence, it follows that

∀b. θb 7→d
γ [b 7→ c]ρ2 ∈ [[[θb 7→d

γ D⋆]⇒ θb 7→d
γ ρ⋆

1]]

44



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

But ∀b. θb 7→d
γ [b 7→ c]ρ2 = θb 7→d(∀c. ρ2) and [[[θb 7→d

γ D⋆]⇒ θb 7→d
γ ρ⋆

1]] = [[θb 7→d([D ]⇒ ρ1)]] and conse-

quently: θb 7→d(∀c. ρ2) ∈ [[θb 7→d([D ]⇒ ρ1)]]. By a renaming, because of the fresh choice of b of the
algorithm, we get θ(∀c. ρ2) ∈ [[θ([D ]⇒ ρ1)]], as required.

Lemma 6.51. If ⊢ C1 wf , ∆C1
⊢ ς, α, and updateFlexi(C1, α, ς) = C2 then for all θ such that

θ |= C2 it is the case that θ |= C1 and θα ∈ [[θς]].

Proof. Similar to the proof of Lemma 6.48, appealing to the inductive hypotheses for Lemma 6.48
and Lemma 6.52.

Lemma 6.52. If ⊢ C1 wf , ∆C1
⊢ ς, α, α /∈ Ĉ1(ς), and doUpdateF (C1, α, ς) = C2 then for all θ

such that θ |= C2 it is the case that θ |= C1 and θα ∈ [[θς]].

Proof. Similar to the proof of Lemma 6.49. The only interesting case is the call to the join function,
which we describe next. We have that doUpdateF (C1, α, ς) = C2 where (αµ ≥ ςa) ∈ C1, E , ςr =
join(C1, ςa , ς), and C2 = E ← (αµ ≥ ςr ). Consider the split of C1 to C0Cr such that C0 contains all
the reachable variables through C1 of ςa and ς. By separation it must be that join(C0, ςa , ς) = E0, ςr ,
where E = E0Cr . It must be that α ∈ dom(Cr ), and also θ |= E0, and by induction θ |= C0.
Consequently θ |= C0•Cr − α and hence θ |= C1 − α. However by induction for Lemma 6.53
also [[θςr ]] ⊆ [[θς]] ∩ [[θςa ]]. Because θα ∈ [[θςr ]] ⊆ [[θςa ]] it must be that θ |= C1. Additionally
θα ∈ [[θςr ]] ⊆ [[θς]], or θα ∈ [[θς]] as required to finish the case.

Lemma 6.53. If ⊢ C1 wf , ∆C1
⊢ ς1, ς2, and join(C1, ς1, ς2) = C2, ς then for all θ such that θ |= C2

it is the case that θ |= C1 and [[θς]] ⊆ [[θς1]] ∩ [[θς2]].

Proof. We have the following cases to consider:

• join(C1, [D ]⇒ α, ς2) = (C1, ς2) whenever (αµ ⊥) ∈ D . We know moreover by well-formedness
of [D ] ⇒ α that µ = ⋆, and D = ∅ (no useless quantified variables). Hence it is adequate to
finish the case to show that [[θς]] ⊆ [[[θD ]⇒ α]]. This will be the case if [[[θD ]⇒ α]] is the set
of all types, which is the case, since the θD can always be satisfied by any substitution, and
in fact one that can assign any type σ to α (because (α⋆ ⊥) ∈ θD).
• join(C1, ς1, [D ]⇒ α) = (C1, ς1) whenever (αµ ⊥) ∈ D . The case is similar to the previous one.

• join(C1, [D1]⇒ ρ1, [D2]⇒ ρ2) = C2, ς, where E = eqCheck(C1•D1•D2, ρ1, ρ2), γ = Ê (dom(C1)),

δ = Ê (ρ1) − γ, and C2 = Eγ , ς = [Eδ] ⇒ ρ1. First of all C1•D1•D2 is well formed. Assume
θ |= Eγ . Then there is an extension θ1 such that θθ1 |= E . By induction θθ1 |= C1•D1•D2 but
since dom(θ) ⊇ dom(Eγ) ⊇ dom(C1) and C1 is closed, it must be that θ |= C1 as required.
Now consider θD1

and θD2
to be the restrictions of θθ1 to dom(D1) and dom(D2) respectively.

Assume ∀c. ρ ∈ [[θ([Eδ]⇒ ρ1)]] hence ∀c. ρ ∈ [[[θE⋆
δ
]⇒ θρ⋆

1]] where δ
⋆

and ρ⋆
1 are a suitable

renaming of δ to some fresh variables. Then it must be that:

c#[θE⋆
δ
]⇒ θρ⋆

1 (15)

ρ = θ⋆
δ
θρ⋆

1 (16)

θ⋆
δ
|= θE⋆

δ
(17)

for some suitable θ⋆
δ
. We need to show that: ∀c. ρ ∈ [[[θD◦1 ]⇒ θρ◦1]] where D◦1 and ρ◦1 are

completely fresh renamings of the domain of D1. We may pick from the beginning c to be fresh
from [[[θD◦1 ]⇒ θρ◦1]]. Consider now the substitution θ◦D1

. It must be that θ◦D1
|= θD◦1 . Moreover

θ◦D1
θ(ρ◦1) = θ⋆

δ
θρ⋆

1 = ρ. Hence [[θς]] ⊆ [[θ([D1]⇒ ρ1)]]. For showing [[θς]] ⊆ [[θ([D2]⇒ ρ2)]], it

suffices to show that ∀c. ρ ∈ [[[θD◦2 ]⇒ θρ◦2]] where D◦2 and ρ◦2 are completely fresh renamings
of the domain of D2. We may pick from the beginning c to be fresh from [[[θD◦2 ]⇒ θρ◦2]].
Consider now the substitution θ◦D2

. It must be that θ◦D2
|= θD◦2 . To conclude we must show

that θ◦D2
θ(ρ◦2) = ρ. It suffices to show that θ◦D2

θ(ρ◦2) = θ⋆
δ
θρ⋆

1 which holds since θθ1ρ1 = θθ1ρ2

by induction.

45



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

6.3.3 Unification completeness lemmas

We proceed with showing the completeness of unification with respect to the set semantics that we
have defined earlier.
Lemma 6.54. If ⊢ C1 wf , ∆C1

⊢ σ1, σ2, θ |= C1, with dom(θ) = dom(C1), θσ1 = θσ2, and
eqCheck terminates, then eqCheck(C1, σ1, σ2) = C2 such that there exists a θr with θθr |= C2 and
dom(θθr ) = dom(C2).

Proof. The proof is by induction on termination relation for eqCheck . Let us consider cases on σ1

and σ2. If both types are (rigid) type variables, then it must be that σ1 = a and σ2 = a, and
consequently case e1 is applicable. If σ1 or σ2 is α then, case e2 or case e3 is applicable , and the
result follows by Lemma 6.56. If none of σ1 or σ2 are variables, assume that they are function types:
σ1 = σ11 → σ21 and σ2 = σ12 → σ22. Then we have that θσ11 = θσ12 and θσ21 = θσ22. Hence
by induction hypothesis we have that eqCheck(C1, σ11, σ21) = E such that there exists a θ1r with
θθ1r |= E . Moreover by the well-formedness lemmas we know that E is well formed, and moreover
∆E ⊢ σ21, σ22. By induction hypothesis again eqCheck(E , σ21, σ22) = C2, and there exists a θ2r such
that θθ1rθ

2
r |= C2 as required. The final case we have to consider is when σ1 = ∀a. ρ1 and σ2 = ∀a. ρ2,

and without loss of generality assume that ρ1 6= γ1 and σ2 6= γ2 because we assume that there exist
no useless quantified variables in types. Also without loss of generality assume that ab#ftv(θ) (i.e.
we picked the fresh variables, fresh from θ as well). Then θσ1 = ∀a. θρ1 and θσ2 = ∀a. θρ2. It
follows that θρ1 = θρ2. Consequently by induction eqCheck(C1, [a 7→ b]ρ1, [a 7→ b]ρ2) = C2 such
that there exists a θr so that θθr |= C2. To finish the case we need to show that b#E . But observe
that it suffices to show that b#EbE(dom(C1))

(by the separation lemma, the rest of the constraint E

is also present in C1 and not touched, and hence cannot have contained b). If there were some b ∈ b
in EbE(dom(C1))

it must have been that b ∈ range(θ), a contradiction. Case e6 is not applicable,

because the types cannot be equal.

Lemma 6.55. If ⊢ C1 wf , ∆C1
⊢ ς, σ, and θ |= C1 with dom(θ) = dom(C1), θσ ∈ [[θς]] and

subsCheck terminates, then subsCheck(C1, ς, σ) = C2 then there exists a θr such that θθr |= C2 and
dom(θθr ) = dom(C2).

Proof. Let us do a case analysis on σ.

• σ = β. In this case the result follows by Lemma 6.58.
• σ 6= β. In this case σ = ∀c. ρ2 where we assume that ρ2 is not a variable. Since subsCheck

terminates, then it must also be that eqCheck(C1•D , ρ1, ρ3) terminates where ρ3 = [c 7→ b]ρ2.
Since θ(∀c. ρ2) = [[[θD ]⇒ θρ]]. We assume without loss of generality that b#ftv(θ) (i.e. we
picked the variables b fresh from θ as well). Then there must be a substitution θD such
that θD |= θD such that θDθρ = θρ2 (because θρ2 must be a ρ-type when ρ2 is not a vari-
able), and moreover c#ftv([θD ] ⇒ θρ). It follows that θθD |= C1•D . By Lemma 6.54, since
eqCheck(C1•D , ρ1, ρ3) terminates, there exists a θr such that θθDθr |= E . Finally consider the
restriction of θDθr , call it θ⋆

r , such that θθ⋆
r |= Eγ . To finish the case we need to show that

b#Eγ . This follows, because if b ∈ Eγ it must be that b ∈ range(θ), which is impossible.

Lemma 6.56. If ⊢ C1 wf , ∆C1
⊢ α, σ, θ |= C1, with dom(θ) = dom(C1), θα = θσ, and

updateRigid terminates, then updateRigid(C1, α, σ) = C2 such that there exists a θr with θθr |= C2

and dom(θθr ) = dom(C2).

Proof. We consider cases on σ. If σ = β we have the following cases:

• We have β = α. The case finishes by taking θr to be the identity substitution.
• We have β 6= α and (βµ = γ) ∈ C . It follows that case ur2 is reachable. However since
θα = θβ and θ |= C , it must be that θα = θγ. Induction hypothesis finishes the case.

46



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

• We have β 6= α and (βµ ≥ [D ]⇒ ρ1). Moreover we know that θα = θβ and θβ ∈ [[[θD ]⇒ θρ1]].
We have the following cases for ρ1. if ρ1 = γ then one case is if (γ⋆ ⊥) ∈ D . In that case, case
ur4 is reachable and the result follows by Lemma 6.57. The other case is that ∆C1

(γ) = m. In
this case, case ur3 is reachable (and also D = ∅). Then, since θβ ∈ [[[∅]⇒ θγ]] and there are
no useless quantifiers, we have that θβ = θγ (and is monomorphic). But then it must be that
updateRigid(C1, α, γ) terminates, and hence by induction hypothesis we are done. Now, let us

consider the cases where ρ1 6= γ. It must be in that case that α /∈ Ĉ1(β) otherwise it can’t
happen that θα = θβ ∈ [[[θD ]⇒ θρ1]]. Hence, case ur4 is reachable and we get the result by
Lemma 6.57.

Now, assume that σ 6= β. It must be the case that α /∈ Ĉ1(σ), because otherwise it cannot be that
θα = θσ. Then the case ur4 is reachable and Lemma 6.57 shows the goal.

Lemma 6.57. If ⊢ C1 wf , ∆C1
⊢ α, σ, θ |= C1, with dom(θ) = dom(C1), α /∈ Ĉ1(σ), θα = θσ, and

doUpdateR terminates, then doUpdateR(C1, α, σ) = C2 such that there exists a θr with θθr |= C2

and dom(θθr ) = dom(C2).

Proof. The proof is by case analysis on the bound of α in C1. If (αm ⊥) ∈ C1 and θα = θσ, and
moreover θα is monomorphic. By completeness for mkMono, we have that there exists a θ1r such
that θθ1r |= E . It follows that θθ1r |= E ← (αm = σ). If on the other hand (α⋆ ⊥) ∈ C1 we have as
before that θα = θσ and θ |= C1, so it must also be that θ |= C1 ← (α⋆ = σ). Now, consider the
case where (α⋆ ≥ ςa) ∈ C1. We know that θα = θσ and moreover θα ∈ [[θςa ]]. It follows that case
dr3 is reachable and by Lemma 6.55 we have that subsCheck(C1, ςa , σ) = E and there exists a θr
such that θθr |= E . Since θα = θσ this implies also that θθr |= E ← (α⋆ = σ). Finally assume that
(αµ = σa) ∈ C1. Moreover we have that θα = θσ and since θ |= C1 we have θα = θσa . Then case
dr4 is reachable and then by Lemma 6.54 the case is finished.

Lemma 6.58. If ⊢ C1 wf , ∆C1
⊢ α, ς, θ |= C1, with dom(θ) = dom(C1), θα ∈ [[θς]], and

updateFlexi terminates, then updateFlexi(C1, α, ς) = C2 such that there exists a θr with θθr |= C2

and dom(θθr ) = dom(C2).

Proof. Similar to the proof of Lemma 6.56, appealing to Lemma 6.56, and Lemma 6.59. (Observe
that if ς = [D ] ⇒ γ then by well-formedness γ is either a monomorphic variable, or bound to ⊥ in
D , hence the call to updateRigid in uf1).

Lemma 6.59. If ⊢ C1 wf , ∆C1
⊢ α, ς, θ |= C1, α /∈ Ĉ1(α), with dom(θ) = dom(C1), θα ∈ [[θς]], and

doUpdateF terminates, then doUpdateF (C1, α, ς) = C2 such that there exists a θr with θθr |= C2

and dom(θθr ) = dom(C2).

Proof. Similar to the proof of Lemma 6.57, by analysis to the bound of α in C1, and appealing to
Lemma 6.55. The interesting case is when (α⋆ ≥ ςa) ∈ C1. In this case we know that θα ∈ [[θς]]
and θα ∈ [[θςa ]]. Then we are in case df4 and it follows by Lemma 6.60 that join(C1, ς, ςa) = E ,
and there exists a θr such that θθr |= E . From the same lemma it is the case that θα ∈ [[θθr ςr ]]. It
follows that θθr |= E ← (α⋆ ≥ ςr ).

Lemma 6.60. If ⊢ C1 wf , ∆C1
⊢ ς1, ς2, θ |= C1 with dom(θ) = dom(C1), and join(C1, ς1, ς2)

terminates and σ ∈ [[θς1]]∩ [[θς2]], then join(C1, ς1, ς2) = E , ς such that there exists a θr with θθr |= E
and dom(θθr ) = θ(E ), and σ ∈ [[θθr ς]].

Proof. Let us consider cases on ς1 and ς2. If one of them is [α⋆ ⊥] ⇒ α then either the case of
j1 or j2 is reachable and, since the set [α⋆ ⊥] ⇒ α is the set of all types we are done. Now, let
us assume that this is not the case. The reachable clause is then j3. In this case we have that
θ |= C1 and the call is made to join(C1, [D1]⇒ ρ1, [D2]⇒ ρ2). We have that σ ∈ [[[θD1]⇒ θρ1]] and
σ ∈ [[θD2]⇒ θρ2]]. Assume that σ = ∀c. ρ. It must be hence that c#ftv([θD1]⇒ θρ1, [θD2]⇒ θρ2)
and there exist θD1

and θD2
such that θD1

|= θD1 and θD2
|= θD2. Without loss of generality assume

47



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

that D1 and D2 have fresh domains, and it also must be that ρ = θD1
θρ1 = θD2

θρ2. Hence it must
be that θθD1

θD2
|= C1•D1•D2, and

θθD1
θD2

ρ1 = θθD1
θD2

ρ2 = ρ (18)

Hence, by Lemma 6.54 eqCheck(C1•D1•D2, ρ1, ρ2) = E such that there exists a θr with θθD1
θD2

θr |=
E . Consider the restriction of θD1

θD2
θr to EbE(dom(C1))

to be θ⋆
r and then θθ⋆

r |= EbE(dom(C1))
. If

δ = Ê (ρ1) − Ê (dom(C1)) then it is also the case that θθD1
θD2

θr |= Eδ and equation (18) finishes
the case.

6.3.4 Main algorithm soundness

We start by showing some well-formedness preservation lemmas about the algorithm of Figure 11.
Lemma 6.61 (Instantiation well-formedness). The following properties are true:

1. If inst(C1, σ) = C2, ρ then dom(C1) ⊆ dom(C2) and if ∆C1
(γ) = m then ∆C2

(γ) = m.

2. If wfweak (C1) and inst(C1, σ) = C2, ρ and ∆C (γ) = m then Ĉ1(γ) ⊆ Ĉ2(γ).
3. If wfweak (C1), wfqvar (C1), fcv(σ) ⊆ dom(C1), inst(C1, σ) = C2, ρ then wfqvar (C2) and

if ∆C2
(γ) = m then there is a β ∈ dom(C1) such that ∆C1

(β) = m and γ ∈ ∆C2
(β).

Proof. Easy check.

Lemma 6.62 (Instantiation well-formedness). If ⊢ C1 wf and ∆C1
⊢ σ and inst(C1, σ) = C2, ρ

then ⊢ C2 wf and C2 ⊢ ρ.

Proof. Easy check.

Lemma 6.63 (Instantiation soundness). If ⊢ C1 wf and ∆C1
⊢ σ, and inst(C1, σ) = C2, ρ, then

for all θ |= C2, θ |= C1 and ⊢
inst

θ[σ] ≤ θ[ρ].

Proof. It must be that σ = ∀a. ρ1 in which case C2 = C1•(α⋆ ⊥) and ρ = [a 7→ α]ρ1. Assume that
θ |= C2. It follows that θ |= C1. Moreover let θo , θα be the split of θ such that dom(θα) = α. Then
θ[σ] = ∀a. θ0[ρ1] where without loss of generality we assume that a#ftv(θ). But then

⊢
inst
∀a. θ0[ρ1] ≤ [a 7→ θα[α]]θ0[ρ1] = θ[([a 7→ α]ρ1)] = θρ

as required.

The following important lemma ensures that our normalization procedure produces well-formed
schemes.
Lemma 6.64 (Normalization well-formedness). Assume that:

1. ∆ ⊢ C wf ,
2. ∆∆C ⊢ σ,
3. for all α ∈ dom(C ), ∆C (α) = ⋆, and there exists a β ∈ fcv(σ) such that α ∈ Ĉ (σ), and
4. normalize(C , σ) = [E ]⇒ ρ

Then, ∆ ⊢ [E ]⇒ ρ.

Proof. We prove the lemma by induction on the number of recursive calls. We have the following
cases to consider:

48



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

• Case n1. We have that normalize(C , α) = [C•D − α] ⇒ ρ. Hence it must also be that
∆ ⊢ C•D wf , and because no variable from the domain of C points to α, and C and D are
acyclic it follows that ∆ ⊢ C•D − α wf . The interesting part is to verify two conditions,
(i) the domain of E = C•D − α does not contain any m-bound variables, and (ii) if ρ = γ it
is either bound to ⊥ in E or monomorphic in the environment ∆. For (i), observe first that,
because ∆ ⊢ [D ] ⇒ ρ, D does not contain any m-bound variables in its domain, and so does
C by assumptions. It follows that C•D does not contain any m-bound variables, and so does
C•D − α. For (ii) let us examine the case where ρ = γ, If γ ∈ dom(D), since ∆ ⊢ [D ] ⇒ ρ
it must be that (γ⋆ ⊥) ∈ dom(D) which implies that (γ⋆ ⊥) ∈ dom(C•D) and clearly γ 6= α.
On the other hand if ∆(γ) = m, γ /∈ dom(C ) and γ /∈ dom(D) and hence γ /∈ dom(C•D) and
hence the case is done.
• Case n2 is similar to n1 appealing additionally to the induction hypothesis.
• Case n3. We have in this case that normalize(C ,∀a. ρ) = normalize(C•(α⋆ ⊥), [a 7→ α]ρ). We

can assume without loss of generality that α were picked fresh from ∆ as well, and consequently
∆ ⊢ C•(α⋆ ⊥). Moreover by assumptions C•(α⋆ ⊥) does not contain any m-bound variables.
by induction then the case is finished.
• Case n4. In this case we have that either ρ is not a variable in which case the well-formedness

follows easily. If on the other hand ρ = γ, since we know that, since we are in this case it must
be that

– either (γµ ⊥) ∈ C , and since C does not contain any m-bound variables, it is (γ⋆ ⊥) ∈ C ,
– or γ ∈ fcv(σ) and γ /∈ dom(C ). But in this case ∆(γ) = m by assumptions.

It follows in every case that ∆ ⊢ [E ]⇒ ρ, as required.

Lemma 6.65 (Normalization soundness). Assume that:

1. ⊢ C wf ,
2. ∆C ⊢ C1 wf ,
3. ∆∆C1

⊢ σ,

4. for all α ∈ dom(C1), ∆C1
= ⋆, and there exists a β ∈ fcv(σ) such that α ∈ Ĉ1(σ), and

5. normalize(C1, σ) = [E ]⇒ ρ

Then, for all θ |= C•E there exists a θr such that θθr |= C•C1 and ⊢
F
θθrσ ≤ θρ.

Proof. We show the case by induction on the number of recursive calls of normalize. In case
n1 we have that normalize(C1, α) = [C1•D − α] ⇒ ρ when (α⋆ ≥ [D ] ⇒ ρ) ∈ C1. Assume
that θ |= C1•D − α. Then it must be that θD |= θ−DD , (θ−D being the restriction of θ to its
domain that is disjoint from D), it suffices then to choose θr (α) = θρ and we are done. In case
n2 we have that normalize(C1, α) = normalize(C1 − α, σ) whenever (α⋆ = σ) ∈ C1. Assume
that normalize(C1 − α, σ) = [E ] ⇒ ρ and let θ |= C•E , then there exists a θ1r such that θθ1r |=
C•(C1 − α). Let θ2r (α) = θθ1rσ. It follows that θθ1rθ

2
r |= C•C1 as required. Moreover we know that

⊢
F
θθ1rσ ≤ θρ, which implies ⊢

F
θθ1rθ

2
r (α) ≤ θρ. In case n3 we have that normalize(C1,∀a. ρ) =

normalize(C1•(α⋆ ⊥), [a 7→ α]ρ) = [E ] ⇒ ρ. Assume that θ |= C•E , by induction there exists a θr
such that θθr |= C•C1•(α⋆ ⊥), and ⊢

F
θθr [a 7→ α]ρ ≤ θρ. It follows that ⊢

F
θθr (∀a. ρ) ≤ θρ. Case

n4 is straightforward.

Lemma 6.66 (Generalization well-formedness). If ⊢ C wf , C ⊢ Γ, ρ, and generalize(C ,Γ, ρ) =
[Eg ]⇒ ρg ,E then ⊢ E wf , E ⊢ Γ, and E ⊢ [Eg ]⇒ ρg .

Proof. Unfolding of the definitions, appealing to Lemma 6.64

Lemma 6.67 (Generalization soundness). Assume that ⊢ C wf , C ⊢ Γ, C ⊢ ρ and generalize(C ,Γ, ρ) =
[Eg ]⇒ ρg ,E, and θ |= E, then, for all θg such that θθg |= E•Eg there exists a θr such that θθgθr |= C

and ⊢
F

(θθgθrρ) ≤ θθgρg .

49



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Proof. Let β = Ĉ (ρ)− Ĉ (Γ). Then [Eg ]⇒ ρg = normalize(Cβ , ρ), and E = C − Cβ . Assume that
θ |= C −Cβ , and asume that θg is such that θθg |= (C −Cβ)•Eg . By Lemma 6.65 there exists a θr

such that θθgθr |= (C −Cβ)•Cβ , that is, θθgθr |= C . Moreover it is the case that ⊢
F
θθgθrρ ≤ θθgρg

as required.

Given the fact that unification, normalization, and generalization preserve well-formedness of con-
straints and preserve the sets of monomorphic variables, it is an easy check that functions instFun,
instMono, and infer have the same properties. In the rest of this section we assume domain
monotonicity, preservation of well-formedness and origination of all monomorphic variables in some
monomorphic variable appearing in the environment. Establishing this property is a tedious but
straightforward task.

Below we give soundness of the functions instFun, instMono, and infer .
Lemma 6.68. If ⊢ C1 wf , ∆C1

⊢ ρ, C1 ⊢ Γ, and instFun(C1,Γ, ρ) = C2, σ1 → σ2 then for every
θ |= C2, there exists a θr such that θθr |= C1 and θθr [σ] �⊑→ θ[σ1]→ θ[σ2].

Proof. Let us consider two cases on σ. If ρ = σ1 → σ2 we are trivially done. If on the other hand
ρ = α we have that instFun(C1, α) = (E2, β → γ) where E , [Eg ] ⇒ ρg = generalize(C1,Γ, α), and
E2 = eqCheck(E•Eg•(β⋆ ⊥)•(γ⋆ ⊥), ρg , β → γ). Assume that θ |= E2. By Lemma 6.47 we have

θ |= E•Eg•(β⋆ ⊥)•(γ⋆ ⊥). By Lemma 6.67 we have that there exists a θr such that ⊢
F
θθr (α) ≤ θρg ,

and θθr |= C1 (the use of θg in the theorem is inlined inside θ), and θ(β) → θ(γ) = θρg . It follows
that θθr (α) �⊑→ θ[β]→ θ[γ] (since θρg must be a ρ-type).

Lemma 6.69. If ⊢ C1 wf , ∆C1
⊢ ρ1, C1 ⊢ Γ, and instMono(C1,Γ, ρ1) = C2, ρ then for every

θ |= C2, it is the case that θ |= C1 and θ[ρ1] �⊑ θρ

Proof. Similar to the proof of Lemma 6.68 appealing to soundness for mkMono.

Lemma 6.70 (Soundness). If ⊢ C1 wf , C1 ⊢ Γ, and infer(C1,Γ, e) = C2, ρ then for all θ |= C2, it
is the case that θ |= C1 and θΓ ⊢ e : θ[ρ].

Proof. We sketch the proof of soundness by induction on the number of steps of the algorithm. We
ommit showing the well-formedness conditions in the inductive cases. We and consider the following
cases.

• infer(C1,Γ, x ) = C2 where (x :σ) ∈ Γ and inst(C1, σ) = C2. In this case we may directly
appeal to Lemma 6.63.
• infer(C1,Γ, e1 e2) = C2, ρ2 where

(E1, ρ1) = infer(C1,Γ, e1) (19)

(E2, σ1 → σ2) = instFun(E1,Γ, ρ1) (20)

(E3, ρ3) = infer(E2,Γ, e2) (21)

E4, [Eg ]⇒ ρg = generalize(Γ,E3, ρ3) (22)

E5 = subsCheck(E4, [Eg ]⇒ ρg , σ1) (23)

C2, ρ2 = inst(E5, σ2) (24)

(25)

Assume θ |= C2, it follows that ⊢
inst

θ[σ2] ≤ θ[ρ2] by Lemma 6.63. Moreover θ |= E5. By
Lemma 6.50 we get that θσ1 ∈ [[θ([Eg ]⇒ ρg)]] and θ |= E4. It follows that there exists a θg
such that θθg |= E4Eg and let θσ1 = ∀a. ρ1. Assume without loss of generality that a#ftv(θΓ).
Moreover it must be that a#ftv([θEg ]⇒ θρg) and ρ1 = θgθρg (a may appear in the range of

θg). By Lemma 6.67 it must then be that there exists a θr such that ⊢
F
θθgθr (ρ3) ≤ θgθρg = ρ1.

But a#θΓ and hence it must be that θΓ(θθgθr (ρ3) ≤ ∀a. ρ1. Moreover θθgθr |= E3 and hence
by induction hypothesis θΓ ⊢ e2 : θθgθr [ρ3], and θθgθr |= E2. Observe that the residual

50



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

θgθr was only refering to fresh variables, and hence at this point we know that θ |= E2. By
Lemma 6.68 we get that there exists a θr such that θθr |= E1 and θθr [ρ1] �⊑

→ θ[σ1]→ θ[σ2].
Moreover, by induction we get that θθr |= C1 and because θr is refering to fresh variables,
θ |= C1. By induction we get θΓ ⊢ e1 : θθr [ρ1]. Applying rule sdapp is enough to finish the
case.
• infer(C1,Γ, (e:: σ)) = C2, ρ2. This case involves the same reasoning about generalization as

the application case and we ommit it.
• infer(C ,Γ, let x = u in e) = C2, ρ where

E1, ρ1 = infer(C ,Γ, u) (26)

E2, ρ2 = instMono(E1, ρ1) (27)

ρ3 = zonkType(E2, ρ2) (28)

α = Ê2(ρ3)− Ê2(Γ) β = α ∩ fcv(ρ3) a fresh (29)

C2, ρ = infer(E2 − E2α,Γ, (x :∀a. [β 7→ a]ρ3), e) (30)

Assume first of all that θ |= C2, and without loss of generality assume that α#dom(θ) (other-
wise we can work with a restriction of θ). Then, by induction hypothesis for (30) we get that
θ |= E2 −E2α. But consider the variable α. E2α contains only monomorphic equality bounds,

and we can consider the most general unifier of E2α, call it E †2α. With a substitution of β to

a, we know that [β 7→ a]E †2α, call it θα, satisfies E2α. That is, θα |= E2α. Then θθα |= E2 and
by Lemma 6.69 there exists a θr such that θθαθr [ρ1] �⊑ θθαρ2. and θθαθr |= E1. Hence, by
induction θΓ ⊢ u : θθαθr [ρ1] and θθαθr |= C1. But observe that the α and the domain of θr
were freshly created and hence θ |= C1. Hence induction hypothesis will finish the case if we
can show that a = ftv([β 7→ a]θθαρ2)− ftv(θΓ):

– a ⊆ ftv([β 7→ a]θθαρ2)− ftv(θΓ). This direction is trivial, for fresh enough a.

– ftv([β 7→ a]θθαρ2)− ftv(θΓ) ⊆ a. Assume an a ∈ ftv([β 7→ a]θθαρ2)− ftv(θΓ). The hard
case is when either a ∈ ρ2 or ∃γ ∈ fcv(ρ2) such that a ∈ θθαγ. We will show that this
case cannot happen. In the first case it must be that a belongs in θΓ. In the second it
must be the case that γ /∈ β, and hence γ /∈ α or γ /∈ fcv(ρ2). If γ /∈ α it means that it

must be in Ê2(Γ) and hence a ∈ θΓ, a contradiction. The latter case, γ /∈ fcv(ρ2) cannot
happen as γ ∈ fcv(ρ2).

Putting the above together, induction hypothesis for (30) and application of sdlet finishes
the case.
• infer(C1,Γ, λx . e) = C2, ρ. The case is similar to the case for generalizing let -bindings.

6.3.5 Main algorithm completeness

Lemma 6.71 (Scheme substitutivity). Assume that ∆ ⊢ [D ] ⇒ ρ and a#ftv([D ] ⇒ ρ) and ∆
contains only ⋆-flagged variables. If θ |= D then [a 7→ σ]θ |= D (where σ are constrained-variable-
free).

Proof. By induction on the metric of the constraint D . First of all, if (α⋆ = σ1) ∈ D we know
that equality is preserved by substitutions, hence θα = θσ1 implies [a 7→ σ]θα = [a 7→ σ]θσ1, and
moreoever if (α⋆ ≥ ⊥) then the result follows easily. (α⋆ ≥ [E ]⇒ ρ) we have that θα ∈ [[[θE ]⇒ θρ]]
where without loss of generality we assume that dom(E )#dom(θ). Assume that θα = ∀b. ρa .
Then b#ftv([θE ] ⇒ θρ), and without loss of generality assume also that b#a, ftv(σ). Then, there
exists also a substitution θE such that θE |= θE and ρa = θEθρ. It follows that θEθ |= E and
consequently by induction [a 7→ σ] · (θEθ) |= E and [a 7→ σ]ρa = [a 7→ σ](θEθρ). This implies that
([a 7→ σ] · θE )([a 7→ σ]θ) |= E , and moreover ([a 7→ σ] · θE )([a 7→ σ]θ)(ρ) = [a 7→ σ]ρa . Because
b#a, ftv(σ) we have that [a 7→ σ]θα ∈ [[[[a 7→ σ]θE ]⇒ [a 7→ σ]θρ]], as required.

51



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Lemma 6.72 (Scheme F-instance transitivity). If ⊢ ς, σ1 ∈ [[ς]], and ⊢
F
σ1 ≤ σ2 then σ2 ∈ [[ς]].

Proof. Let ς = [D ] ⇒ ρ. Since ⊢ ς it must be that, if ρ = γ, then ς = [(γ⋆ ⊥)] ⇒ γ. Additionally
we know that for all γ ∈ dom(D), ∆D(γ) = ⋆. Let σ1 = ∀a. ρ1 and σ2 = ∀b. [a 7→ σ]ρ1 such that
b#ftv(∀a. ρ1). Then we know that there exists a θD such that θD |= D and ρ1 = θDρ. Moreover
a#ftv([D ] ⇒ ρ). We want to show that ∀b. [a 7→ σ]ρ1 ∈ [[[D ]⇒ ρ]]. First of all, assume that ρ1 is
not a single quantified variable a because in this case it must be that ς = [(γ⋆ ⊥)] ⇒ γ, and then
trivially also σ2 ∈ [[ς]]. So, assume that all quantified variables of σ2 are the b. We have to show
several things:

• b#ftv([D ]⇒ ρ). Assume on the contrary that there exists a b ∈ ftv([D ]⇒ ρ). It follows that
b ∈ θDρ = ρ1. But since a#ftv([D ]⇒ ρ) it follows that b ∈ ftv(∀a. ρ1), a contradiction.
• We want to find a substitution θ◦D such that [a 7→ σ]ρ1 = θ◦Dρ. We know that ρ1 = θDρ,

so consider as a candidate θ◦D the substitution [a 7→ σ]θD (where the notation means that
we substitute the a for σ in the range of θD . We need to show that since θD |= D then
[a 7→ σ]θD |= D as well. But this follows by Lemma 6.71.

Lemma 6.73. If (∀b. ρ) ∈ [[ς]] and a#ftv(ς), b then ∀ab. ρ) ∈ [[ς]].

Proof. Straightforward unfolding of the definitions.

Lemma 6.74 (Normalization completeness). Assume that C ⊢ E wf , ∆C∆E ⊢ ρ, θ |= C•E,
the domain of E is ⋆-bound variables only, and the constraints E and type ρ contain no rigid type
variables, and normalize(E , ρ) = [Eg ]⇒ ρg , then θρ ∈ [[[Eg ]⇒ ρg ]].

Proof. By induction on the number of recursive calls to normalize(E , ρ). The only interesting case
is the case for n1:

• We have that normalize(E , α) = [E•D−α]⇒ ρ, when (α⋆ ≥ [D ]⇒ ρ) ∈ E . since θ |= C•E it
is the case that θα ∈ [[[θD ]⇒ θρ]] (where we assume that the domain of D is disjoint from the
domain of θ). We need to show that θα ∈ [[θ[E◦•(D − α)◦]⇒ θρ◦]] where ◦ is a renaming of
the domain of E and D such that they are disjoint from the domain of θ. Let θα = ∀a. ρa such
that a#ftv([θD ]⇒ θρ). then there exists a θD such that θDθρ = ρa and θD |= θD . However,
it must also be that θ◦Dθ

◦ |= θ[E◦•(D − α)◦] and then θDθ
◦θρ◦ = θDθρ = ρa . To finish

the case we need to show that a#ftv(θ[E◦•(D − α)◦] ⇒ θρ◦). But assume on the contrary
that there exists such an a. But since a ∈ ftv(ρa) and they cannot be in θρ it must be that
a ∈ range(θD). If there exists such an a it must be that a ∈ range(θftv(ρ)) which is impossible
because a#ftv([θD ]⇒ θρ).

Lemma 6.75 (Generalization completeness). Assume that ⊢ C1 wf , C1 ⊢ Γ, ρ, for all θ |= C1 and
E , ς = generalize(C1,Γ, ρ), C1 and ρ do not contain any free rigid variables, and a = ftv(θρ) −
ftv(θΓ). It follows that (∀a. θρ) ∈ [[θς]] and θ |= E.

Proof. We have that β = Ĉ1(ρ) − Ĉ1(Γ), normalize(Cβ , ρ) = [Eg ] ⇒ ρg and E = C − Cβ , ς =

[Eg ] ⇒ ρg . We know that θ |= C1 and assume a renaming of the variables β to β
◦
. Then we will

first show that a#ftv([θE◦g ]⇒ θρ◦g). Assume, by contradiction, that there exists an a ∈ a such that

a ∈ ftv([θE◦g ]⇒ θρ◦g). It follows that there exists a β ∈ Ĉ1(Γ) such that θ(β) = a. But then it must
be that a /∈ a. Or, it must be that a ∈ ftv([Eg ] ⇒ ρg). But this cannot happenm as Eg and ρg
can’t contain any rigid variables. By Lemma 6.73, it is hence enough to show that θρ ∈ [[θς]]. But
this follows from Lemma 6.74.

52



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Lemma 6.76 (Inst-fun completeness). If ⊢ C1 wf and C1 ⊢ Γ and θ1 |= C1, dom(θ1) = dom(C1),
and θ1[ρ] �⊑

→ σ′1 → σ′2 then instFun(C1,Γ, ρ) = C2, σ1 → σ2 such that there exists a θ2 with
θ1θ2 |= C2 and σ′1 = θ1θ2[σ1], σ

′
2 = θ1θ2[σ2].

Proof. Unfolding definitions and appealing to completeness of eqCheck and normalize(·).

We use below the fact that whenever we infer a type, that type contains no rigid type variable,
but only unification ones. In essence, rigid type variables can only start appearing by open type
annotations, (and the proofs need be slightly modified), but for simplicity we only treat closed type
annotations.
Lemma 6.77 (Main completeness). If ⊢ C1 wf , C1 ⊢ Γ, θ1 |= C1, and θ1Γ ⊢ e : ρ′ then
infer(C1,Γ, e) = C2, ρ and there exists a θ2 such that θ1θ2 |= C2, and θ[ρ] �⊑ ρ′.

Proof. By induction on the size of term e, and considering cases on the derivation θ1Γ ⊢ e : ρ′. The
cases for let nodes rely on Lemma 5.7 and Corollary 6.7, and is similar to the ordinary case for
higher-rank types (since the types are box-free), and the substitutions monomorphic. The case for
abstraction relies on Lemma 5.7 and is similar. The cases for annotations and applications are more
interesting as they use the power of constrained types. We show below the case for applications,
and the case for annotations is quite similar.

• Case sdapp. In this case we have that ⊢ C1 wf , C1 ⊢ Γ, θ |= C1 and θ1Γ ⊢ e1 e2 : ρ′2 given
that

θ1Γ ⊢
sd

e1 : ρ′ (31)

ρ′(�⊑→)σ′1 → σ′2 (32)

Γ ⊢
sd

e2 : ρ′3 a = ftv(ρ′3)− ftv(Γ) (33)

⊢
F
⌊∀a. ρ′3⌋ ≤ ⌊σ

′
1⌋ ⊢

inst
σ′2 ≤ ρ

′
2 (34)

By induction hypothesis for (31) we get that infer(C1,Γ, e1) = E1, ρ1 such that there ex-
ists a θ2 with θ1θ2 |= C2 and θ1θ2[ρ1] �⊑ ρ′. By Lemma 6.76 and transitivity of �⊑ we
get that instFun(E1, ρ1) = E2, σ1 → σ2 such that there exists a θ3 with θ1θ2θ3 |= E2 and
θ1θ2θ3[σ1] = σ′1 and θ1θ2θ3[σ2] = σ′2. Moreover, we know at this point that θ1θ2θ3Γ ⊢
e2 : ρ′3 (since all the variables of Γ are already in the domain of θ1). It follows by induc-
tion hypothesis that infer(E2,Γ, e2) = E3, ρ3 such that there exists a θ4 with θ1θ2θ3θ4 |=
E3 and θ1θ2θ3θ4[ρ3] �⊑ ρ′3. Next, we have that if a = ftv(θ1θ2θ3θ4ρ3) − ftv(θ1Γ) it is

the case that ⊢
F
∀a. θ1θ2θ3θ4ρ3 ≤ θ1θ2θ3σ1 = θ1θ2θ3θ4σ1. By Lemma 6.75 we may call

generalize(Γ,E3, ρ3) to get back E4, ς3 (generalize never fails). By Lemma 6.75 we get that
∀a. θ1θ2θ3θ4ρ3 ∈ [[θ1θ2θ3θ4ς3]], and θ1θ2θ3θ4 |= E4, and by Lemma 6.72 it must be that
θ1θ2θ3θ4σ1 ∈ [[θ1θ2θ3θ4ς3]]. By Lemma 6.55 it must be the case that E5 = subsCheck(E4, ς3, σ1)
such that there exists a θ5 with θ1θ2θ3θ4θ5 |= E5. Finally, the instantiation step concludes the
case by appplying the algorithm clause iapp.

7 Discussion

We present in this section several extensions to FPH, and discuss alternative design choices.

53



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

7.1 Bidirectionality

Bidirectional propagation of type annotations may further reduce the amount of required type
annotations in FPH. It is relatively straightforward to add bidirectional annotation propagation
to the specification of FPH (see e.g. (Peyton Jones et al. 2007)). This bidirectional annotation
procedure can be implemented as a separate preprocessing pass, provided that we support open
type annotations, and annotated λ-abstractions. Alternatively, this procedure can be implemented

by weaving an inference judgement of the form Γ ⊢
sd

e :⇑ ρ′ and a checking judgement Γ ⊢
sd

e :⇓ ρ′.

Necessarily, this bidirectional system is syntax-directed. A special-top level judgement Γ ⊢
sd

⋆ e :⇓ σ′

checks an expression against a polymorphic type as follows:

Γ ⊢
sd

e :⇓ ρ′ a#Γ
skol

Γ ⊢
sd

⋆ e : ∀a. ρ′

Γ ⊢
sd

e :⇑ ρ′ a#Γ

⊢
F
⌊∀a. ρ′⌋ ≤ σ

cbox
Γ ⊢

sd

⋆ e :⇓ σ

Rule skol simply removes the top-level quantifiers and checks the expression against the body of
the type. Rule cbox checks an expression against a single box. In this case, we must simply infer
a type for the expression, as we cannot use its contents as a type annotation. Consequently, in our

main checking judgement Γ ⊢
sd

e :⇓ ρ′, we can always assume that ρ′ is never a single box. The rule
for checking applications then becomes:

Γ ⊢
sd

e1 :⇑ σ′ σ′ �⊑→ σ′1 → σ′2
Γ ⊢

sd

⋆ e2 :⇓ σ′1 ⊢
inst

σ′2 ≤ ρ
′
2 ⌊ρ′2⌋ = ⌊ρ′⌋

app-check
Γ ⊢

sd
e1 e2 :⇓ ρ′

Following previous work, we first infer a type for the function e1. Notice that e2 is checked against
the type σ′1, which eliminates the need to generalize its type, as happens in the inference-only syntax-
directed specification. Since ρ′ cannot be a single box, we may simply instantiate σ′2 to ρ′2 and check
that this type is equal modulo the boxes to the ρ′ type that the context requires.

Annotations, no longer reveal polymorphism locally, but rather propagate the annotation down the
term structure. The rule ann-inf below infers a type for an annotated expression e:: σ by first
checking e against the annotation σ:

Γ ⊢
sd

⋆ e :⇓ σ ⊢
inst

σ ≤ ρ′
ann-inf

Γ ⊢
sd

(e:: σ) :⇑ ρ′

The rule for inferring types for λ-abstractions is similar to rule sdabs, but the rule for checking
λ-abstractions allows us now to check a function against a type of the form σ′1 → σ′2:

σ′1 ⊑ σ1 Γ, (x :σ1) ⊢
sd

⋆ e :⇓ σ′2
abs-check

Γ ⊢
sd
λx . e :⇓ σ′1 → σ′2

Notice that σ′1 must be made box-free before entering the environment, to preserve our invariant
that environments are box-free.

With these additions, and assuming that support for open type annotations, we can type functions
with more elaborate types than simply τ → ρ types, as the FPH original system does. Recall, for
instance, Example 3.7 from Section 3.4.

f :: forall a. a -> [a] -> Int
foo :: [Int -> forall b.b->b]

bog = f (\x y ->y) foo

Though bog is untypeable (even in a bidirectional system), we can recover it with the (ordinary)
annotation:

54



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

bog = f (\x y -> y :: Int -> forall b. b -> b) foo

Special forms for annotated λ-abstractions (Section 3.4) are not necessary in a bidirectional system.
Indeed our implementation is a bidirectional version of our basic syntax-directed type system.

7.2 η-conversion and deep instance relations

Unsurprisingly, since FPH is based on System F, it is not stable under η-conversion. In particular,
if f : σ → Int is in the evnironment, it is not necessarily the case that λx . f x is typeable, since
x must have a τ -type. Conversely, if an expression λx . e x makes a context C[(λx . e x )] typeable,
then it is not necessarily the case that C[e] is typeable, for a more subtle reason. Consider the code
below:

f :: Int -> forall a. a -> a
g :: forall a. a -> [a] -> a
lst :: [forall a. Int -> a -> a]

g1 = g (\x -> f x) lst -- OK
g2 = g f lst -- fail!

The application in g2 (untypeable in implicitly typed System F) fails since lst requires the instan-
tiation of g with type ∀a.Int → a → a, whereas f has type Int → ∀a. a → a. The FPH system,
which is based on System F, is not powerful enough to understand that these two types are iso-
morphic. Although such conversions are straightforward in predicative systems (Peyton Jones et al.
2007), the presence of impredicativity complicates our ability to support them. In fact, no system
with impredicative instantiations proposed to date fully supports η-conversions.

We are currently seeking ways to extend our instance relation to some “deep” version that treats
quantifiers to the right of arrows as if they were top-level, but combining that with impredicative
instantiations remains a subject of future work.

7.3 Alternative design choices

Our design choices are a compromise between simplicity and expressiveness. In this section we sketch
several alternatives.

Removing the �⊑ relation Our use of �⊑ in the type system of Figure 2 is motivated by
examples where we need to extract and use some polymorphic value out of a data structure, as in
head ids 3 . If we are willing to sacrifice this convenience, and instead require annotations the
relation �⊑ need not be present in our specification, and rule subs is unnecessary. The implemen-
tation becomes simpler, too. Nevertheless, we believe the extra complexity is worth it because it
saves many annotations, and perhaps more importantly, it allows us to type all terms of System F
that consist only of applications and variables (Section 3.5).

Typing abstractions with more expressive types Recall that λ-abstractions are typed with
box-free types only. This implies that certain transformations, such as thunking, may break typeabil-
ity. For example, consider the following code:

f1 :: forall a. (a -> a) -> [a] -> Int
g1 = f (choose id) ids -- OK

f2 :: forall a b. (b -> a -> a) -> [a] -> Int
g2 = f (\ _ -> choose id) ids -- fails!

55



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

In the example, while g1 type checks, simply thunking the application choose id breaks typeabil-
ity, because the type ∀a. a → a → ∀a. a → a cannot be unboxed.

An obvious alternative would be to allow arbitrary ρ′ types as results of λ-abstractions, and lift our
invariant that environments are box-free to allow τ ′ types as the arguments of abstractions. Though
such a modification allows for even fewer type annotations (the bodies of abstractions could use
impredicative instantiations and no annotations would be necessary), we do not know of a sound
and complete algorithm that could implement such an extension, for at least two reasons.

1. One complication has to do with boxy instantiation�. If an argument x enters the environment
with type σ , then in the body of the abstraction boxy instantatiation may allow x to be used
at two different types—something that algorithmically cannot be implemented. Perhaps an
alternative would be to introduce a different type of rigid boxes that do not allow �.

2. A second complication has to do with uses of boxy instantiation for the body types of abstrac-
tions. If a λ-abstraction is typed with τ → ∀a. ρ then by using � when typing the body of
the abstraction it can also be typed with τ → ρ . Algorithmically, this means that probably
we would have to “‘flexify” all bounds to the right of arrows. If for a function we have inferred
type Int → α where α = ∀a. ρ, the algorithm would probably have to modify this type to
Int → α where α ≥ [α⋆ ⊥] ⇒ ρ, in order to capture the possibility of � used in the typing
derivation of the body of the abstraction.

In general we do not believe that the programming benefits justify the implementation and speci-
fication costs—after all in many cases λ-abstractions are let -bound, and hence they are forced by
the rules for let -bound expressions to be box free anyway!

A box-free specification A safe approximation of where type annotations are necessary is at let -
bindings or λ-abstractions that have to use rich types. Perhaps surprisingly, taking this guideline
one step further, if we always require annotations in bindings with rich types then we no longer
need boxes in the specification at all! Consider the basic type system of Figure 2 with the following
modifications:

1. Drop all boxy structure from all typing rules, that is, replace all ρ′, σ′, types with ρ and σ
types, and completely remove subs and �⊑. Instantiate with arbitrary σ types in rule inst.

2. Replace rule let and abs with their corresponding versions for Damas-Milner types

Γ ⊢ u : ∀a. τ
Γ, (x :∀a. τ) ⊢ e : ρ

let
Γ ⊢ let x = u in e : ρ

Γ, (x :τ1) ⊢ e : τ2
abs

Γ ⊢ λx . e : τ1 → τ2

3. Add provision for annotated let -bindings and λ-abstractions:

Γ ⊢ u : σ Γ, (x :σ) ⊢ e : ρ
let-ann

Γ ⊢ let x :: σ = u in e : ρ

Γ, (x :σ1) ⊢ e : σ2
abs-ann

Γ ⊢ (λx . e : : : σ1 → σ2) : σ1 → σ2

The resulting type system enjoys sound and complete type inference, by using essentially the same
algorithm as the FPH type system. However, this variation is more demanding in type annotations
than the box-based FPH. For instance, one has to annotate every let -binding that uses rich types,
even if its type did not involve any impredicative instantiations. For example:

f :: Int -> (forall a. a -> a) -> (forall a. a -> a)
h = f 42 -- fails!

The binding for h has a rich type an hence must be annotated, although no impredicative instanti-
ation took place.

Given the fact that this simplification is more demanding in type annotations, we believe that it is
less suitable for a real-world implementation.

56



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Specification Implementation Placement of annotations /
typeable programs

HM
F Simple, “minimality” re-

strictions
Simple Annotations may be needed on λ-

abstractions with rich types and
on arguments that must be kept
polymorphic

ML
F Heavyweight, declarative Heavyweight Precise, annotations only re-

quired for usage of argument vari-
ables at two or more types

Boxy Types Complex, syntax-
directed, dark corners

Simple No clear guidelines, not clear
what fragment of System F is
typed without annotations

FPH Simple, declarative Heavyweight Precise, annotations on let -
bindings and λ-abstractions with
rich types, types all applicative
System F terms and more with-
out annotations

Figure 12: Quick summary of most relevant related works

8 Related work

There are several recent proposals for annotation-driven type inference for first-class polymorphism.
The most relevant works are the ML

F language of Rémy and Le Botlan (Le Botlan and Rémy 2003),
the HM

F language of Leijen (Leijen 2007a), and the Boxy Types system, proposed by the au-
thors (Vytiniotis et al. 2006). These works differ in simplicity of specification, implementation,
placement of type annotations, and expressiveness. We present an extensive comparison below and
a quick summary in Table 12.

ML
F and Rigid ML

F The ML
F language of Le Botlan and Rémy (Le Botlan and Rémy 2003;

Le Botlan 2004) partly inspired this work. The biggest difference between this language and other
approaches is that it extends System F types with constraints of the form ∀(Q)τ so to enable

principal types for all expressions. Therefore, let -expansion preserves typeability in ML
F, unlike

systems that use only System F types. Because the type language is more expressive, ML
F requires

strictly fewer annotations. In ML
F, annotations are necessary only when some variable is used at

two or more polymorphic types—in contrast, in our language, variables must be annotated when
they are defined with rich types. For example, the following program

f = \x -> x ids

needs no annotation in ML
F because x is only used once. FPH requires an annotation on x . Hence

we are more restrictive.

A big drawback of ML
F is the complexity of its specification: constrained types appear in the

declarative type system and the instance relation of ML
F must include them. Our specification is

considerably simpler because we do not need a constraint-based instance relation. Furthermore,
our low-level implementation is a variation of the ML

F implementation. However, because we do
not expose a constraint-based instance relation in the specification, we can formalize our algorithm
as directly manipulating sets of System F types. In contrast, ML

F internalizes the subset relation
between sets of System F types as a syntactic instance relation, and formalizes type inference with
respect to this somewhat complex syntactic instance relation. Le Botlan and Rémy study the
set-based interpretation of ML

F in a recent report (Le Botlan and Rémy 2007), which inspired our
set-theoretic interpretation of schemes.

Despite the simplifications that FPH provides, there are technical parallels between our work and
ML

F. One of the key ideas behind ML
F is that all polymorphic instantiations are “hidden” behind

57



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

constrained type variables. Our type system uses anonymous boxes for the same purpose.Furthermore,
the revelation of implicit polymorphism is achieved in ML

F at type annotation nodes, where explicit
type information is present. Similarly, the revelation of polymorphism is achieved in FPH when a
boxed type meets an annotation.

Finally, ML
F is a source language and is translated to an explicitly typed intermediate language,

such as explicitly typed System F, using coercion terms (Leijen and Löh 2005). Coming up with a
typed intermediate language for ML

F that is suitable for a compiler and does not require term-level
coercions is still a subject of research. In contrast, because FPH is based on System F, elaborating
FPH to System F is straightforward.

A variation of ML
F similar in expressive power to FPH is Leijen’s Rigid ML

F (Leijen 2007b). Like
FPH, Rigid ML

F does not include constrained types. Instead, it resolves constraints by instantiating
flexible bounds at let -nodes. However Rigid ML

F is specified using the ML
F instance relation.

Consequently, despite the fact that types in the environment are System F types, to reason about
typeability one must reason using the ML

F machinery. Additionally, the rules of Rigid ML
F require

that when instantiating the types of let -bound expressions, the constraint that is used in the
typing derivation of the let -bound expression is the most general. Requiring programmers to think
in terms of most general ML

F constraints may even be more complicated than requiring them to
reason with ML

F constraints, as in the original ML
F proposal.

Boxy Types Boxy Types (Vytiniotis et al. 2006) is an earlier proposal by the authors to address
type inference for first-class polymorphism. Like this paper, Boxy Types uses boxed System F types
to hide polymorphism. Because boxes provide an elegant way to mark impredicativity, we have
reused that syntax in this work.

However, boxes play a different role in our previous work. In Boxy Types, boxes merely distinguish
the parts of types that were inferred from those that result from some type annotation, combining
bidirectional annotation propagation with type inference. In a Boxy Types judgement of the form
Γ ⊢ e : ρ′, the ρ′ type should be viewed as input to the type-checker, which asks for the boxes of ρ′

to get filled in. In this work, the ρ′ type is an output, and boxes simply mark where impredicative
instantiations took place.

Boxy Types were implemented using a relatively simple algorithm which modestly extends Hindley-
Damas-Milner unification with local annotation propagation. Because the algorithm does not ma-
nipulate instance constraints, it cannot delay instantiations. Therefore, the type system must make
local decisions. In particular, Boxy Types often requires programs to unbox the contents of the
boxes too early. For type inference completeness, if information about the contents of a box is not
locally available, it must contain a monomorphic type. As a result, the basic Boxy Types system
requires many type annotations. Ad-hoc heuristics, such as N -ary applications, and elaborate type
subsumption procedures, relieve the annotation burden but further complicate the specification and
the predictability of the system.

Although some programs are typeable with Boxy Types and are not typeable (without annotation)
in FPH, and vice versa, we believe that the simpler specification of FPH is a dramatic improvement.

HM
F Leijen’s HM

F system (Leijen 2007a) is yet another interesting point in the design space. The
HM

F system enjoys a particularly simple inference algorithm (a variant of Algorithm W), and one
that is certainly simpler than FPH. In exchange, the typing rules are somewhat unconventional in
form, and it is somewhat harder to predict exactly where a type annotation is required and where
none is needed.

The key feature of HM
F is a clever application rule, where impredicative instantiations are deter-

mined by a local match procedure. In the type system, this approach imposes certain “minimality”
conditions that require (i) that all types entering the environment are the most general types that
can be assigned to programs, and (ii) that all allowed impredicative instantiations of functions are
those that “minimize” the polymorphism of the returned application.

58



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

The local match procedure means that HM
F takes eager decisions: in general, polymorphic func-

tions get instantiated by default, unless specified otherwise by the programmer. For example, the
program single id (where single has type ∀a. a → [a]) cannot be typed with type [∀a. a → a].
The top-level quantifiers of id are instantiated too early, before the local match procedure. Be-
cause FPH delays instantiations using constraints, we may type this expression with [∀a. a → a ]
(but we would still need an annotation to let -bind it). In HM

F one may annotate the function
single , or specify with a rigid type annotation that the type of id must not be instantiated:
(single (id :: forall a. a -> a)) .5 Note that HM

F annotations are different than the
annotations found, for instance, in Haskell—e.g. (id :: forall a. a -> a) 42 is rejected.

Leijen observes that local match procedures are, in general, not robust to program transformations.
If only a local match were to be used, the application (cons id) ids would not typeable, while
(revcons ids ) id would be (where revcons has type ∀a. [a]→ a → [a]). Hence, these problems
are circumvented in HM

F by using an N -ary application typing rule that uses type information from
all arguments in an application.

In general, annotations are needed in HM
F on λ-abstractions with rich types and on arguments that

must be kept polymorphic. For example, if f : ∀a. a → . . . and arg : ∀b. τ , an annotation will be
needed, f (arg :: ∀b. τ), to instantiate a with ∀b. τ . However in some cases, annotation propagation
and N -ary applications may make such annotations redundant.

Because HM
F requires most general types in derivations, there are programs typeable in HM

F but not
in FPH. For example, let g = append ids in ... requires an annotation in FPH, whereas it
seamlessly typechecks in HM

F. On the other hand, flexible instantiation allows FPH to type examples
such as

f :: forall a. [a] -> [a] -> a
g = f (single id) ids

where HM
F (even with annotation propagation) fails. Overall, we believe that the placement of

required annotations in FPH is somewhat easier to describe than in HM
F. But on the other hand,

HM
F posseses a significantly simpler implementation and metatheory.

Other works For completeness, we outline some more distantly connected works. Full type
reconstruction for (implicitly typed) System F is undecidable (Wells 1999). Kfoury and Wells stratify
System F types by rank (polymorhism on the left of function types), and show undecidability of
type reconstruction for System F with types of rank-3 or higher. On the other hand, the rank-2
fragment of System F is decidable (Kfoury and Wells 1994).

Pfenning shows that even partial type inference (Pfenning 1988) where only type abstractions and
the positions of type applications are known, but not the types of λ-abstraction arguments, for
the n-th order polymorphic λ-calculus is equivalent to n-th order unification, which is undecidable.
Recent work (Le Botlan and Rémy 2007) shows that one only needs polymorphic function argument
annotations (and not type abstractions and type applications) to embed all of System F. Notice that
Pfenning’s work does not include let -bound definitions, which as we have seen, are another cause
for lack of principal types in System F.

A different line of work explores type inference for predicative higher-rank polymorphism (Odersky and Läufer
1996; Peyton Jones et al. 2007; Rémy 2005). Odersky and Läufer made the observation that once
all polymorphic function arguments are annotated, type inference for predicative higer-rank poly-
morphism becomes decidable, even in the presence of let -bound expressions. Peyton Jones et al.
explore variations of the Odersky-Läufer type system that support a bidirectional propagation of
type annotations. Finally Rémy proposed a clean separation of the bidirectional propagation of type
annotations, through a phase called shape inference, that is performed before type inference.

5A final possibility would be for the annotation ∀a. a → a to have been somehow propagated to id .

59



Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

9 Future work and conclusions

We have presented a simple, expressive declarative specification for type inference for impredicative
polymorphism. We have implemented the system in prototype form; next, we plan to retro-fit
the implementation to a full-scale compiler. Our reference implementation is not focused around
efficiency, although the unification algorithm is of polynomial time complexity. As future work, we
would like to evaluate the efficiency of unification in large programs, and study the interaction with
other forms of constraints, such as qualified types. Preliminary work by Leijen and Löh (2005) shows
how to combine ML

F-style unification with qualified types, and we expect no significant difficulties
to arise.

References

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Conference Record
of the 9th Annual ACM Symposium on Principles of Programming Languages, pages 207–12, New
York, 1982. ACM Press.

Jacques Garrigue and Didier Rémy. Semi-explicit first-class polymorphism for ML. Journal of
Information and Computation, 155:134–169, 1999.

AJ Kfoury and JB Wells. A direct algorithm for type inference in the rank-2 fragment of the second-
order lambda calculus. In ACM Symposium on Lisp and Functional Programming, pages 196–207.
ACM, Orlando, Florida, June 1994.

D Le Botlan and D Rémy. MLF: raising ML to the power of System F. In ACM SIGPLAN
International Conference on Functional Programming (ICFP’03), pages 27–38, Uppsala, Sweden,
September 2003. ACM.

Didier Le Botlan. MLF : Une extension de ML avec polymorphisme de second ordre et instanciation
implicite. PhD thesis, Ecole Polytechnique, May 2004. 326 pages, also available in english.

Didier Le Botlan and Didier Rémy. Recasting MLF. Research Report 6228, INRIA, Rocquencourt,
BP 105, 78 153 Le Chesnay Cedex, France, June 2007.

Daan Leijen. HMF: simple type inference for first-class polymorphism. URL
http://research.microsoft.com/users/daan/download/p apers/hmfdraft.pdf .
September 2007a.

Daan Leijen. A type directed translation of MLF to System-F. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’07), Freiburg, Germany, 2007b. ACM.

Daan Leijen and Andres Löh. Qualified types for MLF. In ACM SIGPLAN International Conference
on Functional Programming (ICFP’06), pages 144–155. ACM Press, 2005.

R Milner. A theory of type polymorphism in programming. JCSS, 13(3), December 1978.

M Odersky and K Läufer. Putting type annotations to work. In 23rd ACM Symposium on Principles
of Programming Languages (POPL’96), pages 54–67. ACM, St Petersburg Beach, Florida, January
1996.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields.
Practical type inference for arbitrary-rank types. J. Funct. Program., 17(1):1–82,
2007. ISSN 0956-7968. doi: http://dx.doi.org/10.1017/S0956796806006034. URL
http://research.microsoft.com/˜simonpj/papers/highe r-rank/ .

60

http://research.microsoft.com/users/daan/download/papers/hmfdraft.pdf
http://research.microsoft.com/~simonpj/papers/higher-rank/


Dimitrios Vytiniotis FPH: First-class polymorphism for Haskell

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In LFP ’88:
Proceedings of the 1988 ACM conference on LISP and functional programming, pages 153–163,
New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X. doi: http://doi.acm.org/10.1145/62678.
62697.

Didier Rémy. Simple, partial type inference for System F, based on type containment. In ACM SIG-
PLAN International Conference on Functional Programming (ICFP’05), pages 130–143, Tallinn,
Estonia, September 2005. ACM.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Boxy types: Inference for higher-
rank types and impredicativity. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’06), Portland, Oregon, 2006. ACM Press.

JB Wells. Typability and type checking in system F are equivalent and undecidable. Ann. Pure
Appl. Logic, 98:111–156, 1999.

61


	Abstract
	Introduction
	Type inference for first-class polymorphism
	Marking impredicative instantiation
	Expressive power
	Limitations of FPH

	Declarative specification of the FPH type system
	Typing rules
	The subsumption rule
	Properties
	Higher rank types and System F
	Predictability and robustness

	An equivalent declarative specification
	Syntax-directed specification
	Algorithmic implementation
	The basic ideas
	Description of the algorithm
	Bounds, and the meaning of constraints
	Inference implementation
	Instance checking and unification
	Summary of the algorithmic implementation properties

	Detailed algorithm metatheory
	Unification termination
	Unification soundness properties
	Unification completeness lemmas
	Main algorithm soundness
	Main algorithm completeness


	Discussion
	Bidirectionality
	-conversion and deep instance relations
	Alternative design choices

	Related work
	Future work and conclusions

